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Abstract

Todo introduced [20] a property of multisets of a finite field called the
division property. It is then used [19] in an attack against the S7 S-box
of the MISTY1 cipher. This paper provides a complete mathematical
analysis of the division property. The tool we use is the discrete Fourier
transform. We relate the division property to the natural concept of the
degree of a subset of a finite field. This indeed provides a characterization
of multisets satisfying the division property. In [18], the authors gave
some properties related to the division property. In this paper we give
a complete characterization and reprove many of their results. We show
that the division property is actually the dual of the degree of t-products of
the inverse S-box and show these two characteristics are affine invariants.
We then propose a very efficient way to check vulnerability of a given S-
box against attacks of this type. We also reprove some recent interesting
results using the method based on the discrete Fourier transform. We
finally check whether the S-boxes of the candidate ciphers in the CAESAR
competition are vulnerable against attacks based on the division property.

1 Introduction

1.1 Fields and vector spaces

Let F = F2n be the finite field with 2n elements. Note that F is a vector space
of dimension n over F2. By choosing a basis β = (β1, . . . , βn) we can easily
convert an element x ∈ F2n to a vector x = (x1, . . . , xn) ∈ Fn

2 and vice versa by
means of the relation

x = x1β1 + · · ·+ xnβn.

We shall not make any distinction between vectors and field elements. The
Hamming weight wt(x) of x is defined as number of xi 6= 1. The binary weight of
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an integer wt2(k) equals the Hamming weight of the vector with the coefficients
of k’s expression as a sum of powers of 2. The one’s complement notation implies
that if k < 2n then

wt2(2n − k) = n− wt2(k).

The trace of an element a ∈ F2n is defined as:

tr(a) =

n−1∑
i=0

a2
i

.

1.2 Todo’s division property

Todo [20] defined the following function in order to define the division property.

Definition 1 (Bit-product function). Let u = (u1, . . . , un),x = (x1, . . . , xn) ∈
Fn
2 be vectors. Then the bit-product function πu : Fn

2 → F2 is

πu(x) = xu =

m∏
i=1

xui
i .

Now one can define the Division property as in [20].

Definition 2 (Division property). Let M be a multiset of Fn
2 . The multiset M

satisfies the division property Dn
k , if for all u with wt(u) < k we have∑
x∈M

πu(x) = 0.

One can see easily that the symmetric difference M 4 {∗a, a∗} satisfies the
same division property as that of M . Therefore one can concentrate on sets
instead of multisets.

Example 3. The set Fn
2 is a Dn

n-set.

Example 4. The hyperplanes of F2n are Dn
n−1-sets.

2 The Discrete Fourier Transform

In this section we explain the well-known and widely used tool, the discrete
Fourier transform (DFT). We will introduce the very natural concept based on
the DFT of the characteristic function of a set, which we call the degree of a set
S which is a subset of a finite field F2n . We will then show that this concept
corresponds to the division property. In this section we let q = 2n.
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2.1 Definition

Definition 5. The discrete Fourier transform of a function F : Fq → Fq is
defined as

F̃ (k) =

{
F (0) if k = 0,

−
∑

x∈F∗q
F (x)x−k if 1 ≤ k ≤ q − 1. (1)

It follows that

F (x) =

q−1∑
k=0

F̃ (k)xk (2)

Hence, any function F : Fq → Fq can be written as a polynomial F (x) ∈ Fq[x].
The representation is unique when one considers polynomials modulo xq − x.
Note that the DFT describes a way to find the polynomial F (x) which uniquely
corresponds to the function F . We will make no distinction between the function
and the polynomial.

2.2 Degrees of functions and sets

We talk about two kinds of degrees of functions. The (usual) degree of a function
F : Fq → Fq is the largest 0 ≤ k ≤ q − 1 such that F̃ (k) 6= 0.

We can also describe F as a function F : Fn
2 → Fn

2 . In that case, the
Algebraic Normal Form (ANF) of F is

F (x) =
∑
u∈Fn

2

auπu(x), (3)

with au ∈ Fn
2 . The algebraic or Boolean degree of F (which we will call deg (F ))

is defined as the largest wt2(u) such that au 6= 0. We will be (almost exclusively)
interested in the Boolean degree.

We can find deg (F ) also from the DFT: deg (F ) equals the largest wt2(k),
i.e., largest binary weight of an exponent k, such that F̃ (k) 6= 0. See, for
instance, [8] for vectorial Boolean functions and their representations. Now for
a subset S ⊆ Fq, we define the characteristic Boolean function χS : Fq → F2 as

χS(x) =

{
1 if x ∈ S,
0 if x 6∈ S.

Now it is natural to define the degree of a set:

Definition 6 (Degree of a set). The degree deg (S) of a set S ⊆ Fq is the
Boolean degree deg (χS) of the characteristic Boolean function.

Now an inspection of the Eq. (1) shows that∑
x∈S

xk = −χ̃S(−k). (4)
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For a set S with deg (S) = d this means∑
x∈S

xk = 0

for all k with wt2(k) < n− d and ∑
x∈S

xk 6= 0

for some k with wt2(k) = n− d.
Note the similarity between the subsets of Fn

2 with the division property Dn
d

and subsets of F2n with degree n− d. The former sets satisfy
∑

x∈S πu(x) = 0

for all u with wt(u) < d, while the latter satisfies
∑

x∈S x
k = 0 for all k < d. We

will show now that indeed these two definitions are the same. Note that we use
a vector space notation for the division property and a finite field notation for
the degree property. For the following we will stick to the finite field notation
since the finite field F2n is an n-dimensional vector space over F2. The following
lemma will be used extensively.

Lemma 7. For any set S ⊆ Fq and any F : Fq → Fq we have

BS,F =
∑
x∈S

F (x) = 0

if deg (S) + deg (F ) < n and for a fixed F , there exists an S with deg (S) =
n− deg (F ) such that BS,F 6= 0.

Proof. Clearly

BS,F =
∑
x∈S

F (x) =
∑
x∈Fq

χS(x)F (x).

Therefore if deg (χS) + deg (F ) < n then BS,F = 0. And for any F there exists
a degree deg (S) = n − deg (F ) function such that BS,F 6= 0. Let the ANF
of F have the term AI

∏
i∈I xi where I ⊆ {1, . . . , n} and #I = deg (F ), then

χS(x) =
∏

i 6∈I xi is one such function.

Theorem 8. Let S be a subset of Fq. We have∑
x∈S

πu(x) = 0

for all u with wt(u) < d if and only if∑
x∈S

xk = 0

for all wt2(k) < d.
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Proof. Assume ∑
x∈S

πu(x) = 0

for all u with wt(u) < d. Then

∑
x∈S

(∏
i∈I

xi

)
= 0 (5)

for all I ∈ Pn
d where Pn

j is the set of all subsets I of {1, . . . , n} with #I ≤ j.
For any k with wt(k) < d we have

∑
x∈S

xk =
∑
x∈S

 ∑
I∈Pn

wt(k)

βI
∏
i∈I

xi


=

∑
I∈Pn

wt(k)

βI

(∑
x∈S

(∏
i∈I

xi

))
= 0

by (5) where βI is the corresponding coefficient determined by I in the expan-
sion. Its value does not matter. Now assume∑

x∈S
xk = 0

for all wt2(k) < d. Then by (4), we have deg (χS) ≤ n− d. And∑
x∈S

πu(x) =
∑
x∈Fq

χS(x)πu(x).

Note that since deg (πu(x)) = wt(u) and deg (χS(x)πu(x)) ≤ n − d + wt(u) we
get ∑

x∈Fq

χS(x)πu(x) =
∑
x∈S

πu(x) = 0

by Lemma 7 for all u with wt(u) < d.

Corollary 9. Let S be a subset of Fq. Then S is a Dn
d -set if and only if

deg (S) = n− d.

3 Characteristics for S-boxes

In this section we will explain some characteristics for S-boxes regarding attacks
based on the division property.
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Theoretically, one can argue that an S-box is “good” if it takes input with a
low complexity to output with a complexity as high as possible. Dually, output
with a high complexity should come as well from input with a complexity as
small as possible. The degree of a set we defined leads to these two character-
istics for S-boxes. They have been used to attack the S7 S-box of MISTY1 by
Canteaut and Videau [7] and Todo [19] respectively. It is a purpose of the paper
to make these connections clear which we will try to do in this section.

The two characteristics explained in the previous paragraph can be written
explicitly as

max{deg (F (S)) : deg (S) ≤ k},
min{deg (S) : deg (F (S)) ≥ k},

for all 1 ≤ k ≤ n. To have a “good” S-box, the former characteristic should be
as large as possible, whereas the latter should be as small as possible.

We will show that the following two characteristics for a function F : Fq → Fq

correspond respectively to the theoretical characteristics we have just described
for an S-box.

DF (k) = min{wt(j) : deg
(
F j
)
≥ k},

CF (k) = max{deg
(
F j
)

: wt(j) ≤ k},

Theorem 10. The characteristics CF (k) and DF (k) satisfy

CF (k) = n−min{deg (S) : deg (F (S)) ≥ n− k},
DF (k) = n−max{deg (F (S)) : deg (S) ≤ n− k},

where S ∈ P(Fq) denotes the powerset of Fq.

Proof. Assume n− t = max{deg (F (S)) : deg (S) ≤ n− k} and S′ be such an
S. We have by (4)∑

x∈F (S′)

xj
{

= 0 if wt(j) < t
6= 0 for some j with wt(j) = t

if and only if ∑
x∈S′

F (x)j
{

= 0 if wt(j) < t
6= 0 for some j with wt(j) = t

if and only if ∑
x∈Fq

(χS′ · F j)(x)

{
= 0 if wt(j) < t
6= 0 for some j with wt(j) = t

But this means t = min{wt(j) : deg
(
F j
)
≥ k}.
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Similarly, assume n− t = min{deg (S) : deg (F (S)) ≥ n−k} and S′ be such
an S. We have by (4)∑

x∈F (S′)

xd
{
6= 0 for some d = j with wt(j) ≤ k
= 0 if wt(d) < wt(j)

if and only if ∑
x∈S′

F (x)d
{
6= 0 for some d = j with wt(j) ≤ k
= 0 if wt(d) < wt(j)

if and only if∑
x∈Fq

(χS′ · F d)(x)

{
6= 0 for some d = j with wt(j) ≤ k
= 0 if wt(d) < wt(j)

But this means t = max{deg
(
F j
)

: wt(j) ≤ k}, since deg (S′) + deg
(
F d
)

=
n.

The characteristic CF (k) is related to the following extension of the degree
of a function.

Definition 11 (Degree of t-products). Let F : Fq → Fq be a function, and Fi

be its Boolean components. For any integer 1 ≤ t ≤ n

δk(F ) = maxI∈Pn
k

{
deg

(∏
i∈I

Fi

)}

Corollary 12 (to Theorem 8). We have

CF (k) = δk(F ).

Proof. Theorem 8 shows CF (k) = maxwt(u)≤k {deg (πu ◦ F )}. It is clear that the
right hand side is equivalent to δk(F ).

Remark 13. The characteristic DF (k) is equivalent to the characteristic

D′F (k) = min{deg (G) : deg (G ◦ F ) ≥ k},

and it is much easier to compute. Similarly the characteristic DF (k) is equivalent
to

C′F (k) = max{deg (G ◦ F ) : deg (G) ≤ k}.

We will now prove the duality between CF (k) and DF inv(n− k) for a permu-
tation F .

Theorem 14. The CF (k) and DF inv(n− k) satisfy

CF (k) + DF inv(n− k) = n.
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Proof. Recall

CF (k) = max{deg (F e) : wt(e) ≤ k},
DF inv(n− k) = min{wt(d) : deg

(
(F inv)d

)
≥ n− k}.

Let DF inv(n− k) = t. We have a minimum weight d satisfying wt(d) = t and
there exists an i with wt(i) ≥ n− k such that

−
∑
x∈F∗q

(F inv(x))dx−i 6= 0,

using the DFT. Employing x = F (y) we get

−
∑
y∈F∗q

(F (y))−ixd 6= 0.

This means deg
(
F−i

)
≥ wt(−d) = n − t. Since wt(−i) ≤ k we have CF (k) ≥

n− t. So
CF (k) + DF inv(n− k) ≥ n.

Conversely, let CF (k) = u, which is satisfied by u = deg (F e). Then, there
exists an i with wt(i) = u such that

−
∑
x∈F∗q

(F (x))ex−i 6= 0,

using the DFT. Employing x = F (y) we get

−
∑
y∈F∗q

(F inv(y))−ixe 6= 0.

This means deg
(
(F inv(x))−i

)
≥ wt(−e) ≥ n − k and wt(−i) = n − u. Hence

DF inv(n− k) ≤ n− u and

CF (k) + DF inv(n− k) ≤ n.

The two inequalities give us the result we need.

In the next theorem we note the optimal values for the two characteristics.

Theorem 15. Let F : Fq → Fq be a permutation which satisfies deg (F ) = d.
The optimal values for the characteristics are

CF (k) = min(kd, n− 1),

DF (k) =

⌈
k

d

⌉
,

for 1 ≤ k ≤ n− 1.
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3.1 Some consequences

The DFT method we explore in this paper is quite useful as exemplified by
re-proving the following very interesting theorem of Boura and Canteaut.

Theorem 16 ([6, Theorem 3.1]). Let F : Fq → Fq be a permutation. Then for
any integers k, l

δk(F inv) < n− k ⇐⇒ δl(F ) < n− l

Proof. Using DFT

δk(F inv) < n− k ⇐⇒ −
∑
x∈Fq

(F inv(x))dx−i = 0

for all d, i with wt(d) ≤ k and wt(i) ≥ n− l. Using x = F (y) we get

⇐⇒ −
∑
y∈Fq

(F (y))−iyd = 0 ⇐⇒ δl(F ) < n− l

since wt(−i) ≤ l and wt(−d) ≥ n− k and using DFT once again.

Remark 17. One can prove Theorem 14 using Theorem 16 as well [14].

In [18], the authors prove several properties of the sets satisfying the division
property. With the DFT approach we can reprove these results quite naturally.

Theorem 18 ([18, Theorem 1]). Let S ⊆ Fq satisfy division property Dn
k . Then

#S ≥ 2k.

Proof. We have by Corollary 9 deg (S) = d ≤ n − k. Let χS = x1x2 · · ·xd + g.
Then the restriction of χS to any 2n−d evaluation (xd+1, . . . , xn) = (εd+1, . . . , εn)
where εi ∈ F2 is maximal degree, i.e.,

∑
x1,...,xd

χS(x1, . . . , xd, εd+1, . . . , εn) is

odd. Therefore the weight of χS = #S ≥ 2n−d ≥ 2k.

Theorem 19 ([18, Corollary 1]). Let ∅ 6= S ⊆ Fq satisfy division property Dn
n.

Then S = Fq.

Proof. This means χS = 1, i.e., S = Fq.

Similar results can be proved rather directly using the DFT approach taken
here. For instance the BALANCE property [9] which states that the sum of all
elements in S is 0, is clearly equivalent to deg (S) ≤ n− 2.

3.2 Affine Equivalence of the characteristics

Two functions F,G : Fq → Fq are said to be affinely equivalent if there exists
two affine permutations L1, L2 such that G = L1 ◦ F ◦ L2.

Theorem 20. The characteristics CF (k) and DF (k) are invariant under affine
equivalence.
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Proof. We will show, using the interpretation of Theorem 10, that the charac-
teristics CF (k) and DF (k) are the same as that of G = L1 ◦F ◦L2 as well. First,
for a linear permutation L

L(S) = {L(x) : x ∈ S}

a degree k set S is mapped to L(S). By Theorem 8 we need to find weights of
i for which ∑

x∈S
L(x)i = 0

is satisfied. We have

−
∑
x∈S

L(x)−i = −
∑
x∈Fq

χS(x)L(x)−i = −
∑
x∈Fq

χS ◦ Linv(x)x−i

Since the degrees of a Boolean function f and f ◦ L are the same we prove the
claim by the properties of the DFT.

Remark 21. The characteristics are not CCZ-invariant. This is immediate to
see when xd and its inverse xd

−1

have different degrees. They are not even
extended-affine invariant, i.e., G = L1 ◦ F ◦ L2 + L3, where L1, L2 are affine
permutations and L3 an affine function.

4 Division Properties of the S-boxes in CAE-
SAR Candidates

Authenticated encryption schemes that aim to provide both privacy and in-
tegrity of data, have gained renewed attention in light of the CAESAR compe-
tition [2]. In this section we will provide information on their behavior under
the characteristics Cn(k) and Dn(k).

There are 29 second-round candidates out of the 57 first-round submissions.
A significant fraction of the candidates are using SPN as the primitives, around
half of them are using AES. Nevertheless there are designs based on new SPN
primitives. According to the size of the S-box which is using, we classify them
as follows:

4-bit S-boxes: CLOC [12], SILC [13] use the PRESENT [5] S-box. Minalpher
[17] uses its own 4-bit S-box. Both S-boxes have the same division prop-
erties. They are listed in Table 1.

5-bit S-boxes: Ketje [4], Keyak [3] and Ascon [10] use 5-bit S-boxes with de-
gree 2. The S-box of ICEPOLE [15] has degree 4. The S-box of PRI-
MATEs [1] has degree 3. The division properties of these S-boxes are
described in Table 2.

8-bit S-box: SCREAM [11] constructs an 8-bit S-box from a 4-bit S-box by
using the MISTY structure, while STRIBOB [16] employs its own 8-bit
S-box. The division properties of these S-boxes are shown in Table 3.
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The results in Table 1–Table 3 indicate that none of the candidates in Round 2 of
the CAESAR competition uses S-boxes that are vulnerable against attacks using
the division property: their DF (k) values are optimal according to Theorem 15.

Table 1: Division Properties of the S-boxes used in CLOC, SILC and Minalpher

k 0 1 2 3 4

D4
k 0 1 1 1 4

Table 2: Division Properties of the S-boxes used in Ketje, Keyak, Ascon and
PRIMATEs (D5

ka) and of the S-boxes used in ICEPOLE (D5
kb)

k 0 1 2 3 4 5

D5
ka 0 1 1 2 2 5

D5
kb 0 1 1 1 1 5

Table 3: Division Properties of the S-boxes used in SCREAM and STRIBOB

k 0 1 2 3 4 5 6 7 8

D8
k 0 1 1 1 1 1 1 1 8

5 Conclusion

In this paper we showed that the division property is equivalent to a very natural
concept used in finite fields: the degree. The discrete Fourier transform, DFT,
is a strong tool and allows proving results related to the division property in
a natural way. We have made this relationship clear which, we hope, will help
analysis of crypanalytical implications. We have also evaluated the resistance
of candidate ciphers in the CAESAR competition against the division property.
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