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Abstract. Lightweight cryptography strives to protect communication
in constrained environments without sacrificing security. However, secu-
rity often conflicts with efficiency, shown by the fact that many new
lightweight block cipher designs have block sizes as low as 64 or 32
bits. Such low block sizes lead to impractical limits on how much data
a mode of operation can process per key. MAC (message authentica-
tion code) modes of operation frequently have bounds which degrade
with both the number of messages queried and the message length. We
present a MAC mode of operation, LightMAC, where the message length
has no effect on the security bound, allowing an order of magnitude
more data to be processed per key. Furthermore, LightMAC is incredibly
simple, has almost no overhead over the block cipher, and is paralleliz-
able. As a result, LightMAC not only offers compact authentication for
resource-constrained platforms, but also allows high-performance parallel
implementations. We highlight this in a comprehensive implementation
study, instantiating LightMAC with PRESENT and the AES. Moreover,
LightMAC allows flexible trade-offs between rate and maximum message
length. Unlike PMAC and its many derivatives, LightMAC is not cov-
ered by patents. Altogether, this makes it a promising authentication
primitive for a wide range of platforms and use cases.

Keywords: lightweight, MAC, LightMAC, message length, birthday
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1 Introduction

With the rise of the Internet of Things, connected devices are being
placed everywhere, resulting in a wide variety of efficiency, robustness,
and feature requirements for communication. Securing the communca-
tion remains important, and as a result, many block ciphers have been
created to work efficiently in constrained environments. These block ci-
phers offer a range of block and key sizes, from 128 to 32 bits; see Table 1
for a sample.



The key size is often chosen carefully to ensure a sufficiently high
security level, resulting in the block size becoming the dominant factor in
determining security. As is well known, reducing block size can increase
the chance of an inner state collision when block ciphers are used in so-
called modes of operation: constructions which repeatedly apply a block
cipher to achieve functionality beyond what a block cipher offers.

Consider MAC (Message Authentication Code) modes of operation,
which aim to provide data authenticity for long messages. Common MAC
modes, such as CBC-MAC [5], OMAC [24], and PMAC [10] have security
bounds which degrade relative to both the number of messages tagged,
q, and the length of the messages measured in blocks, `; see Table 2 for a
list of modes with their dependence on `. For many modes, an adversary
which is able to tag q messages of length ` blocks will have a success
probability of roughly

q2`

2n
, (1)

where n is the block size of the underlying block cipher. With a 32 bit
block size and a guarantee that adversaries do not forge with probability
more than one in a million, one gets a restriction of the form

q2`

232
≤ 1

220
or q2` ≤ 212 , (2)

meaning 64 one-block messages can be tagged under the same key. But
what if the messages are longer than one block? With conventional MACs
only 32 four-block messages can be tagged, corresponding to 32 · 22 · 32 =
212 bits, or 512 Bytes of data per key. If the messages are sixteen blocks
long, only 16 messages can be tagged, which is 16 · 24 · 32 = 213 bits, or
1 KiB of data per key. Fig. 1 displays how much data the various modes
from Table 2 can process per key, when the threshold success probability
is set to 1/220.

1.1 Contributions

We present a MAC mode, LightMAC, which enables one to tag much
longer messages than typically possible. LightMAC is depicted in Fig. 2
and Alg. 1.

The security upper bound for LightMAC is

(1 + ε) · q
2

2n
, where ε ∈ O

(
1

2n/2 − 1

)
, (3)



which is independent of the message length (see Sect. 4). In other words,
with a 32 bit block size, and setting the message-length parameter s to 16,
roughly 64 messages can be tagged with length up to 215 blocks. Note that
keys are used most efficiently when the messages are as long as possible:
up to 64 · 215 · 32 = 226 bits, or 8 MiB of data can be tagged per key.
LightMAC uses two independent keys, but even after normalizing by the
number of keys, the amount of data processed per key is still 4 MiB, a
significant improvement over 1 KiB.

Fig. 1 compares LightMAC to the other published modes from Table 2.
The figure shows that LightMAC starts with a factor 24 improvement over
many of the modes, which grows to roughly 210 as the number of queries
increases. Modes such as PMAC with Parity and PMACX were designed
to handle long message lengths and offer competitive bounds, at the cost
of increased design complexity. LightMAC’s advantage over these modes
is its simplicity and low overhead.

Like PMAC [10], LightMAC allows block cipher calls to be made in
parallel, but unlike PMAC, LightMAC is based on Bernstein’s protected
counter sum [8], and hence should not suffer from patent issues.

A disadvantage of LightMAC is that its rate is low. In order to tag
messages of length up to 2n/2−1 blocks, n/2 bits of the block must be
sacrificed for a counter, hence two block cipher calls must be called per
block of data. However, the rate can be improved: if the maximum mes-
sage length that will be communicated is known to be less than 2s(n− s)
bits, then the rate can be set to (n − s)/n blocks per block cipher call.
For example, using a 32 bit block cipher, if the message lengths are less
than 29 blocks, then the rate can be set to 2/3 blocks per call. Therefore,
unlike other modes, LightMAC can be optimized according to the appli-
cation: the shorter the messages, the more efficient LightMAC is, while
allowing the same number of message to be queried. Sect. 5 presents im-
plementation results for LightMAC instantiated with the AES [15] and
PRESENT [11], and discusses LightMAC’s efficiency in more detail.

1.2 Related Work

In 1995, Bellare, Guérin, and Rogaway [4] described the XOR MACs,
which XORed together finite-input-length pseudorandom functions (PRF)
to create stateful and randomized MACs. In 1999, Bernstein [8] intro-
duced the protected counter sum, which composes an XOR MAC with an
independent PRF call to create a stateless, deterministic MAC. In 2012,
Yasuda [46] explained the basic idea for LightMAC in his paper’s intro-



Table 1: Supported block sizes are often small, and can be as low as 32
bits.

Block size (bits) 32 48 64 80 96 128 256

AES [15] ×
CLEFIA [38] ×
DESLX [27] ×
Fantomas [19] ×
HIGHT [23] ×
ITUbee [26] ×
KLEIN [18] ×
KATAN [13] × × ×
LBlock [42] ×
LED [21] ×
LEA [22] ×
mCrypton [28] ×
Mysterion [25] × ×
Noekeon [14] ×
Piccolo [37] ×
PRESENT [11] ×
PRIDE [1] ×
PRINCE [12] ×
RC5 [36] × × ×
Rectangle [48] ×
RoadRunneR [2] ×
Robin [19] ×
SEA [39] ×
SIMECK [43] × × ×
Simon [3] × × × × ×
Speck [3] × × × × ×
TWINE [40] ×
XTEA [33] ×
Zorro [17] ×

duction, which can be viewed as an adaptation of Bernstein’s protected
counter sum using block ciphers.

Another MAC algorithm designed for lightweight use is Chaskey [30].
The Chaskey paper includes a block cipher and a permutation mode, but
both have bounds which deteriorate quadratically with respect to message
length.

In certain cases the bounds in Table 2 can be improved. For example,

for ` ≤ 2n/8 and q ≥ `2, EMAC’s bound becomes 16q2

2n + 128q2`8

22n
as shown

by Pietrzak [34]. For the sum of CBCs, Yasuda [44] also showed that if

` ≤ 22n/5, the advantage becomes 40`3q3

22n
.



Table 2: The table below contains the coefficients of the powers of ` contained in the
security bounds for adversaries making q queries of length `, with block size n bits.
References are to papers proving the bounds. In the bound for EMAC, the function
d′(`) has been replaced by `.

Mode 1 ` `2 `3 `4

3kf9 [47] 4q
2n + 4q3

22n
4q
2n + 4q3

22n
2q3

22n
4q3

22n

CBC-MAC [6] 12q2

2n
64q2

22n

EMAC [6] q2

2n
32q2

22n

OMAC [31] 5q2

2n
8q2

22n

PMAC [32] −3.5q2
2n

5q2

2n

PMAC Plus [45] 3q
2n

27q3

22n

PMACX
(m=14,l=12)

[49] 72+1.5q2

2n + 576q2

22n
576q2

22n
144q2

22n

PMAC with Parity [46] q2

2n
q2

22n

Sum of CBCs [44] 12q3

22n
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Fig. 1: A plot of message block lengths per key versus the number of queries that can
be made in order to achieve the threshold success probability of 2−20. In other words,
if (x, y) is a point on the graph, then x · y represents the number of blocks that can be
processed per key. The blocksize is set to 32 bits.



2 Preliminaries

The set {0, 1}n represents all bit-strings of length n; the set {0, 1}≤n is all
bit-strings of length less than or equal to n. For two bit-strings A and B,
we write A‖B and AB interchangeably for the concatenation of A and B.
Let r be an integer, then M [1]M [2] · · ·M [`]

r←−M represents splitting M
into r-bit blocks with the length of the last block, M [`], being anywhere
from zero to r − 1 bits.

A block cipher is a function E : {0, 1}k × {0, 1}n → {0, 1}n where
E(K, ·) defines a permutation for all K ∈ {0, 1}k. The integer n is the
block length of E and we write EK(X) to mean E(K,X). Given a block
length n, concatenation of 10∗ to a string means appending a one followed
by the minimum number of zeros to make the total string length a multiple
of n bits.

The symbol 0n represents the n-bit string consisting of only zeros.
Given a string A of length n, and an integer t ≤ n, then bAct denotes the
t least significant bits of A.

For an integer 1 ≤ i ≤ 2s, is represents some s-bit constant with the
property that if 1 ≤ i < j ≤ 2s then is 6= js. For example, is could be an
s-bit representation of the integer i, or the ith s-bit Gray code.

3 LightMAC

Let E : {0, 1}k × {0, 1}n → {0, 1}n be a block cipher. Let s and t be
integers not greater than n/2 and n, respectively, and fix some repre-
sentation for is (see Sect. 2). LightMAC accepts two independent and
uniformly generated keys K1 and K2 from {0, 1}k, and a message M of
length at most 2s(n− s) bits. LightMAC produces an output of length t
bits. Fig. 2 and Alg. 1 depict how the output is produced.

LightMAC can be used as either a pseudorandom function (PRF)
or a MAC (see Sect. 4.2 and Sect. 4.3 for definitions). When used as
a PRF, LightMAC is fully described by Alg. 1. When used as a MAC,
tags are generated using Alg. 1, and verification of a message-tag pair
(M,T ) is done by comparing LightMAC (M) with T : if the two are equal,
verification succeeds, otherwise not.

The parameters of LightMAC are the integers s and t, the repre-
sentation of is, and the block cipher E, which implicity fixes k and n.
The parameters must be agreed upon before a session starts, and remain
constant during.



EK1 EK1 EK1

1s M [1] 2s M [2] 3s M [3] M [4] 10∗

+ + + EK2 t T

Fig. 2: LightMAC evaluated on a message M [1]M [2]M [3]M [4]
n−s←−− M .

The rounded squares represent block cipher calls and the trapezium is
truncation to t bits.

Algorithm 1: LightMAC K1,K2(M)

Input: K1,K2 ∈ {0, 1}k, M ∈ {0, 1}≤2
s(n−s)

Output: T ∈ {0, 1}t
1 V ← 0n ∈ {0, 1}n

2 M [1]M [2] · · ·M [`]
n−s←−−M

3 for i = 1 to `− 1 do
4 V ← V ⊕ EK1

(
isM [i]

)
5 end
6 V ← V ⊕ (M [`] 10∗)
7 T ← bEK2(V )ct
8 return T

4 Security

Although Bellare, Guérin, and Rogaway [4] describe how to instanti-
ate an XOR MAC using the Data Encryption Standard, they only pro-
vide proofs for pseudorandom functions, not pseudorandom permutations.
Hence, even though the XOR MACs were proven to have bounds with
no message length dependence, subsequent application of the PRP-PRF
switching lemma would establish quadratic message length dependence.
A similar explanation applies to the protected counter sum’s security
bound. Therefore a direct security proof is necessary for LightMAC.

The XOR MACs and protected counter sum did not exhibit any mes-
sage length dependence because the XOR of independent, uniformly dis-
tributed random variables is still uniformly distributed. In this section we
use the fact that roughly the same applies to the XOR of distinct block
cipher outputs to achieve message length independence for LightMAC.



4.1 Block Cipher Security

The security of LightMAC is reduced to that of its underlying block
cipher, that is, if an attack is found against LightMAC, then the attack
can be reduced to an attack against the block cipher. The quality of the
reduction is measured by the security bounds computed in Thm. 1 and
Thm. 2.

The statements of the theorems include terms describing the quality
of the underlying block cipher, which is measured as follows.

Definition 1. Let E : K × X → X be a block cipher, and let π be a
uniformly distributed random permutation over the set of permutations
on X. Then the PRP-advantage against E of adversaries A making q
queries and running in time τ is

PRP(q, τ) := sup
A∈A

∣∣P [AEK = 1
]
−P [Aπ = 1]

∣∣ , (4)

where AO = 1 is the event that A outputs 1 when given access to oracle
O, and K is uniformly distributed over K.

4.2 LightMAC as a PRF

A PRF Φ : K × M → T is a construction which should be computa-
tionally indistinguishable from a uniformly distributed random function
(URF), that is, a uniformly distributed random variable over the set of
all functions from M to T. The quality of the PRF is measured via the
PRF-advantage of adversaries.

Definition 2. The PRF-advantage of an adversary A in distinguishing
the PRF Φ : K×M→ T from the URF $ : M→ T is∣∣∣P [AΦK = 1

]
−P

[
A$ = 1

]∣∣∣ , (5)

where AO = 1 is the event that A outputs 1 when given access to oracle
O, and K is uniformly distributed over K.

Theorem 1. The PRF-advantage against LightMAC of any adversary
running in time τ and making at most q queries of length at most 2s(n−s)
bits is bounded above by(

1 +
1

2n/2 − 1
+

1

2(2n/2 − 1)2

)
· q

2

2n
+ PRP(q · (2s − 1), τ1) + PRP(q, τ2) ,

(6)
where n is the block size in bits, τ1 ∈ τ+O(q ·(2s−1)), and τ2 ∈ τ+O(q).



Proof. Let A be a PRF-adversary against LightMAC running in time τ
and making at most q queries of length at most 2s(n− s) bits. Construct
the PRP adversary B1 against EK1 as follows: B1 simulates EK2 by uni-
formly randomly choosing key K2, runs A, and responds to A’s queries
using a combination of its own oracle and the simulated EK2 ; B1 forwards
A’s response as its own. Construct the PRP adversary B2 against EK2

similarly. Then A’s PRF-advantage against LightMAC is bounded above
by

α+ PRP(q · (2s − 1), τ1) + PRP(q, τ2) , (7)

where α is A’s PRF-advantage against LightMAC with its EK1 and EK2

calls replaced with π1 and π2 calls, respectively, where π1 and π2 are
independent, uniformly distributed random permutations.

We replace π2 with a uniformly distributed random function φ using
the PRP-PRF switching lemma, at a cost of q2/2n+1 in advantage. The
PRF we are left with is

Φ(M) = φ

(
M [`]10∗ ⊕

`−1⊕
i=1

π1(isM [i])

)
, (8)

which is LightMAC instantiated with π1 and φ, and

α ≤ α′ + q2

2n+1
, (9)

where α′ is A’s PRF-advantage against Φ.
Let F denote the function contained in the call to φ in Eq. 8. Then,

as long as F ’s outputs are distinct, each input to φ is unique, meaning Φ
will be indistinguishable from $. In other words,

α′ ≤
∑
i<j

P
[
F (Mi) = F (Mj)

]
≤ q2

2
max
Mi 6=Mj

P
[
F (Mi) = F (Mj)

]
, (10)

where Mi for i = 1, . . . , q are the messages queried by A. The maximum
on the right hand side is computed in Sect. 4.4, resulting in the bound

α′ ≤ q2

2
· 1

2n − 2s+1 + 1
. (11)

Therefore, using the fact that s ≤ n/2, we have

α ≤ q2

2n+1
+
q2

2
· 1

2n − 2s+1 + 1
(12)

≤ q2

2n

(
1 +

1

2n/2 − 1
+

1

2(2n/2 − 1)2

)
, (13)

giving us our desired bound. ut



4.3 LightMAC as a MAC

A MAC consists of a tagging and a verification algorithm. The tagging
algorithm accepts messages from some message set M and produces tags
from a tag set T. The verification algorithm receives message-tag pairs
(M,T ) as input, and outputs 1 if the pair (M,T ) is valid, and 0 otherwise.
The insecurity of a MAC is measured as follows.

Definition 3. Let A be an adversary with access to a MAC. The advan-
tage of A in breaking the MAC is the probability that A is able to produce
a message-tag pair (M,T ) for which the verification algorithm outputs 1,
where M has not been previously queried to the tagging algorithm.

Theorem 2. The MAC-advantage against LightMAC of any adversary
running in time τ and making at most q tagging queries and v verification
queries of length at most 2s(n− s) bits, is bounded above by(

1 +
2

2n/2 − 1
+

1

(2n/2 − 1)2

)
·
(
q2

2n
+
v

2t

)
+

PRP(q · (2s − 1), τ1) + PRP(q, τ2) + PRP(v2s, τ3) , (14)

where n is the block size in bits, τ1 ∈ τ + O(q · (2s − 1)), τ2 ∈ τ + O(q),
and τ3 ∈ τ +O(v2s).

Proof. We apply the same reduction as in the proof of Thm. 1 to replace
LightMAC’s EK1 and EK2 calls with π1 and π2 calls, respectively. As a
MAC, LightMAC follows the hash-then-encrypt paradigm as described
by Dodis and Pietrzak [16], with the function F from Sect. 4.4 as the
“hash” part, hence applying Prop. 1 from their paper we get an upper
bound of (

1 +
2

2n/2 − 1
+

1

(2n/2 − 1)2

)
·
(
q2

2n
+
v

2t

)
. (15)

ut

4.4 Collision Probability of F

Proposition 1. Let m = 2s(n − s). Let M [1]M [2] · · ·M [`]
n−s←−− M for

M ∈ {0, 1}≤m, and define F to be

F (M) = M [`]10∗ ⊕
`−1⊕
i=1

π(isM [i]) , (16)



where π is a uniformly distributed random permutation over {0, 1}n, then
the probability that two distinct messages M1,M2 ∈ {0, 1}≤m collide is

P
[
F (M1) = F (M2)

]
≤ 1

2n − `1 − `2 + 1
, (17)

where `i is the length of Mi in (n− s)-bit blocks rounded up.

Proof. The equation F (M1) = F (M2) can be rewritten as

`1⊕
i=1

π(isM1[i])⊕
`2⊕
i=1

π(isM2[i]) = M1[`1]10∗ ⊕M2[`2]10∗ . (18)

Since M1 6= M2 there are two cases:

1. `1 = `2, M1[`1]10∗ 6= M2[`2]10∗, and M1[i] = M2[i] for all i, or

2. either `1 6= `2 or there exists an i such that M1[i] 6= M2[i].

In the first case there is no collision, hence we focus on the second case.
Without loss of generality we can assume that M1[i] 6= M2[i] for all i, and
we can simplify the problem to calculating the probability that

⊕̀
i=1

π(xi) = c , (19)

where ` = `1 + `2, c = M1[`1]10∗ ⊕M2[`2]10∗, and xi 6= xj for i 6= j.

Let N = 2n, then P
[⊕`

i=1 π(xi) = c
]

equals

1

N !

∣∣∣∣∣
{
y1, . . . , yN

∣∣∣∣∣ ⊕̀
i=1

yi = c and yi 6= yj for i 6= j

}∣∣∣∣∣ . (20)

By Lem. 1 we have that the probability is bounded above by N !/(N −
`+ 1), giving us our desired result. ut

Lemma 1. Let c ∈ {0, 1}n and let N = 2n. The number of sequences
(y1, y2, . . . , yN ) ∈ ({0, 1}n)N with yi 6= yj for i 6= j such that

⊕̀
i=1

yi = c , (21)

is not greater than N !/(N − `+ 1).



Proof. We start by fixing y1, for which there are N possibilities. Since y2
cannot equal y1, there are N − 1 possibilities for y2. Continuing this way,
we have that there are N − i possibilities for yi+1, with i ≤ `− 2. For y`
there is at most one possibility, namely c ⊕ y1 ⊕ y2 ⊕ · · · y`−1. All yj for
j > ` must be distinct from all preceding yi, hence in total there are at
most

N · (N − 1) · · · · · (N − `+ 2) · (N − `)! =
N !

N − `+ 1
(22)

possible sequences. ut

5 Implementation

In this section, we discuss the implementation characteristics of LightMAC
and compare it to the serial two-key CBC-MAC with last block encryp-
tion, EMAC [6], and to PMAC with Parity (PMAC/P) [46], which pro-
vides a parallelizable rate 2/3 construction and can be considered its main
competitor.

5.1 Implementation characteristics of LightMAC

LightMAC is a mode with very low overhead: besides the block cipher
calls, it only requires an s-bit counter generator and one additional n-bit
state for summing the block cipher outputs.

This means that the code size (for embedded software or microcon-
trollers) and area requirements (for hardware implementations) of LightMAC
can be estimated as roughly equivalent to CBC-MAC with encryption
of the last block by a second key. Compared to PMAC with Parity,
LightMAC uses only two keys instead of four. In comparison to all PMAC
variants, the absence of finite field doubling further improves its imple-
mentation characteristics on embedded platforms or hardware.

In terms of throughput, a compact serial implementation of LightMAC
will give a performance of about n/(n − s) block cipher call equivalents
per message block of n− s bits, which means that the serial performance
of LightMAC on a given platform can readily be evaluated based on the
performance of the best available implementation of the chosen underlying
block cipher. Except for very short messages, the overhead imposed by
the final block cipher call is negligible.

Like PMAC and its derivatives, LightMAC has the advantage that
the individual block cipher calls can be parallelized. While this is typ-
ically less important on lightweight platforms, where compactness and



power/energy consumption are the prime concerns, this property enables
high-performance implementations for the server side: since exactly the
same lightweight algorithms used on small devices will also have to be
used by the servers communicating with them, they should ideally also
have good implementation characteristics in high-performance software
environments. The importance of this was for instance pointed out in [29].
Many lightweight algorithms and modes of operation are inherently serial
in nature and therefore inefficient in software. Our implementation study
therefore focuses on this scenario.

5.2 The Setting

We explore the high-performance parallel software implementation possi-
bilities for LightMAC, with the following choices regarding platform and
instantiation parameters:

Underlying block ciphers. We use the block ciphers PRESENT [11]
and AES [15] for our implementations. PRESENT is a lightweight 64-bit
block cipher that was recently standardised by ISO, and AES serves as a
baseline.

Choice of s and t. We always use full tag lengths t = n, meaning 64-bit
tags for PRESENT and 128-bit tags for AES. We furthermore instantiate
LightMAC with the following values of s:

1. s = n/2 for the maximum supported message length (and correspond-
ingly lowest rate 1/2);

2. s = n/3, rounded to the nearest multiple of 8, for a mode with rate
2/3;

3. s = 8, for a short maximum message length with the highest rate
(1− 8/n).

Altogether, these parameter choices illustrate a wide spectrum of use
cases.

Platform. We implement LightMAC on Intel’s recent Skylake microar-
chitecture, using the 256-bit AVX2 instruction set. PRESENT was im-
plemented in a bitsliced fashion processing 8 blocks in parallel. Other
implementation strategies are known to yield a significantly lower perfor-
mance, see [7] for a comprehensive study. For the AES, the AES-NI in-
struction set [20] was used. The key scheduling was precomputed for both



ciphers. Since byte-aligned s-bit addition is inexpensive on this platform,
the counters is are implemented as the s-bit representation of the integer
i.

Message lengths. We provide performance data for all message lengths
of ` = 2b bytes, with 7 ≤ b ≤ 13, wherever 8` ≤ 2s(n− s).

5.3 Performance measurements

All measurements were taken on a single core of an Intel Core i7-6700
CPU at 3.4 GHz with Turbo Boost disabled, and averaged over 200000
repetitions. The performance of the block ciphers AES and PRESENT,
both in serial and parallel implementations, is provided as a reference
point in Table 3. Our findings on the performance of LightMAC and
related MACs are summarised in Table 4. All performance numbers are
given in cycles per byte (cpb).

Table 3: Baseline performance of ciphers PRESENT and AES on Skylake
(AVX2, AES-NI).

block cipher encryption key schedule
[cycles/byte] [cycles]

PRESENT (table-based) 57.83 353
PRESENT (8 blocks bitsliced) 11.23 790
AES (AES-NI, serial) 2.57 116
AES (AES-NI, pipelined) 0.63 116

Discussion. One can observe that with both PRESENT and the AES
as the underlying block ciphers, LightMAC provides a performance of
about the inverse of its rate times the baseline block cipher speed. This
confirms that LightMAC imposes very low overhead in addition to the
block cipher invocations.

In contrast to the serial EMAC, LightMAC provides significantly
greater performance despite featuring a smaller rate. This demonstrates
the advantage of parallelisability over a sequential algorithm.

Comparing the LightMAC instantiations with rate 2/3 to PMAC with
Parity (PMAC/P), we note that the use of the same key throughout the



Table 4: Software performance of LightMAC, EMAC and PMAC with
Parity (PMAC/P), instantiated with PRESENT and AES on the Intel
Skylake platform (AVX2, AES-NI). All numbers are given in cycles per
byte (cpb). Data is provided for message lengths smaller than 2s(n − s)
bits.

message length (bytes)

Algorithm s rate 128 256 512 1024 2048 4096 8192

EMAC-PRESENT – 1 63.02 61.21 60.28 59.80 59.57 59.41 59.32
PMAC/P-PRESENT – 2/3 39.62 32.44 28.82 27.07 26.48 26.14 26.00
LightMAC-PRESENT 32 1/2 25.50 23.67 22.75 22.32 22.08 21.97 21.92
LightMAC-PRESENT 24 2/3 25.70 21.21 20.17 19.03 18.09 17.80 17.80
LightMAC-PRESENT 8 7/8 20.31 18.34 14.65 13.48 – – –

EMAC-AES – 1 3.42 3.19 3.03 2.91 2.74 2.68 2.67
PMAC/P-AES – 2/3 1.53 1.48 1.33 1.24 1.17 1.15 1.14
LightMAC-AES 64 1/2 1.33 1.29 1.27 1.26 1.26 1.26 1.25
LightMAC-AES 40 2/3 1.37 1.31 1.12 1.04 0.95 0.95 0.92
LightMAC-AES 8 15/16 1.38 1.00 0.82 0.80 0.72 – –

message processing (as opposed to three different keys in PMAC/P) sig-
nificantly improves the performance for the PRESENT-based implemen-
tation: LightMAC is consistently around 50% faster. This is largely due
to the fact that the parts of each subkey of PMAC/P’s three bitsliced
keys have to be interleaved in an appropriate way. The effect is less pro-
nounced for the AES where no conversion to bitsliced format is needed,
and due to the AES-NI instructions which freely accept both registers and
memory locations for the subkeys. Still, LightMAC is about 20% faster,
while additionally providing a flexible range of trade-offs between rate
and maximum message length.

6 Conclusions

We proposed LightMAC, a new MAC mode of operation specifically
suited to lightweight applications. Its security bound was shown in Sect. 4
to not depend on the message length, allowing an order of magnitude more
data to be processed per key.

Featuring a simple design with very low overhead over the block ci-
pher, it not only offers compact authentication for resource-constrained
platforms, but also allows high-performance parallel implementations, as
demonstrated by the implementation study of LightMAC instantiated



with PRESENT and the AES in Sect. 5. Furthermore, the implementa-
tion results show how the s-parameter translates directly to a trade-off
between rate and maximum message length.

Unlike PMAC and its many derivatives, LightMAC is not covered by
patents. Altogether, this makes it a promising authentication solution for
a wide range of platforms and use cases.
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7. Benadjila, R., Guo, J., Lomné, V., Peyrin, T.: Implementing lightweight block
ciphers on x86 architectures. In: Lange, T., Lauter, K.E., Lisonek, P. (eds.) Selected

http://dx.doi.org/10.1007/978-3-662-44371-2_4
http://dx.doi.org/10.1007/978-3-662-44371-2_4
http://eprint.iacr.org/
http://dx.doi.org/10.1007/3-540-44750-4_2
http://dx.doi.org/10.1007/3-540-48658-5_32
http://dx.doi.org/10.1007/11535218_32


Areas in Cryptography - SAC 2013 - 20th International Conference, Burnaby, BC,
Canada, August 14-16, 2013, Revised Selected Papers. Lecture Notes in Computer
Science, vol. 8282, pp. 324–351. Springer (2013), http://dx.doi.org/10.1007/

978-3-662-43414-7_17

8. Bernstein, D.J.: How to Stretch Random Functions: The Security of Protected
Counter Sums. J. Cryptology 12(3), 185–192 (1999), http://dx.doi.org/10.

1007/s001459900051

9. Biryukov, A. (ed.): Fast Software Encryption, 14th International Workshop, FSE
2007, Luxembourg, Luxembourg, March 26-28, 2007, Revised Selected Papers,
Lecture Notes in Computer Science, vol. 4593. Springer (2007)

10. Black, J., Rogaway, P.: A block-cipher mode of operation for parallelizable message
authentication. In: Knudsen, L.R. (ed.) Advances in Cryptology - EUROCRYPT
2002, International Conference on the Theory and Applications of Cryptographic
Techniques, Amsterdam, The Netherlands, April 28 - May 2, 2002, Proceedings.
Lecture Notes in Computer Science, vol. 2332, pp. 384–397. Springer (2002), http:
//dx.doi.org/10.1007/3-540-46035-7_25

11. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An Ultra-Lightweight Block Cipher.
In: Paillier, P., Verbauwhede, I. (eds.) Cryptographic Hardware and Embedded
Systems - CHES 2007, 9th International Workshop, Vienna, Austria, September
10-13, 2007, Proceedings. Lecture Notes in Computer Science, vol. 4727, pp. 450–
466. Springer (2007), http://dx.doi.org/10.1007/978-3-540-74735-2_31
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