
Constant-Round Asynchronous

Multi-Party Computation

Based on One-Way Functions

Sandro Coretti∗†1, Juan Garay‡2, Martin Hirt3, and Vassilis Zikas§†‡4

1New York University, corettis@nyu.edu
2Yahoo Research, garay@yahoo-inc.com

3Department of Computer Science, ETH Zurich, hirt@inf.ethz.ch
4Department of Computer Science, RPI, vzikas@cs.rpi.edu

November 22, 2016

Abstract

Secure multi-party computation (MPC) allows several mutually distrustful parties to securely
compute a joint function of their inputs and exists in two main variants: In synchronous MPC
parties are connected by a synchronous network with a global clock, and protocols proceed in
rounds with strong delivery guarantees, whereas asynchronous MPC protocols can be deployed
even in networks that deliver messages in an arbitrary order and impose arbitrary delays on them.

The two models—synchronous and asynchronous—have to a large extent developed in paral-
lel with results on both feasibility and asymptotic efficiency improvements in either track. The
most notable gap in this parallel development is with respect to round complexity. In particular,
although under standard assumptions on a synchronous communication network (availability of se-
cure channels and broadcast), synchronous MPC protocols with (exact) constant rounds have been
constructed, to the best of our knowledge, thus far no constant-round asynchronous MPC protocols
are known, with the best protocols requiring a number of rounds that is linear in the multiplicative
depth of the arithmetic circuit computing the desired function.

In this work we close this gap by providing the first constant-round asynchronous MPC protocol
that is optimally resilient (i.e., it tolerates up to t < n/3 corrupted parties), adaptively secure,
and makes black-box use of a pseudo-random function. It works under the standard network
assumptions for protocols in the asynchronous MPC setting, namely, a complete network of point-to-
point (secure) asynchronous channels with eventual delivery and asynchronous Byzantine agreement
(aka consensus). We provide formal definitions of these primitives and a proof of security in the
Universal Composability framework.

∗Work supported by the Swiss NSF project no. 200020-132794.
†Work done in part when author was at ETH Zurich.
‡Work done in part while the author was visiting the Simons Institute for the Theory of Computing, supported by the

Simons Foundation and by the DIMACS/Simons Collaboration in Cryptography through NSF grant #CNS-1523467.
§Work supported in part by the Swiss NSF Ambizione grant PZ00P2 142549.

1 Introduction

In secure multi-party computation (MPC), a set of n parties p1, . . . , pn, each holding some private
input, wish to jointly compute a function on these inputs in a fashion such that even up to t colluding
adversarial parties are unable to obtain any information beyond what they can extract from their
inputs and outputs or to affect the computation in any way other than contributing their desired
inputs. The problem of MPC has been studied in the two important settings of synchronous and
asynchronous networks, respectively.

MPC protocols for the synchronous setting assume a network in which parties proceed in rounds,
with the guarantee that messages sent by any party in any given round are delivered to all recipients in
the same round. Consequently, in all such protocols the parties are assumed to be (at least partially)
synchronized, i.e., to be in the same round at all times.

In real-world networks, such as the Internet, this synchrony assumption corresponds to assuming
that the parties have (partially) synchronized clocks and communicate over channels with a known
upper-bounded latency. The synchronous structure is then imposed by “timeouts,” i.e., in each round
the parties wait for an amount T of time defined by their estimate of when other parties send their
messages and the bound on the network latency. If their estimate is accurate and their clocks are indeed
synchronized, this will ensure that parties receive all messages sent to them from honest senders before
the end of the round (timeout). Thus, after time T has passed, they can safely assume that if a message
was expected for the current round but has not been received, then the sender must be adversarial.
The security of synchronous protocols heavily relies on this assumption. In fact, many of them would
become completely insecure if there is even a single delayed message. As a result, the round length T
must typically be set much higher than the average transmission time.

A natural question is therefore to study the security one can obtain if no synchrony assumption is
made but merely under the assumption that messages sent by honest parties are eventually delivered.1

In particular, messages sent by parties can be reordered arbitrarily and delayed by arbitrary (albeit
finite) amounts of time in such an asynchronous network. Note that one could consider even more
pessimistic networks where the adversary can block messages sent by honest parties; this is for example
the case in the base network assumed in Canetti’s UC framework [12]. In such networks, however,
protocols cannot be guaranteed to (eventually) terminate as the adversary can delay the computation
indefinitely.

In asynchronous MPC protocols parties do not wait until a round times out. Rather, as soon as
a party has received enough messages to compute its next message2, it computes that message, sends
it, and moves on. In that sense, asynchronous MPC protocols are “opportunistic” and terminate
essentially as quickly as the network allows. Hence, they can be much faster than their synchronous
counterparts depending on the network latency.3

In this work, unless explicitly stated otherwise, whenever we refer to the asynchronous (communi-
cation) model, we mean the above asynchronous model with eventual delivery.

On the importance of round complexity. The inherent need for waiting until each round times
out clearly makes round complexity an important consideration for the performance of synchronous
MPC protocols. Indicatively, Schneider and Zohner [33] have shown that as the latency between
machines increases, the cost of each round becomes more and more significant.

Despite their opportunistic nature, round complexity is just as important a consideration for asyn-
chronous protocols, since a protocol’s round complexity can be a more relevant efficiency metric than,
for example, its bit complexity. Indeed, at the conceptual/theoretical level, having constant-round

1The eventual-delivery assumption is supported by the fact that whenever a message is dropped or delayed for too
long, Internet protocols typically resend that message.

2What “enough” means is concretely specified by the party’s protocol.
3This speed up, however, does not come for free, as it inevitably allows the adversary to exclude some of the honest

parties’ inputs from being considered in the computation.

1

protocols allows us to use them as sub-routines in a higher level protocol without blowing up (asymp-
totically) the round complexity of the calling protocol, while at the practical level, communication
time is often dominated by the round-trip times in the network and not by the size of the messages.
For example, it takes about the same amount of time to transmit a byte and a megabyte, while sending
a message from A to B over many intermediate nodes, computing something at B, and sending an
answer back to A may take a (comparatively) long time.

Our contributions. In this paper, we first formalize the asynchronous model with eventual delivery
in the universal composability (UC) framework [12], introduce a suitable formal notion of asynchronous
round complexity, and formulate the basic communication resources (such as asynchronous secure
channel and asynchronous Byzantine agreement [A-BA]) as ideal functionalities in that model.4 (See
Section 3.)

We then present the—to the best of our knowledge—first constant-round MPC protocol for this
asynchronous setting (i.e., a protocol whose round complexity is independent of the multiplicative
depth of the evaluated circuit and the number n of parties) based on standard assumptions, namely,
the existence of pseudo-random functions (PRFs).5 The protocol is UC-secure in the secure-channels
model with A-BA, and makes black-box use of the underlying PRF, tolerating a computationally
bounded, adaptive adversary actively corrupting up to t < n/3 parties, which is optimal for this
setting.6

At a high level, here is how we construct our constant round protocol. First, we devise a constant-
depth circuit for computing the keys, masked values, and (shares of the) garbled gates needed for a
distributed evaluation of a Yao garbled circuit that encodes the function the parties wish to compute.
This circuit is then evaluated by means of a linear-round (in the depth of the circuit and in n)
asynchronous protocol. However, this circuit is Boolean whereas all existing asynchronous protocols
evaluate arithmetic circuits. To deal with this mismatch we devise an asynchronous protocol for
computing Boolean circuits by appropriately adapting the protocol by Ben-Or, Kelmer, and Rabin [7].
Any party who receives the output from the evaluation of the Boolean circuit uses it to encrypt shares
of each garbled gate, which it sends to all other parties. Finally, each party locally evaluates the
(distributed) garbled circuit by decrypting incoming encrypted shares of each gate and reconstructing
the function table of the gate as soon as sufficiently many consistent shares have arrived until all gates
are evaluated. Once all gates are evaluated in this fashion, the party is in possession of the output.
The protocol and its analysis are presented in Section 4.

Related work. Beaver, Micali, and Rogaway [1] were the first to provide a constant-round MPC
protocol in the synchronous stand-alone model. (Refer to Appendix A for a more detailed and histori-
cal account of the development of MPC protocols in both the synchronous and asynchronous settings,
together with the tools that are used in each setting.) Their protocol is secure in the computational set-
ting and tolerates an adaptive adversary who actively corrupts up to t < n/2 parties. The complexity
of [1] was improved by Damg̊ard and Ishai [18], who provided the first constant-round protocol making
black-box use of the underlying cryptographic primitive (a pseudo-random generator). Importantly,
both [1] and [18] assume a broadcast channel, an assumption essential for obtaining constant-round
MPC. Indeed, as proved in [21, 19], it is impossible to implement such a broadcast channel from
point-to-point communication in a constant number of rounds, and although expected constant-round
broadcast protocols exist in the literature (e.g., [20, 29]), using them to instantiate calls within the
constructions of [1] or [18] would not yield an expected constant-round protocol [5]. The intuitive

4Note that while the UC framework already is asynchronous, asynchronous communication with eventual delivery has
not been modeled in it so far.

5A recent approach based on threshold fully homomorphic encryption was proposed by Cohen [17]; see the discussion
in the section on related work below.

6Refer to the discussion in related work below on the necessity of this bound in the asynchronous setting.

2

reason—formally argued by Ben-Or and El-Yaniv [5]—is that the process of running n such broadcast
protocols (even in parallel) does not terminate in an expected constant number of rounds.

The model of asynchronous communication with eventual delivery was considered early on in
seminal works on fault-tolerant distributed computing, e.g., [22], (although to our knowledge this
paper is the first to formalize this capability in the UC framework). The study of optimally resilient
MPC in this type of asynchronous networks was initiated by Ben-Or, Canetti, and Goldreich [4],
who proved that any function can be computed by a perfectly secure asynchronous protocol if and
only if at most t < n/4 parties are corrupted. Following that result, Ben-Or, Kelmer, and Rabin [7]
showed that if a negligible error probability is allowed, the bound t < n/3 is necessary and sufficient
for asynchronous MPC.7 More recently, Hirt et al. [26, 27] provided computationally secure solutions
(i.e., protocols tolerating a computationally bounded adversary) and Beerliová and Hirt [2] perfectly
secure solutions with improved communication complexity.

The above asynchronous protocols are secure—according to simpler, stand-alone security
definitions—if one assumes point-to-point communication and an A-BA protocol. Similarly to their
synchronous counterparts, all the above protocols—even assuming an A-BA primitive—have round
complexity linear in the multiplicative depth of the arithmetic circuit that computes the function, as
they follow the standard gate-by-gate evaluation paradigm.

Concurrently and independently, Cohen [17] put forth a protocol that is secure against a compu-
tationally bounded attacker statically corrupting up to t < n/3 parties and in which all parties run in
constant expected time. However, unlike ours, that protocol does not make black-box use of one-way
functions.

We note in passing that although in the synchronous setting BA implies broadcast, this is not
the case in the asynchronous setting. Indeed, Canetti and Rabin [14] provide an asynchronous BA
protocol tolerating t < n/3 malicious parties, which if every honest party terminates at the latest after
a poly-logarithmic number of rounds, securely implements asynchronous BA except with negligible
probability. A broadcast protocol with similar guarantees is provably impossible [22], and existence of
an asynchronous BA protocol which terminates in a strict constant number of rounds would contradict
the impossibility from [21, 19]. Similarly to the synchronous case, although solutions for asynchronous
BA with expected constant number of rounds exist [10, 14], using them in the above asynchronous
protocol to replace invocations to asynchronous BA would not yield an expected constant-round MPC
protocol [5].8

2 Model and Building Blocks

We denote the player set by P = {p1, . . . , pn} and consider a computationally bounded adaptive t-
adversary, i.e., the adversary gets to corrupt up to t parties dynamically during the protocol execution
and depending on its protocol view. The most common network model for the execution of asyn-
chronous protocols is secure channels with eventual delivery, where the adversary is allowed to delay
the delivery of any message by an arbitrary but finite amount of time, i.e., he is not able to block
messages sent among honest parties. Moreover, as argued in the introduction, existing asynchronous
protocols rely on an additional resource, namely, an asynchronous version of Byzantine agreement (A-
BA) instead of a broadcast channel, and such a resource is even necessary to obtain an (exact) constant

7The necessity of the t < n/3 bound follows from the result by Canetti et al. [4, 11], who argue that this bound is
necessary for fail-stop adversaries; it also applies to computational security and assuming A-BA. Moreover, note that in
the asynchronous setting, all feasibility bounds are worse by an additive term of t compared to the synchronous setting.
Intuitively, this stems from the fact that honest parties cannot distinguish between messages by other honest parties
being delayed and messages by corrupted parties not being sent. Thus, in particular, perfectly secure asynchronous MPC
is possible only if t < n/4.

8Nonetheless, [5] does describe an alternative way of obtaining several asynchronous BA protocols that are guaranteed
to all terminate in expected constant number of rounds.

3

number of rounds. We formalize this model and formulate the ideal functionalities corresponding to
these communication resources separately in Section 3.

We now present some basic tools we use in our protocol.

Secret sharing. Our construction makes use of Shamir’s secret sharing scheme [34], which allows
to encode a secret into n shares such that any subset of t shares gives no information about the secret
and such that from any subset of t+ 1 shares the secret can be reconstructed.

For a sharing of a secret s, let [s]i denote the ith share. A set of shares are called t-consistent if
they lie on a polynomial of degree at most t. For a tuple of secrets s = (s1, . . . , s`), denote—in slight
abuse of notation—by [s]i := ([s1]i, . . . , [s`]i) the tuple of the ith shares of the values and refer to it as
the ith share of s. A set of such tuples is called t-consistent if the property holds for all components.

A linear-round asynchronous MPC protocol. In [7], Ben-Or, Kelmer, and Rabin constructed a
protocol, call it πBKR, that computes an arbitrary n-party function f in an asynchronous environment
assuming asynchronous point-to-point (secure) channels and asynchronous BA.9 The protocol follows
the gate-by-gate evaluation paradigm [6, 25, 15], where the function to be evaluated is represented as
an arithmetic circuit over a sufficiently large finite field, and the computation proceeds by evaluating
sequentially the gates of depth one, then the gates of depth two, and so on. The evaluation of each
gate requires a constant number of (asynchronous) rounds,10 thus making the round complexity of the
overall protocol linear in the depth of the circuit.

πBKR was designed for a simpler, stand-alone security definition, which only ensures sequential
composition. In the next section we show how it can be cast in our eventual-delivery model to give
UC-security guarantees.

3 A UC Model for Asynchronous Computation with Eventual Mes-
sage Delivery

In this section we formalize the asynchronous network model with eventual message delivery in the
UC framework. We start with the basic task of point-to-point communication and proceed with
asynchronous SFE and BA. Note that the asynchronous model with evenutal delivery has previously
been treated only in the stand-alone model without composition. Moreover, while the plain UC
framework is inherently asynchronous, the adversary has full control over message delivery and may in
particular choose to delete messages sent between uncorrupted parties. That is, without the extensions
in this section, UC does not capture eventual delivery.

Asynchronous communication with eventual delivery. Our formulation of communication
with eventual delivery within the UC framework builds on ideas from [30]. In particular, we capture
such communication by allowing the parties access to multi-use bilateral secure channels, where a
sender pi ∈ P can input a messages to be delivered to some recipient pj ∈ P; messages are buffered
and delivered in an order specified by the adversary.

To ensure that when ps and pr are honest, the adversary cannot delay the delivery of submitted
messages arbitrarily, we make the following modifications: We first turn the UC secure channels
functionality to work in a “fetch message” mode, where the channel delivers the message to its intended
recipient pj if and only if pj asks to receive it by issuing a special “fetch” command. If the adversary
wishes to delay the delivery of some message, he needs to submit to the channel functionality an
integer value T—the delay. This will have the effect of the channel ignoring the first T fetch attempts
following the reception of the sender’s message. Importantly, we require the adversary send the delay

9[7] also assumes A-Cast to get a more efficient solution, but as argued in the introduction, A-Cast can be easily
reduced to asynchronous BA in two rounds.

10Note that in each such round the parties might invoke the asynchronous BA resource.

4

T in unary notation; this will ensure that the delay will be bounded by the adversary’s running time,11

and thus a polynomial environment will be able to observe the transmission through its completion.
To allow the adversary freedom in scheduling delivery of messages, we allow him to input delays more
than once, which are added to the current delay amount. (If the adversary wants to deliver the message
in the next activation, all he needs to do is submit a negative delay.)

The detailed specification of secure channels with eventual delivery, denoted Fa-smt, is given in
Figure 1. In the description, we denote by ~M a vector of strings. We also use || to denote the
operation which adds a string to ~M ; concretely, if ~M = (m1, . . . ,m`), then ~M ||m := (m1, . . . ,m`,m)
and m|| ~M = (m,m1, . . . ,m`).

Functionality Fa-smt(ps, pr)

Initialize D := 0 and ~M := (eom), where eom is a special “end-of-messages” symbol.

Upon receiving a message (send,m) from ps set D := D + 1 and ~M := (m,mid)|| ~M , where mid is a
unique message ID, and send (D,mid) to the adversary.

Upon receiving a message (fetch) from pr:

1. Set D := D − 1.
2. If D = 0 and ~M = ((m1,mid1), . . . , (m`,mid`), eom) then set ~M := ((m2,mid2), . . . ,

(m`,mid`), eom), and send the message m1 to pr (otherwise, no message is sent and the acti-
vation is given back to the environment, as defined in the UC framework).

Upon receiving a message (delay, T) from the adversary, if T is a valid delay (i.e., it encodes an integer
in unary notation), set D := max{1, D + T}; otherwise, ignore the message.

Upon receiving a message (permute, π) from the adversary, if π : [| ~M |−1]→ [| ~M |−1] is a permutation

over [| ~M | − 1], then set ~M := ~M ′ = ((mπ(1),midπ(1)), . . . , (mπ(`),midπ(`)), eom).

(Adaptive message replacement) Upon receiving a message (ps, ((m1,mid1), . . . , (m`′ ,mid`′)), T
′) from

A, if ps is corrupted and D > 0 and T ′ is a valid delay, then set D = max{1, T ′} and set ~M :=
((m1,mid1), . . . , (m`′ ,mid`′), eom).

Figure 1: Asynchronous secure channel with eventual delivery

We refer to the model in which every two parties pi and pj in P have access to an independent
instance of Fa-smt(pi, pj) as the Fa-smt-hybrid model. An asynchronous protocol in such a model
proceeds as follows: Whenever a party pj gets activated, if its current protocol instructions include
sending some message m to some other party pj , then the party inputs (send,m) to Fa-smt(pi, pj);
otherwise, pi sends a fetch message to every channel Fa-smt(pj , pi), j ∈ [n] in a round-robin fashion,
i.e., if in the previous activation it sent a (fetch) message to Fa-smt(pj , pi), then it sends a (fetch)
message to Fa-smt(p(j mod n)+1, pi).

Remark 1 (On permuting messages). Our formulation of an asynchronous channel captures the some-
what pessimistic view of asynchronous communication, implicit in many works on asynchronous dis-
tributed protocols, where the adversary has full scheduling power and can, in particular, reorder the
messages sent by any party as he wishes. One could attempt to emulate a network which does not allow
for reordering of the messages—the so-called first-in-first-out (FIFO) channel—by adding appropriate
(publicly known) message identifiers and instructing the parties to wait until a specific identifier is
delivered before outputting messages with other identifiers. However, we note that such an emulating
protocol would be distinguished from the original when, for example, we consider an adversary that
introduces no delay and an environment that inputs two messages in a row and corrupts the receiver
as soon as the first message is supposed to have been delivered.

11We refer to [12] for a formal definition of running time in the UC framework.

5

Functionality Ffa-sfe(P)

Ffa-sfe proceeds as follows, given a function f : ({0, 1}∗ ∪ {⊥})n × R → ({0, 1}∗)n and a player set P. For
each i ∈ P, initialize variables xi and yi to a default value ⊥ and a current delay Di := 0. Additionally,
set I := H. (Recall that H denotes the set of honest parties)

Upon receiving message (no-input,P ′) from the adversary, if |P ′| ≤ |P \H| and no party has received
an output (output, y) yet, then set I = H \ P ′; otherwise ignore this message.

Upon receiving input (input, v) from party pi ∈ P (or from the adversary in case pi is corrupted), do
the following:

• If some party (or the adversary) has received an output (output, y), then ignore this message;
otherwise, set xi := v.
• If xi 6=⊥ for every pi ∈ I, then compute (y1, . . . , yn) = f((x′1, . . . , x

′
n), r) for a uniformly random

r, where x′i = xi for pi ∈ I ∪ (P \ H) and x′i =⊥ for all other parties.
• Send (input, i) to the adversary.

Upon receiving (delay, pi, T), from the adversary, set Di := Di + T .

Upon receiving message (fetch) from party pi ∈ P, if yi has not yet been set (i.e., yi =⊥) then ignore
this message, else do:

• Set Di := Di − 1
• If Di = 0, send (output, yi) to pi.

Figure 2: Asynchronous SFE with eventual delivery

Asynchronous secure function evaluation (SFE). In an asynchronous environment, it is impos-
sible to get guaranteed (eventual) termination and input completeness, i.e, take into account all inputs
in the computation of the function (cf. [30] and early work on fault-tolerant distributed computing).
The reason is that if honest parties wait until the inputs of all parties are delivered, then the adversary
can make them wait indefinitely for corrupted parties to give their inputs (honest parties have no way
of distinguishing between an honest sender whose message is delayed and a corrupt sender who did not
send a message). Thus, to ensure eventual termination, the parties cannot afford to wait for input from
more than n− t parties, as the t remaining parties might be the corrupted ones. Therefore, protocols
for asynchronous computation of a multi-party function f on inputs x1, . . . , xn from parties p1, . . . , pn
end up computing the function f |P ′(x1, . . . , xn) = f(x′1, . . . , x

′
n) for some P ′ ⊆ P with |P ′| = t, where

x′i = xi if pi /∈ P ′, and otherwise a default value (denoted ⊥).
Moreover, by being able to schedule the delivery of messages from honest parties, the adversary can

(in worst-case scenarios) choose exactly the set P ′. Therefore, the ideal functionality corresponding to
asynchronous SFE with eventual termination needs to allow the simulator to choose this set depending
on the adversary’s strategy. Moreover, the simulator should be allowed to schedule delivery of the
outputs depending on the adversary’s strategy, but not allowed to delay them arbitrarily. This last
requirement can be achieved, as in the case of Fa-smt, by turning the SFE functionality into a “fetch
message”-mode functionality and allowing the simulator to specify a delay on the delivery to every
party.

The SFE functionality with the above properties is described in Figure 2. In the description, we
use H ⊆ P to denote the set of honest parties; note that H is dynamically updated as the adversary
corrupts new parties. Moreover, we use I to denote the set of honest parties whose input is allowed
to be considered in the computation, and require that |I| ≥ n− 2t. We provide a generic description
of the functionality for an arbitrary number t of corruptions; however, and as implied by classical
impossibility results, we are only able to realize it for t < n/3 [4].

6

Functionality Fa-ba(P)

For each i ∈ P, initialize variables xi and yi to a default value ⊥ and a current delay Di := 0. Additionally,
set I := H. (Recall that H denotes the set of honest parties)

Upon receiving message (no-input,P ′) from the adversary, if |P ′| ≤ |P \H| and no party has received
an output (output, y) yet, then set I = H \ P ′; otherwise ignore this message.

Upon receiving input (input, v) from party pi ∈ P (or from the adversary in case pi is corrupted), do
the following:

• If some party (or the adversary) has received an output (output, y), then ignore this message;
otherwise, set xi := v.
• If xi 6=⊥ for every pi ∈ I, then set (y1, . . . , yn) := (y, . . . , y), where if there exists x 6=⊥ such that
xi = x for every pi ∈ I, then y = x; otherwise y = xj , where pj is the party in P \ H with the
smallest index.
• Send (input, i) to the adversary.

Upon receiving (delay, pi, T), from the adversary, set Di := Di + T .

Upon receiving message (fetch) from party pi ∈ P, if yi has not yet been set (i.e., yi =⊥) then ignore
this message, else do:

• Set Di := Di − 1
• If Di = 0, send (output, yi) to pi.

Figure 3: Asynchronous BA with eventual delivery

Asynchronous BA with eventual delivery. The last primitive we describe is (UC) asynchronous
BA with eventual message delivery. In such a BA primitive, every party has an input, and we want to
ensure the following properties: All honest parties (eventually) output the same value y (consistency),
and if all honest parties have the same input x, then this output is y = x. Intuitively, asynchronous BA
can be cast as a version of asynchronous SFE for the function that looks at the set of received inputs
and, if all inputs contributed by honest parties are identical12 and equal to some x, sets the output
to x for every party; otherwise, it sets the output to the input of some corrupted party (for example,
the first in any ordering, e.g., lexicographic). The formal definition of Fa-ba is given in Figure 3.

We will refer to the setting where every two parties pi and pj in P have access to an independent
instance of Fa-smt(pi, pj) and, additionally, the parties have access to independent instances of Fa-ba(P)
as the {Fa-smt,Fa-ba}-hybrid model. The execution in the {Fa-smt,Fa-ba}-hybrid model is analogous to
the execution in the Fa-smt-hybrid model: Whenever a party pi gets activated, if its current protocol
instructions include sending some message m to some other party pj or inputing a message m′ to
Fa-ba(P), then the party inputs (send,m) to Fa-smt(pi, pj) or m′ to Fa-ba(P), respectively; otherwise,
pi keeps sending (with each activation) a fetch to every channel Fa-smt(pi, pj), j ∈ [n] and then to
Fa-ba(P) in a round-robin fashion.

Asynchronous rounds. We now briefly elaborate on the notion of rounds in an asynchronous
environment. Unlike the situation in the synchronous case, where rounds are well specified by the
protocol, the definition of rounds in an asynchronous setting requires a bit more care. Intuitively, two
messages mi and mj sent by some party pi in an asynchronous protocol are considered to be sent in
rounds i and j, j > i, if mj is generated by computation which takes as input a message received after
pi sent mi. Following the above intuition, we define for each pi and for each point in the protocol
execution, the current round in which pi is to be the number of times pi alternated between sending
(send,m) to some channel Fa-smt(pi, pj), pj ∈ P (or to the asynchronous BA functionality Fa-ba(P))
and sending (fetch) to some Fa-smt(pk, pi), pk ∈ P or to Fa-ba(P). That is, every round (except for

12Similarly to the SFE case, the adversary might prevent some of the honest parties from providing an input.

7

the first one)13 starts by sending a (send,m) to some Fa-smt(pi, pj) or to Fa-ba(P) after some (fetch)
was sent by pi and finishes with the first (fetch) command that pi sends. The round complexity of
the protocol is the maximum (over all honest parties) number of rounds that an honest party uses in
the protocol execution.

We note in passing that, similarly to [30], the above formulation allows for any party to send
several messages in each round: the party buffers the messages and while the buffer is not empty, in
each activation the party pops the next message and sends it to its intended recipient.

A UC-secure linear-round MPC protocol with eventual delivery. Finally, we argue the
security of protocol πBKR mentioned in Section 2 in our model. πBKR is information-theoretic and
proved simulation-based secure, where the simulation is in fact black-box (i.e., the simulator uses
the corresponding adversary in a black-box manner) and straight-line (the simulator does not rewind
the adversary). Moreover, the protocol tolerates any adaptive t-adversary where t < n/3, a bound
which is also tight [4]. Thus, by casting πBKR in our UC {Fa-smt,Fa-ba}-hybrid model—where every
bilateral message exchange is implemented by the sender pi and the receiver pj using (an instance of
the) channel Fa-smt(pi, pj) and every call to asynchronous BA done by invocation of Fa-ba(P)—we

obtain a protocol for UC securely evaluating Ffa-sfe(P), which is linear in the depth of the circuit
computing f . More formally:

Theorem 1 ([7]). Let f be an n-ary function and C be an arithmetic circuit for computing f by parties

in P. Then there exists a protocol, πBKR, which UC-securely realizes Ffa-sfe in the {Fa-smt,Fa-ba}-hybrid
model tolerating an adaptive t-adversary in a linear (in the depth of the circuit) number of rounds,
provided t < n/3.

4 Constant-Round Asynchronous SFE

In this section we present our asynchronous SFE protocol and prove its security and round complexity.

4.1 Description of the Protocol

Let Circ be a Boolean circuit that is to be evaluated in a multi-party computation. In our protocol for
securely evaluating the function that Circ computes, denoted πa-sfe(Circ,P), the parties first jointly
compute a garbled version of Circ (along the lines of [36, 1, 3]); every party then evaluates this garbled
circuit locally to obtain the output of the computation. Computing the garbled circuit takes place
in two phases: First, the parties evaluate a function fCircprep (described below) which is represented
by a constant-depth arithmetic circuit over a finite field using a (non-constant-round) asynchronous
MPC protocol. Given the outputs of this function, the parties can then complete the computation of
the garbled circuit within one additional asynchronous round.14 Since the evaluation of the garbled
circuit takes place locally and fCircprep is computed via a constant-depth circuit, the entire protocol is a
constant-round protocol.

We define and analyze our protocol in the {Ff
Circ
prep

a-sfe,Fa-smt}-hybrid model. Furthermore we provide

a protocol for UC securely realizing the functionality Ff
Circ
prep

a-sfe from asynchronous secure channels and
BA with eventual delivery based on πBKR [7] (cf. Lemma 2).

Circuit garbling. Before elaborating on the protocol, we describe what the garbled version of Circ
looks like.15 Boolean circuit Circ consists of wires and NAND gates.16 In the garbled version, every wire

13The first round starts as soon as the party receives its protocol input from the environment.
14Refer to Section 2 for a definition of asynchronous round complexity.
15Note that fCirc

prep actually computes a “distributed” version of the garbled circuit (described below).
16Any (arithmetic or Boolean) circuit can be efficiently transformed into such a circuit.

8

Function fCircprep((bω11 , . . . , bω1L1
), . . . , (bωn1 , . . . , bωnLn))

The preparation function is parameterized by a Boolean circuit Circ describing the function to be computed.
The wires of Circ are labeled by values ω ∈ N. We use Greek letters α, β, γ, ω for referring to the wire
labels.

Input. For every input wire ω, bω denotes the corresponding input bit.

Create Random Values. For each wire ω do:

1. For each i ∈ [n] choose a random sub-key kiω,0 ∈ Fn.
Set kω,0 := (k1ω,0, . . . , k

n
ω,0).

2. For each i ∈ [n] choose a random sub-key kiω,1 ∈ Fn.
Set kω,1 := (k1ω,1, . . . , k

n
ω,1).

3. Choose random mask mω ∈ {0, 1}.

Input Wires. For every input wire ω do:

1. Compute masked value zω := bω ⊕mω.

2. Choose corresponding key kω := kω,zω .

Compute Masked Function Tables. For every gate g with wires α, β, γ do:

1. For every x, y ∈ {0, 1} do:

(a) Compute masked value zxyγ := ((x⊕mα) NAND (y ⊕mβ))⊕mγ .

(b) Choose corresponding key kxyγ := kγ,zxyγ .

(c) Set txyg := (zxyγ , kxyγ) and Tg := (t00g , t
01
g , t

10
g , t

11
g).

2. Compute a Shamir sharing of Tg (i.e., of every entry).

Output. Proceed as follows:

(Public outputs) Output the following values to all players:

1. For every input wire ω: the masked value zω and the corresponding key kω.

(Private outputs) Output the following values to every pi ∈ P:

1. For every wire ω: the subkeys kiω,0 and kiω,1.

2. For every gate g: the ith share [Tg]i of Tg.

3. For every output wire ω: the mask mω if pi is to learn that output.

Figure 4: The description of function fCircprep corresponding to the distributed version of circuit garbling.

ω of Circ has a corresponding (secret) random mask mω, which is used to hide the real value on that
wire. Consequently, every gate g, with input wires α and β and output wire γ, has a special function
table Tg that works on masked values. It contains four entries zxyγ , corresponding to the masked value
on the outgoing wire γ under the four possible combinations of masked inputs x, y ∈ {0, 1} on wires
α and β. Each entry is obtained by unmasking the inputs, applying the gate function (NAND), and
re-masking the result with the mask of the outgoing wire. That is,

zxyγ = ((x⊕mα) NAND (y ⊕mβ))⊕mγ ,

for x, y ∈ {0, 1}.
The entries of each function table need to be protected so that only the one entry necessary to

evaluate the circuit can be accessed. To that end, for each wire ω there are two (secret) keys kω,0 and
kω,1. In the function tables Tg, each entry zxyγ is now augmented by the corresponding key kγ,zxyγ of

the outgoing wire γ. The pair txyg := (zxyγ , kγ,zxyγ) is encrypted with kα,x and kβ,y under the “tweak”
(g, x, y). The resulting ciphertexts

cxyg := Encg,x,ykα,x,kβ,y

(
txyg

)
= Encg,x,ykα,x,kβ,y

(
zxyγ , kγ,zxyγ

)
9

make up the garbled function table

Cg := (c00g , c
01
g , c

10
g , c

11
g),

where (EncTk1,k2 (·) ,DecTk1,k2 (·)) is a tweakable dual-key cipher. A suitable such cipher can be realized
using a PRF [3].17

In order to be compatible with the garbled function tables, inputs to the circuit must be garbled
as well. That is, for the input bit bω on input wire ω, the garbled input is zω := bω ⊕mω and the
corresponding key is kω := kω,zω .

With the garbled inputs and function tables, any party can (locally) evaluate the circuit as follows:
Given the masked values and the corresponding keys of the incoming wires of some gate, the party can
decrypt the corresponding row, obtaining the masked value on the outgoing wire and the corresponding
key. In the end, the values on the output wires can be unblinded if the corresponding masks are known.

Distributed encryption. Given the input bits bω for all input wires ω, computing the garbled cir-
cuit could be described by a constant-depth circuit, since the garbled function tables can be computed
in parallel after choosing the wire masks and keys. This circuit, however, would be rather large since
it entails evaluating the cipher. Therefore, to avoid evaluating the cipher within the asynchronous
MPC, the parties use the distributed-encryption technique by Damg̊ard and Ishai [18]: Instead of
computing EncTk1,k2 (m) for a message m, two keys k1 and k2, and a tweak T , the parties first jointly
choose 2n subkeys k11, . . . , k

n
1 and k12, . . . , k

n
2 , compute a Shamir sharing of m = ([m]1, . . . , [m]n), open

[m]i as well as ki1 and ki2 to pi for every i, and then each party encrypts its share [m]i of m using its
two subkeys ki1 and ki2 and sends the resulting ciphertext EncTk11 ,k12

([m]i) to all parties.

In order to decrypt, a party in possession of all keys recovers the shares by decrypting the cipher-
texts received from other players and waits until it has 2t + 1 t-consistent shares, which it uses to
reconstruct m.18

Asynchronously evaluating Boolean circuits. Protocol πBKR [7], which we wish to use to realize

Ff
Circ
prep

a-sfe, evaluates arithmetic circuits over fields with more than two elements; the circuit representing
fCircprep, however, is Boolean. Thus, in order to evaluate it via πBKR we transform it into an (arithmetic)
circuit over an extension field F of GF(2), denoted CF

fCircprep
, by having every NAND gate with inputs

x, y ∈ {0, 1} replaced by the computation 1 − xy, which can be implemented using addition and
multiplication over the extension field F . The above transformation, however, works only if all the
inputs to the circuit corresponding to bits in the Boolean circuit are either 0 or 1 in the corresponding
field F . For the honest parties this is easy to enforce: they encode a 0 (resp., 1) input bit into the 0
(resp., 1) element of F . The adversary, however, might try to cheat by giving “bad” inputs, namely,
inputs in F \ {0, 1}. We now show an explicit construction to ensure that the adversary cannot give
any value other than 0 or 1, resulting in a simple adaptation of protocol πBKR.19

Before describing the solution we recall the reader how πBKR evaluates a given circuit. We omit
several low-level details and keep the description at the level which is appropriate for a formal de-
scription of our adaptation; the interested reader is referred to [7] for further details. πBKR follows the
gate-by-gate evaluation paradigm [25, 6]: The circuit is evaluated in a gate-by-gate fashion, where the
invariant is that after the evaluation of each gate (in fact, of each bulk of gates that are at the same
multiplicative depth), the output of the gates is verifiably shared among all the parties. In fact, [7]

17The security required from such a cipher is roughly semantic security even if one of the keys is known (see [3] for
more details). Moreover, we assume a canonical injective mapping of triples (g, x, y) to the tweak space of the cipher.

18Our protocol ensures that each party eventually receives these many encrypted shares (see below).
19In principle, the arithmetic circuit “re-compiler” technique by Genkin et al. [23] could also be used for this purpose,

although it is not shown to work for πBKR nor be constant-depth. In addition, the functionality of the re-compiler is
richer, as it allows to restrict possible malicious strategies during the evaluation of the circuit, which is not needed here.

10

Protocol πa-sfe(Circ,P): Code for pi
First, mark all gates as unevaluated. Initialize empty variables zω and kω for every wire ω and mω for
every output wire ω accessible to pi. Initialize φ := 0 (phase indicator). Then, proceed as follows:

• Upon first activation with input b, input b to Ff
Circ
prep

a-sfe.

• Upon later activations:

– If φ = 0, check if output from Ff
Circ
prep

a-sfe received. If not, output (output) to Ff
Circ
prep

a-sfe and become
inactive. Otherwise, encrypt every gate g, with wires α, β, γ, as follows:

1. Output by functionality includes:

(a) Subkeys kiα,0 and kiα,1 as well as kiβ,0 and kiβ,1.

(b) Function table share [Tg]i = ([t00g]i, [t
01
g]i, [t

10
g]i, [t

11
g]i).

2. For x, y ∈ {0, 1}, compute cxy,ig := Encg,x,y
kiα,x,k

i
β,y

(
[txyg]i

)
.

3. Send Cig := (c00,ig , c01,ig , c10,ig , c11,ig) to all parties by invocation of Fa-smt(pi, pi), j ∈ [n].

Further, for all input wires ω, set zω and kω, to the values output by Ff
Circ
prep

a-sfe. Similarly, set

the masks mω for the (accessible) output wires to the values output by Ff
Circ
prep

a-sfe. Set φ := 1.

– If φ = 1, upon reception of any encryption, proceed as follows for every unevaluated gate
g, with incoming wires α and β and outgoing wire γ:

1. Let zα, zβ , and zγ be the masked bits and kα, kβ , and kγ the keys of the incoming
wires α and β and of the outgoing wire γ. If zα and zβ , are not defined yet, skip this
gate; else:

(a) For each ciphertext Cjg = (c00,jg , c01,jg , c10,jg , c11,jg) from a party pj , decrypt txy,jg :=

Decg,x,y
kjα,k

j
β

(
cxy,jg

)
for x = zα and y = zβ , thereby recovering jth shares of zγ and of

every entry of kγ = (k1γ , . . . , k
n
γ).

(b) Check if zγ and the entries of kγ can be safely computed by interpolation, i.e., if
there are at least 2t + 1 t-consistent shares for each value. If not, skip this gate.
Otherwise, interpolate and mark g as evaluated.

If all gates have been evaluated, output zω ⊕mω for all (accessible) output wires ω.

Figure 5: Our constant-round asynchronous SFE protocol in the {Ff
Circ
prep

a-sfe,Fa-smt}-hybrid model

defines the notion of Ultimate Secret Sharing (USS) which is a version of VSS that is appropriate for
asynchronous computation with t < n/3;20 More concretely, the first step is to process all input gates
in parallel (i.e., receive inputs from all parties); this step finishes with every party holding a share of
the input of each party pi. As already mentioned, due to asynchrony, the inputs of some, up to t,
(honest) parties might not be considered. The set Core of these parties whose inputs are considered
(the so-called core set [7, 4]) is decided by πBKR (and agreed upon by all parties) during the evaluation
of the input gates, while the input of the parties not in the core set is set to a default value, in our
case to 0 (i.e., a default USS of 0 is adopted as a sharing of these parties’ inputs [7]). Once any party
has agreed on the core set parties giving input, it goes on to the evaluation of the next gate (in fact,
of all gates which are one level deeper in the circuit in parallel).

Our modification to πBKR is as follows. For any party pj , as soon as pj has processed all input gates
(i.e., holds shares of inputs of all parties in the core set and default shares for the remaining parties),
and before any other gate of the arithmetic circuit is computed, pj does the following: For each party
we denote by x′i the value that is (eventually) shared as pi’s input when all parties have evaluated the

20USS is an adaptation of the bivariate-polynomial sharing technique [6, 32] to the asynchronous setting.

11

corresponding input gate, and denote by [x′i]j pj ’s share of this value.21

Now, instead of continuing to process the original circuit CF
fCircprep

, we use the following trick from [8],

which will allows us to enforce zero/one inputs. Each party uses the shared values x′i to compute the
circuit evaluating the following function: output ~c = (c1, . . . , cn), where ci = x′i−x′i

2 for each pi. Each
party that received the output ~c does the following:22 For each pi, if ci 6= 0, then the parties replace
the sharing of x′i with a default sharing of 0. (That is, as soon as pj receives the vector ~c, for each i
with ci 6= 0 pi replaces his share [xi]j of x′i with a default sharing of 0.) Once a party has completed
this step (and replaced his local shares), he continues the execution of πBKR with the modified shares
to compute the remainder of the circuit CF

fCircprep
.

We denote the above modification of protocol πBKR (in the Fa-ba(P)-hybrid world where calls to
A-BA are replaced by invocations of Fa-ba(P)) with the above mechanism for enforcing inputs in

{0, 1} by π
0/1
BKR. In order to evaluate the (Boolean) circuit for fCircprep, the parties execute π

0/1
BKR encoding

their inputs and outputs with the following trivial encoding: An input-bit 0 (resp., 1) is encoded as
the 0 (resp., 1) element in F , and output 0 (resp., 1) in F is decoded back to the bit 0 (resp., 1). The
following lemma states the achieved security.

Lemma 2. Protocol π
0/1
BKR for evaluating the circuit CF

fCircprep
with the above trivial encoding UC-securely

realizes Ff
Circ
prep

a-sfe.

sketch. First note that if the inputs of all (honest and corrupted) parties are 0 or 1 (in the arithmetic
field F), then the (decoded) output of CF

fCircprep
is the same as the output of the (Boolean) circuit for

fCircprep since all NAND gates with inputs x, y ∈ {0, 1} are computed by 1 − xy. Next, we argue that

π
0/1
BKR forces the inputs of the adversary to be 0 or 1 and does not modify the inputs of honest parties.

Indeed, an honest party pi in the core set will share inputs x′i ∈ {0, 1} and therefore ci = 0, which

means that his input sharing is not modified by π
0/1
BKR. The same holds for any corrupted party that

shares x′i = 0 or x′i = 1. On the other hand, any corrupted party sharing a value other than 0 or 1 will
result into an output ci 6= 0 (since the non-zero elements in F form a multiplicative group of order
|F | − 1) and its input will be set to 0.

Note that the eventual termination of πBKR ensures that all parties will eventually receive the
output vector c and will therefore resume the computation of the original circuit CF

fCircprep
, which (also

due to the eventual termination of πBKR) will terminate. The simulation of π
0/1
BKR is easily reduced to

the simulation of πBKR: The evaluation of the extra component that computes the ci’s can be easily
simulated as they are random sharings of 0 for all honest parties in the core set, and for corrupted
parties they are functions of the sharing of x′i that the adversary creates in the input-processing phase,
which for corrupted parties is fully simulatable. For the rest of the simulation, the simulator simply
uses the πBKR simulator. Thus the indistinguishability of the simulation follows from the security of
πBKR.

Putting things together. The detailed description of protocol πa-sfe(Circ,P) is presented in Fig-

ure 5. As already said, we describe the protocol in the Ff
Circ
prep

a-sfe-hybrid model, where Ff
Circ
prep

a-sfe can be

replaced with π
0/1
BKR using Lemma 2 and the universal composition theorem. At a high-level, the proto-

col proceeds as follows: In the first phase, the parties send their inputs to the functionality Ff
Circ
prep

a-sfe. The
(randomized) function fCircprep chooses the random masks, the subkeys, and computes Shamir sharings
of the masked function tables (which are the values that need to be encrypted). Moreover, based
on the inputs, it computes the masked value and the corresponding key of every input wire. The

21By the USS property, at this point pi is committed to x′i but the adversary has no information on it, i.e., the
adversary holds random shares of a USS of xi.

22Observe that the eventual delivery property ensures that every party will eventually receive the output.

12

formal specification of fCircprep can be found in Figure 4. The fact that Ff
Circ
prep

a-sfe can be evaluated by a
constant-depth circuit is illustrated in Figure 6 in Appendix C, which provides a diagram describing
the structure of such a circuit. Each of the rectangles corresponds to a collection of independent
constant-depth circuits that are evaluated in parallel.

In the second phase of the protocol, as soon as a party receives output from Ff
Circ
prep

a-sfe, it encrypts all
the shares obtained using the appropriate subkeys and sends the resulting ciphertexts to all parties,
as shown in Figure 5. Then, it proceeds to locally evaluate the gates. For each gate, the party waits
for ciphertexts from other parties and decrypts them. For a specific entry in the function table, the
party has to wait until it has 2t+ 1 t-consistent shares of that entry (see again Figure 5).23 Note that

since all of the at least 2t+ 1 honest parties are guaranteed to obtain an output from Ff
Circ
prep

a-sfe, they will
all properly encrypt their function tables and send out the resulting ciphertexts. Therefore, the wait
for 2t+ 1 t-consistent shares is finite.

4.2 Analysis of the Protocol

Theorem 3. Let Circ be a given boolean circuit and fCirc be the n-party function computed by Circ. Pro-

tocol πa-sfe(Circ,P) securely realizes FfCirca-sfe in the {Ff
Circ
prep

a-sfe,Fa-smt}-hybrid model tolerating an adaptive
adversary who corrupts up to t < n/3 of the parties and making black-box use of a PRF.

A full proof of Theorem 3 can be found in Appendix B. Here we only provide a high-level sketch.

sketch. The output of each party from the evaluation of Ff
Circ
prep

a-sfe contains (among other things) a t-out-

of-n sharing of the garbled circuit for computing function fCirc. After receiving the output from Ff
Circ
prep

a-sfe

and encrypting as described in Figure 5, the only time the parties have to wait is for the encryptions of
2t+ 1 t-consistent shares of garbled function-table entries from other parties. Since all of the at least

2t + 1 honest parties are guaranteed to obtain an output from Ff
Circ
prep

a-sfe, they will all properly encrypt
their function tables and send out the resulting ciphertexts at some point. Therefore, the wait for
2t+ 1 t-consistent shares is finite.

Moreover, the adversary cannot make an honest party accept a wrong value for any entry of the
garbled gate: Observe that in any set of 2t + 1 shares that a party receives, at least t + 1 are from
honest parties. These t + 1 shares uniquely define the degree-t sharing polynomial F and, therefore,

they can only be combined with correct shares (as output by Ff
Circ
prep

a-sfe). This implies that wrong shares
sent by the adversary cannot make any honest party choose any other polynomial than F .

The simulator S for an adversary A roughly proceeds as follows: It emulates towards A the

behavior of Ff
Circ
prep

a-sfe and the channels Fa-smt. The security of the circuit-garbling technique and that
of Shamir sharings allows S to perfectly simulate the entries of the garbled function tables that one
would decrypt during a local evaluation of the garbled circuit, even without knowing the actual inputs.
Moreover, the security of the double-key cipher ensures that the remaining entries are hidden, and can
thus be replaced by dummy values (which can again be done without knowing the inputs) without
causing a noticeable difference in the view of A.

We now turn to the analysis of the protocol’s round complexity. It is straightforward to verify

that our protocol (assuming hybrid Ff
Circ
prep

a-sfe) needs only two communication rounds for each party pi:
one round in which pi sends its inputs to the functionality and receives its outputs, and one round
in which pi sends all its corresponding encryptions and receives the encryptions of other parties.
Moreover, the function fCircprep can be represented by an arithmetic circuit Prep over a finite field F
with constant (multiplicative) depth: The players first jointly generate the subkeys and the masks.
A straightforward method for generating a random field element (such as the subkeys) is to take a

23Note that using the Berlekamp-Welch algorithm, this can be achieved efficiently.

13

random input from every party and computing the sum. Generating a random bit b ∈ {0, 1} ⊆ F
can be reduced to generating random field elements as shown by Genkin et al. [23]. Given the masks
and the subkeys, computing the function table and a Shamir sharing thereof can clearly be done in
constant depth and, most importantly, in parallel for every gate.

Combining the above and Theorem 3 with Theorem 1 yields the following corollary:

Corollary 4. Let Circ be a given boolean circuit and fCirc be the n-party function computed by Circ.
There exists a constant-round protocol which securely realizes FfCirca-sfe in the {Fa-ba,Fa-smt}-hybrid
model tolerating an adaptive adversary who corrupts up to t < n/3 of the parties and making black-box
use of a PRF.

14

References

[1] Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols (extended abstract).
In: STOC. pp. 503–513. ACM (1990)

[2] Beerliová-Trub́ıniová, Z., Hirt, M.: Simple and efficient perfectly-secure asynchronous mpc. In:
Kurosawa, K. (ed.) ASIACRYPT. Lecture Notes in Computer Science, vol. 4833, pp. 376–392.
Springer (2007)

[3] Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: the ACM Conference
on Computer and Communications Security, CCS’12, Raleigh, NC, USA, October 16-18, 2012.
pp. 784–796 (2012), http://doi.acm.org/10.1145/2382196.2382279

[4] Ben-Or, M., Canetti, R., Goldreich, O.: Asynchronous secure computation. In: STOC. pp. 52–61
(1993)

[5] Ben-Or, M., El-Yaniv, R.: Resilient-optimal interactive consistency in constant time. Distributed
Computing 16(4), 249–262 (2003), http://dx.doi.org/10.1007/s00446-002-0083-3

[6] Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-
tolerant distributed computation (extended abstract). In: STOC. pp. 1–10 (1988)

[7] Ben-Or, M., Kelmer, B., Rabin, T.: Asynchronous secure computations with optimal resilience
(extended abstract). In: PODC. pp. 183–192 (1994)

[8] Boneh, D., Goh, E.J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In: Kilian, J. (ed.)
TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Berlin, Germany, Cambridge, MA, USA
(Feb 10–12, 2005)

[9] Bracha, G.: An asynchronou [(n-1)/3]-resilient consensus protocol. In: Probert, R.L., Lynch,
N.A., Santoro, N. (eds.) 3rd ACM PODC. pp. 154–162. ACM Press, Vancouver, British Columbia,
Canada (Aug 27–29, 1984)

[10] Cachin, C., Kursawe, K., Shoup, V.: Random oracles in Constantinople: Practical asynchronous
byzantine agreement using cryptography. Journal of Cryptology 18(3), 219–246 (Jul 2005)

[11] Canetti, R.: Studies in Secure Multiparty Computation and Applications. Ph.D. thesis, Weizmann
Institute of Technology, (http://www.wisdom.weizmann.ac.il/ oded/PSX/ran-phd.pdf (6 1995)

[12] Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. In:
42nd FOCS. pp. 136–145. IEEE Computer Society Press, Las Vegas, Nevada, USA (Oct 14–17,
2001)

[13] Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively secure multi-party computation. In:
28th ACM STOC. pp. 639–648. ACM Press, Philadephia, Pennsylvania, USA (May 22–24, 1996)

[14] Canetti, R., Rabin, T.: Fast asynchronous byzantine agreement with optimal resilience. In: 25th
ACM STOC. pp. 42–51. ACM Press, San Diego, California, USA (May 16–18, 1993)

[15] Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols (extended
abstract). In: STOC. pp. 11–19 (1988)

[16] Choi, S.G., Katz, J., Malozemoff, A.J., Zikas, V.: Efficient three-party computation from cut-and-
choose. Cryptology ePrint Archive, Report 2014/128 (2014), http://eprint.iacr.org/2014/

128

15

http://doi.acm.org/10.1145/2382196.2382279
http://dx.doi.org/10.1007/s00446-002-0083-3
http://eprint.iacr.org/2014/128
http://eprint.iacr.org/2014/128

[17] Cohen, R.: Asynchronous secure multiparty computation in constant time. In: Public-Key Cryp-
tography - PKC 2016 - 19th IACR International Conference on Practice and Theory in Public-
Key Cryptography, Taipei, Taiwan, March 6-9, 2016, Proceedings, Part II. pp. 183–207 (2016),
http://dx.doi.org/10.1007/978-3-662-49387-8_8

[18] Damg̊ard, I., Ishai, Y.: Constant-round multiparty computation using a black-box pseudorandom
generator. In: Shoup, V. (ed.) CRYPTO. Lecture Notes in Computer Science, vol. 3621, pp. 378–
394. Springer (2005)

[19] Dolev, D., Strong, H.R.: Authenticated algorithms for byzantine agreement. SIAM J. Comput.
12(4), 656–666 (1983), http://dx.doi.org/10.1137/0212045

[20] Feldman, P., Micali, S.: Optimal algorithms for byzantine agreement. In: 20th ACM STOC. pp.
148–161. ACM Press, Chicago, Illinois, USA (May 2–4, 1988)

[21] Fischer, M.J., Lynch, N.A.: A lower bound for the time to assure interactive consistency. Inf.
Process. Lett. 14(4), 183–186 (1982), http://dx.doi.org/10.1016/0020-0190(82)90033-3

[22] Fischer, M.J., Lynch, N.A., Paterson, M.: Impossibility of distributed consensus with one faulty
process. In: Fagin, R., Bernstein, P.A. (eds.) Proceedings of the Second ACM SIGACT-SIGMOD
Symposium on Principles of Database Systems, March 21-23, 1983, Colony Square Hotel, Atlanta,
Georgia, USA. pp. 1–7. ACM (1983), http://doi.acm.org/10.1145/588058.588060

[23] Genkin, D., Ishai, Y., Prabhakaran, M., Sahai, A., Tromer, E.: Circuits resilient to additive
attacks with applications to secure computation. In: Symposium on Theory of Computing, STOC
2014, New York, NY, USA, May 31 - June 03, 2014. pp. 495–504 (2014), http://doi.acm.org/
10.1145/2591796.2591861

[24] Goldreich, O.: Foundations of Cryptography: Basic Applications, vol. 2. Cambridge University
Press, Cambridge, UK (2004)

[25] Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem
for protocols with honest majority. In: STOC. pp. 218–229. ACM (1987)

[26] Hirt, M., Nielsen, J.B., Przydatek, B.: Cryptographic asynchronous multi-party computation
with optimal resilience (extended abstract). In: Cramer, R. (ed.) EUROCRYPT. Lecture Notes
in Computer Science, vol. 3494, pp. 322–340. Springer (2005)

[27] Hirt, M., Nielsen, J.B., Przydatek, B.: Asynchronous multi-party computation with quadratic
communication. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A.,
Walukiewicz, I. (eds.) ICALP (2). Lecture Notes in Computer Science, vol. 5126, pp. 473–485.
Springer (2008)

[28] Hirt, M., Zikas, V.: Adaptively secure broadcast. In: Gilbert, H. (ed.) EUROCRYPT 2010.
LNCS, vol. 6110, pp. 466–485. Springer, Berlin, Germany, French Riviera (May 30 – Jun 3, 2010)

[29] Katz, J., Koo, C.Y.: On expected constant-round protocols for byzantine agreement. In: Dwork,
C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 445–462. Springer, Berlin, Germany, Santa Barbara,
CA, USA (Aug 20–24, 2006)

[30] Katz, J., Maurer, U., Tackmann, B., Zikas, V.: Universally composable synchronous computation.
In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 477–498. Springer, Berlin, Germany, Tokyo,
Japan (Mar 3–6, 2013)

16

http://dx.doi.org/10.1007/978-3-662-49387-8_8
http://dx.doi.org/10.1137/0212045
http://dx.doi.org/10.1016/0020-0190(82)90033-3
http://doi.acm.org/10.1145/588058.588060
http://doi.acm.org/10.1145/2591796.2591861
http://doi.acm.org/10.1145/2591796.2591861

[31] Pfitzmann, B., Waidner, M.: Unconditional byzantine agreement for any number of faulty pro-
cessors. In: Finkel, A., Jantzen, M. (eds.) STACS 92, 9th Annual Symposium on Theoretical
Aspects of Computer Science, Cachan, France, February 13-15, 1992, Proceedings. Lecture Notes
in Computer Science, vol. 577, pp. 339–350. Springer (1992), http://dx.doi.org/10.1007/

3-540-55210-3_195

[32] Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with honest majority
(extended abstract). In: 21st ACM STOC. pp. 73–85. ACM Press, Seattle, Washington, USA
(May 15–17, 1989)

[33] Schneider, T., Zohner, M.: GMW vs. Yao? efficient secure two-party computation with low
depth circuits. In: Sadeghi, A.R. (ed.) FC 2013. LNCS, vol. 7859, pp. 275–292. Springer, Berlin,
Germany, Okinawa, Japan (Apr 1–5, 2013)

[34] Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

[35] Yao, A.C.C.: Protocols for secure computations (extended abstract). In: FOCS. pp. 160–164.
IEEE (1982)

[36] Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: FOCS. pp. 162–167.
IEEE (1986)

A History and Related Work (cont’d)

Here we provide a fuller account of related work and put our results in perspective. To give a more
complete picture, we start by discussing the development of MPC protocols in the synchronous setting,
and then contrast it with the development in the asynchronous setting. Along the way we also discuss
the tools (e.g., setup assumptions and communication resources) that are used in each setting.

Starting with Yao’s seminal paper [35], which introduced the problem of MPC and provided the first
solution, a long line of interesting results proved feasibility bounds for synchronous networks in various
adversarial settings. Goldreich, Micali, and Wigderson [25, 24] proved that under computational
assumptions (the existence of enhanced trapdoor permutations), any n-party function can be securely
computed if and only if up to t < n parties are corrupted passively or up to t < n/2 actively.
Corresponding bounds for information-theoretic security were shown by Ben-Or, Goldwasser, and
Wigderson [6], who proved that perfect security is possible if and only if the adversary corrupts up
to t < n/2 parties passively or up to t < n/3 actively. Similar bounds where concurrently proved by
Chaum, Crépeau, and Damg̊ard [15] for the case where a negligible error-probability is allowed and
were later improved by Rabin and Ben-Or [32] to achieve optimal resiliency t < n/2.

The above works assume point-to-point secure communication and a broadcast channel and, under
these assumptions, are secure even against an adaptive adversary [13]. However, in [25, 24] both
these resources can be implemented with adaptive security assuming a public-key infrastructure and
non-committing encrpytion [13, 28]. Similarly, the broadcast channel in [6, 15, 32] can be emulated
by an adaptively secure broadcast protocol [28].24 The round complexity of all the above protocols
in the malicious multi-party setting—even with the assumption of a broadcast channel—is linear in
the multiplicative depth of the arithmetic circuit corresponding to the function the parties aim to
compute.

Beaver, Micali, and Rogaway [1] were the first to provide a constant-round MPC protocol in the
synchronous stand-alone model. Their protocol is secure in the computational setting and tolerates an
adaptive adversary who actively corrupts up to t < n/2 parties. The complexity of [1] was improved

24Because [32] tolerates even n/3 ≤ t < n/2 corrupted parties, the emulation of broadcast would require an additional
setup of information-theoretic pseudo-signatures [31].

17

http://dx.doi.org/10.1007/3-540-55210-3_195
http://dx.doi.org/10.1007/3-540-55210-3_195

by Damg̊ard and Ishai [18], who provided the first constant-round protocol making black-box use
of the underlying cryptographic primitive (a pseudo-random generator). Importantly, both [1] and
[18] assume a broadcast channel, an assumption essential for obtaining constant-round MPC. Indeed,
as proved in [21, 19], it is impossible to implement such a broadcast channel from point-to-point
communication in a constant number of rounds, and although expected constant-round broadcast
protocols exist in the literature (e.g., [20, 29]), using them to instantiate calls within the constructions
of [1] or [18] would not yield an expected constant-round protocol [5]. The intuitive reason—formally
argued by Ben-Or and El-Yaniv [5]—is that the process of running n such broadcast protocols (even
in parallel) does not terminate in an expected constant number of rounds.

The model of asynchronous communication with eventual delivery was considered early on in
seminal works on fault-tolerant distributed computing (e.g., [22]). The study of optimally resilient
MPC in such an asynchronous network was initiated by Ben-Or, Canetti, and Goldreich [4], who
proved that any function can be computed by a perfectly secure asynchronous protocol if and only if
at most t < n/4 parties are corrupted. Following that result, Ben-Or, Kelmer, and Rabin [7] showed
that if a negligible error probability is allowed, the bound t < n/3 is necessary and sufficient for
asynchronous MPC.25 More recently, Hirt et al. [26, 27] provided computationally secure solutions
(i.e., protocols tolerating a computationally bounded adversary) and Beerliová and Hirt [2] perfectly
secure solutions with improved communication complexity.

The above asynchronous protocols are secure if one assumes point-to-point communication and an
A-BA protocol. Similarly to their synchronous counterparts, all the above protocols—even assuming
an A-BA primitive—have round complexity linear in the multiplicative depth of the arithmetic circuit
that computes the function, as they follow the standard gate-by-gate evaluation paradigm.

We note in passing that although in the synchronous setting BA implies broadcast, this is not
the case in the asynchronous setting. Indeed, Canetti and Rabin [14] provide an asynchronous BA
protocol tolerating t < n/3 malicious parties, which if every honest party terminates at the latest after
a poly-logarithmic number of rounds, securely implements asynchronous BA except with negligible
probability. A broadcast protocol with similar guarantees is provably impossible [22], and existence of
an asynchronous BA protocol which terminates in a strict constant number of rounds would contradict
the impossibility from [21, 19]. Similarly to the synchronous case, although solutions for asynchronous
BA with expected constant number of rounds exist [10, 14], using them in the above asynchronous
protocol to replace invocations to asynchronous BA would not yield an expected constant-round MPC
protocol [5].26

Finally, if one gives up the requirement that the broadcast protocol (eventually) terminates when
the sender is corrupted (this results in a primitive known as A-Cast [9]), then one can implement it
even in a constant number of rounds. (In fact, A-Cast can be easily reduced to asynchronous BA by
having the sender send his input to all parties, who then forward this input as soon as it is received
to the asynchronous BA primitive).

B Full Security Proof

Theorem 3. Let Circ be a given boolean circuit and fCirc be the n-party function computed by Circ. Pro-

tocol πa-sfe(Circ,P) securely realizes FfCirca-sfe in the {Ff
Circ
prep

a-sfe,Fa-smt}-hybrid model tolerating an adaptive
adversary who corrupts up to t < n/3 of the parties and making black-box use of a PRF.

25The necessity of the t < n/3 bound follows from the result by Canetti et al. [4, 11], who argue that this bound is
necessary for fail-stop adversaries; it also applies to computational security and assuming A-BA. Moreover, note that in
the asynchronous setting, all feasibility bounds are worse by an additive term of t compared to the synchronous setting.
Intuitively, this stems from the fact that honest parties cannot distinguish between messages by other honest parties
being delayed and messages by corrupted parties not being sent. Thus, in particular, perfectly secure asynchronous MPC
is possible only if t < n/4.

26Nonetheless, [5] does describe an alternative way of obtaining several asynchronous BA protocols that are guaranteed
to all terminate in expected constant number of rounds.

18

Proof. We prove the security of the protocol in the setting where the parties have hybrid access to

the asynchronous secure channels Fa-smt and a functionality Ff
Circ
prep

a-sfe for computing the function fCircprep

(Figure 4). The security of the protocol follows then from the universal composition theorem, by
replacing the ideal computation of fCircprep with the asynchronous MPC protocol from [7].

First we argue correctness of the protocol’s output and guaranteed termination. The output of

each party from the evaluation of Ff
Circ
prep

a-sfe contains (among other things) a t-out-of-n sharing of the

garbled circuit for computing function fCirc. After receiving the output from Ff
Circ
prep

a-sfe and encrypting as
described in Figure 5, the only time the parties have to wait is for the encryptions of 2t+1 t-consistent
shares of function-table entries from other parties. Since all of the at least 2t + 1 honest parties are

guaranteed to obtain an output from Ff
Circ
prep

a-sfe, they will all properly encrypt their function tables and
send out the resulting ciphertexts at some point. Therefore, the wait for 2t+ 1 t-consistent shares is
finite.

Moreover, the adversary cannot make an honest party accept a wrong value for any entry of the
garbled gate: Observe that in any 2t + 1 shares that a party receives, at least t + 1 have to be from
honest parties. These t + 1 shares uniquely define the degree-t sharing polynomial F and, therefore,

they can only be combined with correct shares (as output by Ff
Circ
prep

a-sfe). This implies that wrong shares
sent by the adversary cannot make any honest party choose any other polynomial than F .

The simulator S. Let A be an adversary attacking the protocol. We will use ωj` to denote the
`th input wire of pj . The simulator S uses A in a straight-line black-box manner where it emulates

towardsA the behavior of Ff
Circ
prep

a-sfe and all Fa-smt channels. Moreover, the simulator keeps for each honest
party pi a simulated view for pi, which is initially empty. The core component of the simulation lies in
simulating the values that the adversary sees of a garbled circuit. However, S does not know the inputs
of honest parties. Hence, S has to come up with a sharing of a “fake” circuit which is indistinguishable
from the original circuit. We handle this as follows: S uses 0 for each of the honest parties’ input bits.
While this will cause the output to be different than in the real execution (where the correct inputs
are used) S can correct this by modifying the masks of the output gates of the circuit to correspond
to the correct output. The security of the encryption scheme guarantees that these modified selection
bits do not provide the adversary with any distinguishing advantage. The details of the simulation
follow (w.l.o.g. assume that the input wires are labeled as 1, . . . , N):

• For each (simulated) honest party pi, the simulator initializes pi’s phase indicator φ̃i := 0. S
also sets H̃ to be the set of honest parties (H̃ is updated with any new corruption requests) and
initializes P̃ ′ := ∅.

• First S internally emulates an invocation of Ff
Circ
prep

a-sfe. When a corrupted party pj hands input b
for input-wire ωj` , if φ̃i = 0 for all i ∈ [n], then the simulator sets b̃ωj` = b and hands b̃ωj` to its

ideal functionality FfCirca-sfe; otherwise, S ignores the new input. If A requests to corrupt a new
party pi, then S corrupts this party, and if pi has already received input bωi` for any wire ωi`
from the environment, then S hands bωi` to A.

• Any delay A sends to S for Ff
Circ
prep

a-sfe, S takes it into account in its internal emulation of Ff
Circ
prep

a-sfe. Any
delay Di (for an honest party pi) which A sends to S for delaying a secure channel Fa-smt(pj , pi),
the simulator takes it into account in the simulation of this channel.

• If, at any point in the simulation of Ff
Circ
prep

a-sfe, A sends (NoInput,P ′) to S, then if |P ′| ≤ |P \ H|
and φ̃i := 0 for all i ∈ [n], the simulator sets P̃ ′ := P ′ and sends (NoInput, P̃ ′) to its own ideal

functionality Ff
Circ
prep

a-sfe (otherwise this message is ignored).

19

• At the point where the simulated execution of Ff
Circ
prep

a-sfe generates the first output towards a (sim-

ulated) honest party or the adversary, S completes the emulation of the internal state of Ff
Circ
prep

a-sfe

as follows: (Observe that FfCirca-sfe, i.e., the actual ideal functionality we are realizing, informs the
simulation whenever a new input or an ignored fetch-request is issued by by some honest party;
hence, because the simulator knows the exact delays the adversary imposes on the delivery of

Ff
Circ
prep

a-sfe, it can simulate the point in which Ff
Circ
prep

a-sfe will generate output.)

– For every input wire ωi` of any (still) honest party pi, S sets the corresponding (simulated)
input to b̃ωi` := 0.

– For every input wire ωi` of any party pi := P̃ ′, S (re)sets the corresponding (simulated)
input to a default value b̃ωi` := 0.

– For every circuit-wire ω, the simulator chooses all the sub-keys and masks m̃ω uniformly at

random, as Ff
Circ
prep

a-sfe would.

– Furthermore, S evaluates fCircprep on the chosen inputs. For each party pi let oi1 , . . . , oiLi
denote the labels of the output wires associated to pi and let z̃oi`

denote the corresponding

masked output-bit.

– S hands its own functionality FfCirca-sfe the inputs of corrupted parties and provides enough
fetch requests to receive the outputs of corrupted parties. For each corrupted party pi, let
yoi1 , . . . , yoiQi

denote the outputs that FfCirca-sfe generates for pi; for each ` ∈ [Qi], S (re)sets

m̃oi`
:= z̃oi`

⊕ yoi` ; furthermore, S sets φ̃i := 1.

Analogous to our protocol notation, for every party pi we denote pi’s simulated output from

Ff
Circ
prep

a-sfe as follows (note that the simulated output of honest parties exists only in the simulator’s
head):

1. Subkeys k̃iα,0 and k̃iα,1 as well as k̃iβ,0 and k̃iβ,1.

2. Function table share [T̃g]i = ([t̃00g]i, [t̃
01
g]i, [t̃

10
g]i, [t̃

11
g]i).

3. For every output wire oi` of pi: the mask m̃oi`
if pi is to learn that output.

4. (same for every party) For every input wire ω ∈ [N]: the masked value z̃ω and the corre-
sponding key k̃ω

• As soon as in the simulation any (simulated) honest party pi received his output, the sim-
ulator adds this output to his simulated view of pi, sets φ̃i := 1 for all (x, y) ∈ {0, 1}2
and computes c̃xy,ig := Encg,x,y

k̃iα,x,k̃
i
β,y

(
[t̃xyg]i

)
for each (x, y) ∈ {0, 1}. Subsequently, S computes

C̃ig := (c̃00,ig , c̃01,ig , c̃10,ig , c̃11,ig) and emulates sending C̃ig to all parties (towards the adversary).

• For every (simulated) honest party for which φ̃i = 1 and who (in the simulation) receives a new
encryption (from another simulated honest party or from the adversary on behalf of corrupted
parties), the simulator does the following for each gate g, with wires α, β, γ:

1. Let z̃α, z̃β, and z̃γ , be the masked bits and k̃α, k̃β, and k̃γ the keys of the wires α and β,

and γ, respectively. If in the simulated view of pi k̃α and k̃β are not defined yet, skip this
gate; else

(a) S keeps track of the number of simulated encryption-shares for g that are delivered to
pi by simulated honest parties; denote this number by ñgi . Observe that the simulator
can do that, as he is simulating (as above) the point when any honest party sends an
encryption to another honest party, and he also knows, by its interaction with A, the
accumulated delay. In addition, the simulator keeps track of the number ρ̃gi of correct

20

encryption shares corresponding to adversarial senders (S marks an encryption share
that A sends as correct if it decrypts to the correct plaintext given the corresponding
key—the correct plaintext and key are known to S as they are part of A’s output in

the simulated Ff
Circ
prep

a-sfe). As soon as ñgi + ρ̃gi ≥ 2t+ 1, S includes the simulated z̃γ and of

k̃γ = (k1γ , . . . , k
n
γ).

2. If for all the outgoing wires of output gates corresponding to pi the key and mask have been
set, then S instructs the ideal functionality FfCirca-sfe to deliver pi’s output in the next request
by sending an appropriate negative delay so that the accumulated delay becomes 0.

• Any output of the adversary to its environment is forwarded by S to the environment. Similarly,
any message of Z for the adversary is forwarded by S to A.

This completes the description of the simulator.

In the following we argue that S is a good simulator. Towards this direction we follow the idea of
the proof from [16]. Concretely, we define the following hybrid experiments Hybrid1 and Hybrid2

as follows:

• Hybrid1 is the experiment where the simulation behave as above, but is given oracle access to

the inputs of honest parties and uses them in the emulation of the hybrid Ff
Circ
prep

a-sfe.

• Hybrid2 is similar to Hybrid1 with the difference that instead of counting the correct
encryption-shares that a simulated honest party pi with φ̃i would receive, the simulator uses
the actual code of φ̃i for updating its state.

Lemma 5. The ideal experiment Ideal is indistinguishable from the hybrid experiment Hybrid1.

sketch. The information seen by the adversary in Hybrid1 is identical as in an experiment where the
two party semi-honest protocol by Choi et al. [16, Figure 3] is executed between an honest P1 (circuit
generator) who plays on behalf of honest parties, generates the circuit, and hands it to the adversary,
and an adversaria P2. The strategy of our simulator for simulating this P1 is identical to the simulation
strategy from [16, Theorem 3] with the only difference being the extra timing consideration. Thus by
a similar series of hybrids as in [16, Theorem 3] we can prove that Hybrid1 is indistinguishable from
the ideal experiment Ideal. The sequence of hybrids and formal argument is nearly identical to the
ones use in the proof in [16, Theorem 3] and is therefore not repeated.

Lemma 6. The hybrid experiment Hybrid1 is indistinguishable from the hybrid experiment Hybrid2.

Proof. To prove this statement it suffices to prove that the simulator allows delivery of the output to
honest parties at the same time (indeed, any other information exchanged in the protocol is identical
in the two hybrids. To this direction we observe that a gate is evaluated by pi in the protocol if and
only pi receives 2t + 1 decryptions lying in the correct sharing polynomial. However, all (emulated)
decryptions from honest parties will lie on the same sharing polynomial F (of degree t) that S chose

when emulating Ff
Circ
prep

a-sfe. Because t + 1 out of the 2t + 1 shares that pi awaits for have to be from
honest parties (since there are at most t corrupted parties) the set of 2t + 1 parties whose share is
taken into account in the reconstruction must consist of either honest parties or corrupted parties who
sent correct encryptions. Thus in Hybrid2 the simulator will consider any gate evaluated as soon as
corresponding correct encryptions from n honest and n′ corrupted parties with n+ n′ = 2t+ 1 arrive
which is the same rule as the one used in Hybrid1.

Lemma 7. The hybrid experiment Hybrid2 is indistinguishable from the real experiment Real.

21

Proof. In Hybrid2 the outputs from the emulation of Ff
Circ
prep

a-sfe are distributed identically as the outputs

from the invocation of Ff
Circ
prep

a-sfe in the real experiment Real (since the same inputs are used). Fur-
thermore, the simulator faithfully executes the instructions of any honest pi in his simulation. Hence
Hybrid2 and Real are identically distributed.

22

C Figures

Inputs Create random keys and masks

Compute masked inputs and keys Compute function tables and sharings

Outputs

Figure 6: Bird’s-eye view of the arithmetic circuit Prep computing function fCircprep. Each box represents
a constant-depth circuit.

23

	Introduction
	Model and Building Blocks
	A UC Model for Asynchronous Computation with Eventual Message Delivery
	Constant-Round Asynchronous SFE
	Description of the Protocol
	Analysis of the Protocol

	History and Related Work (cont'd)
	Full Security Proof
	Figures

