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Abstract
We perform a concrete security treatment of digital signature schemes obtained from canonical

identification schemes via the Fiat-Shamir transform. If the identification scheme is rerandomizable
and satisfies the weakest possible security notion (key-recoverability), then the implied signature
scheme is unforgeability against chosen-message attacks in the multi-user setting in the random oracle
model. The reduction loses a factor of roughly Qh, the number of hash queries. Previous security
reductions incorporated an additional multiplicative loss of N , the number of users in the system.
As an important application of our framework, we obtain a concrete security treatment for Schnorr
signatures.

Our analysis is done in small steps via intermediate security notions, and all our implications have
relatively simple proofs. Furthermore, for each step we show the optimality of the given reduction via
a meta-reduction.
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1 Introduction
The Fiat-Shamir method [15] transforms canonical (i.e., three move) identification schemes into digital
signature schemes. It yields very efficient signature schemes, the most popular among them being the
Schnorr signature scheme [37].
Canonical Identification Schemes and the Fiat-Shamir Transform. A canonical identification
scheme ID as formalized by Abdalla et al. [1] is a three-move public-key authentication protocol of a
specific form. The prover (holding the secret-key) sends a commitment R to the verifier. The verifier
(holding the public-key) returns a random challenge h, uniformly chosen from a set ChSet (of exponential
size). The prover sends a response s. Finally, using the verification algorithm, the verifier publicly
checks correctness of (R, h, s), which we call the (identification) transcript. There is a large number of
canonical identification schemes known (e.g. [15, 25, 11, 31, 37, 13, 22, 34, 33]). The Fiat-Shamir method
transforms any such canonical identification scheme into a digital signature scheme SIG[ID] using a hash
function.
Digital Signatures in the Multi-User Setting. When it comes to security of digital signature
schemes, in the literature almost exclusively the standard security notion of unforgeability against chosen
message attacks (UF-CMA) [23] is considered. This is a single-user setting, where an adversary obtains one
single public-key and it is said to break the scheme’s security if he can produce (after obtaining Q many
signatures on messages of his choice) a valid forgery, i.e. a message-signature pair that verifies on the
given public-key. However, in the real world the attacker is usually confronted with many public-keys and
presumably he is happy if he can produce a valid forgery under any of the given public-keys. This scenario
is captured in the multi-user setting for signatures schemes. Concretely, in multi-user unforgeability
against chosen message attacks (MU-UF-CMA) the attacker obtains N independent public-keys and is
said to break the scheme’s security if he can produce (after obtaining Q many signatures on public-keys
of his choice) a valid forgery that verifies under any of the public-keys.

There are essentially two reasons why one typically only analyzes signatures in the single-user setting.
First, the single-user security notion and consequently their analysis are simpler. Second, there exists
a simple generic security reduction [20] between multi-user security and standard single-user security.
Namely, for any signature system, attacking the scheme in the multi-user setting with N public-keys
cannot decrease the attacker’s success ratio (i.e., the quotient of its success probability and its running
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time) by a factor more than N compared to attacking the scheme in the single-user setting. As the
number of public-keys N is bounded by a polynomial, asymptotically, the single-user and the multi-user
setting are equivalent. However, the security reduction is not tight: it has a loss of a non-constant factor
N . This is clearly not satisfactory as in complex environments one can easily assume the existence of at
least N = 230 public-keys, thereby increasing the upper bound on the attacker’s success ratio by a factor
of 230. For example, if we assume the best algorithm breaking the single-user security having success ratio
ε = 2−80, then it can only be argued that the best algorithm breaking the multi-user security has success
ratio ε′ = 2−80 · 230 = 2−50, which is not a safe security margin that defends against today’s attackers.
Tightness. Generally, we call a security implication between two problems tight, if the success ratio
SR(A) of any adversary attacking the first problem cannot decease by more than a small constant factor
compared to the success ratio SR(B) of any adversary attacking the second problem. Here the success
ratio SR(A) is defined as the quotient between the adversary’s success probability and its running time [6].
We note that this notion of tightness is slightly weaker than requiring that both, success probability
and running time, cannot decrease by more than a small constant factor. However, the main goal of a
concrete security analysis is to derive parameters provably guaranteeing k-bit security. As the term k-bit
security is commonly defined as the non-existence of any adversary that breaks the scheme with a success
ratio better than 2−k (see, e.g., [6]), our definition of tightness is sufficient for this purpose.

1.1 Our Contributions
This work contains a concrete and modular security analysis of signatures SIG[ID] obtained via the Fiat-
Shamir transform. Throughout this paper we assume that our identification schemes ID are Σ-protocols,
i.e. they are honest-verifier zero-knowledge (HVZK), have special soundness SS, and commitments R
are sampled at random from a sufficiently large set. For some of our tight implications we furthermore
require ID to be random self-reducible (RSR). Most known canonical identification schemes satisfy the
above properties.
Security Notions. For identification schemes we consider XXX-YYY security, where XXX ∈ {KR, IMP,
PIMP} denotes the attacker’s goal and YYY ∈ {KOA,PA} the attacker’s capabilities. If the attacker’s
goal is key-recovery (KR), then it tries to compute a valid secret-key; in impersonation (IMP), it tries
to impersonate a prover by convincing an honest verifier; parallel impersonation (PIMP) is a parallel
version of IMP, where the adversary tries to convince a verifier in one of QCh many parallel sessions. In a
key-only attack (KOA), the adversary is only given the public-key; in a passive attack (PA), the adversary
is provided with valid transcripts between an honest prover and verifier. By the above definitions we
obtain 3 × 2 = 6 different security notions that that were all previously considered in the literature
[36, 32, 1], except PIMP-YYY security.
Overview. We show via a chain of implications that KR-KOA-security (the weakest possible security
notion for ID) implies multi-user unforgeability against chosen message attacks (MU-UF-CMA) of SIG[ID].
All our implications are optimal in terms of tightness and model requirements in the following sense.
If one implication makes use of a special model requirement, we prove the impossibility without this
requirement. For example, our implication PIMP-KOA −→ UF-KOA is in the random oracle model [7]
and we show that the non-programmable random oracle model [17] is not sufficient to prove the same
implication. Exactly one of our intermediate implications, namely IMP-KOA −→ PIMP-KOA is non-tight,
and we prove the impossibility of such a tight implication. Diagram in Figure 1 gives an overview of our
results. We now discuss them in more detail.
From Identification to Single User Security for Signatures. Our first main theorem can be
informally stated as follows.

Theorem 1.1. If the identification scheme is KR-KOA-secure against any adversary A having success
ratio SR(A), then SIG[ID] is UF-CMA-secure in the random oracle model against any adversary B having
success ratio SR(B) ≈ SR(A)/Qh, where Qh is the maximal number of B’s random oracle queries.

The proof of this theorem is done in four independent Lemmas 3.4, 3.5, 3.5, and 3.7 via intermediate
security notions IMP-KOA, PIMP-KOA, and UF-KOA1 security, see Figure 1.

1Unforgeability against key-only attack (UF-KOA-security) is like standard UF-CMA security, where there adversary is
not allowed to ask any signing queries.
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KR-KOA IMP-KOA PIMP-KOA UF-KOA MU-UF-KOA

KR-PA IMP-PA PIMP-PA UF-CMA MU-UF-CMA

RSR+SS+rew. (L. 3.4)

non-rew. (L. 4.1)

loss Q (L. 3.5)

loss < Q (L. 4.3)

PRO (L. 3.6)

NPRO (L. 4.5)

PRO (L. 3.7)
NPRO (L. 4.6)

RSR (L. 3.8)

PRO (L. 3.9)(L. 3.3) (L. 3.3) (L. 3.3)

︸ ︷︷ ︸
Identification scheme ID

︸ ︷︷ ︸
Signature scheme SIG[ID]

Figure 1: Overview of our notions and results for canonical identification schemes ID and their implied signature
schemes SIG[ID]. X Z−→ Y means that X-security implies Y-security under condition Z. Trivial implications are
denoted with green arrows. All implications are tight except the one marked with red. The conditions are: rew.
(reduction rewinds), loss Q (reduction loses a factor of Q), PRO (reduction is in the programmable random oracle
model), SS (reduction uses special soundness), and RSR (reduction uses random self-reducibility for tightness).
All implications from top to bottom require HVZK. X 6 Z−→ Y means that X-security does not imply Y-security
unless they fulfill condition Z. The conditions are: non-rew. (reduction does not rewind), loss < Q (reduction
loses a factor smaller than Q), and NPRO (reduction is in the non-programmable random oracle model).

We certainly do not claim any novelty of the above lemmas, nor a new proof technique. For example,
the implication IMP-KOA→ UF-CMA is already explicitly contained in [32] (and implicitly in the seminal
paper by Pointcheval and Stern [36]). However, by our specific choice of the intermediate security notions,
all four proofs are extremely simple and intuitive. In fact, none of our proofs requires the full power
of the Forking Lemma [36]. Lemma 3.4 (KR-KOA → PIMP-KOA) is the only proof using rewinding
and its analysis contains a simple application of Jensen’s inequality. If ID is RSR, the implication is
tight. We view identifying the intermediate security notions that allow for simple proofs as a conceptual
contribution. In particular, IMP-KOA and PIMP-KOA security can be seen as the tightness barrier for
identification schemes in the sense that PIMP-KOA is the weakest notion for ID that is tightly equivalent
to MU-UF-CMA security of SIG[ID].

One particular advantage of our modular approach is that we are able to prove optimality of all four
implications via meta-reductions (Lemmas 4.1, 4.3, 4.5, and 4.6). Lemma 4.3 proving the impossibility of
a tight reduction between PIMP-KOA and IMP-KOA security is a generalization of Seurin’s impossibility
result to canonical identification schemes [38]; Lemmas 4.5 and 4.6 proving the impossibility of a reduction
in the non-programmable random oracle model between PIMP-KOA, UF-KOA, and UF-CMA can be
considered as a fine-grained version of a general impossibility result by Fukumitsu and Hasegawa [19] who
only consider the implication IMP-PA→ UF-CMA; Lemma 4.1 involves a new meta-reduction. All our
impossibility results assume the reductions to be key-preserving [35] and are conditional in the sense that
the existence of a reduction would imply that ID does not satisfy some other natural security property
(e.g., Lemma 4.1 requires IMP-AA security, where AA stands for active attack).
From Single-User to Multi-User Security for Signatures. Our second main theorem can be
informally stated as follows.

Theorem 1.2. If ID is UF-KOA-secure against any adversary B having success ratio SR(B), then it is
MU-UF-CMA-secure in the random oracle model against any adversary C having success ratio SR(C) ≈
SR(B)/4, independent of the number of users N in the multi-user scenario.

This theorem improves the bound of previous generic reductions [20] by a factor of N . Following our
modular approach, the theorem is proved in two steps via Lemmas 3.8 and 3.9. It makes use of the RSR
property, meaning that from a given public key pk we can derive properly distributed pk1, . . . , pkN such
that any signature σ which is valid under pk can be transformed into a signature σi which is valid under
pki and vice-versa. Lemma 3.8 uses the RSR property to prove that UF-KOA tightly implies MU-UF-KOA.

Lemma 3.9 is our main technical contribution and proves MU-UF-KOA → MU-UF-CMA in the
programmable random oracle model, again with a tight reduction. One is tempted to believe that
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it can be proved the same way as UF-KOA → UF-CMA in the single user setting. In the single user
setting, the reduction simulates the signing queries on mj using the HVZK property to obtain a valid
transcript (Rj , hj , sj) and programs the random oracle as H(Rj ,mj) := hj . However, in the MU-UF-KOA
experiment an adversary can ask for a signature under pk1 on message m which makes the reduction
program the random oracle H(R1,m) := h1. Now, if the adversary submits a forgery (R1, s2) under pk2
on the same message m, the reduction cannot use this forgery to break the MU-UF-KOA experiment
because the random oracle H(R1,m) was externally defined by the reduction. Hence, for the MU-UF-KOA
experiment, m, (R1, s2) does not constitute a valid forgery. In order to circumvent the above problem we
make a simple probabilistic argument. In our reduction, about one half of the multi-user public-keys
are coming from the MU-UF-KOA experiment, for the other half the reduction knows the corresponding
secret-keys. Which keys are known is hidden from the adversary. Now, if the multi-user adversary first
obtains a signature on message m under pk1 and then submits a forgery on the same message m under
pk2, the reduction hopes for the good case that one of the public-keys comes from the MU-UF-KOA
experiment and the other one is known. This happens with probability 1/4 which is precisely the loss of
our new reduction.

1.2 Example Instantiations

Schnorr Signatures. One of the most important signature schemes in the discrete logarithm setting is
the Schnorr signature scheme [37]. It is obtained via the Fiat-Shamir transform applied to the Schnorr
identification scheme. The recent expiry of the patent in 2008 has triggered a number of initiatives to
obtain standardized versions of it.

Theorems 1.1 and 1.2 can be used to derive a concrete security bound for (strong) multi-user
MU-UF-CMA-security of Schnorr signatures in the random oracle model from the DLOG problem. Our
reduction loses a factor of roughly Qh, the number of random oracle queries. This improves previous
bounds by a factor of N , the number of users in the system. We derive example parameters for a security
instantiation. Figure 1 shows that DLOG is tightly equivalent to IMP-KOA-security and PIMP-KOA-
security is tightly equivalent to MU-UF-CMA-security, meaning the tightness barrier for Schnorr lies
precisely between IMP-KOA and PIMP-KOA security.
Katz-Wang Signatures. The Katz-Wang identification scheme [28] is a double-generator version of
Schnorr. It is at least as security as Schnorr which means one cannot hope for a tight security reduction
to the DLOG assumption. However, we can use a simple argument from [28] for a tight security proof of
its PIMP-KOA security under the Decision Diffie-Hellman Assumption. By our framework, this implies a
tight proof of (strong) MU-UF-CMA-security.
Other Signatures. Other canonical identification schemes with the required properties includes the
ones by Guillou-Quisquater [24] and Okamoto [33]. Similar to Katz-Wang, for the Guillou-Quisquater
scheme, we can use an argument from [2] for a tight proof of PIMP-KOA security under the Phi-hiding
assumption. Alternatively, we can give a proof with loss Q under the Factoring assumption. Our
framework also shows that this loss is unavoidable. For Okamoto’s scheme, we can provide the same
bounds as for Schnorr.

1.3 Related Work

Single-User Security. There have been many different works addressing the single-user security of
Fiat-Shamir based signature schemes SIG[ID]. In pioneering work, Pointcheval and Stern [36] introduced
the Forking Lemma as a tool to prove UF-CMA security of SIG[ID] from HVZK, SS and KR-KOA-security.
Ohta and Okamoto [32] gave an alternative proof from IMP-KOA security and HVZK. Abdalla et al. [1]
prove the equivalence of IMP-PA-security of ID and UF-CMA security of SIG[ID] in the random oracle
model. All above results incorporate a security loss of at least Qh and can be seen as a special case of
our framework. Furthermore, [5] consider stronger security notions (e.g., IMP-AA and man-in-the middle
security) for the Schnorr and GQ identification schemes. Abdalla et al. [2] show that lossy identification
schemes tightly imply UF-CMA-secure signatures in the random oracle model.
Multi-user security. To mitigate the generic security loss problem in the multi-user setting for the
special case of Schnorr’s signature scheme, Galbraith, Malone-Lee, and Smart (GMLS) proved [20] a tight
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reduction, namely that attacking the Schnorr signatures in the multi-user setting with N public-keys
provably cannot decrease (by more than a small constant factor) the attacker’s success ratio compared
to attacking the scheme in the single-user setting. Unfortunately, Bernstein [9] recently pointed out an
error in the GMLS proof leaving a tight security reduction for Schnorr signatures as an open problem.
Even worse, Bernstein identifies an “apparently insurmountable obstacle to the claimed [GMLS] theorem”.
Section 4.3 of [9] further expands on the insurmountable obstacle. Our Theorem 1.2 shows that there is
such a tight security reduction for Schnorr signatures, reproving the GMLS theorem in the random oracle
model.
Impossibility Results. In terms of impossibility results, Seurin [38], building on earlier work of
[35, 21], proves that there is no tight reduction from the (one-more) discrete logarithm assumption to
UF-KOA-security of Schnorr signatures. A more recent result by [18] even excludes a reduction from
any non-interactive assumption.2 Fukumitsu and Hasegawa [19], generalizing earlier work on Schnorr
signatures [16, 35], prove that SIG[ID] cannot be proved secure in the non-programmable random oracle
model only assuming IMP-PA security of ID.
Schnorr signatures vs. Key-Prefixed Schnorr signatures. After identifying the error in the
GMLS proof, Bernstein [9] uses the lack of a tight security reduction for Schnorr’s signature scheme
as a motivation to promote a “key-prefixed” modification to Schnorr’s signature scheme which includes
the verifier’s public-key in the hash function. The EdDSA signature scheme by Bernstein, Duif, Lange,
Schwabe, and Yang [10] is essentially a key-prefixing variant of Schnorr’s signature scheme. (In the
context of security in a multi-user setting, key-prefixing was considered before, e.g., in [12].) In [10]
key-prefixing is advertized as “an inexpensive way to alleviate concerns that several public keys could be
attacked simultaneously.” Indeed, Bernstein [9] proves that single-user security of the original Schnorr
signatures scheme tightly implies multi-user security of the key-prefixed variant of the scheme.

The TLS standard used to secure HTTPS connections is maintained by the Internet Engineering
Task Force (IETF) which delegates research questions to the Internet Research Task Force (IRTF).
Cryptographic research questions are usually discussed in the Crypto Forum Research Group (CFRG)
mailing list. In the last months the CFRG discussed the issue of key-prefixing.

Key-prefixing comes with the disadvantage that the entire public-key has to be available at the time
of signing. Specifically, in a CFRG message from September 2015 Hamburg [26] argues “having to hold
the public key along with the private key can be annoying” and “can matter for constrained devices”.
Independent of efficiency, we believe that a cryptographic protocol should be as light as possible and
prefixing (just as any other component) should only be included if its presence is justified. Naturally, in
light of the GMLS proof, Hamburg [26] and Struik [40] (among others) recommended against key prefixing
for Schnorr. Shortly after, Bernstein [8] identifies the error in the GMLS theorem and posts a tight
security proof for the key-prefixed variant of Schnorr signatures. In what happens next, the participant
of the CFRG mailing list switched their minds and mutually agree that key-prefixing should be preferred,
despite of its previously discussed disadvantages. Specifically, Brown writes about Schnorr signatures
that “this justifies a MUST for inclusion of the public key in the message of the classic signature” [14].
As a consequence, key-prefixing is contained in the current draft for EdDSA [27]. In the light of our new
results, we recommend to reconsider this decision.

2 Definitions
2.1 Preliminaries
For an integer p, define [p] := {1, . . . , p} and Zp as the residual ring Z/pZ. If A is a set, then a $← A
denotes picking a from A according to the uniform distribution. All our algorithms are probabilistic
polynomial time unless states otherwise. If A is an algorithm, then a $← A(b) denotes the random variable
which is defined as the output of A on input b. To make the randomness explicit, we use the notation
a := (A)(b; t) meaning that the algorithm is executed on input b and randomness t. Note that A’s
execution is now deterministic.

2The main result of the published paper [18] even excludes reduction from any interactive assumption (with special
algebraic properties), but the proof turned out to be flawed.
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2.2 Digital Signatures
We now define syntax and security of a digital signature scheme. Let par be common system parameters
shared among all participants.

Definition 2.1 (Digital Signature). A digital signature scheme SIG is defined as a triple of probabilistic
algorithms SIG = (Gen,Sign,Ver).
• The key generation algorithm Gen(par) returns the public and secret keys (pk, sk).
• The signing algorithm Sign(sk,m) returns a signature σ.
• The deterministic verification algorithm Ver(pk,m, σ) returns 1 (accept) or 0 (reject).

We require that for all (pk, sk) ∈ Gen(par), all messages m ∈ {0, 1}∗, we have Ver(pk,m,Sign(sk,m)) = 1.

Definition 2.2 (Multi-user Security). A signature scheme SIG is said to be (t, ε,N,Qs)-MU-SUF-CMA
secure (multi-user strongly unforgeable against chosen message attacks) if for all adversaries A running
in time at most t and making at most Qs queries to the signing oracle,

Pr
[

Ver(pki∗ ,m
∗, σ∗) = 1

∧ (i∗,m∗, σ∗) /∈ {(ij ,mj , σj) | j ∈ [Qs]}

∣∣∣∣For i = 1, . . . , N : (pki, ski) $← Gen(par)
(i∗,m∗, σ∗) $← ASign(·,·)(pk1, . . . , pkN )

]
≤ ε,

where on the j-th query (ij ,mj) ∈ [N ] × {0, 1}∗ (j ∈ [Qs]) the signing oracle Sign returns σj $←
Sign(skij ,mj) to A, i.e., a signature on message mj under public-key pkij .

We stress that an adversary in particular breaks multi-user security if he asks for a signature on
message m under pk1 and submits a valid forgery on the same message m under pk2.

The first condition in the probability statement of Definition 2.2 is called the correctness condition,
the second condition is called the freshness condition. Definition 2.2 covers strong security in the sense
that a new signature on a previously queried message is considered as a fresh forgery. For standard
(non-strong) MU-UF-CMA security (multi-user unforgeablility against chosen message attack) we modify
the freshness condition in the experiment to (i∗,m∗) /∈ {(ij ,mj , ) | j ∈ [Qs]}, i.e., to break the scheme
the adversary has to come up with a signature on a message-key pair which has not been queried to the
signing oracle. We also define (t, ε,N)-MU-UF-KOA security (multi-user unforgeability against key only
attack) as (t, ε,N, 0)-MU-UF-CMA security, i.e. Qs = 0, the adversary is not allowed to make any signing
query

Definition 2.3 (Single-user Security). In the single-user setting, i.e. N = 1 users, (t, ε,Qs)-SUF-CMA
security (strong unforgeablility against chosen message attacks) is defined as (t, ε, 1, Qs)-MU-SUF-CMA
security. Similarly, standard (non-strong) (t, ε,Qs)-UF-CMA security (unforgeablility against chosen
message attack) is defined as (t, ε, 1, Qs)-MU-UF-CMA security. Further, (t, ε)-UF-KOA security (unforge-
ablility against key-only attack) is defined as (t, ε, 1, 0)-MU-SUF-CMA security, i.e., N = 1 users and
Qs = 0 signing queries.

Security in the random oracle model. The security of signature scheme containing a hash function
can be analyzed in the random oracle model [7]. In this model hash values can only be accessed by
an adversary through queries to an oracle H. On input x this oracle returns a uniformly random
output H(x) which is consistent with previous queries for input x. Using the random oracle model, the
maximal number of queries to H becomes a parameter in the concrete security notions. For example,
for (t, ε,N,Qs, Qh)-MU-SUF-CMA security we consider all adversaries making at most Qh queries to the
random oracle. We make the convention that each query to the random oracle made during a signing
query is counted as the adversary’s random oracle query, meaning Qh ≥ Qs.

2.3 Canonical Identification Schemes
A canonical identification scheme ID is a three-move protocol of the form depicted in Figure 2. The
prover’s first message R is called commitment, the verifier selects a uniform challenge h from set ChSet,
and, upon receiving a response s from the prover, makes a deterministic decision. Let par be common
system parameters shared among all participants that we assume to be fixed.

Definition 2.4 (Canonical Identification Scheme). A canonical identification scheme ID is defined
as a tuple of ID := (IGen,P,ChSet,V):
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Prover P(sk) Verifier V(pk)
R $← P(sk,St)

h $← ChSet
s $← P(sk, R, h,St)

d = V(pk, R, h, s)

R

h

s

Figure 2: A canonical identification scheme and its transcript (R, h, s).

• The key generation algorithm IGen takes system parameters par as input and returns public and
secret key (pk, sk). We assume that pk defines ChSet, the set of challenges.
• The prover algorithm P takes as input the secret key sk, a state St (which is initialized to the
random coins t), and the current conversation transcript and outputs the next message to be sent to
the verifier.
• The verifier algorithm V takes the public key pk and the conversation transcript as input and outputs
a deterministic decision, 1 (acceptance) or 0 (rejection).

We require that for all (pk, sk) ∈ IGen(par), all R ∈ P(sk,St), all h ∈ ChSet and all s ∈ P(sk, R, h,St), we
have V(pk, R, h, s) = 1.

An identification scheme ID is called unique if for all (pk, sk) ∈ IGen(par), R ∈ P(sk), h ∈ ChSet, there
exists at most one response s such that V(pk, R, h, s) = 1.

A transcript is a three-tuple (R, h, s). It is called valid (with respect to public-key pk) if V(pk, R, h, s) =
1. Furthermore, it is called real, if it is the output of a real interaction between prover and verifier as
depicted in Figure 2.

A canonical identification schemes ID has α bis of min-entropy, if for all (pk, sk) ∈ IGen(par), the
commitment R generated by the prover algorithm is chosen from a distribution with at least α bits of
min-entropy. That is, for all strings R′ we have Pr[R = R′] ≤ 2−α, if R was honestly generated by the
prover.

We now define (parallel) impersonation against key-only attack (KOA), passive attack (PA), and active
attack (AA).

Definition 2.5 ((Parallel) Impersonation). Let YYY ∈ {KOA,PA,AA}. A canonical identification
ID is said to be (t, ε,QCh, QO)-PIMP-YYY secure (parallel impersonation against YYY attacks) if for all
adversaries A running in time at most t and making at most QCh queries to the challenge oracle Ch and
QO queries to oracle O,

Pr

 V(pk, Ri∗ , hi∗ , si∗) = 1 ∧ i∗ ∈ [QCh]}

∣∣∣∣∣∣
(pk, sk) $← IGen(par)
St $← AO(·)(pk)
(i∗, si∗) $← ACh(·)(pk)

 ≤ ε,
where on the i-th query Ch(Ri) (i ∈ [QCh]), the challenge oracle returns hi $← ChSet to A.3 Depending
on YYY, oracle O is defined as follows.
• If YYY = KOA (key-only attack), then O always returns ⊥.
• If YYY = AA (active attack), then O := Prover , where on the j-th empty query Prover(ε)
(j ∈ QO), the prover oracle returns R′j $← P(sk,St′) to A; on query Prover(j, h′j), the oracle
returns s′j $← P(sk, R′j , h′j ,St′), if h′j is already defined (and ⊥ otherwise).
• If YYY = AA (passive attack), then O := Prover, where on the j-th empty query Tran(ε)
(j ∈ QO), the transcript oracle returns a transcript (R′j , h′j , s′j) to A, where R′j

$← P(sk,St′),
h′j

$← ChSet; s′j $← P(sk, R′j , h′j ,St′).
If YYY = KOA, then the parameter QO does not matter and we simply speak of (t, ε,QCh)-PIMP-KOA.
Moreover, (t, ε,QO)-IMP-YYY ( impersonation against YYY attack) security is defined as (t, ε, 1, QO)-
PIMP-YYY security, i.e., the adversary is only allowed QCh = 1 query to the Ch oracle.

3On two queries Ch(Ri) and Ch(Ri′ ) with the same input Ri = Ri′ the oracle returns two independent random challenges
hi

$← ChSet and hi′
$← ChSet.

7



Definition 2.6 (Key-recovery). Let YYY ∈ {KOA,PA,AA}. A canonical identification ID is said to be
(t, ε)-KR-YYY secure (key recovery under YYY attack) if for all adversaries A running in time at most t,

Pr
[

(sk∗, pk) ∈ IGen(par)
∣∣∣∣ (pk, sk) $← IGen(par)

sk∗ $← AO(·)(pk)

]
≤ ε,

where O is defined as in Definition 2.5. The winning condition (sk∗, pk) ∈ IGen(par) means that the tuple
(sk∗, pk) is in the support of IGen(par), i.e., that sk∗ is a valid secret-key with respect to pk.

Definition 2.7 (Special Soundness). A canonical identification ID is said to be SS (special sound)
if there there exists an extractor algorithm Ext such that, for all (pk, sk) ∈ IGen(par), given any two
accepting transcripts (R, h, s) and (R, h′, s′) (where h 6= h′), we have Pr[(sk∗, pk) ∈ IGen(par) | sk∗ $←
Ext(pk, R, h, s, h′, s′)] = 1.

Definition 2.8 (Random Self-reducibility). A canonical identification ID is said to be RSR (random
self-reducible) if there is an algorithm Rerand and two deterministic algorithms Tran and Derand such
that, for all (pk, sk) ∈ IGen(par):
• pk ′ and pk ′′ have the same distribution, where (pk ′,a′) $← Rerand(pk) is the rerandomized key-pair
and (pk ′′, sk ′′) $← IGen(par) is a freshly generated key-pair.
• For all (pk ′,a′) $← Rerand(pk), all (pk ′, sk ′) ∈ IGen(par), and sk∗ = Derand(pk, pk ′, sk ′,a′), we have

(pk, sk∗) ∈ IGen(par), i.e., Derand returns a valid secret-key sk∗ with respect to pk, given any valid
sk ′ for pk ′.
• For all (pk ′,a′) ∈ Rerand(pk), all transcripts (R′, h′, s′) that are valid with respect to pk ′, the
transcript (R′, h′, s := Tran(pk, pk ′,a′, (R′, h′, s′))) is a valid transcript with respect to pk.

Definition 2.9 (Honest-verifier Zero-knowledge). A canonical identification ID is said to be HVZK
(honest-verifier zero-knowledge) if there exists an algorithm Sim that, given public key pk and h $← ChSet,
outputs (R, s) such that (R, h, s) is a real transcript with respect to pk.

2.4 Signatures from Identification Schemes
Let ID := (IGen,P,ChSet,V) be a canonical identification scheme. By the generalized Fiat-Shamir
transformation [5], the signature scheme SIG[ID] := (Gen,Sign,Ver) from ID is defined as follows. par
contains the system parameters of ID and a hash function H : {0, 1}∗ → ChSet.

Gen(par):
(pk, sk) $← IGen(par)
Return (pk, sk)

Sign(sk,m):
R $← P(sk,St)
h = H(R,m)
s $← P(sk, R, h,St)
Return σ = (R, s)

Ver(sk,m, σ):
Parse σ = (R, s)
h = H(R,m)
Return V(pk, R, h, s)

In some variants of the Fiat-Shamir transform, the hash additionally inputs some public parameters, for
example h = H(pk, R,m).

We call ID reconstructive, if V(pk, R, h, s) first recomputes the commitment via R′ = V′(pk, h, s) and
then outputs 1 iff R′ = R. For reconstructive ID, we can define an alternative Fiat-Shamir transformation
SIG′[ID] := (Gen,Sign′,Ver′). Algorithm Sign′(sk,m) is defined as Sign(sk,m), but outputs σ′ = (h, s).
Algorithm Ver′(pk,m, σ′) first parses σ′ = (h, s), then recomputes R′ := V′(pk, h, s), and finally returns
1 iff H(R′,m) = h. Since σ = (R, s) can publicly transformed into σ′ = (h, s) and vice-cersa, SIG[ID]
and SIG[ID′] are equivalent in terms of security. On the one hand, the alternative Fiat-Shamir transform
yields shorter signatures if h ∈ ChSet has a smaller representation than response s. On the other hand,
signatures of Fiat-Shamir transform maintain their algebraic structure which in some cases of ID enables
batch verification.

3 Security Implications
In this section we will prove the following two main results.
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Theorem 3.1 (Main Theorem 1). Suppose ID is SS, HVZK, RSR and has α bit min-entropy. If ID is
(t, ε)-KR-KOA secure then SIG[ID] is (t′, ε′, Qs, Qh)-UF-CMA-secure and (t′′, ε′′, N,Qs, Qh)-MU-UF-CMA-
secure in the programmable random oracle model, where

ε′

t′
≤ 6(Qh + 1) · ε

t
+ Qs

2α + 1
|ChSet| ,

ε′′

t′′
≤ 24(Qh + 1) · ε

t
+ Qs

2α + 1
|ChSet| ,

The proof of Theorem 3.1 is obtained by combining Lemmas 3.4-3.9 and using Qh ≤ t′ − 1.

Theorem 3.2 (Main Theorem 2). Suppose SIG[ID] is HVZK, RSR and has α bit min-entropy. If
SIG[ID] is (t, ε,Qh + Qs)-UF-KOA secure then SIG[ID] is (t′, ε′, N,Qs, Qh)-MU-UF-CMA secure in the
programmable random oracle model, where

ε′ ≤ 4ε+ QhQs
2α , t′ ≈ t

and Qs, Qh are upper bounds on the number of signing and hash queries in the MU-UF-CMA experiment,
respectively.

The proof of Theorem 3.2 is obtained by combining Lemmas 3.8 and 3.9.

3.1 Proof of the Main Theorems
Lemma 3.3 (XXX-KOA −→ XXX-PA). Let XXX ∈ {KR, IMP,PIMP}. If ID is (t, ε,QCh)-XXX-KOA secure
and HVZK, then ID is (≈ t, ε,QCh, QO)-XXX-KOA secure.

Proof. Let A be an adversary against the (t, ε,QCh, QO)-XXX-KOA-security of ID. We now build an
adversary B against the (t, ε,QO)-XXX-KR security of ID, with (t, ε) as claimed.
Construction of B. Adversary B inputs pk and runs A on pk. Essentially, B only has to simulate
the Prover oracle of the passive attack PA in the first phase, all queries to the Ch oracle (for YYY ∈
{IMP,PIMP}) in the second phase are echoed by B to its own Ch oracle. Finally, B outputs whatever A
outputs. A query to the Prover oracle can be perfectly simulated by picking h $← ChSet, computing
(R, s) $← Sim(pk, h) a simulated proof, and returning a transcript (R, h, s). The running time of B is that
of A plus roughly QO executions of Sim to simulate the Prover oracle, which we ignore for simplicity.

Lemma 3.4 below can be viewed as a generalization of Bellare and Palacio’s Reset Lemma [5] that
takes advantage of random self-reducibility. The IMP-KOA security experiment is quite simple is relatively
simple and the adversary makes exactly one query to the challenge oracle Ch. Therefore the reduction
in the proof of the lemma does not have to guess which of the QCh many challenges the adversary is
using to break security. This is the reason why its proof is considerably simpler than the corresponding
previous proofs analyzing the security of identification/signature schemes using rewinding, for example
the Forking Lemma [36, 4] or the proofs in [38, 32, 30].

Lemma 3.4 (KR-KOA rewinding−−−−−−−→ IMP-KOA). If ID is (t, ε)-KR-KOA secure, SS and RSR, then ID is
(t′, ε′)-IMP-KOA secure, where for any N > 0,

ε ≥ (1− (1− ε′ + 1
|ChSet| )

N )2, t ≈ 2Nt′. (1)

In particular, the two success ratios are related as

ε′

t′
≤ 6 · ε

t
+ 1
t′|ChSet| . (2)

We remark that without the RSR property we can still prove the theorem for N = 1, i.e., ε ≥
ε′(ε′ − 1

|ChSet| ), t ≈ 2t′.
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Proof. We first show how to derive (2) from (1). If ε′ ≤ 1/|ChSet|, then (2) holds trivially. Assuming
ε′ > 1/|ChSet|, we set N := (ε′ − 1/|ChSet|)−1 to obtain t ≈ 2t′/(ε′ − 1/|ChSet|) and ε ≥ (1− 1

e )2 ≥ 1
3 .

Dividing ε′ by t′ yields (2).
To prove (1), let A be an adversary against the (t′, ε′)-IMP-KOA-security of ID. We now build an

adversary B against the (t, ε)-KR-KOA security of ID, with (t, ε) as claimed in (1).
Construction of B. In phase 1, for each i ∈ [N ], B does the following. it picks random tape ti, runs
(pki,ai) $← Rerand(pk) and executes A(pki; ti). On query Ri, B answers with hi $← ChSet to obtain si
from A. If any of A’s executions produces a valid transcript, i.e., if there exists an index i∗ ∈ [N ] such
that transcript (Ri∗ , hi∗ , si∗) is a valid transcript with respect to pki∗ , then B continues its execution.
Otherwise, it aborts.

In phase 2, B fixes i∗ and, for each j ∈ [N ], it does the following. It executes A(pki∗ ; ti∗). Adversary
A will always query Ri∗ , which B answers with h′j

$← ChSet \ {hi∗} to obtain s′j from A. If any of
A’s executions produces a valid transcript, i.e., if there exists an index j∗ ∈ [N ] such that transcript
(Ri∗ , h′j∗ , s′j∗) is a valid transcript with respect to pki∗ , then B continues its execution. Otherwise, it
aborts.

Finally, B uses the SS property of ID and computes ski∗ ← Ext(pki∗ , Ri∗ , hi∗ , si∗ , h′j∗ , s′j∗). By the
RSR property of ID, it returns sk ← Derand(pki∗ , ski∗ ,ai∗) and terminates.
Success Probability of B. For each i ∈ [N ], pki is a properly distributed public-key and

Pr[V(pki, Ri, hi, si) = 1] = ε′.

Therefore,
Pr[no abort in phase 1] = 1− (1− ε′)N . (3)

Next, for each i, j ∈ [N ] and fixed pki and ti, we define

qi,j = qi,j(pki, ti) := Pr
hi

[V(pki, Ri, hi, si) = 1],

pi,j = pi,j(pki, ti) := Pr
hi,h′j

[V(pki, Ri, hi, si) = 1 ∧ V(pki, Ri, h′j , s′j) = 1].

Note that the value Ri deterministically depends on pki and ti, the value si deterministically depends on
pki, ti, and hi, and the value s′j deterministically depends on pki, ti, and h′j . Therefore, the probability-
space of pi,j is the collection of random variables (hi, h′j), where hi $← ChSet and h′j

$← ChSet \ {hi}.
Since Pr[hi = h′j ] = 1

|ChSet| , we have

pi,j ≥ qi,j ·
(
qi,j −

1
|ChSet|

)
.

We bound the expectation of pi,j as

Eti,pki
[pi,j ] ≥ Eti,pki

[
qi,j ·

(
qi,j −

1
|ChSet|

)]
≥ Eti,pki

[qi,j ] ·
(

Eti,pki
[qi,j ]−

1
|ChSet|

)
= ε′

(
ε′ − 1

|ChSet|

)
.

In the last inequation we used Jensen’s inequality4 applied to the convex function ϕ(qi,j) := qi,j(qi,j −
1/|ChSet|) for the constant |ChSet|. Finally, we bound the probability εi,j that transcript (Ri, h′j , s′j) is
valid with respect to pki conditioned on the event that transcript (Ri, hi, si) is valid with respect to pki.

εi,j = Pr[V(pki, Ri, h′j , s′j) = 1 | V(pki, Ri, hi, si) = 1]

=
Pr[V(pki, Ri, h′j , s′j) = 1 ∧ V(pki∗ , Ri, hi, si) = 1]

Pr[V(pki, Ri, hi, si) = 1]

=
Eti,pki

[pi,j ]
ε′

≥ ε′ − 1
|ChSet|

4Jensen’s inequality states that if ϕ is a convex function and X is a random variable, then E[ϕ(X)] ≥ ϕ(E[X]).
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Using εi∗,j ≥ ε′ − 1/|ChSet|, we obtain

Pr[no abort in phase 2 | no abort in phase 1] = 1− (1− ε′ + 1
|ChSet| )

N . (4)

As B is successful if it does not abort, by (3), (4) we obtain

ε ≥ (1− (1− ε′ + 1
|ChSet| )

N )2.

The running time t of B is 2Nt′ plus the N times the time to run the Rerand and Derand algorithms
of RSR plus the time to run the Ext algorithm of SS. We write t′ ≈ 2Nt′ to indicate that this is the
dominating running time of B.

Lemma 3.5 (IMP-KOA loss Q−−−−→ PIMP-KOA). If ID is (t, ε)-IMP-KOA secure, then ID is (t′, ε′, QCh)-
PIMP-KOA secure, where

ε′ ≤ QCh · ε, t′ ≈ t.

Proof. Let A be an adversary against the (t′, ε′, QCh)-PIMP-KOA-security of ID. We now build an
adversary B against the (t, ε)-IMP-KOA security of ID, with (t, ε) as claimed.
Construction of B. First, B obtains pk from its IMP-KOA experiment and forwards it to A. Next, it
picks i∗ $← [QCh]. On A’s i-th query Ch(Ri), it proceeds as follows. If i 6= i∗, then it return hi $← ChSet.
If i = i∗, then it defines R := Ri∗ , makes a query h $← Ch(R) to its own oracle, and returns hi∗ := h
to A. Finally, A submits (i, s). If i 6= i∗, then B aborts. Otherwise, it outputs s to its experiment and
terminates. Clearly, if i = i∗ then B wins if A wins. Since i∗ is uniform in [QCh] the probability that this
happens is 1/QCh.

Lemma 3.6 (PIMP-KOA PRO−−−→ UF-KOA). If ID is (t, ε,QCh)-PIMP-KOA secure, then SIG[ID] is (t′, ε′, Qh)-
UF-KOA secure in the programmable random oracle model, where

ε′ = ε, t′ ≈ t, Qh = QCh − 1.

Proof. Let A be an adversary against the (t′, ε′, Qh)-UF-KOA-security of ID. We now build an adversary
B against the (t, ε,QCh)-PIMP-KOA security of ID, with (t, ε,QCh) as claimed.
Construction of B. First, B obtains pk from its PIMP-KOA experiment and which it forwards to A.
If A makes a query (Ri,mi) to the random oracle, B makes a query hi $← Ch(Ri) and programs the
random oracle H(Ri,mi) := hi. Finally, A submits a forgery (m,σ), where σ = (R, s). We assume that
(R,m) ∈ {(Ri,mi)}, i.e., H(R,m) was queries by A. If not, B makes a dummy query to H(R,m) which is
simulated as described above. Hence, In total, there are QCh := Qh + 1 queries to H. Let i ∈ [Qh + 1] be
the index such that (Ri,mi) = (R,m). Adversary B outputs (i, si) and terminates. Note that (Ri, hi, si)
is a valid transcript and hence breaks PIMP-KOA security iff A’s forgery is valid, establishing ε = ε′. The
running time of B is roughly that of A, hence t′ ≈ t.

The following lemma is a special case of Lemma 3.9 (with a slightly improved bound).

Lemma 3.7 (UF-KOA PRO−−−→ UF-CMA). Suppose ID is HVZK and has α bit min-entropy. If SIG[ID] is
(t, ε,Qh)-UF-KOA secure, then SIG[ID] is (t′, ε′, Qs, Qh)-UF-CMA secure in the programmable random
oracle model, where

ε′ ≤ ε+ QhQs
2α , t′ ≈ t,

and Qs, Qh are upper bounds on the number of signing and hash queries in the UF-CMA experiment,
respectively.

Lemma 3.8 (UF-KOA RSR−−−→ MU-UF-KOA). Suppose ID is RSR. If SIG[ID] is (t, ε)-UF-KOA secure, then
SIG[ID] is (t′, ε′, N)-MU-UF-KOA secure, where

ε′ = ε, t′ ≈ t.
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Again, without the RSR property one can use the generic bounds from [20] to obtain a non-tight
bound with a loss of N .

Proof. Let A be an algorithm that breaks (t′, ε′, N)-MU-UF-KOA security of SIG[ID]. We will describe an
adversary B invoking A that breaks (t, ε)-UF-KOA security of SIG[ID] with (t, ε) as stated in the theorem.
Adversary B is executed in the UF-KOA experiment and obtains a public-key pk.
Simulation of public-keys input to A. For each i ∈ [N ], B generates (pki,ai) $← Rerand(pk) by
using the RSR property of ID. Then B runs A on input (pk1, . . . , pkN ).
Forgery. Eventually, A will submit its forgery (i∗,m∗, σ∗ := (R∗, s∗)) in the MU-UF-KOA experiment.
B computes h∗ = H(m∗, R∗) and runs s $← Tran(pk, pki∗ ,ai∗ , (R∗, h∗, s∗)). By the RSR property of ID,
the random variables (pk, R∗, h∗, s) and (pki∗ , R∗, h∗, s∗) are identically distributed. If σ∗ is a valid
signature on message m∗ under pki∗ , then (R∗, s) is also a valid signature on m∗ under pk. Thus, we have
ε = ε′. The running time t of B is t′ plus the N times the time to run the Rerand and Tran algorithms of
RSR. We again write t′ ≈ t′.

Lemma 3.9 (MU-UF-KOA PRO−−−→ MU-UF-CMA). Suppose ID is HVZK and has α bit min-entropy. If
SIG[ID] is (t, ε,N,Qh)-MU-UF-KOA secure, then SIG[ID] is (t′, ε′, N,Qs, Qh)-MU-UF-CMA secure in the
programmable random oracle model, where

ε′ ≤ 4ε+ QhQs
2α , t′ ≈ t,

and N is the number of users and Qs and Qh are upper bounds on the number of signing and hash queries
in the MU-UF-CMA experiment, respectively.

Proof. Let A be an algorithm that breaks (t′, ε′, N,Qs, Qh)-MU-UF-CMA security of SIG[ID]. We will
describe an adversary B invoking A that breaks (t, ε,N,Qh)-MU-UF-KOA security of SIG[ID] with (t, ε) as
stated in the theorem. Adversary B is executed in the MU-UF-KOA experiment and obtains public-keys
(pk1, . . . , pkN ), and has access to a random oracle H.
Preparation of public-keys. For each i ∈ [N ], adversary B picks a secret bit bi $← {0, 1}. If bi = 1
then B defines pk ′i := pki, else B generates the key-pair (pk ′i, sk ′i) $← Gen(par) itself. We note that all
simulated public-keys are correctly distributed.

Adversary B runs A on input (pk ′1, . . . , pk ′N ) answering hash queries to random oracle H ′ and signing
queries as follows.
Simulation of hash queries. A hash query H ′(R,m) is answered by B by querying its own hash
oracle H(R,m) and returning its answer.
Simulation of signing queries. On A’s j-th signature query (ij ,mj), B returns a signature σj on
message mj under pkij according to the following case distinction.
• Case A: bij = 0. In that case sk ′ij is known to B and the signature is computed as σj := (Rj , sj) $←

Sign(sk ′ij ,mj). Note that this involves B making a query H ′(Rj ,mj).
• Case B: bij = 1. In that case sk ′ij is unknown to B and the signature is computed using the HVZK

property of ID. Concretely, B samples hj $← ChSet and runs (Rj , sj) $← Sim(pk ′ij , hj). If hash value
H ′(Rj ,mj) was already defined (via one of A’s hash/signing queries) and H ′(Rj ,mj) 6= hj , B
aborts. Otherwise, it defines the random oracle

H ′(Rj ,mj) := hj (5)

and returns σj := (Rj , sj), which is a correctly distributed valid signatures on mj under pkij . Note
that by (5), B makes H and H ′ inconsistent, i.e., we have H(Rj ,mj) 6= H ′(Rj ,mj) with high
probability. Also note that for each signing query, B aborts with probability at most Qh/2α because
Rj has min-entropy α. Since the number of signing queries is bounded by Qs, B aborts overall with
probability at most QhQs/2α.

Forgery. Eventually, A will submit its forgery (i∗,m∗, σ∗ := (R∗, s∗)). We assume that it is a
valid forgery in the MU-UF-CMA experiment, i.e., for h∗ = H ′(m∗, R∗) we have V(pk ′i∗ , R∗, h∗, s∗) = 1.
Furthermore, it satisfies the freshness condition, i.e.,

(i∗,m∗) 6∈ {(ij ,mj) : j ∈ [Qs]}. (6)
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After receiving A’s forgery, B computes a forgery for the MU-UF-KOA experiment according to the
following case distinction.
• Case 1: There exists a j ∈ [Qs] such that (m∗, R∗) = (mj , Rj). (If there is more than one j, fix any

of them.) In that case we have and h∗ = hj and furthermore i∗ 6= ij by the freshness condition (6).
– Case 1a: (bi∗ = 1) and (bij = 0). Then the hash value h∗ = H ′(R∗,m∗) was not programmed

by B in (5). That means h∗ = H ′(R∗,m∗) = H(R∗,m∗) and B returns (i∗,m∗, (R∗, s∗)) as a
valid forgery to its MU-UF-KOA experiment.

– Case 1b: (bi∗ = bij ) or (bi∗ = 0 ∧ bij = 1). Then B aborts.
Note that in case 1 we always have i∗ 6= ij and therefore B does not abort with probability 1/4 in
which case it outputs a valid forgery.
• Case 2: For all j ∈ [Qs] we have: (m∗, R∗) 6= (mj , Rj).

– Case 2a: bi∗ = 1. Then the hash value h∗ = H ′(R∗,m∗) was not programmed by B in (5).
That means h∗ = H ′(R∗,m∗) = H(R∗,m∗) and B returns (i∗,m∗, (R∗, s∗)) as a valid forgery
to its MU-UF-KOA experiment.

– Case 2b: bi∗ = 0. Then B aborts.
Note that in case 2, B does not abort with probability 1/2 in which case it outputs a valid forgery.

Overall, B returns a valid forgery of MU-UF-KOA experiment with probability

ε ≥ min
{

1
4 ,

1
2

}
·
(
ε′ − QhQs

2α

)
= 1

4

(
ε′ − QhQs

2α

)
.

The running time of B is that of A plus the Qs executions of Sim. We write t′ ≈ t. This completes the
proof.

If s in ID is uniquely defined by (pk, R, h) (e.g., as in the Schnorr identification scheme), then one can
show the above proof even implies MU-SUF-CMA security of SIG[ID]. The simulation of hash and signing
queries is the same as in the above proof. Let (i∗,m∗, R∗, s∗) be A’s forgery. The freshness condition of
the MU-SUF-CMA experiment says that (i∗,m∗, R∗, s∗) /∈ {(ij ,mj , Rj , sj) : j ∈ [Qs]}. Together with the
uniqueness of ID, this implies (i∗,m∗, R∗) /∈ {(ij ,mj , Rj) : j ∈ [Qs]}. If (i∗,m∗) 6∈ {(ij ,mj) : j ∈ [Qs]},
then B can break MU-UF-KOA security by the same case distinction as in the proof above. Otherwise, we
have R∗ /∈ {Rj : j ∈ [Qs]}, in which case we can argue as in case 2.

4 Impossibility Results
In this section, we show that Theorems 3.1 and 3.2 from the previous section are optimal in the sense
that the security reduction requires: rewinding (Lemma 4.1), security loss of at least O(Q) (Lemma 4.3)
and programmability of random oracles (Lemmas 4.5 and 4.6).

Let X and Y be some hard cryptographic problems, defined through a (possibly) interactive experiment.
A black-box reduction R from X to Y is an algorithm that, given black-box access to an adversary A
breaking problem Y, breaks problem X. If X and Y are security notions for identification or signatures
schemes, then a reduction R is called key-preserving, if R only makes calls to A with the same pk that it
obtained by its own problem X. All our reductions are key-preserving.

Lemma 4.1 (KR-KOA 6
non-rewind.
−−−−−−−−−→ IMP-KOA). If there is a public-key preserving reduction R that

(tR, εR)-breaks KR-KOA security of ID with one-time black-box access to an adversary A that (tA, εA)-
breaks IMP-KOA security of ID, then there exists an algorithm M that (tM, εM, QO)-breaks IMP-AA
security of ID, where

εM ≥ εR −
1

|ChSet| , tM ≈ tR, QO = 1.

Proof. Assuming the existence of a public-key preserving reduction R as above, we construct a meta-
reductionM to break IMP-AA security of ID. M gets the public key pk of the IMP-AA challenge as input
and has oracle access to Prover, black-box accesses to R and simulates the adversary A.
Construction of M(pk). M runs R(pk) and, upon receiving pk from R, M simulates A(pk) as
follows. First,M queries R $← Prover() from the IMP-AA challenger CIMP-AA and returns R to R. Upon
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Figure 3: Meta-reductionM uses R to break the IMP-MIM security in n MIM rounds. n is the total amount
of executions of A performed by R. For every MIM round j ∈ [n], A picks an i∗j ∈ [QCh] and forwards a valid
response sj,i∗

j
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j
after having requested sj,i∗

j
.

receiving h from R,M queries s $← Prover(1, h) from the IMP-AA challenger CIMP-AA and returns s to
R with probability εA.

After receiving sk from R,M follows the protocol honestly by using sk and breaks IMP-AA security
of ID: M computes (R∗,St) $← P(sk,St) and returns R∗ to the IMP-AA security challenger CIMP-AA; upon
receiving h∗ from CIMP-AA,M computes (s∗,St) $← P(sk, R∗, h∗,St).

By the correctness of ID, (R∗, h∗, s∗) is a valid transcript and (R∗, h∗, s∗) 6= (R, h, s) with probability
at least 1−1/|ChSet|. We note thatM perfectly simulates a (tA, εA) adversary against IMP-KOA security.
Thus, we have εM ≥ εR − 1/|ChSet|.

For our next impossibility result, we will require the following definition for identification schemes.

Definition 4.2 (Concurrent (Weak) Impersonation against Man-in-the-Middle Attacks). A
canonical identification ID is said to be (t, ε,QCh, QO)-IMP-MIM secure (impersonation against man-in-
the-middle attacks) if for all adversaries A running in time at most t and adaptively making at most QO
queries to the prover oracle Prover and QCh queries to the challenge oracle Ch,

Pr
[

V(pk, Ri∗ , hi∗ , si∗) = 1 ∧ (i∗ ∈ [QCh])
∧(Ri∗ , hi∗ , si∗) /∈ {(R′j , h′j , s′j) | j ∈ [QO]}

∣∣∣∣ (pk, sk) $← IGen(par)
(i∗, si∗) $← AProver(·),Ch(·)(pk)

]
≤ ε,

where oracles Prover and Ch are defined as in Definition 2.5. We define weak impersonation against
man-in-the-middle attack (wIMP-MIM) by restricting Ri∗ ∈ {R′1, . . . , R′QO

}.

The following generalizes a result by Seurin [38] to canonical identification schemes.

Lemma 4.3 (IMP-KOA 6
loss <Q
−−−−−−→ PIMP-KOA). Suppose that ID has α bit min-entropy and there is a

public-key preserving reduction R that (tR, εR)-breaks IMP-KOA security of ID with n-time black-box
access to an adversary A that (tA, εA, QCh)-breaks PIMP-KOA security of ID. Then there exists an
algorithmM that (tM, εM, 1, QO = nQCh)-breaks IMP-MIM security of ID, where

εM ≥ εR −
n ln

(
(1− εA)−1)
QCh

− n

|ChSet| −
n

2α , tM ≈ tR.

We note that the Schnorr identification scheme is wIMP-MIM but not IMP-MIM-secure (cf. Section 5.1).
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Proof. Assuming the existence of a public-key preserving reduction R, we construct a meta-reductionM
to break IMP-MIM security of ID (see Figure 3). M inputs public key pk of the IMP-MIM challenger, has
black-box accesses to R and simulates the adversary A while interacting within QO = nQCh many MIM
rounds.

W.l.o.g. we can assume that our adversary A never accesses its random coins. Instead, it generates
pseudorandomness directly using a PRF, where the key k of PRF is part of the description of A. Adversary
A’s randomness is derived from its current view using the PRF. As we assume that R has only black box
access to A, it can not access key k and hence it can not distinguish A’s pseudorandom randomness from
uniform randomness by observing the outputs of A.
Construction of M(pk). M runs R(pk) who is interacting with a simulated A(pk). (Recall that R
is public-key preserving, so it always executed A on pk.) R can execute A at most n times and hence
rewinds it at most n− 1 times to any desired state. In the simulation of A described below we make the
explicit convention thatM always keeps the simulation of A consistent with previous executions. That
is, as long as there exists a j′ < j such that for all i′ < i, hj,i′ = hj′,i′ , thenM will also use Rj,i = Rj′,i
and cj,i = cj′,i.

Upon receiving pk from R,M simulates the j-th execution or rewind (j ∈ [n]) of A(pk) as follows.
• First, M sets a flag bj := 0. The flag bj will be switched of 1 once M has obtained one valid
transcript from the Prover oracle.

• To simulate the i-th query to the challenge oracle (i ∈ [QCh]), M starts an interaction with a
new prover: M calls Rj,i $← Prover() and forwards it to R, which will reply with an arbitrary
hj,i ∈ ChSet. If bj = 1,M sets cj,i := 0. Otherwise,M flips a biased coin cj,i with Pr[cj,i = 1] = µ,
where µ will be defined later.
Case 1: cj,i = 1. If there is an index j′ < j with Rj′,i = Rj,i, hj′,i 6= hj,i, and cj′,i = 1, then M
aborts its attempt to break IMP-MIM security of ID. Otherwise, it defines i∗j := i and requests
sj,i∗

j

$← Prover((j−1)·QCh+ij∗ , hj,i∗
j
). Note thatM now obtained one transcript (Rj,i∗

j
, hj,i∗

j
, sj,i∗

j
)

from the Prover oracle and therefore sets bj := 1.
Case 2: cj,i = 0. M does nothing.

• After QCh simulated challenge queries,M sets (i∗j , sj,i∗j ) := (⊥,⊥) if i∗j is undefined. Finally,M
returns (i∗j , sj,i∗j ) to R.

This completes the simulation of the j-th execution of A.
At some point R makes a query Ch(R), whichM forwards to its own Ch, receiving h. Finally, R

outputs s and terminates. M also outputs s and terminates. This completes the description ofM.
Analysis of M.

We define Bad1 as the event that the transcript (R, h, s) output by R does not satisfy the freshness
condition (R, h, s) /∈ {(Rj,i, hj,i, sj,i) | (j, i) ∈ [n] × [QCh]} of the IMP-MIM security experiment. Note
that sj,i 6=⊥ only if i = i∗j and therefore to consider the case when i = i∗j .

Pr[Bad1] = Pr[∃j ∈ [n] : (R, h, s) = (Rj,i∗
j
, hj,i∗

j
, sj,i∗

j
)]

≤ Pr[∃j ∈ [n] : (R, h) = (Rj,i∗
j
, hj,i∗

j
)].

We let (j0, i0) ∈ [n]× [QCh] be the unique index such that R makes its single query Ch(R) after receiving
Rj0,i0 but before receiving Rj0,i0+1.

Pr[∃j ∈ [n] : (R, h) = (Rj,i∗
j
, hj,i∗

j
)] ≤ Pr[∃(j, i∗j ) 6= (j0, i0) : (R, h) = (Rj,i∗

j
, hj,i∗

j
)] (7)

+ Pr[(j, i∗j ) = (j0, i0)]. (8)

We bound the probabilities (7) and (8) individually. To bound (8), only a single query is considered.
Therefore

Pr[(j, i∗j ) = (j0, i0)] = Pr[cj0,i0 = 1] ≤ µ.

To bound (7), we define a natural order on the set [n]× [QCh] via (j, i) < (j0, i0) iff Rj,i was received
before Rj0,i0 , i.e, (j − 1)QCh + i < (j0 − 1)QCh + i0. Note that R chooses hj,i∗

j
for (j, i∗j ) < (j0, i0) before

seeing h $← ChSet. Furthermore, R is fixed for (j, i∗j ) > (j0, i0) while Rj,i∗
j

$← Prover(). Therefore by
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using a union bound

Pr[∃(j, i∗j ) 6= (j0, i0) : (R, h) = (Rj,i∗
j
, hj,i∗

j
)]

≤ Pr[∃(j, i∗j ) < (j0, i0) : (R, h) = (Rj,i∗
j
, hj,i∗

j
)] + Pr[∃(j, i∗j ) > (j0, i0) : (R, h) = (Rj,i∗

j
, hj,i∗

j
)]

≤ Pr[∃(j, i∗j ) < (j0, i0) : h = hj,i∗
j
] + Pr[∃(j, i∗j ) > (j0, i0) : R = Rj,i∗

j
]

≤ j0

|ChSet| + n− j0 + 1
2α ≤ n

|ChSet| + n

2α .

Overall, this yields
Pr[Bad1] ≤ n

|ChSet| + µ+ n

2α .

Next, we define Bad2 as the event thatM aborts. By a union bound we get

Pr[Bad2] = Pr[∃j ∈ [n], j′ < j, i ∈ [QCh] : Rj′,i = Rj,i ∧ hj′,i 6= hj,i ∧ cj,i = cj′,i = 1]
= Pr[∃j ∈ [n], j′ < j : Rj′,i∗

j
= Rj,i∗

j
∧ hj′,i∗

j
6= hj,i∗

j
∧ cj′,i∗

j
= 1]

≤ Pr[∃j ∈ [n], j′ < j : cj′,i∗
j

= 1] ≤ (n− 1)µ.

Chioce of µ. We now choose µ such that on one side A forges with probability εA and on the other
side the probability that Bad1 or Bad2 happen is bounded. We set

µ = 1− (1− εA)1/QCh

for a desired success probability 0 < εA < 1 of A and QCh queries. Note that for an execution j ∈ [n] that
unless for all i ∈ [QCh] we have cj,i = 0, A will always send a valid transcript and break the PIMP-KOA
security. Let µ := (1− µ). For any execution j ∈ [n], A has success probability

Pr[∃i ∈ [QCh] : cj,i = 1] =
QCh∑
k=1

µ(1− µ)k−1 =
QCh∑
k=1

(µk−1 − µk) = 1− (1− µ)QCh = εA.

Finally, we can bound the success probability ofM

Pr[Bad1 ∧ Bad2] ≤ n · µ+ n

|ChSet| + n

2α ≤
n ln

(
(1− εA)−1)
QCh

+ n

|ChSet| + n

2α ,

where the bound µ ≤ ln((1− εA)−1)/QCh was proved in [38, Lemma 1]. Therefore we have

εM ≥ εR −
n ln

(
(1− εA)−1)
QCh

− n

|ChSet| −
n

2α , tM ≈ tR ≈ ntA

which concludes the proof of the lemma.

For a precise analysis of the function ln
(
(1− εA)−1), we refer to [38]. For our purpose, it is sufficient

that for a concrete choice of εA, there is a constant c such that c · εA = ln
(
(1− εA)−1). Hence Lemma 4.3

gives roughly εM ≥ εR − c · n/QCh · εA for a suitable choice of εA. Therefore εR can be at most
c · n/QCh · εA. OtherwiseM would break IMP-MIM security of ID with εM > 0.

It is easy to see that the meta-reduction of the proof of Lemma 4.3 just forwards all Rj,i received
during the Man-in-the-Middle attack and R send by R. So if R is furthermore randomness-preserving,
i.e., it chooses R ∈ {R1,1, . . . , Rn,QCh}, then M attacks wIMP-MIM-security of ID. This observation is
formalized in the following corollary.

Corollary 4.4. If ID has α bit min-entropy and there exists a public key and randomness preserving
reduction R that (tR, εR)-breaks IMP-KOA security of ID with n-time black-box access to an adver-
sary A that (tA, εA, QCh)-breaks PIMP-KOA security of ID, then there exists an algorithm M that
(tM, εM, 1, QO = nQCh)-breaks wIMP-MIM security of ID, where

εM ≥ εR −
n ln

(
(1− εA)−1)
QCh

− n

|ChSet| −
n

2α , tM ≈ tR.
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Figure 4: Meta-reductionM runs R to break IMP-AA security in the non-programmable random oracle model,
where bothM and R have oracle access to the same external random oracle H. M simulates an adversary A that
(tA, εA, Qh)-breaks UF-KOA security of SIG[ID] (which is in the dashed box) and answers the oracle queries of R.

Lemma 4.5 (IMP-KOA 6
NPRO
−−−−−→ UF-KOA). If there exists a public key preserving reduction R in the

non-programmable random oracle (NPRO) model that (tR, εR)-breaks IMP-KOA security of ID with black-
box access to an adversary A that (tA, εA, Qh)-breaks UF-KOA security of SIG[ID], then there exists an
algorithmM that (tM, εM, 1)-breaks IMP-AA-security of ID, where

εM ≥ εR −
1

|ChSet| , tM ≈ tR.

Proof. Assuming the existence of a public key preserving reduction R as above, we construct a meta-
reductionM to break IMP-AA security of ID. Figure 4 gives a pictorial overview of itM. M obtains the
public key pk of the IMP-AA challenge and has oracle access to Prover, black-box accesses to R and
simulates the adversary A. Additionally, bothM and R get access to the same external random oracle
H, in the NPRO model.
Construction of M(pk). M runs R(pk) and, upon receiving pk from R,M simulates A(pk) as follows.
First,M queries R $← Prover() and returns R to R. Next,M picks an arbitrary message m, queries
h = H(m,R) and s $← Prover(1, h). With probability εA M returns (m, (R, s)) as a forgery to R.

Upon receiving a Ch(R∗) query from R, M breaks IMP-AA security as follows: M forwards R∗
to the challenger CIMP-AA; after receiving h∗ from CIMP-AA,M returns h∗ as the answer of the Ch(R∗)
query; when R responds with s∗ to break IMP-KOA security,M forwards s∗ to CIMP-AA. We note that
h∗ = h with probability 1/|ChSet|, since h∗ is a random challenge from CIMP-AA and h is a respond of
a random oracle query. Thus, if s∗ breaks IMP-KOA security, then s∗ breaks IMP-AA security, since
(R∗, h∗, s∗) 6= (R, h, s). Moreover, M perfectly simulates an adversary that (tA, εA)-breaks UF-KOA
security. Thus, we have εM ≥ εR − 1/|ChSet|.

By Lemma 3.5, Lemma 4.5 implies that there is no reduction from PIMP-KOA to UF-KOA in the
non-programmable random oracle model.

Lemma 4.6 (UF-KOA 6
NPRO
−−−−−→ UF-CMA). Suppose that there is a public-key preserving reduction R

in the non-programmable random oracle (NPRO) model that (tR, εR, Qs, Qh)-breaks UF-KOA security
of SIG[ID] with black-box access to an adversary A that (εA, tA, Qh)-breaks UF-CMA security of SIG[ID].
Then there exists an algorithmM that (εM, tM)-breaks UF-KOA security of SIG[ID], where
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εM ≥ εR, tM ≈ tR.

Proof. Assuming the existence of a public key preserving reduction R as above, we construct a meta-
reductionM to break UF-KOA security of SIG[ID]. M gets the public key pk from UF-KOA challenger
CUF-KOA and simulates the adversary A. Additionally, bothM and R get access to the same external
random oracle H, in the NPRO model.
Construction of M(pk). M runs R(pk) and, upon receiving pk from R,M make a signing query on
m $←M to R. Upon receiving the signature σ = (R, s),M terminates and returns (m,σ) as a UF-KOA
forgery. As bothM and R access to the same random oracle, (m,σ) is a valid forgery respond to CUF-KOA.
Thus, we have εM ≥ εR.

Remark 4.7. All the reductions considered in this section are key-preserving which is the main downside
of our results. In case of the Schnorr identification/signature scheme we can extend our techniques to
exclude the larger class of algebraic reductions. A reduction is algebraic over some multiplicative group
G or prime-order p, if for all group elements h output by the reduction, their respective representation is
known. That is, if the reduction holds group elements g1, . . . , gn ∈ G and outputs a new group element h,
then it also provides (α1, . . . , αn) ∈ Znp satisfying h =

∏
gαi
i .

5 Example Instantiations
In this section we consider two examples of important identification schemes, namely the ones by
Schnorr [37] and by Katz-Wang [28]. We use our framework to derive tight security bounds and concrete
parameters for the corresponding Schnorr/Katz-Wang signature schemes.

5.1 Schnorr Identification/Signature Scheme
5.1.1 Schnorr’s Identification Scheme

The well-known Schnorr’s identification scheme is one of the most important examples of our frame-
work. For completeness we show that Schnorr’s identification has large min-entropy, special soundness
(SS), honest-verifier zero-knowledge (HVZK), random-self reducibility (RSR) and key-recovery security
(KR-KOA) based on the discrete logarithm problem (DLOG). Moreover, based on the one-more discrete
logarithm problem (OMDL), Schnorr’s identification is actively secure (IMP-AA) [5] and weakly secure
against man-in-the-middle attack (wIMP-MIM) (Lemma 5.5).

Let par := (p, g,G) be a set of system parameters, where G = 〈g〉 is a cyclic group of prime order p
with a hard discrete logarithm problem. Examples of groups G include appropriate subgroups of certain
elliptic curve groups, or subgroups of Z∗q . The Schnorr identification scheme IDS := (IGen,P,ChSet,V) is
defined as follows.

IGen(par):
sk := x $← Zp

pk := X = gx

ChSet := {0, 1}n; St := ∅
Return (pk, sk)

V(pk, R, h, s):
If R = gs ·X−h then return 1
Else return 0.

P(sk,St):
r $← Zp; R = gr

St := St ∪ {(R, r)}
Return (R,St)

P(sk, R, h,St):
If (R, ·) /∈ St then return ⊥
Let (R, r) ∈ St
Return s = x · h+ r mod p

We recall the DLOG and OMDL assumptions.

Definition 5.1 (Discrete Logarithm Assumption). The discrete logarithm problem DLOG is (t, ε)-
hard in par = (p, g,G) if for all adversaries A running in time at most t,

Pr
[
gx = X

∣∣ X $← G;x $← A(X)
]
≤ ε.
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Lemma 5.2. Let IDS := (IGen,P,ChSet,V) be the Schnorr identification scheme as defined above. IDS
is a canonical identification with α = log p bit min-entropy and it is unique, has special soundness
(SS), honest-verifier zero-knowledge (HVZK) and is random-self reducible (RSR). Moreover, if DLOG is
(t, ε)-hard in par = (p, g,G) then IDS is (t, ε)-KR-KOA secure.

Proof. The correctness of IDS is straightforward to verify. We note that R $← P(sk,St) is uniformly
random over G. Hence, ID has log |G| = log p bit min-entropy. We show the other properties as follows.
Uniqueness. For all (X,x) ∈ IGen(par), R := gr ∈ P(sk,St) and h ∈ {0, 1}n, the value s ∈ Zp satisfying
gs = XhR⇔ s = xh+ r is uniquely defined.
Special Soundness (SS). Given two accepting transcripts (R, h, s) and (R, h′, s′) with h 6= h′, we define
an extractor algorithm Ext(X,R, h, s, h′, s′) := x∗ := (s− s′)/(h− h′) such that, for all (X := gx, x) ∈
IGen(par), we have Pr[gx∗ = X] = 1, since we have R = gsX−h = gs

′
X−h

′ and then X = g(s−s′)/(h−h′).
Honest-verifier Zero-knowledge (HVZK). Given public key X and h ∈ {0, 1}n, we let Sim(X,h)
first sample s $← Zp and then output (R := gsX−h, s). Clearly, (R, h, s) is a real transcript, since s is
uniformly random over Zp and R is the unique value satisfying R := gsX−h.
Random-self Reducibility (RSR). Algorithm Rerand and two deterministic algorithm Derand and
Tran are defined as follows:
• Rerand(X) chooses a′ $← Zp and outputs (X ′ := X ·ga′ ,a′). We have that, for all (X,x) ∈ IGen(par),
X ′ is uniform and has the same distribution as X ′′, where (X ′′, x′′) $← IGen(par).

• Derand(X,X ′, x′,a′) outputs x∗ = x′ − a′. We have, for all (X ′,a′) $← Rerand(X := gx) and
(X ′, x′) ∈ IGen(par), X ′ = gx

′ and x′ = x+ a′ and thus x∗ = x.
• Tran(X,X ′,a′, (R′, h′, s′)) outputs s = s′ − a′ · h′. We have, for all (X ′,a′) ∈ Rerand(X := gx), if

(R′, h′, s′) is valid with respect to X ′ := gx+a′ then s = s′−a′ ·h′ = (x+ a′)h′+ r−a′ ·h′ = xh′+ r
and (R′, h′, s) is valid with respect to X.

Key-recovery against Key-only Attack (KR-KOA). KR-KOA-security for ID is exactly the DLOG
assumption.

Definition 5.3 (One-more Discrete Logarithm Assumption [3]). We says that OMDL is (t, ε,Q)-
hard in par = (p, g,G) if for all adversaries A running in time at most t and adaptively making at most
Q queries to the discrete logarithm oracle Dl,

Pr
[

For i ∈ [Q+ 1] : Xi = gxi

∣∣∣∣ X1, . . . , XQ+1
$← G

(x1, . . . , xQ+1) $← ADl(·)(X1, . . . , XQ+1)

]
≤ ε,

where on input arbitrary group element Y the discrete logarithm oracle Dl returns y ∈ Zp such that
gy = Y .

Lemma 5.4 (Theorem 5.1 in [5]). If the OMDL problem is (t, ε,Q)-hard then IDS is (t′, ε′, QO)-IMP-AA
secure, where ε′ ≤

√
ε+ 1/p, t ≈ 2t′, and QO = Q.

We now show that the Schnorr identification scheme is weakly IMP-MIM secure based on one-more
discrete logarithm assumption.

Lemma 5.5. If OMDL problem is (t, ε,Q)-hard then IDS is (t′, ε′, QCh, QO)-wIMP-MIM secure, where

ε′ = ε, t′ ≈ t, QO = Q.

Proof. Let A be an algorithm that breaks (t′, ε′, QCh, QO)-wIMP-MIM security of IDS. We will describe
an adversary B invoking A that (t, ε,Q)-breaks OMDL with (t, ε,Q) as stated in the theorem. Adversary
B obtains X1, . . . , XQ+1, and has access to a discrete logarithm oracle Dl. B runs A on input pk :=
X := XQ+1 and answers the adaptive Prover and Ch queries as follows:
• On the j-th Prover() query (j ∈ [QO]) B returns R′j := Xj .
• On the j-th Prover(i, h′j) query, B queries and returns s′j = Dl(Xh′j ·R′j).
• On the i-th Ch(Ri) query, B chooses a random hi

$← ChSet and returns hi. Note that Ri = R′j for
some R′j previously returned by the Prover() oracle.
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Eventually, A returns (i∗, si∗) and terminates. We can assume that A has made the queries Prover(j, h′j)
for all j ∈ [QO]. If not B makes the dummy query Prover(j, h′j) for an arbitrary h′j 6= hi∗ to obtain a
valid transcript (R′j , h′j , s′j) for all j ∈ [QO]. So in total, B made exactly QO calls to the Dl oracle.
A wins if (Ri∗ , hi∗ , si∗) is a valid transcript, (Ri∗ , hi∗ , si∗) /∈ {(R′j , h′j , s′j) | j ∈ [QO]}, and Ri∗ = R′j∗ ,

for some index j∗. (If there exists more than one index j∗, we fix an arbitrary one.) From the above
observations we conclude that B knows two valid transcripts, (Ri∗ , hi∗ , si∗) and (R′j∗ = Ri∗ , h

′
j∗ , s

′
j∗)

satisfying (hi∗ , si∗) 6= (h′j∗ , s′j∗). From the two valid transcripts, B can reconstruct sk = xQ+1 using the
special soundness of the Schnorr identification scheme. Furthermore, since (R′j , h′j , s′j) = (Xj , h

′
j , s
′
j) is a

valid transcript and xQ+1 is known, B can compute xj = s′j − xQ+1h
′
j for all j ∈ [Q]. Finally, B returns

(x1, . . . , xQ+1), breaks OMDL problem with ε = ε′ and t ≈ t′.

We now define the interactive discrete-logarithm problem which models PIMP-KOA-security for IDS.

Definition 5.6 (Q-IDLOG). The interactive discrete-logarithm assumption Q-IDLOG is said to be (t, ε)-
hard in par = (p, g,G) if for all adversaries A running in time at most t and making at most Q queries
to the challenge oracle Ch,

Pr
[
s ∈ {xhi + ri | i ∈ [Q]}

∣∣∣∣ x $← Zp;X = gx

s $← ACh(·)(X)

]
≤ ε,

where on the i-th query Ch(gri) (i ∈ [Q]), the challenge oracle returns hi $← Zp to A.

In Appendix A we prove that in the generic group model, the Q-IDLOG problem in groups of
prime-order p is at least (2t2/p, t)-hard. Note that the bound is independent of Q.

5.1.2 Schnorr’s Signature scheme

Let H : {0, 1}∗ → {0, 1}n be a hash function with n < log2(p). As IDS is reconstructible we can use the
alternative Fiat-Shamir transformation to obtain the Schnorr signature scheme Schnorr := (Gen,Sign,Ver).

Gen(par):
sk := x $← Zp

pk := X = gx

Return (pk, sk)

Sign(sk,m):
r $← Zp; R = gr

h = H(R,m)
s = x · h+ r mod p
σ = (h, s) ∈ {0, 1}n × Zp

Return σ

Ver(sk,m, σ):
Parse σ = (h, s) ∈ {0, 1}n × Zp

R = gsX−h

If h = H(R,m) then return 1
Else return 0.

By Theorem 3.1 and the results from this section, we obtain concrete bounds for Schnorr’s single-user
and multi-user security.

Lemma 5.7. If DLOG is (t, ε)-hard in par = (p, g,G) then Schnorr is (t′, ε′, Qs, Qh)-SUF-CMA secure
and (t′′, ε′′, N,Qs, Qh)-MU-SUF-CMA secure in the programmable random oracle model, where

ε′

t′
≤ 6(Qh + 1) · ε

t
+ Qs

p
+ 1

2n ,

ε′′

t′′
≤ 24(Qh + 1) · ε

t
+ Qs

p
+ 1

2n ,

The DLOG problem is tightly equivalent to the 1-IDLOG problem by Lemma 3.4. Assuming the OMDL
problem is hard, Schnorr is wIMP-MIM-secure and by Corollary 4.4 there cannot exist a tight implication
1-IDLOG → Q-IDLOG. Furthermore, by Theorem 3.2, the Q-IDLOG problem is tightly equivalent to
MU-SUF-CMA-security of Schnorr.
Lemma 5.8. If Qh-IDLOG is (t, ε)-hard in par then Schnorr is (t′, ε′, N,Qs, Qh)-MU-SUF-CMA secure
in the programmable random oracle model, where

ε′ ≤ 4ε+ QhQs
p

, t′ ≈ t.

We leave it an open problem to come up with a more natural hard problem over par that tightly
implies Q-IDLOG (and hence MU-SUF-CMA-security of Schnorr). Note that according to [18], the hard
problem has to have at least one round of interaction.
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5.1.3 Concrete parameters

In this section we derive parameters for Schnorr providing k-bit security in the multi-user setting.
Following [6], for k-bit security one requires (ε′, t′, N,Qs, Qh)-MU-SUF-CMA security with ε′

t′ ≤ 2−k.
The following lemma assumes that a generic algorithm (for example, the Pollard-rho algorithm) is the

best possible algorithm to break discrete logarithms in group G. This is generally believed to be true for
prime-order subgroups of elliptic curves.
Lemma 5.9. Let Schnorr be instantiated with par = (p, g,G, H), where p is a prime and H : {0, 1}∗ →
{0, 1}n. If a generic algorithm is the best possible algorithm to break discrete logarithms in group G, then
Schnorr provides k-bits security in the multi-user setting if

log p ≥ 2k + log(Qh) + c′dl, n ≥ k + 1,

where c′dl is a constant that only depends on the generic algorithm. Furthermore, if a generic algorithm is
the best possible algorithm to break the Q-IDLOG problem in par, then Schnorr provides k-bits security in
the multi-user setting if

log p ≥ 2k + c′′dl,

where c′′dl is a constant that only depends on the generic algorithm.
Proof. Assuming a generic algorithm is the best possible algorithm to compute discrete logarithms, means
that DLOG in group G of prime-order p is (ε = cdl · t2/p, t)-hard, for any time bound t, where cdl is a
fixed constant that only depends on the specific choice of the generic algorithm.

We assume that the adversary makes Qh > 3 hash queries. Define the constant c′dl := 6 + log(cdl).
Plugging in the parameters from Lemma 5.7 and using Qs ≤ t ≤ 2k we obtain

ε′

t′
≤ 24(Qh + 1)ε

t
+ Qs

p
+ 1

2n

≤ 32Qhcdl
t

p
+ 1

2n

≤ t

22k+1 + 1
2k+1 ≤ 2−k

which proves the first part of the statement.
A similar computation can be done to prove the second part using Theorem A.1 saying that the best

generic algorithm against Q-IDLOG has a success ratio of at most 2t2
p

The interpretation for the multi-user security of Schnorr over elliptic-curve groups is as follows. It is
well-known that a group of order p providing k-bits security against the DLOG problem requires log p ≥ 2k.
If one requires provable security guarantees for Schnorr under DLOG, then one has to increase the group
size by ≈ log(Qh) bits. Reasonable upper bounds for logQh are between 40 and 80. However, the generic
lower bound of Theorem A.1 indicates that the only way to attack Schnorr in the sense of UF-KOA (and
hence to attack Q-IDLOG) is to break the DLOG problem. In that case using groups with log p ≈ 2k
already gives provable security guarantees for Schnorr.

5.2 Katz-Wang Identification/Signature Scheme
5.2.1 Katz-Wang Identification Scheme

Let par := (p, g1, g2,G) be a set of system parameters, where G = 〈g1〉 = 〈g2〉 is a cyclic group of prime
order p. The Katz-Wang identification scheme IDKW := (IGen,P,ChSet,V) is defined as follows.

IGen(par):
sk := x $← Zp

pk := (X1, X2) = (gx
1 , g

x
2 )

ChSet := {0, 1}n; St := ∅
Return (pk, sk)

V(pk, R = (R1, R2), h, s):
If R1 = gs ·X−h

1 and R2 = gs ·X−h
2 then return 1

Else return 0.

P(sk,St):
r $← Zp; R = (R1, R2) = (gr

1 , g
r
2)

St := St ∪ {(R, r)}
Return (R,St)

P(sk, R, h,St):
If (R, ·) /∈ St then return ⊥
Let (R, r) ∈ St
Return s = x · h+ r mod p
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We recall the DDH assumption.

Definition 5.10 (Decision Diffie-Hellman Assumption). The Decision Diffie-Hellman problem
DDH is (t, ε)-hard in par = (p, g1, g2,G) if for all adversaries A running in time at most t,

|Pr [1 $← A(gx1 , gx2 ) | x $← Zp]− Pr [1 $← A(gx1
1 , gx2

2 ) | x1
$← Zp;x2

$← Zp \ {x1}] | ≤ ε.

Clearly, all security results of Schnorr carry over to the Katz-Wang identification scheme, i.e., IDKW is
at least as secure as ID. That also means that we cannot hope for tight PIMP-KOA security from the
DLOG assumption. Instead, for the Katz-Wang identification scheme, we give a direct tight proof of
PIMP-KOA security under the DDH assumption.

Lemma 5.11. IDKW is a canonical identification scheme with α = log p bit min-entropy and it is unique,
has special soundness (SS), honest-verifier zero-knowledge (HVZK) and is random-self reducible (RSR).
Moreover, if DDH is (t, ε)-hard in par = (p, g1, g2,G) then IDKW is (t′, ε′, QCh)-PIMP-KOA secure, where
t ≈ t′ and ε ≥ ε′ −QCh/2n.

Proof. The proof of SS, HVZK, uniqueness, and RSR is the same as in IDS.
To prove PIMP-KOA-security under DDH, let B be an adversary that (ε′, t′, QCh)-breaks PIMP-KOA-

security. We build an adversary A against the (ε, t)-hardness of DDH as follows. Adversary A inputs
(X1, X2) and defines pk = (X1, X2). On the i-th challenge query Ch(Ri,1, Ri,2), it returns hi $← Zp.
Eventually, A returns i∗ ∈ [QCh] and si∗ and terminates. Finally, B outputs d := V(pk, Ri∗ , hi∗ , si∗).
Analysis of B. If (X1, X2) = (gx1 , gx2 ), then B perfectly simulates the PIMP-KOA game and hence
Pr[d = 1 | (X1, X2) = (gx1 , gx2 )] = ε′. If (X1, X2) = (gx1

1 , gx2
2 ) with x1 6= x2, then we claim that even

a computationally unbounded A can only win with probability QCh/2n, i.e., Pr[d = 1 | (X1, X2) =
(gx1

1 , gx2
2 )] ≤ QCh/2n.

It remains to prove the claim. For each index i ∈ [QCh], A first commits to Ri,1 = gr1
1 and Ri,2 = gr2

2
(for arbitrary ri,1, ri,2 ∈ Zp) and can only win if there exists an si ∈ Zp such that

ri,1 + hix1 = si = ri,2 + hix2

⇔ hi = ri,2 − ri,1
x1 − x2

where hi $← {0, 1}n is chosen independently of ri,1, ri,2. This happens with probability exactly 1/2n, so
by the union bound we obtain the bound QCh/2n, as claimed.

5.2.2 Katz-Wang Signature scheme

Let H : {0, 1}∗ → {0, 1}n be a hash function with n < log2(p). As IDKW is reconstructible we can use the
alternative Fiat-Shamir transformation to obtain the Schnorr signature scheme KW := (Gen,Sign,Ver).

Gen(par):
sk := x $← Zp

pk := (X1, X2) = (gx
1 , g

x
2 )

Return (pk, sk)

Sign(sk,m):
r $← Zp; R = (R1, R2) = (g,

1g
r
2)

h = H(R,m)
s = x · h+ r mod p
σ = (h, s) ∈ {0, 1}n × Zp

Return σ

Ver(sk,m, σ):
Parse σ = (h, s) ∈ {0, 1}n × Zp

R = gsX−h

If h = H(R,m) then return 1
Else return 0.

By our results we obtain the following concrete security statements, where the first bound matches
[28, Theorem 1].

Lemma 5.12. If DDH is (t, ε)-hard in par = (p, g1, g2,G) then KW is (t′, ε′, Qs, Qh)-SUF-CMA secure
and (t′′, ε′′, N,Qs, Qh)-MU-SUF-CMA secure in the programmable random oracle model, where

ε′

t′
≤ ε

t
+ Qs

p
+ 1

2n ,

ε′′

t′′
≤ 4 · ε

t
+ Qs

p
+ 1

2n .
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With a similar computation as in the case of Schnorr, one can compute concrete parameters for k-bits
security assuming that a generic algorithm is the best method to attack the DDH assumption in par.
If log p ≥ 2k + c′′′dl and n ≥ k + 1, then KW is MU-SUF-CMA-secure, where c′′′dl is a constant that only
depends on the generic algorithm.
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A Hardness of Q-IDLOG in the Generic Group Model
In the generic group model for the discrete logarithm setting [39, 29], group operations in group G can
only be carried out via an oracle OG. Since (G, ·) of order p is isomorphic to (Zp,+), elements from
G are internally identified with elements from Zp. The oracle maintains a list that initially contains
the elements (1, C1 = 1) (the generator), and (x,Cx = 2) for x $← Zp, and a counter i that counts the
number of entries in the list and is initialized to 2. During the execution of the experiment, the list
contains entries of the form (a,Ca), where a ∈ Zp and Ca ∈ N is a counter. On input of two counters
Ca, Cb ∈ [c]× [c], the oracle looks up the internal values (a,Ca) and (b, Cb), and computes z = a+ b. If
there already exists a tuple (z, Cz) in the list, then counter Cz is output. Otherwise, the counter i is
increased by 1, the tuple (z, Cz := i) is stored in the list, and the counter Cz is output.

Theorem A.1. Let G be a group of prime order p. Then, in the generic group model, Q-IDLOG is
(t, ε)-hard where

ε ≤ (QG + 2)2

2p + 2Q
p
≤ 2t2

p
,

and QG is the amount of queries to OG.

Proof. Let A be an adversary against Q-IDLOG in the generic group model. In the proof we will simulate
the list with entries of the form (z(x), Cz(x)), where z is a polynomial of degree one in some variable x.
As we will see, our simulation will sometimes fail. Initially, the counter is set to i = 2 and the list contains
the elements (1, C1 = 1) and (x, Cx = 2), where x is a variable. After A has finished its execution, x
will be assigned a value x $← Zp. A is invoked on input C1 = 1 and Cx = 2. During its execution, A can
query oracle OG on (Ca(x), Cb(x)) ∈ [i] × [i]. OG first computes the polynomial z(x) = a(x) + b(x). If
(z(x), Cz(x)) is not in the list, OG increments counter i and adds (z(x), Cz(x) := i) to the list. Finally,
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OG outputs Cz(x). In total, A makes QG queries to this oracle and we denote by (zi(x), i) the i-entry in
the list (i ∈ [QG + 2]).

Furthermore, A can make queries to Ch(j), for some counter j ∈ [c], which is answered with hj $← Zp.
For j ∈ [Q], we denote by (rj(x) = ajx + bj , Crj(x)) the polynomial associated to the j-th query to the
Ch oracle. Eventually, A outputs s ∈ Zp and terminates. Next, x $← Zp is chosen and A wins if there is
a j ∈ [Q] such that s = (hj + aj)x+ bj .

We remark that we simulate the OG perfectly, if none of the distinct polynomials zi(x) collide when
evaluated on input x. We define Bad as the event that this is the case, i.e. there exist an i 6= ` ∈ [QG]
such that the polynomials zi(x), z`(x) are distinct but zi(x) = z`(x). By a union bound we first bound

Pr[Bad] = Pr
x

[(∃i, ` ∈ [QG]× [QG] : zi(x) 6= z`(x) ∧ zi(x) = z`(x)]

≤
(
QG + 2

2

)
1
p
≤ (QG + 2)2

2p .

The success probability ε of A can be bounded as

ε ≤ Pr[Bad ∨ ∃j ∈ [Q] : s = (hj + aj)x+ bj ]
≤ Pr[Bad] + Pr[∃j ∈ [Q] : s = (hj + aj)x+ bj ]

≤ (QG + 2)2

2p + Pr
x

[∃j ∈ [Q] : s = (hj + aj)x+ bj | hj 6= −aj ] + Pr
h1,...,hQ

[∃j ∈ [Q] : hj = −aj ]

≤ (QG + 2)2

2p + 2Q
p

This completes the proof.
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