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Abstract

Universally composable multi-party computation is impossible without setup assumptions.
Motivated by the ubiquitous use of secure hardware in many real world security applications,
Katz (EUROCRYPT 2007) proposed a model of tamper-proof hardware as a UC-setup assump-
tion. An important aspect of this model is whether the hardware token is allowed to hold a
state or not. Real world examples of tamper-proof hardware that can hold a state are expensive
hardware security modules commonly used in mainframes. Stateless, or resettable hardware
tokens model cheaper devices such as smartcards, where an adversarial user can cut off the
power supply, thus resetting the card’s internal state.

A natural question is how the stateful and the resettable hardware model compare in their
cryptographic power, given that either the receiver or the sender of the token (and thus the
token itself) might be malicious. In this work we show that any UC-functionality that can be
implemented by a protocol using a single untrusted stateful hardware token can likewise be
implemented using a single untrusted resettable hardware token, assuming only the existence of
one-way functions.

We present two compilers that transform UC-secure protocols in the stateful hardware model
into UC-secure protocols in the resettable hardware model. The first compiler can be proven
secure assuming merely the existence of one-way functions. However, it (necessarily) makes
use of computationally rather expensive non-black-box techniques. We provide an alternative
second compiler that replaces the expensive non-black-box component of the first compiler by
few additional seed OTs. While this second compiler introduces the seed OTs as additional
setup assumptions, it is computationally very efficient.
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1 Introduction

Tamper-proof hardware has gained a lot of interest in the design of UC-secure [Can01] protocols.
Many cryptographic tasks that are impossible in the plain model can be realized using tamper-proof
hardware, e.g. Program Obfuscation [BCG+11]. It turns out that several flavors of tamper-proof
hardware have different cryptographic strengths. On the one hand there are stateful tokens, which
allow for very efficient and UC-secure oblivious transfer (OT) protocols even without computa-
tional assumptions [GIS+10, DKMQ11, DKMQ12]. On the other hand, resettable, or equivalently
stateless, tokens are strictly weaker: it was shown that unconditional OT cannot be achieved with
stateless tokens [GIMS10]. Nevertheless the distinction between both models is very relevant, be-
cause in real-world applications it is considered to be much more difficult to manufacture stateful
tamper-proof tokens than stateless or resettable tokens. Removing the dependency on stateful
hardware by an improved protocol design can greatly simplify the manufacturing process and also
reduce the costs. This leads to the following question:

Is it possible to implement any UC-functionality using a single resettable tamper-proof hardware
and assuming only one-way functions?

We answer this question affirmatively. We shall first motivate the setting. There are protocol
compilers by Kilian [Kil88] and Ishai et al. [IPS08] basing general (UC-)secure multi-party compu-
tation (MPC) on OT without additional computational assumptions. Recent results in the area of
efficient information-theoretically secure OT protocols include [DKMQ11, DKMQ12]. Their results,
however, are based on stateful tamper-proof hardware. Considering the above-mentioned impossi-
bility result of Goyal et al. [GIMS10], who show that unconditionally secure OT with any number
of resettable tokens is impossible, it becomes obvious that converting a protocol like [DKMQ12]
such that only resettable tokens are necessary cannot be achieved without further assumptions.

One of the weakest common assumptions in cryptography is the existence of one-way functions
and it turns out that these suffice for our goal. It was previously known that one-way functions
suffice for UC-secure OT with stateless tokens [GIS+10], but they need many tokens to obtain this
result. For our solution, instead of adapting an OT protocol such that it uses a resettable token,
we present two compilers that transform any protocol based on stateful tokens into a protocol
based on resettable tokens. This allows for many improvements in previous protocols, because
any statistically secure protocol using a single untrusted stateful token can be transformed into a
computationally secure protocol using a single untrusted resettable token and one-way functions.

1.1 Our contribution

We present two compilers that basically use the same technique to achieve resettability of the token:
The sender has to authenticate the query that the receiver wants to input into the token. For the
first compiler, we generalize and improve upon a technique that is implicit in [DMMQN13], where
resettability is obtained by having the sender sign every query the receiver will provide to the token.
The second compiler is stated in the OT-hybrid model and makes no further assumptions.

In more detail, given a protocol where a stateful token is sent from the sender to the receiver,
we extend the protocol as follows. For the first compiler, a key pair for a signature scheme is
created by the sender. For each token invocation, the receiver commits to its input and sends the
commitment to the sender. The sender signs the commitment and sends it back to the receiver.
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At this point, care must be taken not to introduce a channel between the sender and the token.
Otherwise, the token and/or the sender party could gather complete information about the messages
sent and received by the receiver party. This would make aborts possible that are correlated with
the receivers secret input and thus cannot be simulated in the UC framework. Therefore, the
receiver does not show any signature to the token, but instead provides a resettably-sound zero-
knowledge argument of knowledge (rsZKAoK) of the commitment and the signature. Recent results
by Chung et al. [CPS13] and Bitansky and Paneth [BP13] show that such resettably-sound zero-
knowledge arguments of knowledge can be based on the existence of one-way functions. This
technique guarantees that any information generated by the sender during a protocol run remains
oblivious to the token.

Additionally, we present a compiler that works in the OT-hybrid model (without any computa-
tional assumptions) and can, e.g., be used to implement many OT instances from few “seed OTs”
and a resettable token. The raw version of this compiler uses one OT per bit sent from the receiver
to the token, but by using Merkle trees (or sig-com trees [CPS13] respectively; see Section 2.5),
we can compress the number of bits to be authenticated. The main idea is that the sender only
has to authenticate a single message of small size, namely the root of such a tree. To stay true to
the goal of using only one-way functions, however, we cannot directly use a Merkle tree. Instead,
we show how the sig-com scheme proposed by [CPS13] can be applied to our scenario. The same
compression technique applies to both our compilers, which also allows us to keep the amount of
proofs for the rsZKAoK-based compiler at a minimum. For protocols that use more than one token,
our compilers can be invoked successively, replacing all the stateful tokens by resettable tokens.

Our rsZKAoK-based compiler can be used to obtain several improvements on existing protocols
concerning resettable hardware. We highlight the following contribution: The combination of the
OT protocol by Döttling et al. [DKMQ12] with our compiler yields a round-efficient OT protocol
based on one-way functions and a single untrusted resettable token. This yields the first OT-
protocol using a single resettable token and only symmetric computational assumptions. Prior to
our result, the best known approach to obtain UC-secure OT with a single resettable token was
to use the token to generate a common reference string [DMMQN13] and use an efficient OT-
protocol in the CRS-model, e.g. the protocol of Peikert et al. [PVW08]. Implementing OT in the
common reference string model, however, requires much stronger computational assumptions (e.g.,
doubly enhanced trapdoor permutations, number-theoretic or lattice assumptions). Alternatively,
[GIS+10] presented a protocol for OT based on resettable hardware and one-way functions, but
their construction needs polynomially many tokens. Thus the question of obtaining OT from a
single resettable hardware token using only one-way functions was left open by prior works.

Döttling et al. [DMMQN13] and Choi et al. [CKS+14] showed that, if only a single resettable
token is issued, then even simple functionalities cannot be implemented only with black-box tech-
niques. We circumvent this impossibility result by using resettably-sound zero-knowledge argument
of knowledge, which are inherently non-black-box. Moreover, Goyal et al. [GIMS10] showed there
exists no unconditionally secure protocol implementing OT using any number of resettable tokens.
Thus, computational assumptions are necessary to implement OT using a single resettable token.
Considering the computational assumptions and number of resettable tokens used, our compiler
yields an optimal UC-secure OT-protocol.
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1.2 Efficiency

The compilers require one round of interaction between the token issuer and the receiver per token
message. With a few exceptions in the area of non-interactive computation [GIS+10, DKMQ12,
DMMQN13], protocols based on tamper-proof hardware already require interaction between the
sender and the receiver. Moreover, in the scenario of a single token, Döttling et al. [DMMQN13]
show that interaction is necessary to UC-realize any functionality based on resettable hardware.
Thus the induced overhead is minimal with respect to communication, even more so since typically
token-based protocols are constant round.

The main efficiency drawback is incurred by the use of non-black-box zero-knowledge. How-
ever, in current protocols [CPS13, BP13] the honest prover is not required to execute a universal
argument, so that the efficiency is comparable to a general zero-knowledge protocol. With a zero-
knowledge protocol tailored to the statements in our protocol the efficiency can be further improved.

1.3 Further Related Work

The model of tamper-proof hardware considered in this paper was introduced by Katz [Kat07].
Further formalizations of different tamper-proof hardware tokens can be found in [GIS+10] and
[DMMQN13]. Physically uncloneable functions (PUFs) [Pap01, BFSK11, OSVW13] only allow for
MPC if the PUFs are not malicious [Rüh10, DFK+14], but this is out of the scope of our work.

Resettability was first considered in the context of zero-knowledge protocols. The case of a
resettable prover was analyzed by Canetti et al. [CGGM00] while the case of resettable verifiers
was treated by Barak et al. [BGGL01] with several follow up works, e.g. [DGS09, CPS13, BP13].
Later, simultaneously resettable zero-knowledge protocols were presented [DGS09, DFG+11, BP13].
These works made it possible to transform stateful into stateless protocols. Goyal and Sahai [GS09]
present a compiler that transforms any semi-honest secure protocol into a resettably secure protocol
using similar techniques to ours. They also show that general resettable MPC with honest majority
is possible where all parties are resettable. Another compiler due to Goyal and Maji [GM11] allows
to compile almost any semi-honest secure protocol into a fully resettable protocol. However, neither
[GS09] nor [GM11] achieve UC-security.

While all of the above-mentioned works do not make use of tamper-proof hardware, Chandran
et al. [CGS08] present a protocol for general UC-secure MPC with resettable tokens, but they
need to exchange several tokens and rely on strong cryptographic assumptions, namely enhanced
trapdoor permutations. Goyal et al. [GIS+10] construct a protocol for UC-secure MPC assuming
only one-way functions, but they also need polynomially many resettable tokens.

In the context of statistically UC-secure OT, Goyal et al. [GIS+10] present a protocol using
several stateful tokens. The protocols of Döttling et al. [DKMQ11, DKMQ12] improve upon this
result by achieving UC-secure OT using only a single stateful token. In [GIMS10] it was shown
that statistically secure OT is impossible with stateless tokens (unless parties can encapsulate
tokens into each other), but statistical commitments are possible. Their commitment construction
was improved by [DS13] to achieve UC-security. Given an upper bound on the number of resets,
Döttling et al. [DKMN15b] show that resettable tamper-proof hardware allows for unconditionally
UC-secure OT. Another recent result by [CKS+14] implements UC-secure OT from CRHFs and
two bidirectionally exchanged stateless tokens. Leaky tokens, which reveal additional information
to malicious receivers, were considered in [BCG+11, PSW14], but this is again out of the scope of
our work.
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2 Preliminaries

In the following we denote by k a security parameter. We abbreviate probabilistic polynomial time
by PPT. We use the standard notions of negligible functions, statistical indistinguishability and
computational indistinguishability.

2.1 The UC-Framework

The Universal Composability (UC) framework was introduced by Canetti [Can01]. It differentiates
between an ideal model and a real model. In the real model an adversary A coordinates the behavior
of all corrupted parties while the uncorrupted parties follow the protocol. An environment Z
representing an outside observer can read all messages and outputs of the protocol parties. The
same setup also holds for the ideal model, but the adversary is replaced by a simulator S that
simulates the behavior of A, and all participating parties are replaced by dummy parties that
only pass on any message that they receive. Security is proven by comparing a protocol Π in the
real model with an ideal functionality F in the ideal model. An ideal functionality is secure per
definition and represents a trusted third party that provides a functionality. All communication
between a protocol party and the ideal functionality is assumed to be authenticated. Tamper-proof
hardware is also modeled as an ideal functionality, further details can be found in Section 3.

By RealAΠ(Z) we denote the output of the environment Z when interacting with the real model,
by IdealSF (Z) we denote the output of Z when interacting with the ideal model. A protocol is said
to compose securely if for any environment Z, which is plugged to either the ideal model or the
real model, the view is (computationally, statistically or perfectly) indistinguishable.

We assume static corruption (i.e. the adversary does not adaptively change corruption) and
prove our results in this framework.

2.2 Signature Schemes

A signature scheme SIG consists of three PPT algorithms KeyGen, Sign and Verify.

• KeyGen(1k) generates a key pair consisting of a verification key vk and a signature key sgk.

• Signsgk(m) takes a message m and outputs a signature σ on this message.

• Verifyvk(m,σ) takes as input a verification key vk, a message m and a presumed signature σ
on this message. It outputs 1 if the signature is correct and 0 otherwise.

We will use existentially unforgeable (EUF-CMA secure) signatures and will briefly recall the
security definition. The experiment creates a key pair (sgk, vk). An adversary A has access to a
verification key vk and a signing oracle OSignsgk(·). The adversary can now query the oracle with
messages and obtains signatures to these messages. If A manages to create a signature σ∗ for an
arbitrary message m without querying OSignsgk(·) with m such that Verifyvk(m,σ

∗) = 1 it wins the
experiment.

A signature scheme SIG is called EUF-CMA-secure if the probability that a PPT adversary
wins the above specified experiment is negligible. EUF-CMA secure signature schemes can be
constructed from one-way functions [NY89, Rom90].
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2.3 Commitment Schemes

We will use 2-move commitment schemes in our compiler. In such a commitment-scheme, the
receiver first chooses a key k, sends k to the sender of the commitment, who computes a commitment
c = comk(m; r) for a message m using randomness r and sends c to the receiver. The sender can
unveil the commitment by sending (m, r) to the receiver, who checks if c = comk(m; r) holds.

We will require such a commitment scheme to be statistically binding, which means that for a
given commitment c = comk(m; r), the unveil (m, r) is unique, except with negligible probability
over the choice of k. Naor [Nao91] constructs 2-move statistically binding commitment schemes
using only pseudorandom generators, if one considers their first message from the receiver as the key.
As the latter can be constructed from one-way functions [HILL99], this yields a 2-move statistically
binding commitment scheme based on one-way functions.

2.4 Resettably-Sound Zero-Knowledge Arguments of Knowledge

Due to the fact that our protocol runs in the resettable token model, we use resettably-sound
zero-knowledge arguments of knowledge for our proofs. We give a definition for resettably-sound
zero-knowledge arguments of knowledge.

Definition 1. A resettably-sound zero-knowledge argument of knowledge system for a language
L ∈ NP (with witness-relation RL and witness-set wL(x) = {w : (x,w) ∈ RL}) consists of a pair
of PPT-machines (P,V), where the verifier V is resettable, such that there exist two PPT-machines
Sim and Ext and the following conditions hold.

• Completeness. For every (x,w) ∈ RL it holds that Pr[〈P(w),V〉(x) = 1] = 1.

• Computational Soundness. For every x /∈ L and every PPT-machine P∗ it holds that
Pr[〈P∗,V〉(x) = 1] < negl(|x|).

• Computational Zero-Knowledge. For every (x,w) ∈ RL and every stateful or resettable
PPT V∗ it holds that the distributions Real = {〈P(w),V∗〉(x)} and Ideal = {Sim(x,V∗)} are
computationally indistinguishable.

• Proof of Knowledge. For every x ∈ L and every PPT-machine P∗ there exists a negligible
ν such that Pr[Ext(x,P∗) ∈ wL(x)] > Pr[〈P∗,V〉(x) = 1]− ν.

It will be convenient to rephrase the computational zero-knowledge property as follows. Given
that a simulator Sim exists with {〈P(w),V∗〉(x)} ≈c {Sim(x,V∗)}, we can always construct a prover-
simulator PSim such that it holds that {〈P(w),V∗〉(x)} ≈c {〈PSim(V∗),V∗〉(x)}. Such a prover-
simulator can be constructed as follows. PSim first runs Sim(x,V∗) to obtain a simulated view
of V∗. From this view it takes the prover-messages and uses these prover-messages in its own
interaction with V∗. Thus it holds {〈PSim(V∗),V∗〉(x)} ≈c {Sim(x,V∗)} and we are done.

Recent constructions of rsZK arguments of knowledge are based on one-way functions [CPS13,
BP13].

2.5 Sig-Com Schemes

As an alternative to collision resistant hash functions, Chung et al. [CPS13] propose sig-com
schemes. They show that such a scheme is compressing and has a collision resistance property
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similar to collision resistant hash functions, but requires only one-way functions. In comparison
to hash functions, however, sig-com schemes require interaction between two parties: one party
creates the signature and verification keys, and sends the verification key to the other party. The
other party sends a commitment to its input and obtains a signature on the commitment, i.e. the
party with the signature key acts as a signature oracle. This separation is due to the fact that if
the party that holds the input for the sig-com tree also possesses the secret key to the signature
scheme, the security of the signature scheme (and hence the collision resistance property) does
no longer hold. The commitments to the input are necessary, because otherwise the sender could
abort depending on the received message. The commit-then-sign step can be applied to create a
tree analogous to Merkle trees.

Definition 2 ([CPS13]). Let SIG = (Gen, Sign,Verify) be a strong length-n signature scheme and
let com be a non-interactive commitment scheme. Define SIG′ = (Gen′, Sign′,Verify′) to be a triple
of PPT machines defined as follows:

• Gen′ = Gen.

• Sign′sgk(m): compute a commitment c = com(m; r) using a uniformly selected r, and let
σ = Signsgk(c); output (σ, r).

• Verify′vk(m,σ, r): output 1 iff Verifyvk(com(m; r), σ) = 1.

Definition 3 ([CPS13]). Let SIG = (Gen,Sign,Verify) be a strong length-n signature scheme, let
com be a non-interactive commitment scheme, and let SIG′ = (Gen′, Sign′,Verify′) be the sig-com
scheme corresponding to SIG and com. Let (sgk, vk) be a key pair of SIG′, and s be a string of
length 2d. A sig-com tree for s w. r. t. (sgk, vk) is a complete binary tree of depth d, defined as
follows.

• A leaf lγ indexed by γ ∈ {0, 1}d is set as the bit at position γ in s.

• An internal node lγ indexed by γ ∈
⋃d−1
i=0 {0, 1}i satisfies that there exists some rγ such that

Verify′vk((lγ0 , lγ1), lγ , rγ) = 1. (By lγ0 , lγ1 we denote the left and right child of an inner node
lγ .)

Note that sig-com trees have a collision resistance property in the following sense: no adversary
with oracle access to a signature oracle SIG can output a root and a sequence of signatures for both
0 and 1 for any leaf γ. This property stems from the binding property of the commitment and the
unforgeability of the signature scheme.

3 Ideal Functionalities

In this section we define the ideal functionalities we will use later. Here we only consider the
two-party case with a sender S and a receiver R. The following definition for a stateful wrapper
functionality is based on [Kat07, GIS+10].
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Functionality F stateful
wrap (parametrized by a security parameter k and a polynomial runtime bound

p(·)).

• Create Upon receiving (create,P, p(·)) from S, where P is a Turing machine, send create

to R and store P.

• Execute Upon receiving (run, w) from R, check if a create-message has already been sent by
S, if not output ⊥. Run P(w) for at most p(k) steps, and let m be the output. Save the
current state of P. Output m to R

We use the wrapper functionality for resettable functionalities as defined in [DMMQN13].

Functionality F resettable
wrap (parametrized by a security parameter k and a polynomial runtime

bound p(·)).

• Create Upon receiving (create,P, p(·)) from S, where P is a Turing machine, send create

to R and store P.

• Execute Upon receiving (run, w) from R, check if a create-message has already been sent by
S, if not output ⊥. Run P(w) for at most p(k) steps, and let m be the output. Save the
current state of P. Output m to R

• Reset (Adversarial Receiver only) Upon receiving reset from R, reset the Turing machine P
to its initial state.

In the sequel, we will use the notation P for programs (given as code, Turing-machine etc.) and
T for the instance of the wrapper-functionality F resettable

wrap , resp. F stateful
wrap , in which P runs.

4 Compiler

In the following we present two compilers that allow to convert a protocol that makes a single call
to a stateful token into a protocol that uses a resettable token.

We need to make some assumptions on the structure of the underlying stateful protocol Πs.
W.l.o.g the protocol can be divided into the following phases.
• A setup phase in which the sender sends a token program T to F stateful

wrap .
• Communication between the sender and the receiver.
• An invocation of the token by the receiver.
The token program from the setup phase will be used in the resettable protocol as well, albeit

the setup phase will be extended by additional steps. Any interaction between the two parties of
the protocol (not the communication with the token) will be left untouched.

The basic idea underlying our compilers is to let the sender authenticate the message for the
token, while being oblivious of what the actual message to the token is. Instead of invoking the
stateful token in the underlying protocol directly, we will additionally insert a communication step
with the sender. Though the receiver can still perform reset-attacks, it will not be able to change
its input after a reset.

We will assume that the input protocol Πs has dummy-messages query and ack, where an
honest receiver sends the message query to the sender before querying the token, and waits until
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the sender replies with ack before proceeding. We do not require a corrupted receiver to send the
query message before querying the token. Therefore any protocol Πs can be converted into this
form, while preserving its security guarantees.

4.1 Protocol Using Resettably-Sound Zero-Knowledge

4.1.1 Outline

The compiler CZK (cf. Figure 1) alters the underlying protocol as follows. Before the execution
of Πs a signature key-pair (sgk, vk) and a key k for a commitment scheme (cf. Section 2.3) are
created by the sender and sent to the receiver. Then Πs is carried out. When the token code
of the underlying protocol is sent to the wrapper functionality, the sender chooses a seed s for a
pseudorandom function and constructs a new token.

During token invocation of the original protocol, we enhance the communication of the token
and the receiver as follows. Instead of just sending an input inp to the token, the receiver first
commits to its input inp and sends the commitment to the sender. The sender then computes a
signature σ on the commitment c and sends the signature to the receiver. Now the receiver checks
if the signature is valid and queries the token with its input. Additionally, the receiver starts a
resettably-sound zero-knowledge argument of knowledge to prove that it knows a signature on a
commitment to the input. If the verifier accepts, the token outputs the output out of the underlying
functionality on input inp.

We stress that it is essential that the token cannot learn the signature σ on the commitment
c, otherwise both token and sender have a covert channel by which they can communicate, which
cannot be simulated. To eliminate this channel, we use a zero-knowledge proof which hides the
signature from the token.

4.1.2 Proof of Security

Corrupted Receiver. Let AR be the dummy-adversary for a corrupted receiver for the protocol
Πr. We will construct an adversary A′R (cf. Figure 2) against the protocol Πs. A′R needs to simulate
a resettable token to AR, while it has itself access to a non-resettable stateful token.

Lemma 1. For every PPT-environment Z, it holds that the random variables RealAR
Πr

(Z) and

Real
A′

R
Πs

(Z) are computationally indistinguishable.

As Πs is UC-secure, there exists a simulator SR such that Real
A′

R
Πs

(Z) ≈ IdealSRF (Z). This yields

the desired RealAR
Πr

(Z) ≈ IdealSRF (Z).

Proof. Let Z be a PPT environment. We will prove the indistinguishability of RealAR
Πr

(Z) and

Real
A′

R
Πs

(Z) by a series of indistinguishable hybrid experiments.

Hybrid H0. Simulator S0 simulates RealAR
Πr

.

Hybrid H1. Identical to H0, except that simulator S1 replaces the pseudo”-random-function Fs(·)
by a random-oracle H.
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Compiler CZK

Let F be a two-party UC-functionality. Let comk denote a 2-move commitment scheme and SIG =
(KeyGen,Sign,Verify) an EUF-CMA secure signature-scheme. Let (P,V) be a resettably-sound zero-
knowledge argument-of-knowledge system for the NP-language L = {(vk, inp)|∃σ, c, r : Verifyvk(c, σ) =
1 ∧ c = com(inp; r)}. Further let F be a pseudorandom function.

Input: Protocol Πs UC-implementing F in the F stateful
wrap -hybrid model.

Output: Protocol Πr UC-implementing F in the F resettable
wrap -hybrid model.

Setup (Before execution of Πs):

• (Sender) Generate a key pair (sgk, vk)← KeyGen(1λ) and choose a key k ∈ {0, 1}λ for the commit-
ment scheme uniformly at random. Send (setup, vk, k) to R.

• (Receiver) Upon receiving a message (setup, vk, k) from S, store vk and k.

Rewriting the token-code:

(Sender) Once S inputs a token code T into F stateful
wrap do the following.

• Choose a seed s ∈ {0, 1}λ for the pseudorandom function F uniformly at random.

• Construct a token-code T′ which upon receiving a message (input, inp) from R sets up a verifier V
with input (vk, inp), random-tape Fs(inp) and runs V. It forwards the messages sent by V to R and
vice versa. If V rejects, it aborts. If V accepts, it continues the execution of T with input inp and
forwards T’s output to R.

• Input T′ into F resettable
wrap .

Token-invocation:

• (Receiver) Let inp be R’s input to the token. Compute c = comk(inp; r) and send (query, c) to S.

• (Sender) Upon receiving a message (query, c) from R, compute σ = Signsgk(c). Send (ack, σ) to R.

• (Receiver) Upon receiving a message (ack, σ) from S, check if Verifyvk(c, σ) = 1 holds, if not abort.
Otherwise send (input, inp) to the token. Setup a prover P with input (vk, inp), witness-input (σ, c, r)
and run P. Forward the messages sent by P to the token and vice versa. Continue R’s computation
once the token outputs out.

Figure 1: Stateless compiler using resettably-sound zero-knowledge.

Hybrid H2. Identical to H1, except for the following. S2 checks – after V accepts – if a tuple
(inp′, out′) has already been stored. If so and inp′ 6= inp, it aborts. Moreover, if no such tuple
exists it will store (inp, out), where out is the output of the token. From the view of Z, this

is identical to Real
A′

R
Πs

.

Computational indistinguishability of H0 and H1 follows straightforwardly by the pseudoran-
domness of the pseudorandom-function Fs. The interesting part is the computational indistin-
guishability of H1 and H2.
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Adversary-Simulator A′R

• Setup: Generate a key pair (sgk, vk) ← KeyGen(1k) and choose k ∈ {0, 1}n uniformly at random.
Send (setup, vk, k) to AR. Setup a simulated-random oracle H.

• Token-Invocation:

– Once AR wants to send a message (query, c) to S, compute σ = Signsgk(c). Send query to S.
Once S responds with ack, send (ack, σ) to AR.

– Once AR wants to input a message (input, inp) to F resettable
wrap , setup a verifier V with input

(vk, inp), random-tape H(inp) and run V. Forward the messages sent by V to AR and vice
versa. If V rejects, abort. If V accepts, check if a tuple (inp′, out′) has been stored. If yes and
it holds inp′ 6= inp, abort. If yes and it holds inp′ = inp, send out′ to AR. If no, send inp to
F stateful

wrap , let out be the corresponding output, send out to AR and store the tuple (inp, out).

Figure 2: Adversary-simulator A′R for CZK.

We claim that H1 and H2 are computationally indistinguishable, provided that the argument
system (P,V) fulfills the computational resettable soundness property, the commitment scheme com
is statistically binding and the signature scheme SIG is EUF-CMA secure.

Clearly, if S2 does not abort after V accepts, the views of Z are identical in H1 and H2. We
will thus show that this event happens at most with negligible probability, establishing indistin-
guishability of H1 and H2.

Since the commitment-scheme com is statistically binding, the event that there exist distinct
(inp1, r1) and (inp2, r2) with comk(inp1; r1) = comk(inp2; r2) has only negligible probability (over
the choice of k). We can thus assume that each commitment c has a unique unveil (inp, r).

Assume now that the probability that S2 aborts after V accepts is non-negligible. We distinguish
two cases:

1. The probability ε that AR successfully proves a false statement in one of the invocations of
(P,V) is non-negligible.

2. The probability ε that AR successfully proves a false statement in one of the invocations of
(P,V) is negligible.

In the first case, we can construct a corrupted prover P∗ that breaks the soundness property of
the argument-system P,V. P∗ simulates S1 faithfully until the argument-system (P,V) is started.
Then, P∗ announces the statement (vk, inp) and forwards all messages sent by AR to his own verifier
V and vice versa. Clearly, from AR’s (and thus Z’s) view, S1 and P∗’s simulation are identically
distributed. Thus, P∗’s chance of successfully proving a false statement is at least ε, contradicting
the soundness property of (P,V).

In the second case, we will argue that AR must be able to successfully forge a signature σ for a
message c, contradicting the EUF-CMA security of SIG. We will therefore construct an adversary
B that breaks the EUF-CMA security of SIG with non-negligible probability, leading to the desired
contradiction. Let Ext be a knowledge-extractor for the argument-of-knowledge system (P,V). B
simulates S2 faithfully except for the following. Instead of generating (sgk, vk) itself, it will use vk
provided by the EUF-CMA experiment. B uses AR and Z to construct a malicious prover P∗, which
simply consists in continuing the computation of AR and Z until the argument-system terminates.
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B now runs the extractor Ext on P∗ and obtains a witness (σ∗, c∗, r∗) for a statement (vk, inp∗). If
it holds Verifyvk(c

∗, σ∗) = 1, then B outputs the forge (c∗, σ∗). Otherwise it outputs ⊥.
Clearly, from the view of Z, both S2 and B’s simulation are identically distributed. Since we

assume that S2 aborts with non-negligible probability and P∗ proves a true statement, except with
negligible probability, the extractor Ext returns a witness (σ∗, c∗, r∗) with non-negligible probability.
As we conditioned on the event that S2 aborts and the commitment c∗ has a unique unveil, it must
hold that (c∗, σ∗) is, with non-negligible probability, a valid forge. This however contradicts the
EUF-CMA security of SIG, which concludes the proof.

Corrupted Sender. We move on to prove the security against a corrupted sender by stating a
simulator (cf. Figure 3).

Adversary-Simulator A′S

• Setup: Once AS sends a message (setup, vk, k) store vk and k.

• Rewriting the Token-code: Once S inputs a token code T∗ into F resettable
wrap construct a token-code

T† with the following functionality.

Upon receiving a message (input, inp) from R, run T∗ with input (input, inp). Halt the computation
of T∗ and construct a corrupted verifier V∗ from T∗. Setup a prover-simulator PSim with input
(vk, inp) and witness-input V∗ and run PSim. Forward the messages between PSim and T∗ and vice
versa. Once T∗ outputs out, send out to R.

Input T† into F stateful
wrap .

• Token-Invocation: Upon receiving a message query from R, compute c = comk(0; r). Send
(query, c) to AS. Let (ack, σ) be the output of AS. Check if it holds Verifyvk(c, σ) = 1, if not
abort. Otherwise send ack to R.

Figure 3: Adversary-simulator A′S for CZK.

Lemma 2. For every PPT-environment Z, it holds that the random variables RealAS
Πr

(Z) and

Real
A′

S
Πs

(Z) are computationally indistinguishable.

Again, as Πs is UC-secure, there exists a simulator SS such that Real
A′

S
Πs

(Z) ≈ IdealSSF (Z), which

yields the desired RealAS
Πr

(Z) ≈ IdealSSF (Z)

Proof. Let Z be a PPT environment. We will prove the indistinguishability of RealAS
Πr

(Z) and

Real
A′

S
Πs

(Z) by a series of indistinguishable hybrid experiments.

Hybrid H0. Simulator S0 simulates RealAS
Πr

.

Hybrid H1. Identical to H0, except that during invocation of the token, R does not setup and
run a prover P with input (vk, inp) and witness-input (σ, c, r), but instead runs the prover-
simulator PSim with input (vk, inp) and witness-input V∗, where V∗ is a corrupted verifier that
is constructed from T∗.

Hybrid H2. Identical to H1, except that the commitment c sent to AS is computed by c =

comk(0; r) instead of c = comk(inp; r). From the view of Z, this is identical to Real
A′

S
Πs

.
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Indistinguishability of the hybrids H0 and H1 follows directly from the computational zero-
knowledge property of the system (P,V). Since the commitment scheme com is computationally
binding, the hybrids H1 and H2 are computationally indistinguishable from the view of Z as well.
This can be established by a simple hybrid-argument, where a Z distinguishing the two experiments
can be used to to break the hiding-property of com.

Remark 3. The above compiler can easily be extended to allow for multiple messages. Then, in
each step of the token invocation the token receiver has to query the sender on a commitment and
provide a proof to the token, that this commitment was signed by the sender. For each message,
a counter is added such that the receiver cannot query the token ”‘out-of-sync”’. If the token is
reset, its counter will not match the counter of the sender and thus the token will abort.

4.2 Protocol Using UC-Secure Seed-OTs

4.2.1 Outline

The compiler COT depicted in Figure 4 adds a step to the underlying protocol Πs, which authenti-
cates the token input. This time, the authentication is done by using UC-secure OTs. Before the
execution of Πs, the token sender creates two random strings (si0, s

i
1) for every bit of the message

inp that the receiver will input into the token. Let inp(i) denote the i-th bit of inp. During the
setup, the receiver obtains one of these random strings, namely siinp(i), for each of his input bits.

Since the receiver does not learn any si1−inp(i), he is bitwise committed to his input, while the sender
does not learn anything about it.

All random values ((s1
0, s

1
1), . . . , (sk0, s

k
1)) that the sender created are stored in the token func-

tionality. When the token is invoked on input (inp, (s1
j1
, . . . , skjk)), the tokens checks that these

values are consistent with the random values of the OTs. If that is the case, the token will evaluate
the underlying token functionality on inp and forward the output out.

4.2.2 Proof of Security

Please note that the security reduction is information-theoretic, but depending on the realization
of F , the protocol might still only be computationally secure.

Corrupted Receiver Let AR be the dummy-adversary for a corrupted sender for the protocol
Πr. We will construct an adversary A′R against the protocol Πs (cf. Figure 5).

Lemma 4. For every (PPT-)environment Z, it holds that the random variables RealAR
Πr

(Z) and

Real
A′

R
Πs

(Z) are indistinguishable.

Proof. The only difference between RealAR
Πr

(Z) and Real
A′

R
Πs

(Z) is the abort of A′R in case inp′ 6= inp.

For this event to happen, AR has to guess a string sij ∈ S of length λ for any i ∈ {1, . . . , k}, j ∈ {0, 1}.
The probability for this event is obviously negligible in the security parameter λ.

Since the protocol Πs is UC-secure, there exists a simulator SR such that Real
A′

R
Πs

(Z) ≈ IdealSRF (Z).

Thus, RealAR
Πr

(Z) ≈ IdealSRF (Z) follows from the above lemma.
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Compiler COT

Let F be a two-party UC-functionality. Let k = |inp| be the input length of the token receiver’s message
inp to the token in Πs. S and R have access to k FOT-functionalities.

Input: Protocol Πs UC-implementing F in the F stateful
wrap -hybrid model.

Output: Protocol Πr UC-implementing F in the F resettable
wrap -hybrid model.

Setup (Before execution of Πs):

• (Sender) S creates 2k random strings S = ((s10, s
1
1), . . . , (sk0 , s

k
1)), sij ∈ {0, 1}λ and inputs them into

the k FOT-functionalities.

• (Receiver) R inputs inp(1), . . . , inp(k) into the corresponding FOT and obtains (s1inp(1), . . . , s
k
inp(k)).

Rewriting the token-code:

(Sender) Once S inputs a token code T into F stateful
wrap do the following. Construct a token-code T′ which

upon receiving a message (input, inp, (s1j1 , . . . , s
k
jk

)), j ∈ {0, 1} from R checks that sij ∈ S for all i ∈
{1, . . . , k}. If this is the case, it continues the execution of T with input inp and forwards whatever T
outputs. Then input T′ into F resettable

wrap .

Token-invocation:

1. R sends a message query to S, who replies with a message ack.

2. R sends the previously obtained random strings with the message (input, inp, (s1j1 , . . . , s
k
jk

)) to the
token and continues the normal computation once the token outputs out.

Figure 4: Stateless compiler using k seed-OTs.

Adversary-Simulator A′R

• Setup: Create 2k random strings S = ((s10, s
1
1), . . . , (sk0 , s

k
1)) and simulate k FOT instances. Obtain

the choice-bits ci, i ∈ {1, . . . , k} and thereby learn inp.

• Token-Invocation:

– Once AR sends query, forward query to S. Once S responds with ack, send ack to AR.

– Once AR wants to input a message (input, inp′, (s1j1 , . . . , s
k
jk

)) to F resettable
wrap , check if inp = inp′

and sij ∈ S∀i, if not abort. Query F stateful
wrap on inp and let out be the result. Send out to AR.

Figure 5: Adversary-simulator A′R for COT.

Corrupted Sender Let AS be the dummy-adversary for a corrupted sender for the protocol Πr.
We will construct an adversary A′S against the protocol Πs (cf. Figure 6).

Lemma 5. For every (PPT-)environment Z, it holds that the random variables RealAS
Πr

(Z) and

Real
A′

S
Πs

(Z) are indistinguishable.

14



Adversary-Simulator A′S

• Setup: Simulate the FOT-functionalities and obtain all values ((s10, s
1
1), . . . , (sk0 , s

k
1)).

• Rewriting the Token-code: Once S inputs a token code T∗ into F resettable
wrap , create a token code

T† as follows:

– On input a message (input, inp), select (s1Inp(1), . . . , s
k
Inp(k)).

– Run T∗ with input (input, inp, (s1Inp(1), . . . , s
k
Inp(k))) and let out be the result. Send out to R.

Input T† into F stateful
wrap .

Figure 6: Adversary-simulator A′S for COT.

Proof. RealAS
Πr

(Z) and Real
A′

S
Πs

(Z) are identically distributed, because after obtaining all labels

((s1
0, s

1
1), . . . , (sk0, s

k
1)), a normal protocol run is simulated.

5 Optimizations

Recall that the compiler CZK can straightforwardly be extended to allow for multiple messages
between token and receiver. However, this would lead to an inefficient zero-knowledge proof for
each message. Also, it seems difficult to change the compiler COT such that it allows for more than
a single message due to the fixed amount of seed-OTs.

In case that the receiver has non-adaptive queries for the token, these problems can be overcome.
By non-adaptive queries, we mean that the i-th token query does not depend on the (i−1)-th query.
A very simple solution is to just concatenate all messages into a single message and have the sender
authenticate this message. However, this needs quite a lot of seed-OTs and also the amount of data
that has to be sent to the sender is very large.

A more refined solution to the problem is the following. Instead of using the normal token input
as the message that shall be authenticated by the sender, the receiver computes a Merkle tree with
all non-adative messages in the leaves. Then, the sender authenticates the root of the Merkle tree,
and the receiver only has to use the compiler for the root message. From there on, for each of the
initial non-adaptive messages he sends the path through the tree and the corresponding message
to the token, which can verify that the path is consistent with the root.

This improvement leads to a single message of small size during the authentication step of
CZK and COT respectively. This construction has one drawback: the Merkle tree relies on collision
resistant hash functions. Considering our initial goal to achieve a compiler using only one-way
functions, we replace the Merkle tree with the recent construction of sig-com trees [CPS13].

We will briefly sketch how sig-com trees can be used in our scenario. Additionally to the normal
setup, the token sender creates a key pair (vkh, skh) and extends the token functionality as follows.
Upon receiving (sign, x) the token returns Signskh(x), basically implementing a signature oracle.
Further, upon receiving (check, path), the token checks that path constitutes a valid path given
the root of a sig-com tree. The verification key vkh is given to the token receiver. The rest of
the compiler is carried out as described above. During the protocol run, instead of directly giving
the non-adaptive messages to the sender, the receiver first uses the resettable token to create a
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signature tree and verifies each obtained signature with vkh. Since all inputs are committed to
in advance of the oracle calls, the token does not learn the inputs. Then the rest of the protocol
proceeds normally: The sender authenticates the root of the sig-com tree, and the receiver has to
present a path through the sig-com tree for each of the non-adaptive messages.

Simulation of this enhancement against a corrupted sender is quite simple. Since the com-
mitments on the receiver inputs are never opened (but only used in zero-knowledge arguments of
knowledge), the simulator can still just pick all-zero inputs, then use the token to create a cor-
responding sig-com tree, and proceed as before. Our indistinguishability proofs for the original
compilers just carry over; otherwise the commitments on the receiver inputs would not be hiding.
If the receiver is corrupted, the binding property of the commitments on his inputs and the colli-
sion resistance of the sig-com tree guarantee that the token can still be queried only with messages
that were authenticated by the sender. It follows again that our indistinguishability proofs for the
original compilers just carry over.

6 Implications

In this section we will briefly discuss the implications of applying our compiler to existing protocols.
We want to focus on UC-secure oblivious transfer protocols. Previous constructions based on reset-
table tokens were either dependent on the fact that several hardware tokens had to be exchanged
[CKS+14] or made use of stronger computational assumptions [CGS08]. In fact, it was shown that,
using only black-box techniques, OT can only be achieved by exchanging two tokens [CKS+14] or
by sending a large amount of tokens in one direction [CGS08, GIS+10].

The only known solution using a single resettable hardware token can be constructed by using
the recent work of [DMMQN13] (which makes inherent use of non-black-box techniques). They
create a CRS with a single resettable token and by plugging in an efficient OT protocol in the CRS
model, e.g. [PVW08], an OT protocol using a single resettable token can be obtained. OT protocols
in the CRS model, however, cannot be based on one-way functions and thus stronger cryptographic
assumptions are needed. In the context of stateful tokens, very efficient constructions are known,
e.g. [DKMQ12]. By plugging the protocol of Döttling et al. [DKMQ11, DKMQ12] into one of
our compilers, we obtain the most efficient OT-protocol based on resettable hardware to date (the
protocol of [DKMQ11, DKMQ12] only gives an a priori fixed amount of OTs). The compiler CZK

uses non-black-box techniques, so the above-mentioned impossibility result does not hold. We can
further improve the efficiency of this protocol by performing random OTs with non-adaptive token
inputs. This allows us to use the optimization from Section 5, thereby making only a single call
to the sender. Additionally, the compiler COT allows to extend a fixed amount of UC-OTs (the
seed-OTs of the compiler) to a (fixed but independent) number of UC-OTs by using the protocol
of [DKMQ11, DKMQ12].
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