
An Encryption Scheme based on Random
Split of St-Gen Codes

Simona Samardjiska∗ and Danilo Gligoroski†,
∗Faculty of Computer Science and Engineering,

“Ss Cyril and Methodius” University, Skopje, Republic of Macedonia,
Email: simona.samardjiska@finki.ukim.mk

†Department of Telematics,
Norwegian University of Science and Technology, Trondheim, Norway,

Email: danilog@item.ntnu.no

Abstract

Staircase-Generator codes (St-Gen codes) have recently been introduced in the design
of code-based public key schemes and for the design of steganographic matrix embedding
schemes. In this paper we propose a method for random splitting of St-Gen Codes and
use it to design a new coding based public key encryption scheme. The scheme uses the
known list decoding method for St-Gen codes, but introduces a novelty in the creation
of the public and private key. We modify the classical approach for hiding the structure
of the generator matrix by introducing a technique for splitting it into random parts.
This approach counters the weaknesses found in the previous constructions of public key
schemes using St-Gen codes. Our initial software implementation shows that encryption
using Random Split of St-Gen Codes compared to original St-Gen Codes is slower by a
linear factor in the number of random splits of the St-Gen code, while the decryption
complexity remains the same.

Keywords

Public Key Cryptography, Code Based Cryptosystems, St-Gen Codes, List Decoding.

I. Introduction
The interest for cryptographic primitives that are resistant to quantum algorithms is

increasing in the last 10 years. Beside the academic community [1], the standardization
bodies such as NIST and ETSI have recently started initiatives for developing cryptographic
standards not based on number theory, with a particular focus on primitives resistant to
quantum attacks [2], [3]

One of the schemes believed to be quantum secure is the McEliece public key scheme
[4], published as early as 1978. Its security is based on the NP-hardness of the problem of
decoding random linear codes.

Recently, an encryption and signature variant of the McEliece scheme based on Staircase-
Generator codes was introduced in [6], [8]. For the public keys produced with these codes
a distinguisher was proposed by Sendrier and Tillich [9], and recently a very similar dis-
tinguishing strategy and an ISD attack was presented as a full and practical key recovery

attack by Moody and Perlner [5]. While the public key schemes based on Staircase-Generator
codes have to expose some form of the Staircase-Generator matrices, and thus are prone for
structural attacks, there are other use-case scenarios where the Staircase-Generator matrices
are not public. For example, the steganographic technique of matrix-embedding [7] use the
matrices as private information. It was shown in [7] that these codes almost achieve the
information theoretical bound for codelengths much smaller than other matrix-embedding
schemes known in the literature.

A. Our contribution
In order to thwart the ISD attacks of [9], [5] against the encryption scheme defined

in [6], [8] we introduce a novel idea where we split the public generator matrix into s
randomly generated matrices. With this technique, we show that the probability of the
attacker obtaining conditions under which the attacks [9], [5] can be mounted, becomes
negligible. We provide an initial security analysis of the scheme as well as some concrete
parameters and instances.

II. Notation and Preliminaries
Throughout the paper, we will denote by C ⊆ Fn

2 a binary (n, k) code of length n and
dimension k. We will denote the generator matrix of the code by G, and wt(x) will denote
the Hamming weight of the word x.

We recall some of the basic definitions and properties for St-Gen codes from [6], [7] and
the types of errors used.

Definition 1: Let ki, ni ∈ N, and let k = k1 +k2 + · · ·+kw and n = k+n1 +n2 + · · ·+nw.
Further, let Bi be a random binary matrix of dimension

∑i
j=1 kj×ni. A linear binary (n, k)

code C with the following generator matrix in standard form:

B1
B2

Bw

. . .

. . .




IkG =

0

k1

k2

n1 n2

(1)

is called Staircase-Generator code (St-Gen code).
Definition 2: Let ` be a positive integer and let pd ∈ F2[x1, x2, . . . , x`] be a multivariate

polynomial of degree > 2. We say that E` is an error set if it is the solution set of pd, i.e.
E` = {e ∈ F`

2 | pd(e) = 0}. We will refer to pd as the defining polynomial.
We define the density of the error set E` to be D(E`) = |E`|1/`. We will refer to the

integer ` > 0 as the granulation of E`. In [6] it was proven that if two error sets E`1 ⊆ F`1
2 ,

E`2 ⊆ F`2
2 , have the same density ρ, then D(E`1 × E`2) = ρ.

Example 1: 1. Let E2 = {x ∈ F2
2 | wt(x) < 2} = {(0, 0), (0, 1), (1, 0)}. Then the error

set can be described using the defining polynomial pd = x1x2, and for the density of the
error set we have D(E2) = |E2|1/2 = 31/2.

2

2. Let E4 = {x ∈ F4
2 | 2 ≤ wt(x) ≤ 3}. Then, the defining polynomial for E4 is

pd = 1 + x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4 and the density is D(E4) = D(Em
4) =

(
∑3

i=2
(4

i

)
)1/4 = 101/4 for any positive integer m.

The decoding of St-Gen codes relies on the technique of list decoding, a notion that dates
back to the work of Elias [10] and Wozencraft [11] in the 1950’s. In list decoding, the decoder
is allowed to output a list of possible messages one of which is correct. List decoding can
handle a greater number of errors than that allowed by unique decoding. In order for the
decoding to be efficient, the size of the resulting list has to be polynomial in the code length.
The following Proposition from [6] determines the parameters of a St-Gen code that provide
an efficient decoding.

Proposition 1 ([6]): Let C be any binary (n, k) code and E ⊂ Fn
2 be an error set of density

ρ. Let w be any word of length n, WE = {w + e | e ∈ E} and let CWE
denote the set of

codewords in WE . Suppose there exists a codeword c ∈ WE . Then the expected number of
codewords in WE \ {c} is approximately ρn2k−n for large enough n and k.

Let E` be an error set with density ρ where ` divides n and m = n/`. We recall Alg. 1
from [6], that is an efficient algorithm for decoding a code C, that corrects errors from the
set Em

` .

Algorithm 1 Decoding
Input: Vector y ∈ Fn2 , and generator matrix G of the form (1).
Output: A list Lw ⊂ Fk2 of valid decodings of y.
Procedure: Let Ki = k1 + · · ·+ ki. Represent x ∈ Fk2 as x = x1 ‖ x2 ‖ · · · ‖ xw where each xi has length
ki. Similarly, represent y ∈ Fn2 , as y = y0 ‖ y1 ‖ y2 ‖ · · · ‖ yw, where each yi has length ni and |y0| = k.
We further identify y0 with y0 = y0[1] ‖ y0[2] ‖ · · · ‖ y0[w], where each y0[i] is of length ki.
During decoding, we will maintain lists L1, L2, . . . , Lw of possible decoding candidates of length Ki.
Step 0: Set a temporary list T0 = L0 to contain all possible decodings of the first k1 coordinates of y:
T0 ← {x′ = y0[1] + e | e ∈ Ek1/`}.
Step 1 ≤ i ≤ w: Perform list-decoding to recover a list of valid decodings:
For each candidate x′ ∈ Ti−1 ⊂ FKi

2 , add to Li all the candidates for which x′Bi + yi ∈ Eni/`:

Li ← {x′ ∈ Ti−1 | x′Bi + yi ∈ Eni/`}.

If i < w then create the temporary list Ti of candidates of length Ki+1 from Li: Ti ← {x′ ‖ (y0[i+ 1] + e) |
x′ ∈ Li, e ∈ Eki+1/`}.
Return: Lw.

III. A new Encryption Scheme
A key parameter of the new encryption scheme is the number of splits s, that determines

the number of summands the generator matrix of the code is split in.
This parameter further determines the nature of the error used during encryption. We

have the following:
Definition 3: Let E` ⊂ F`

2 be an error set of granulation ` and let s denote the number of
splits. The s-element set ErrorSplit = {e1, . . . , es}, where ei ∈ F`

2, i ∈ {1, . . . , s} is called A
Valid Error Split for E` if the sum of its elements permuted with any permutation σi ∈ S`

3

is an element of E` i.e. it holds that e =
s∑

i=1
σi(ei) ∈ E`.

Example 2: Let ` = 4, E` = {{0, 0, 0, 0}, {0, 0, 1, 1}, {0, 1, 0, 1}, {0, 1, 1, 0}, {1, 0, 1, 1},
{1, 1, 0, 0}, {1, 1, 0, 1}, {1, 1, 1, 0}, {1, 1, 1, 1}} and s = 4. The 4-element set {{1, 0, 0, 0},
{1, 1, 1, 1}, {1, 1, 1, 1}, {1, 1, 0, 1}} is a valid error split for E` because the sum of all its
elements permuted by any of all possible 4! = 24 permutations always gives an element in
E`. Note that the elements in a valid error split don’t need to belong to the error set E`,
as it is the case with the element {1, 0, 0, 0} in this example.

A formal description of the scheme is given through the next four algorithms for key
generation, error set generation, encryption and decryption.

Algorithm 2 Key Generation
Parameters: Let `|n, m = n/` and E ⊂ F`2 be an error set of granulation ` and density ρ. Let s be the
number of splits.
Key generation:
The following matrices make up the private key: - A generator matrix G of a binary (n, k) code of the form
(1).
- An invertible matrix S ∈ Fk×k2 .
- An array of permutation matrices P1, P2, . . . , Ps created as follows:

1. Select a permutation π on {1, 2, . . . ,m}, and let P ∈ Fn×n2 be the permutation matrix induced by π,
so that for any y = y1 ‖ y2 ‖ . . . ‖ ym ∈ (F`2)m:

yP = yπ(1) ‖ yπ(2) ‖ . . . ‖ yπ(m), (2)

i.e., P only permutes the m substrings of y of length `.
2. For i := 1 to s:
• Select randomly m permutations σij ∈ S`, j ∈ {1, . . . ,m}.
• Let Pi be defined by

yPi = σi1(yπ(1)) ‖ σi2(yπ(2)) ‖ . . . ‖ σim(yπ(m)),

where σij(x) = σij(x1, x2, . . . , x`).
The public key is formed as follows:
• Generate uniformly at random s− 1 matrices G1, . . . , Gs−1 of size k × n over F2.
• Set Gs = G+G1 + · · ·+Gs−1.
• For all i ∈ {1, 2, . . . , s}, set Gipub = SGiPi.

Public key: G1
pub, . . . , G

s
pub.

Private key: S, G and P1, P2, . . . , Ps.

Algorithm 3 Valid Error Splits (`, E`, s)
Input: Granulation `, error set E`, number of splits s.
Output: An error set ErrorSet of all possible valid error splits.
1: For all (e1, . . . , es) ∈ (F`2)s do
2: If

∑s

i=1 σi(ei) ∈ E` ∀(σ1, . . . , σs) ∈ (S`)s then
3: Add (e1, . . . , es) to ErrorSet.
4: Return ErrorSet.

Note that Algorithm 3 is run only once at the time of the initialization of the system
with parameters `, E`, s. Even more, in practice, this set can be pre-calculated and publicly
available.

4

Algorithm 4 Encryption (m, G1
pub, . . . , G

s
pub, ErrorSet)

Input: Message to be encrypted m, the public key G1
pub, . . . , G

s
pub and a set ErrorSet of all possible valid

error splits.
Output: A ciphertext c = (c1, . . . , cs).
1: Set ci = mGipub + ei, i = 1, . . . , s, where ei = (e1,i, . . . , en

l
,i) and (ej,1, . . . , ej,s), j = 1, . . . , n

l
are

randomly drawn from ErrorSet.
2: Return c = (c1, . . . , cs)

Algorithm 5 Decryption (c, S,G, P1, P2, . . . , Ps)
Input: Ciphertext c, matrix S, the generator matrix G and the permutation matrices P1, P2, . . . , Ps.
Output: A decrypted message m.
1: Set c′i = ciP−1

i

2: Set c′ =
∑s

i=1 c′i
3: Set m′ as the output of Algorithm 1 (List decoding of c′ with generator matrix G).
4: Set m = m′S−1

5: Return m

Compared to the original encryption using St-Gen Codes [6], the computational complex-
ity of our encryption Algorithm 4 is slower only by a linear factor s, while the decryption
complexity is almost the same (with a small overhead for Step 1 and Step 2 in the decryption
Algorithm 5). This was also confirmed experimentaly, using an implementation of the scheme
in both C and MAGMA [25].

IV. Security Analysis
A. Weaknesses in a previous scheme based on St-Gen codes

Information Set Decoding (ISD) is a technique first introduced by Prange [12], and later
improved several times in the works of Lee and Brickell [13], Leon [14], Stern [15], and many
others [16], [17], [18], [19]. ISD algorithms are usually used to find the error vector being
used in the encryption of a message m. In this case, the basic idea is the following: Find
an information set I i.e. an index set of k columns of the generator matrix G that form
an invertible matrix GI , such that the error vector has a specific error pattern eI with
respect to I. With the error pattern being correctly guessed, we can find the message as
m = (cI+eI)G−1

I , where cI is the part of the ciphertext c corresponding to the information
set I.

However, ISD, in its essence, is a technique for finding low weight codewords. Thus,
if for a given code C with generator matrix G, it is known that it contains a subcode of
low support, we can find that support, by repeatedly running ISD for codewords of weight
smaller than the support (usually half or third the size of the support).

This approach has been used to attack a McEliece variant based on convolutional codes
[20] and against the KKS scheme in [21]. It also applies to the schemes in [6], as discovered
in [5], [9]. We briefly describe how the attack can be mounted against [6].

Suppose the private key of a McEliece-type scheme is given by a k× n generator matrix
G of the form (1). Then the public key is given by a matrix Gpub = SGP , where S is an
invertible n× n matrix, and P is a blockwise permutation matrix defined in [6, Alg.2]. As
described in [6], the security of the scheme relies on secrecy of the permutation P , and a

5

partial recovery of P reveals a part of the staircase structure of G. The main observation
in order to mount a successful attack is the following:

Let x ∈ Fk
2. Then xGpub = (xS)GP = x′GP = y′P. From here, if y′ is a codeword of the

code with generator matrix G, then y′P is a codeword of the code with generator matrix
Gpub. Since P is a permutation matrix, the Hamming weight of y′ and y′P is the same, and
if y′ is a low weight codeword, so will y′P be.

Now, because of the structure of G, we know that there is a subspace of the code of
dimension kw whose support is of size kw+nw, and thus, finding enough low weight codewords
of weight approximately (kw+nw)/3 will most likely reveal the support of this subspace. Once
the support has been found, the permutation P has been partially found, i.e. the position
of the last nw columns in G can be determined. Continuing with the same procedure, for
the nw−1 second to last columns, reveals even more of the structure, and so on, until the
entire G is revealed.

The efficiency of this attack depends on the efficiency of the ISD algorithms, whose
complexity directly depends on the weight t of the codeword being searched for, and the
size of the code.

In a very recent analysis by Moody and Perlner [9] a modification of Stern’s algorithm
was provided, dedicated to cryptanalysis of the scheme in [6]. We refer the reader to [9]
for details, and here, we mention that the complexity of the attack is in general given by
ISDSt = Pr−1

St · CostSt where Pr−1
St is the probability of success, and CostSt the cost of

finding the low weight codeword.
We note that, an attacker can choose instead of Gpub, to work with the parity check

matrix Hpub and to apply exactly the same technique for finding a low weight codeword
of the dual code with generator matrix Hpub. In particular, if k1 < nw then it is (roughly)
more efficient to work with the parity-check matrix. Thus, for the schemes proposed in [6],
the proposed encryption scheme can be more efficiently attacked through the parity-check
matrix, and the signature scheme through the generator matrix.

B. Split technique as a measure against ISD attacks
One way of inoculating the scheme from [6] against ISD attacks is to tweak the various

parameters, so that the attack is unfeasible. This, in general requires parameters that are over
any border of practicality of the scheme. Here, we take a conceptually different approach,
in the sense that we want to make the attack very improbable to mount. In other words,
our strategy makes the probability of the attacker obtaining conditions under which an ISD
attack can be mounted, close to zero, i.e. negligible.

Recall that the public key of our new scheme is given by G1
pub, . . . , G

s
pub, where Gi

pub =
SGiPi, for i ∈ {1, 2, . . . , s} and Gs = G + G1 + · · · + Gs−1. Each Pi can be written as
Pi = PP ∗i , where P ∗i permutes only within the blocks of length ` but not globally.

To make things more clear, for the moment, let us focus on the j-th submatrix block of
dimension k×` in the matrices Gi

pub. We will denote these submatrices by Gi
pub,j . Similarly,

we will denote the submatrices of the j-th block of ` columns of SGiP by Gi
p,j . Let σi

j(Gi
p,j)

be the matrix obtained from Gi
p,j by permuting the columns according to the permutation

σi
j generated in Alg.2. Then σi

j(Gi
p,j) = Gi

pub,j .
It is not hard to see, that in order to be able to run an ISD attack, one needs, for

6

sufficient number b of submatrix blocks j ∈ {1, . . . , n/`}, to find permutations µi
j , such that

all µi
jσ

i
j , i ∈ {1, . . . , s} agree on one or more coordinates. Indeed, in this case, in the sum∑

i µ
i
j(Gi

pub,j) =
∑

i µ
i
jσ

i
j(Gi

p,j) the columns on which µi
jσ

i
j agree, yield a case the same as

without splitting of the public key, i.e. can be used in an ISD attack.
We will calculate first the probability that for a fixed j, all µi

jσ
i
j agree on t positions.

First, the probability that µ1
jσ

1
j and µ2

jσ
2
j agree on any t positions is (`t)·b(`−t)!/e+1/2c

`! , which
notably is the same as the probability that a random ` permutation has t fixed points. Now,
the probability that any other µi

jσ
i
j agrees on the same t coordinates is (`−t)!

`! . In total all

µi
jσ

i
j agree on t coordinates with probability Prt =

(`
t

)
· b(`− t)!/e+ 1/2c

`! · ((`− t)!
`!)s−2.

Now, if we randomly select k/t blocks j ∈ Ik/t, the structure of G will be revealed in the
sums

∑
i G

i
pub,jT

i
j for some randomly selected `×` permutation matrices T i

j , with probability

Pr(k, t)=(Prt)
k
t =

(`t)
⌊

(`−t)!
e + 1

2

⌋
`! · ((`− t)!

`!)s−2


k
t

(3)

For simplicity, we have only considered the case when from each submatrix block, we are
looking for t agreements in each of the blocks. The case with different ts is unnecessary
complex, and does not add any substantial difference, hence we omit it.

Note that we have calculated the probability of revealing the structure of G in k columns
and not more, and certainly an ISD attack can not be mounted with only k columns. This
shows that, since the calculated probability is negligible in k, and can be made arbitrarily
small for practical values of k, it is infeasible to create sufficient conditions to mount an
ISD attack. In other words, the splitting technique immunizes from ISD attacks.

C. Modelling the decoding problem as a Polynomial System Solving problem
Given a public key (G1

pub, . . . , G
s
pub) and a ciphertext c = (c1, . . . , cs) produced using

this public key, we can model the problem of decoding c as a Polynomial System Solving
(PoSSo) problem. PoSSo is the problem of finding a solution to a system of polynomial
equations of degree > 2 over a finite field.

From the encryption algorithm, we have that:

ei = mGi
pub + ci, i ∈ {1, . . . , s} (4)

where the set of all ei is a valid error split for the error set E`, characterized by a defining
polynomial pd. We can represent the error vector in the form ei = e1

i ‖ e2
i ‖ . . . ‖ em

i ∈ (F`
2)m.

In order for the decryption to be possible, the following has to hold:

pd(
s∑

i=1
σj

i (ej
i)) = 0, for every j ∈ {1, . . . ,m} (5)

and for arbitrary permutations σj
i ∈ S`.

Considering (4) as a change of variables, and plugging it in the system (5), we obtain a
system of equations in k variables - the unknown m. Now, the obtained system can be solved
using some generic system solving algorithm, like F4 [22], F5 [23], or XL [24]. For example,
using the F5 algorithm, the complexity of solving a semiregular system of k variables is

7

O
((

k +Dregk − 1
Dregk

)ω)
,

where ω is the linear algebra constant, and Dregk is the maximum degree reached during
the Gröbner basis computation.

It is possible to introduce an optimization parameter in the form of a guess of some of
the errors, or a guess of a linear equation valid for the error vectors with some probability.
Suppose the linear relation

L(ej
1, . . . , ej

s) = 0 (6)

holds with probability pL. Then, if we make a correct guess for some j, we will reduce the
number of variables in the system by 1. In general, for p guesses, the complexity of the
overall process will be: (1

pL

)p
((

k − p+Dregk−p − 1
Dregk−p

)ω)
(7)

How efficient this method is, strongly depends on the parameters of the scheme `, s and
the defining polynomial pd. Therefore, in the next Subsection IV-D, we will analyze the
efficiency of this approach for a concrete set of parameters.

D. Concrete parameter sets and their security
We will consider the following parameter sets for practical use:
Parameter Set 1. l = 3, s = 2, and E3 = {{0, 0, 1}, {0, 1, 0}, {1, 0, 0}, {0, 1, 1}, {1, 0, 1},

{1, 1, 0}}. The defining polynomial for E3 is pd = 1 +x1 +x2 +x3 +x1x2 +x1x3 +x2x3, and
the density ρ3 = |E3|1/` = 61/3. According to Prop. 1, and making a similar analysis as in
[6], in order for the decryption process to be efficient, we need to keep the ratio ni/ki ≈ 6,
which implies n ≈ 7k, and the size of the list in the end will be ρn2k−n ≈ 1.

Parameter Set 2. l = 4, s = 2, and E4 = {{0, 0, 0, 1}, {0, 0, 1, 0}, {0, 1, 0, 0}, {1, 0, 0, 0},
{0, 0, 1, 1}, {0, 1, 1, 0}, {0, 1, 0, 1}, {1, 0, 0, 1}, {1, 0, 1, 0}, {1, 1, 0, 0}}. The defining polyno-
mial for E4 is pd = 1 + x1 + x2 + x3 + x4 + x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4. Here,
the density is ρ4 = |E4|1/` = 101/4, and efficiency requires ni/ki ≈ 5, i.e. n ≈ 6k. The list in
the end is ≈ 1.

For the parameter sets 1 and 2, the system of equations (5) turns into pd(σj
1(ej

1) +
σj

2(ej
2)) = 0, j ∈ {1, . . . ,m}. It is easy to see that we can actually take σj

2 to be the identity
permutation, so

pd(σj
1(ej

1) + ej
2) = 0, j ∈ {1, . . . ,m} (8)

where σj
1 is an arbitrary permutation from S`.

For the Par. Set 1, since |S3| = 3! = 6, for each j ∈ {1, . . . ,m}, we obtain 6 equations
in the system (8), but a simple check shows that only 5 are linearly independent. So in
total, the system has 5m equations, and according to the above computations, this is ≈ 12k
equations.

Similarly, for the Par. Set 2, out of the total |S4| = 4! = 24 obtained equations, for each
j ∈ {1, . . . ,m}, only 10 are linearly independent. In total, the system in this case has 10m
i.e. ≈ 15k equations.

In the choice of the parameter sets, we have taken into account the probability of existence
of linear relations of the form (6). We exhaustively investigated all such relations and

8

determined that for both sets, the highest probability for a linear relation is pL = 2/3.
This information can be used to combine the system solving with guessing with complexity
(7).

We performed experiments using the F4 algorithm [22] implemented in MAGMA [25], to
test the behavior of the obtained system (8) of equations. Since, for both parameter sets, the
system is well overdefined, the degree of regularity Dregk, as expected, grows slower than
for systems with equal number of variables and equations. Unfortunately, due to memory
constrains, we were not able to obtain an evident trend of the growth of Dregk and at the
moment, the behavior of these systems remains an open problem. Nevertheless, the results
of our experiments strongly indicate that for practical values of k, Dregk should grow more
than 5, and even for these very conservative projections, we can obtain security of 80 or 128
bits against the described algebraic attack.

Regarding the ISD attacks, for the two parameter sets, we have that:
• for Par. Set 1, the highest probability (3) is obtained for t = 2, and is Pr(k, 2) =

2−0.5k,
• for Par. Set 2, the highest probability (3) is obtained for t = 3, and is: Pr(k, 3) =

2−0.86k.
Hence for any of the two parameter sets, k > 256 is enough for security of 128 bits against
ISD attacks.

At the end of this section we provide four concrete codes from the two parameter sets, two
of each set, providing security of 80 and 128 bits, respectively. We denote by K = (k1, . . . , kw)
and N = (n1, . . . , nw) the vectors of values used in the definition of concrete generator
matrices as defined in equation (1). The following are concrete codes from Parameter Set 1:
◦ Code (5514, 762): w = 250, K = (15, 3, 3, . . . , 3), N = (21, 21, 18, 18, 21, 18, 18 . . . , 21, 18, 18).
◦ Code (7956, 1095): w = 361, K = (15, 3, 3, . . . , 3), N = (21, 21, 18, 18, 21, 18, 18 . . . , 21, 18, 18).

The following are concrete codes from Parameter Set 2:
◦ Code (4600, 776): w = 191, K = (16, 4, 4, . . . , 4), N = (24, 20, . . . , 20, 20).
◦ Code (7000, 1776): w = 291, K = (16, 4, 4, . . . , 4), N = (24, 20, . . . , 20, 20).
Note that in the suggested parameter sets, the value of k1 is much smaller than in the

scheme proposed in [6]. This is because, the splitting technique prevents the ISD attacks,
and the motive for the large k1 in [6], were exactly ISD type of attacks.

V. Conclusion
We introduced a novel idea of splitting the public generator matrix into s randomly

generated matrices, and showed that the split strategy thwarts the ISD attacks that showed
fatal for the encryption scheme from [6], [8]. As a result of our security analysis, we provide
concrete parameters and instances with conjectured security levels in the range from 280 to
2128.

While the introduction of the concept of “Valid Error Split” makes possible to transform
the St-Gen encryption scheme from [6], [8] into a randomly split St-Gen scheme, it remains
an open problem whether this splitting technique can be applied for the signature scheme
introduced in [6], [8], that at this point is considered broken.

9

VI. Acknowledgements
We would like to thank Nicolas Sendrier and Jean-Pierre Tillich for their long and fruitful

discussions. We also thank Jean-Charles Faugère and Ludovic Perret for their hospitality at
LIP6 and long discussions about algebraic attacks on these systems. Also, we thank Dustin
Moody and Ray Perlner for sharing their initial results and for their excellent analysis of
the schemes defined in [6], [8] done in [5].

References

[1] E. N. of Excellence for Cryptology (ECRYPT), “PQCrypto 2006: International Workshop on Post-
Quantum Cryptography,” http://postquantum.cr.yp.to, [Retrieved: Dec. 2015].

[2] NIST, Workshop on Cybersecurity in a Post-Quantum World, www.nist.gov/itl/csd/ct/
post-quantum-crypto-workshop-2015.cfm, [Retrieved: Dec. 2015].

[3] ETSI, “ETSI 2nd Quantum-Safe Crypto Workshop in partnership with the IQC,” www.etsi.org/
news-events/events/770-etsi-crypto-workshop-2014, [Retrieved: Dec. 2015].

[4] R. J. McEliece, A Public-Key System Based on Algebraic Coding Theory. Jet Propulsion Lab, 1978,
pp. 114–116, dSN Progress Report 44.

[5] D. Moody and R. Perlner, “Vulnerabilities of “McEliece in the World of Escher”,” Cryptology ePrint
Archive, Report 2015/966, 2015, http://eprint.iacr.org/.

[6] D. Gligoroski, S. Samardjiska, H. Jacobsen, and S. Bezzateev, “McEliece in the world of Escher,”
Cryptology ePrint Archive, Report 2014/360, 2014, http://eprint.iacr.org/.

[7] S. Samardjiska and D. Gligoroski, “Approaching maximum embedding efficiency on small covers using
staircase-generator codes,” in Information Theory (ISIT), 2015 IEEE International Symposium on,
June 2015, pp. 2752–2756.

[8] D. Gligoroski, S. Samardjiska, H. Jacobsen, and S. Bezzateev, “A new code based public key
encryption and signature scheme based on list decoding,” Workshop on Cybersecurity in a Post-
Quantum World, NIST, Gaithersburg MD, USA, 2015.

[9] N. Sendrier and J.-P. Tillich, Private communication, Oct. 2014.
[10] P. Elias, “List decoding for noisy channels, technical report 335,” Research Laboratory of Electronics,

MIT, 1957.
[11] J. M. Wozencraft, “List decoding. quarterly progress report,” Research Laboratory of Electronics,

MIT, Tech. Rep., 1958.
[12] E. Prange, “The use of information sets in decoding cyclic codes,” IRE Trans. Inf. Theor., vol. 8,

1962, pp. 5–9.
[13] P.J. Lee and E.F. Brickell, “An observation on the security of McEliece’s public-key cryptosystem,”

in Advances in Cryptology-EUROCRYPT’88. Springer, 1988, pp. 275–280.
[14] J. S. Leon, “A probabilistic algorithm for computing minimum weights of large error-correcting codes,”

IEEE Trans. Inf. Theor., vol. 34, no. 5, Sep. 2006, pp. 1354–1359.
[15] J. Stern, “A method for finding codewords of small weight,” in Proceedings of the 3rd International

Colloquium on Coding Theory and Applications, Springer-Verlag, 1989, pp. 106–113.
[16] M. Finiasz and N. Sendrier, “Security bounds for the design of code-based cryptosystems,” in Advances

in Cryptology, ASIACRYPT ’09, Springer-Verlag, 2009, pp. 88–105.
[17] D. J. Bernstein, T. Lange, and C. Peters, “Smaller decoding exponents: ball-collision decoding,” in

Advances in cryptology, CRYPTO’11. Springer-Verlag, 2011, pp. 743–760.
[18] A. May, A. Meurer, and E. Thomae, “Decoding random linear codes in Õ(20.054n),” in Advances

in cryptology, ASIACRYPT’11. Springer-Verlag, 2011, pp. 107–124.
[19] A. Becker, A. Joux, A. May, and A. Meurer, “Decoding random binary linear codes in 2n/20: how 1

+ 1 = 0 improves information set decoding,” in Advances in cryptology, EUROCRYPT’12. Springer-
Verlag, 2012, pp. 520–536.

10

[20] G. Landais and J.-P. Tillich, “An efficient attack of a McEliece cryptosystem variant based on
convolutional codes.” Post-Quantum Cryptography, 2013, pp. 102–117.

[21] A. Otmani and J.-P. Tillich, “An efficient attack on all concrete kks proposals.” in PQCrypto, LNCS,
vol. 7071. Springer, 2011, pp. 98–116.

[22] J.-C. Faugère, “A new efficient algorithm for computing GrÃűbner bases (F4).” Journal of Pure and
Applied Algebra, vol. 139, no. 1–3, June 1999, pp. 61–88.

[23] J.-C. Faugère, “A new efficient algorithm for computing Gröbner bases without reduction to zero
(F5),” in ISSAC 2002. ACM Press, 2002, pp. 75–83.

[24] N. Courtois, E. Klimov, J. Patarin, and A. Shamir, “Efficient Algorithms for Solving Overdefined
Systems of Multivariate Polynomial Equations,” in In Advances in Cryptology, Eurocrypt’00, LNCS
1807. Springer-Verlag, 2000, pp. 392–407.

[25] MAGMA, “High performance software for algebra, number theory, and geometry — a large commer-
cial software package.” [Online]. Available: http://magma.maths.usyd.edu.au

11

