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Abstract
Many cryptographic algorithms are vulnerable to side channel analysis and several leakage models

have been introduced to better understand these flaws. In 2003, Ishai, Sahai and Wagner introduced
the d-probing security model, in which an attacker can observe at most d intermediate values during
a processing. They also proposed an algorithm that securely performs the multiplication of 2 bits in
this model, using only d(d+1)/2 random bits to protect the computation. We study the randomness
complexity of multiplication algorithms secure in the d-probing model. We propose several contri-
butions: we provide new theoretical characterizations and constructions, new practical constructions
and a new efficient algorithmic tool to analyze the security of such schemes.

We start with a theoretical treatment of the subject: we propose an algebraic model for multipli-
cation algorithms and exhibit an algebraic characterization of the security in the d-probing model.
Using this characterization, we prove a linear (in d) lower bound and a quasi-linear (non-constructive)
upper bound for this randomness cost. Then, we construct a new generic algorithm to perform secure
multiplication in the d-probing model that only uses d+ d2/4 random bits.

From a practical point of view, we consider the important cases d ≤ 4 that are actually used in
current real-life implementations and we build algorithms with a randomness complexity matching
our theoretical lower bound for these small-order cases. Finally, still using our algebraic characteri-
zation, we provide a new dedicated verification tool, based on information set decoding, which aims
at finding attacks on algorithms for fixed order d at a very low computational cost.

Keywords. Side-Channel Analysis, Probing Model, Randomness Complexity, Constructions, Lower
bounds, Probabilistic Method, Information Set Decoding, Algorithmic Tool.
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1 Introduction
Most commonly used cryptographic algorithms are now considered secure against classical black-box
attacks, when the adversary has only knowledge of their inputs or outputs. Today, it is however well
known that their implementations are vulnerable to side-channel attacks, as revealed in the academic
community by Kocher in 1996 [Koc96]. These attacks exploit the physical emanations of the underlying
device such as the execution time, the device temperature, or the power consumption during the algorithm
execution.

To thwart side-channel attacks, many countermeasures have been proposed by the community. Among
them, the most widely deployed one is probably masking (a.k.a. secret/processing sharing) [GP99;
CJRR99], which has strong links with techniques usually applied in secure multi-party computation (see
e.g., [Yao82; BOGKW88]) or private circuits theory [ISW03]. For many kinds of real-life implementations,
this countermeasure indeed demonstrated its effectiveness when combined with noise and processing
jittering. The idea of the masking approach is to split every single sensitive variable/processing, which
depends on the secret and on known variables, into several shares. Each share is generated uniformly
at random except the last one which ensures that the combination of all the shares is equal to the
initial sensitive value. This technique aims at making the physical leakage of one variable independent
of the secret and thus useless for the attacker. The tuple of shares still brings information about the
shared data but, in practice, the leakages are noisy and the complexity of extracting useful information
increases exponentially with the number of shares, the basis of the exponent being related to the amount
of noise [CJRR99].

In order to formally prove the security of masking schemes, the community has made important efforts
to define leakage models that accurately capture the leakage complexity and simultaneously enable to
build security arguments. In 2003, Ishai, Sahai, and Wagner introduced the d-probing model in which
the attacker can observe at most d exact intermediate values [ISW03]. This model is very convenient
to make security proofs but does not fit the reality of embedded devices which leak noisy functions of
all their intermediate variables. In 2013, Prouff and Rivain extended the noisy leakage model [PR13],
initially introduced by Chari et al. [CJRR99], to propose a new one more accurate than [ISW03] but
not very convenient for security proofs. The two models [ISW03] and [PR13] were later unified by Duc,
Dziembowski, and Faust [DDF14] and Duc, Faust, and Standaert [DFS15a] who showed that a security
proof in the noisy leakage model can be deduced from security proofs in the d-probing model. This
sequence of works shows that proving the security of implementations in the d-probing model makes
sense both from a theoretical and practical point of view. An implementation secure in the d-probing
model is said to satisfy the d-privacy property or equivalently to be d-private [ISW03] (or secure at order
d).

It is worth noting that there is a tight link between sharing techniques, Multi Party Computation
(MPC) and also threshold implementations [BGN+14a; BGN+14b; NRS11]. In particular, the study
in the classical d-probing security model can be seen as a particular case of MPC with honest players.
Furthermore, the threshold implementations manipulate sharing techniques with additional restrictions
to thwart further hardware attacks resulting from the leakage of electronic glitches. This problem can
itself be similarly seen as a particular case of MPC, with Byzantine players [LSP82].

1.1 Our Problem
Since most symmetric cryptographic algorithms manipulate Boolean values, the most practical way
to protect them is generally to implement Boolean sharing (a.k.a. high-order masking): namely, each
sensitive intermediate result x is shared into several pieces, say d + 1, which are manipulated by the
algorithm and whose parity is equal to x. To secure the processing of a function f on a shared data,
one must design a so-called masking scheme (or formally a private circuit) that describes how to build
a sharing of f(x) from that of x while maintaining the d-probing security.

In the context of Boolean sharing, we usually separate the protection of linear functions from that of
non-linear ones. In particular, at the hardware level, any circuit can be implemented using only two gates:
the linear XOR gate and the non-linear AND gate. While the protection of linear operations (e.g., XOR)
is straightforward since the initial function f can be applied to each share separately, it becomes more
difficult for non-linear operations (e.g., AND). In these cases, the shares cannot be manipulated separately
and must generally be processed all together to compute the correct result. These values must then be
further protected using additional random bits which results in an important timing overhead.

State-of-the-art solutions to implement Boolean sharing on non-linear functions [RP10; CPRR14]
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have focused on optimizing the computation complexity. Surprisingly, the amount of necessary random
bits has only been in the scope of the seminal paper of Ishai, Sahai and Wagner[ISW03]. In this work, the
authors proposed and proved a clever construction (further referred to as ISW multiplication) allowing
to compute the multiplication of two shared bits by using d(d+ 1)/2 random bits, that is, half as many
random bits as the straightforward solution uses. Their construction has since become a cornerstone of
secure implementations [RP10; DDF14; DFS15b; RBN+15]. Even if this result is very important, the
quantity of randomness remains very expensive to generate in embedded cryptographic implementations.
Indeed, such a generation is usually performed using a physical generator followed by a deterministic
random bit generator (DRBG). In addition of being a theoretical “chicken-and-egg” problem for this
DRBG protection, in practice the physical generator has often a low throughput and the DRBG is also
time-consuming. In general, for a DRBG based on a 128-bit block cipher, one call to this block cipher
enables to generate 128 pseudorandom bits1 (see [BK12]). However, one invocation of the standard
AES-128 block cipher with the ISW multiplication requires as much as 30,720 random bits (6 random
bytes per multiplication, 4 multiplications per S-box [RP10]) to protect the multiplications when masked
at the low order d = 3, which corresponds to 240 preliminary calls to the DRBG.

1.2 Our Contributions
We analyze the quantity of randomness required to define a d-private multiplication algorithm at any
order d. Given the sharings ~a = (ai)0≤i≤d, ~b = (bi)0≤i≤d of two bits a and b, the problem we tackle out
is to find the minimal number of random bits necessary to securely compute a sharing (ci)0≤i≤d of the
bit c = ab with a d-private algorithm. We limit our scope to the construction of a multiplication based
on the sum of shares’ products. That is, as in [ISW03], we start with the pairwise products of a’s and b’s
shares and we work on optimizing their sum into d+ 1 shares with as few random bits as possible. We
show that this reduces to studying the randomness complexity of some particular d-private compression
algorithm that securely transforms the (d+ 1)2 shares’ products into d+ 1 shares of c. In our study we
make extensive use of the following theorem that gives an alternative characterization of the d-privacy:
Theorem 3.1 (informal). A compression algorithm is d-private if and only if there does not exist a
set of ` intermediate results {p1, . . . , p`} such that ` ≤ d and

∑`
i=1 pi can be written as ~aᵀ ·M ·~b with

M being some matrix such that the all-ones vector is in the row space or in the column space of M .

From this theorem, we deduce the following lower bound on the randomness complexity:
Theorems 4.3–4.4 (informal). If d ≥ 3 (resp. d = 2), then a d-private compression algorithm for
multiplication must involve at least d+ 1 random bits (resp. 2).

This theorem shows that the randomness complexity is in Ω(d). Following the probabilistic method,
we additionally prove the following theorem which claims that there exists a d-private multiplication
algorithm with randomness complexity O(d · log d). This provides a quasi-linear upper bound O(d · log d)
for the randomness complexity, when d→∞.
Theorem 4.6 (informal). There exists a d-private multiplication algorithm with randomness com-
plexity O(d · log d), when d→∞.

This upper bound is non-constructive: we show that a randomly chosen multiplication algorithm (in
some carefully designed family of multiplication algorithms using O(d · log d) random bits) is d-private
with non-zero probability. This means that there exists one algorithm in this family which is d-private.

In order to explicitly construct private algorithms with low randomness, we analyze the ISW multi-
plication to bring out necessary and sufficient conditions on the use of the random bits. In particular,
we identify necessary chainings and we notice that some random bits may be used several times at
several locations to protect more shares’ products, while in the ISW multiplication, each random bit
is only used twice. From this analysis, we deduce a new d-private multiplication algorithm requiring
bd2/4c+d random bits instead of d(d+ 1)/2. As a positive side-effect, our new construction also reduces
the algorithmic complexity of ISW multiplication (i.e., its number of operations).

Based on this generic construction, we then try to optimize some widely used small order instances.
In particular, we bring out new multiplication algorithms, for the orders d = 2, 3 and 4, which exactly
achieve our proven linear lower bound while maintaining the d-privacy. Namely, we present the optimal
multiplication algorithms for orders 2, 3 and 4 when summing the shares’ products into d+ 1 shares. We

1Actually, the generation of pseudorandom bits roughly corresponds to the execution of a block cipher but we should
also consider the regular internal state update.
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Figure 1: Randomness complexity of d-private multiplication algorithms

formally verify their security using the tool provided in [BBD+15b]. Figure 1 illustrates the randomness
complexity of our constructions (for general orders d and small orders) and our lower bound. Note that
while the ISW algorithm was initially given for multiplications of bits, it was later extended by Rivain
and Prouff in [RP10] for any multiplication in F2n . In the following, for the sake of simplicity, we refer
to binary multiplications (n = 1) for our constructions, but note that all of them can also be adapted to
multiplication in F2n .

Contrary to the ISW algorithm, our new constructions are not directly composable — in the sense
of Strong Non-Interferent (SNI) in [BBD+15a] — at any order. Fortunately, they can still be used in
compositions instead of the ISW algorithms at carefully chosen locations. In this paper, we thus recall
the different security properties related to compositions and we show that in the AES example, our new
constructions can replace half the ISW ones while preserving the d-privacy of the whole algorithm.

Finally, while the tool provided in [BBD+15b] — which is based on Easycrypt — is able to reveal
potential attack paths and formally prove security in the d-probing model with full confidence, it is
limited to the verification of small orders (d = 6 in our case). Therefore, we propose a new dedicated
probabilistic verification tool, which aims at finding attacks in fixed order private circuits (or equivalently
masking schemes) at a very low cost. The tool [Tool] is developed in Sage (Python) [Sage] and though
less generic than [BBD+15b] it is order of magnitudes faster. It relies on some heuristic assumption (i.e.
it cannot be used to actually prove the security) but it usually finds attacks very swiftly for any practical
order d. It makes use of information set decoding (a technique from coding theory introduced to the
cryptographic community for the security analysis of the McEliece cryptosystem in [Pra62; McE78]).

2 Preliminaries
This section defines the notations and basic notions that we use in this paper, but also some elementary
constructions we refer to. In particular, we introduce the notion of d-private compression algorithm
for multiplication and we present its only concrete instance which was proposed by Ishai, Sahai, and
Wagner [ISW03].

2.1 Notation
For a set S, we denote by |S| its cardinality, and by s $← S the operation of picking up an element s of
S uniformly at random. We denote by Fq the finite field with q elements. Vectors are denoted by lower
case bold font letters, and matrices are denoted by upper case bold font letters. All vectors are column
vectors unless otherwise specified. The kernel (resp. the image) of the linear map associated to a matrix
M is denoted by ker(M) (resp. im(M)). For a vector ~x, we denote by xi its i-th coordinate and by
hw(~x) its Hamming weight (i.e., the number of its coordinates that are different from 0).
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For any fixed n ≥ 1, let Un ∈ Fn×n2 denote the matrix whose coefficients ui,j equal 1 for all 1 ≤
i, j ≤ n. Let 0n,` ∈ Fn×`2 denote the matrix whose coefficients are all 0. Let ~un ∈ Fn2 denote the vector
(1, . . . , 1)ᵀ and ~0n ∈ Fn2 denote the vector (0, . . . , 0)ᵀ. For vectors ~x1, . . . , ~xt in Fn2 we denote 〈~x1, . . . , ~xt〉
the vector space generated by the set {~x1, . . . , ~xt}.

We say that an expression f(x1, . . . , xn, r) functionally depends on the variable r if there exists
a1, . . . , an such that the function r 7→ f(a1, . . . , an, r) is not constant.

For an algorithm A, we denote by y ← A(x1, x2, . . . ) the operation of running A on inputs (x1, x2, . . . )
and letting y denote the output. Moreover, if A is randomized, we denote by y $← A(x1, x2, . . . ; r) the
operation of running A on inputs (x1, x2, . . . ) and with uniform randomness r (or with fresh randomness
if r is not specified) and letting y denote the output. The probability density function associated to a
discrete random variable X defined over S (e.g., F2) is the function which maps x ∈ S to Pr [X = x ].
It is denoted by {X} or by {X}r if there is a need to precise the randomness source r over which the
distribution is considered.

2.2 Private Circuits
We examine the privacy property in the setting of Boolean circuits and start with the definition of circuit
and randomized circuit given in [ISW03]. A deterministic circuit C is a directed acyclic graph whose
vertices are Boolean gates and whose edges are wires. A randomized circuit is a circuit augmented with
random-bit gates. A random-bit gate is a gate with fan-in 0 that produces a random bit and sends it
along its output wire; the bit is selected uniformly and independently of everything else afresh for each
invocation of the circuit. From the two previous notions, we may deduce the following definition of a
private circuit inspired from [IKL+13].

Definition 2.1. [IKL+13] A private circuit for f : Fn2 → Fm2 is defined by a triple (I, C,O), where

• I: Fn2 → Fn′2 is a randomized circuit with uniform randomness ρ and called input encoder;

• C is a randomized boolean circuit with input in Fn′2 , output in Fm′2 , and uniform randomness
r ∈ Ft2;

• O: Fm′2 → Fm2 is a circuit, called output decoder.

We say that C is a d-private implementation of f with encoder I and decoder O if the following require-
ments hold:

• Correctness: for any input w ∈ Fn2 , Pr [O(C(I(w; ρ); r)) = f(w) ] = 1, where the probability is over
the randomness ρ and r;

• Privacy: for any w,w′ ∈ Fn2 and any set P of d wires in C, the distributions {CP (I(w; ρ); r)}ρ,r
and {CP (I(w′; ρ); r)}ρ,r are identical, where CP (I(w; ρ); r) denotes the list of the d values on the
wires from P .

Remark 2.2. It may be noticed that the notions of d-privacy and of security in the d-probing model
used, e.g., in [BBD+15b] are perfectly equivalent.

Unless noted otherwise, we assume I and O to be the following canonical encoder and decoder: I
encodes each bit-coordinate b of its input w by a block (bj)0≤j≤d of d+ 1 random bits with parity b, and
O takes the parity of each block of d+ 1 bits. Each block (bj)0≤j≤d is called a sharing of b and each bj
is called a share of b.

From now on, the wires in a set P used to attack an implementation are referred as the probes and the
corresponding values in CP (I(w; ρ); r) as the intermediate results. To simplify the descriptions, a probe
p is sometimes used to directly denote the corresponding result. A set of probes P such that the distri-
butions {CP (I(w; ρ); r)}ρ,r and {CP (I(w′; ρ); r)}ρ,r are not identical for some inputs w,w′ ∈ Fn2 shall be
called an attack. When the inputs w are clear from the context, the distribution {CP (I(w; ρ); r)}ρ,r is
simplified to {(p)p∈P }.

We now introduce the notions of multiplication algorithm and of d-compression algorithm for multi-
plication. In this paper, we deeply study d-private multiplication algorithms and d-private compression
algorithms for multiplication.

Definition 2.3. A multiplication algorithm is a circuit for the multiplication of 2 bits (i.e., with f being
the function f : (a, b) ∈ F2

2 7→ a · b ∈ F2), using the canonical encoder and decoder.
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Algorithm 1 ISW algorithm
Require: sharing (αi,j)0≤i,j≤d
Ensure: sharing (ci)0≤i≤d
for i = 0 to d do

for j = i+ 1 to d do
ri,j

$← F2; ti,j ← ri,j ; tj,i ← ri,j + αi,j + αj,i

ci ← αi,i
for i = 0 to d do

for j = 0 to d do
if i 6= j then

ci ← ci + ti,j

Before moving on to the next notion, let us first introduce a new particular encoder, called multiplica-
tive, which has been used in all the previous attempts to build a d-private multiplication algorithm. This
encoder takes as input two bits (a, b) ∈ F2

2, runs the canonical encoder on these two bits to get d+1 random
bits (a0, . . . , ad) and (b0, . . . , bd) with parity a and b respectively, and outputs the (d+1)2 bits (αi,j)0≤i,j≤d

with αi,j = ai · bj . Please note that, in particular, we have a · b = (
∑d
i=0 ai) · (

∑d
i=0 bi) =

∑
0≤i,j≤d αi,j .

Definition 2.4. A d-compression algorithm for multiplication is a circuit for the multiplication of 2
bits (i.e., with f being the function f : (a, b) ∈ F2

2 7→ a · b ∈ F2), using the canonical decoder and the
multiplicative encoder. Moreover, we restrict the circuit C to only perform additions in F2.

When clear from the context, we often omit the parameter d and simply say “a compression algorithm
for multiplication”.

Remark 2.5. Any d-compression algorithm for multiplication yields a multiplication algorithm, as the
algorithm can start by computing αi,j given its inputs (a0, . . . , ad, b0, . . . , bd).

Proposition 2.6. A multiplication algorithm B constructed from a d-compression algorithm for multi-
plication A (as in Remark 2.5) is d-private if and only if the compression algorithm A is d-private.

Clearly if B is d-private, so is A. However, the converse is not straightforward, as an adversary can
also probe the input shares ai and bi in B, while it cannot in A. The full proof is given in Appendix A and
is surprisingly hard: we actually use a stronger version of our algebraic characterization (Theorem 3.1).
In the remaining of the paper, we focus on compression algorithms and we do not need to consider probes
of the input shares ai and bi, which makes notation much simpler.

In the sequel, a d-compression algorithm for multiplication is denoted by A(~a,~b;~r) with ~r denoting
the tuple of uniform random bits used by the algorithm and with ~a (resp. ~b) denoting the vector of d+ 1
shares of the multiplication operand a (resp. b).

The purpose of the rest of this paper is to investigate how much randomness is needed for such an
algorithm to satisfy the d-privacy and to propose efficient or optimal constructions with respect to the
consumption of this resource. The number of bits involved in an algorithm A(~a,~b;~r) (i.e., the size of ~r)
is called its randomness complexity or randomness cost.

2.3 ISW Algorithm
The first occurrence of a d-private compression circuit for multiplication in the literature is the ISW
algorithm, introduced by Ishai, Sahai, and Wagner in [ISW03]. It is described in Algorithm 1. Its
randomness cost is d(d+ 1)/2.

To better understand this algorithm, let us first write it explicitly for d = 3:

c0 ← α0,0 + r0,1 + r0,2 + r0,3

c1 ← α1,1 + (r0,1 + α0,1 + α1,0) + r1,2 + r1,3

c2 ← α2,2 + (r0,2 + α0,2 + α2,0) + (r1,2 + α1,2 + α2,1) + r2,3

c3 ← α3,3 + (r0,3 + α0,3 + α3,0) + (r1,3 + α1,3 + α3,1) + (r2,3 + α2,3 + α3,2)

where, for the security to hold, the terms are added from left to right and where the brackets indicate
the order in which the operations must be performed (from d-privacy point of view, the addition is not
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commutative). In particular, when the brackets gather three terms (e.g., (r0,1 +α0,1 +α1,0)), the attacker
is allowed to probe two values from left to right (e.g., r0,1 + α0,1 and (r0,1 + α0,1 + α1,0)).

Let us now simplify the description by removing all the + symbols, the assignments ci ←, and defining
α̂i,j as αi,j + αj,i if i 6= j and αi,i if i = j. The ISW algorithm for d = 3 can then be rewritten as:

α̂0,0 r0,1 r0,2 r0,3
α̂1,1 (r0,1 α̂0,1) r1,2 r1,3
α̂2,2 (r0,2 α̂0,2) (r1,2 α̂1,2) r2,3
α̂3,3 (r0,3 α̂0,3) (r1,3 α̂1,3) (r2,3 α̂2,3).

Please note that the expression of α̂i,j with i 6= j (i.e. αi,j+αj,i) is expanded before the actual evaluation,
i.e., as in the previous representation, the sum αi,j+αj,i is not evaluated beforehand but evaluated during
the processing of ri,j + α̂i,j = ri,j + αi,j + αj,i.

3 Algebraic Characterization
In order to reason about the required quantity of randomness in d-private compression algorithms for
multiplication, we define an algebraic condition on the security and we prove that an algorithm is d-
private if and only if there is no set of probes which satisfies it.

3.1 Matrix Notation
As our condition is algebraic, it is practical to introduce some matrix notation for our probes. We write
~a = (a0, . . . , ad)ᵀ and ~b = (b0, . . . , bd)ᵀ the vectors corresponding to the shares of the inputs a and b
respectively. We also denote by ~r = (r1, . . . , rR)ᵀ the vector of the random bits.

We remark that, for any probe p on a compression algorithm for multiplication, p is always an
expression that can be written as a sum of αi,j ’s (with αi,j = ai · bj) and rk’s, and possibly a constant
cp ∈ F2. In other word, we can write p as

p = ~aᵀ ·Mp ·~b+ ~sp
t · ~r + cp,

with Mp being a matrix in F(d+1)×(d+1)
2 and ~sp being a vector in FR2 . This matrix Mp and this vector

~sp are uniquely defined. In addition, any sum of probes can also be written that way.
Furthermore, if cp = 1, we can always sum the probe with 1 and consider p+1 instead of p. This does

not change anything on the probability distribution we consider. Therefore, for the sake of simplicity,
we always assume cp = 0 in all the paper.

3.2 Algebraic Condition
We now introduce our algebraic condition:
Condition 1. A set of probes P = {p1, . . . , p`} on a d-compression algorithm for multiplication satisfies
Condition 1 if and only if the expression f =

∑`
i=1 pi can be written as f = ~aᵀ ·M ·~b with M being

some matrix such that ~ud+1 is in the row space or the column space of M .
As seen previously, the expression f can always be written as

f = ~aᵀ ·M ·~b+ ~sᵀ · ~r,

for some matrix M and some vector ~s. Therefore, what the condition enforces is that ~s = ~0R (or in
other words, f does not functionally depend on any random bit) and the column space or the row space
of M contains the vector ~ud+1.
A Weaker Condition. To better understand Condition 1, let us introduce a weaker condition which
is often easier to deal with:
Condition 2 (weak condition). A set of probes P = {p1, . . . , p`} on a d-compression algorithm for
multiplication satisfies Condition 2 if and only if the expression f =

∑`
i=1 pi does not functionally

depend on any rk and there exists a map γ: {0, . . . , d} → {0, . . . , d} such that f does functionally depend
on every (αi,γ(i))0≤i≤d or on every (αγ(i),i)0≤i≤d.

This condition could be reformulated as f =
∑`
i=1 pi functionally depends on either all the ai’s or all

the bi’s and does not functionally depend on any rk. It is easy to see that any set P verifying Condition 1
also verifies Condition 2.
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3.3 Algebraic Characterization
Theorem 3.1. Let A be a d-compression algorithm for multiplication. Then, A is d-private if and only
if there does not exist a set P = {p1, . . . , p`} of ` ≤ d probes that satisfies Condition 1. Furthermore any
set P = {p1, . . . , p`} satisfying Condition 1 is an attack.

Please note that Theorem 3.1 would not be valid with Condition 2 (instead of Condition 1). A
counterexample is given in Appendix B.

Theorem 3.1. Direction 1: Left to right. We prove hereafter that if A is d-private, then there does
not exist a set P = {p1, . . . , p`} of ` ≤ d probes that satisfies Condition 1.

By contrapositive, let us assume that there exists a set P = {p1, . . . , p`} of at most d probes that
satisfies Condition 1. Let M be the matrix such that f =

∑`
i=1 pi = ~aᵀ ·M ·~b and let us assume, without

loss of generality, that ~ud+1 is in the vector subspace generated by the columns of M . We remark that,
for any ~v ∈ Fd+1

2 :

Pr [~aᵀ · ~v = a ] =
{

1 when ~v = ~ud+1
1
2 when ~v 6= ~ud+1

by definition of the sharing ~a of a (probability is taken over ~a). Thus we have, when a = 0 (assuming
that b is uniformly random)

Pr [ f = 0 | a = 0 ]

= Pr
[
~aᵀ ·M ·~b = 0

∣∣∣ ~aᵀ · ~ud+1 = 0
]

= Pr
[
~aᵀ · ~ud+1 = 0

∣∣∣ a = 0 and M ·~b = ~ud+1

]
· Pr

[
M ·~b = ~ud+1

]
+
∑
~v∈Fd+1

2 \{~ud+1} Pr
[
~aᵀ · ~v = 0

∣∣∣ a = 0 and M ·~b = ~v
]
· Pr

[
M ·~b = ~v

]
= 1 · Pr

[
M ·~b = ~ud+1

]
+
∑
~v∈Fd+1

2 \{~ud+1}
1
2 · Pr

[
M ·~b = ~v

]
= 1 · Pr

[
M ·~b = ~ud+1

]
+ 1

2 (1− Pr
[

M ·~b = ~ud+1

]
)

= 1
2 + 1

2 Pr
[

M ·~b = ~ud+1

]
.

Similarly, when a = 1, we have

Pr [ f = 0 | a = 1 ] = 1
2 −

1
2 Pr

[
M ·~b = ~ud+1

]
.

As ~ud+1 is in the column space of M , the distribution of {f} is not the same when a = 0 and when
a = 1. This implies that the distribution {(p1, . . . , p`)} is also different when a = 0 and a = 1. Hence A
is not d-private.

This concludes the proof of the first implication and the fact that any set P = {p1, . . . , p`} satisfying
Condition 1 is an attack.
Direction 2: Right to left. Let us now prove by contradiction that if there does not exist a set
P = {p1, . . . , p`} of ` ≤ d probes that satisfies Condition 1, then A is d-private.

Let us assume that A is not d-private. Then there exists an attack using a set of probes P =
{p1, . . . , p`} with ` ≤ d. This is equivalent to say that there exists two inputs (a(0), b(0)) 6= (a(1), b(1))
such that the distribution {(p1, . . . , p`)} is not the same whether (a, b) = (a(0), b(0)) or (a, b) = (a(1), b(1)).

We first remark that we can consider 0 = a(0) 6= a(1) = 1, without loss of generality as the a(i)’s
and the b(i)’s play a symmetric role (and (a(0), b(0)) 6= (a(1), b(1))). Furthermore, we can always choose
b(0) = b(1), as if the distribution {(p1, . . . , p`)} is not the same whether (a, b) = (0, b(0)) or (a, b) = (1, b(1)),
with b(0) 6= b(1), then:

• it is not the same whether (a, b) = (0, b(0)) or (a, b) = (1, b(0)) (in which case, we could have taken
b(1) = b(0)), or

• it is not the same whether (a, b) = (1, b(0)) or (a, b) = (1, b(1)) (in which case, we can just exchange
the a’s and the b’s roles).
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To summarize, there exists b(0) such that the distribution {(p1, . . . , p`)} is not the same whether (a, b) =
(0, b(0)) or (a, b) = (1, b(0)).

In the sequel b(0) is fixed and we call a tuple (p1, . . . , p`) satisfying the previous property an attack
tuple.

We now remark that if ` = 1 or if even the distribution {(
∑`
i=1 pi)} is not the same whether (a, b) =

(0, b(0)) or (a, b) = (1, b(0)) (i.e., (
∑`
i=1 pi) is an attack tuple), then it follows easily from the probability

analysis of the previous proof for the other direction of the theorem, that the set P satisfies Condition 1.
The main difficulty is that it is not necessarily the case that ` = 1 or (

∑`
i=1 pi) is an attack tuple. To

overcome it, we use linear algebra.
But first, let us introduce some useful notations and lemmas. We write ~p the vector (p1, . . . , p`)ᵀ

and we say that ~p is an attack vector if and only if (p1, . . . , p`) is an attack tuple. Elements of ~p are
polynomials in the ai’s, the bj ’s and the rk’s.

Lemma 3.2. If ~p is an attack vector and N is an invertible matrix in F`×`2 , then N · ~p is an attack
vector.

Proof. This is immediate from the fact that N is invertible. Indeed, as a matrix over F2, N−1 is also
a matrix over F2. Hence, multiplying the set of probes {N · ~p} by N−1 (which leads to the first set of
probes {~p}) can be done by simply computing sums of elements in {N · ~p}. Hence, as the distribution of
{~p} differs when (a, b) = (0, b(0)) and (a, b) = (1, b(0)), the same is true for the distribution {N · ~p}.

We also use the following straightforward lemma.

Lemma 3.3. If (p1, . . . , p`) is an attack tuple such that the `− t+ 1 random variables (p1, . . . , pt), pt+1,
. . . , and p` are mutually independent, and the distributions of (pt+1, . . . , p`) is the same for all the values
of the inputs (a, b), then (p1, . . . , pt) is an attack tuple.

Let us consider the matrix S ∈ F`×R2 whose coefficients si,j are defined as si,j = 1 if and only if the
expression pi functionally depends on rj . In other words, if we write pi = ~aᵀ ·Mpi ·~b+ ~spi

ᵀ · ~r, the i-th
row of S is ~spi

ᵀ. We can permute the random bits (i.e., the columns of S and the rows of ~r) such that
a row reduction on the matrix S yields a matrix of the form:

S′ =
(

0t,t 0t,`−t
It S′′

)
.

Let N be the invertible matrix in F`×`2 such that N · S = S′. And we write ~p′ = (p′1, . . . , p′`)ᵀ = N · ~p.
Then, ~p′ is also an attack vector according to Lemma 3.2. In addition, for t < i ≤ `, p′i does functionally
depend on ri and no other p′j does functionally depend on rj (due to the shape of S′). Therefore,
according to Lemma 3.3, (p′1, . . . , p′t) is an attack tuple.

We remark that (p′1, . . . , p′t) does not functionally depend on any random bit, due to the shape of S′.
Therefore, for each 1 ≤ i ≤ t, we can write:

p′i = ~aᵀ ·M ′
i ·~b,

for some matrix M ′
i .

We now need a final lemma to be able to conclude.

Lemma 3.4. If (p′1, . . . , p′t) is an attack tuple, then there exists a vector ~b∗ ∈ Fd+1
2 such that ~ud+1 is in

the vector space 〈M ′
1 · ~b∗, . . . ,M ′

t · ~b∗〉.

Proof. This lemma can be seen as a generalization of the probability analysis in the proof of the first
direction of the theorem.

We suppose by contradiction that (p′1, . . . , p′t) is an attack vector but there does not exist a vector
~b∗ ∈ Fd+1

2 such that ~ud+1 is in the vector space 〈M ′
1 · ~b∗, . . . ,M ′

t · ~b∗〉. Then, for any value a(0), any
vector ~b(0) ∈ Fd+1

2 , and any vector ~x = (x1, . . . , xt)ᵀ ∈ Ft2:

Pr
[

(p′1, . . . , p′t) = (x1, . . . , xt)
∣∣∣ a = a(0) and ~b = ~b(0)

]
= Pr

[
(~aᵀ ·M ′

1 ·
~b(0), . . . ,~aᵀ ·M ′

t ·
~b(0)) = (x1, . . . , xt)

∣∣∣ ~aᵀ · ~ud+1 = a(0)
]

= Pr
[
~aᵀ ·B = ~xᵀ

∣∣∣ ~aᵀ · ~ud+1 = a(0)
]
,
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where B is the matrix whose i-th column is the vector M ′
i ·

~b(0). To conclude, we just need to remark
that

Pr [~aᵀ ·B = ~xᵀ | ~aᵀ · ~ud+1 = 0 ] = Pr [~aᵀ ·B = ~xᵀ | ~aᵀ · ~ud+1 = 1 ],
which implies that the probability distribution of (p′1, . . . , p′t) is independent of the value of a, which
contradicts the fact the (p′1, . . . , p′t) is an attack tuple.

To prove the previous equality, we use the fact that ~ud+1 is not in the column space of B and therefore
the value of ~aᵀ · ~ud+1 is uniform and independent of the value of ~aᵀ ·B (when ~a is a uniform vector in
Fd+1

2 ).

Thanks to Lemma 3.4, there exists a vector ~σ = (σ1, . . . , σt)ᵀ ∈ Ft2 and a vector ~b∗ ∈ Fd+1
2 such that(

t∑
i=1

σi ·M ′
i

)
· ~b∗ = ~ud+1 . (1)

Let ~σ′ be the vector in F`2 defined by ~σ′
ᵀ

=
(
~σᵀ ~0ᵀ`−t

)
·N . We have:

~σ′
ᵀ
· ~p =

t∑
i=1

σi · p′i =
t∑
i=1

σi · ~aᵀ ·M ′
i ·~b = ~aᵀ ·

(
t∑
i=1

σi ·M ′
i

)
·~b . (2)

Therefore, we can define the set P ′ = {pi | σi = 1}. This set satisfies Condition 1, according to
Equations (1) and (2).

This concludes the proof.

4 Theoretical Lower and Upper Bounds
In this section, we exhibit lower and upper bounds for the randomness complexity of a d-private com-
pression algorithm for multiplication. We first prove an algebraic result and an intermediate lemma that
we then use to show that at least d + 1 random bits are required to construct a d-private compression
algorithm for multiplication, for any d ≥ 3 (and 2 random bits are required for d = 2). Finally, we pro-
vide a (non-constructive) proof that for large enough d, there exists a d-private multiplication algorithm
with a randomness complexity O(d · log d).

4.1 A Splitting Lemma
We first prove an algebraic result, stated in the lemma below, that we further use to prove Lemma 4.2.
The latter allows us to easily exhibit attacks in order to prove our lower bounds.

Lemma 4.1. Let n ≥ 1. Let M0,M1 ∈ Fn×n2 such that M0 + M1 = Un. Then, there exists a vector
~v ∈ Fn2 such that:

M0 · ~v = ~un or M1 · ~v = ~un or Mᵀ
0 · ~v = ~un or Mᵀ

1 · ~v = ~un .

Lemma 4.1. We show the above lemma by induction on n.
Base case: for n = 1, M0,M1,U ∈ F2, so M0 + M1 = 1, which implies M0 = 1 or M1 = 1 and the
claim immediately follows.
Inductive case: let us assume that the claim holds for a fixed n ≥ 1. Let us consider two matrices
M0,M1 ∈ F(n+1)×(n+1)

2 such that M0 + M1 = Un+1.
Clearly, if M0 (or M1) is invertible, then the claim is true (as ~un+1 is in its range). Then, let

us assume that M0 is not invertible. Then, there exists a non-zero vector ~x ∈ ker(M0). Now, as
im(Un+1) = {~0n+1, ~un+1}, if Un+1 ·~x = ~un+1, then M1 ·~x = ~un+1 and the claim is true. Hence, clearly,
the claim is true if ker(M0) 6= ker(M1) (with the symmetric remark). The same remarks hold when
considering matrices Mᵀ

0 and Mᵀ
1 .

Hence, the only remaining case to consider is when ker(M0) 6= {~0n+1}, ker(Mᵀ
0) 6= {~0n+1} and

when ker(M0) = ker(M1) and ker(Mᵀ
0) = ker(Mᵀ

1). In particular, we have ker(M0) ⊆ ker(Un+1) and
ker(Mᵀ

0) ⊆ ker(Un+1).
Let ~x ∈ ker(M0) (and then ~x ∈ ker(M1) as well) be a non-zero vector. Up to some rearrangement

of the columns of M0 and M1 (by permuting some columns), we can assume without loss of generality
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that ~x = (1, . . . , 1, 0, . . . , 0)ᵀ. Let X denote the matrix (~x,~e2, . . . , ~en+1) where ~ei = (0, . . . , 0, 1, 0, . . . , 0)ᵀ
is the i-th canonical vector of length n+ 1, so that it has a 1 in the i-th position and 0’s everywhere else.

Now, let ~y ∈ ker(Mᵀ
0) (and then ~y ∈ ker(Mᵀ

1) as well) be a non-zero vector, so ~yᵀ ·Mᵀ
0 = ~0ᵀn+1. More-

over, up to some rearrangement of the rows of M0 and M1, we can assume that ~y = (1, . . . , 1, 0, . . . , 0)ᵀ.
Let Y denote the matrix (~y,~e2, . . . , ~en+1).

Please note that rearrangements apply to the columns in the first case and to the rows in the second
case, so we can assume without loss of generality that there exists both ~x ∈ ker(M0) and ~y ∈ ker(Mᵀ

0)
with the above form and matrices X and Y are well defined.

We now define the matrices M ′
0 = Y ᵀ ·M0 ·X and M ′

1 = Y ᵀ ·M1 ·X. We have:

M ′
0 =

(
~yᵀ

~0n In

)
·M0 ·

(
~x

~0ᵀn
In

)
=
(

~yᵀ

~0n In

)
·
(
~0n+1 M

(1)
0

)
where M

(1)
0 is the matrix extracted from M0 by removing its first column. Hence:

M ′
0 =

(
0 ~0ᵀn
~0n M

(1,1)
0

)

where M
(1,1)
0 is the matrix extracted from M0 by removing its first column and its first row. Similar

equation holds for M ′
1 as well. Thus, it is clear that:

M ′
0 + M ′

1 =
(

0 ~0ᵀn
~0n Un

)
.

Let us consider the matrices M ′′
0 and M ′′

1 in Fn×n2 that are extracted from matrices M ′
0 and M ′

1 by
removing their first row and their first column (i.e., M ′′

i = M
′(1,1)
i with the previous notation). Then, it

is clear that M ′′
0 + M ′′

1 = Un. As matrices in Fn×n2 , by induction hypothesis, there exists ~v′′ ∈ Fn2 such
that at least one of the 4 propositions from Lemma 4.1 holds. We can assume without loss of generality
that M ′′

0 · ~v′′ = ~un.

Let ~v′ =
(

0
~v′′

)
∈ Fn+1

2 . Then, we have:

M ′
0 · ~v′ =

(
0 ~0ᵀn
~0n M ′′

0

)
·
(

0
~v′′

)
=
(
~0n · ~v′′

M ′′
0 · ~v′′

)
=
(

0
~un

)
.

Now, let ~v = X · ~v′ and ~w = M0 · ~w, so Y ᵀ · ~w = Y ᵀ ·M0X · ~v′ = M ′
0 · ~v′ =

(
0
~un

)
. Moreover, as

Y is invertible, ~w is the unique vector such that Y ᵀ · ~w =
(

0
~un

)
. Finally, as the vector ~un+1 satisfies

Y ᵀ · ~un+1 =
(

0
~un

)
, then ~w = ~un+1, and the claim follows for n+ 1, since ~v satisfies M0 ·~v = ~w = ~un+1.

Conclusion: The claim follows for any n ≥ 1, and so does Lemma 4.1.

We can now easily prove the following statement that is our main tool for proving our lower bounds,
as explained after its proof.

Lemma 4.2. Let A be a d-compression algorithm for multiplication. If there exists two sets S1 and S2
of at most d probes such that si =

∑
p∈Si p does not functionally depend on any of the random bits, for

i ∈ {0, 1}, and such that s0 + s1 = a · b, then A is not d-private.

Lemma 4.2. Let A, S0, S1, s0 and s1 defined in the above statement. Then, there exists M i ∈
F(d+1)×(d+1)

2 such that si = ~aᵀ ·M i ·~b, for i ∈ {0, 1}. Furthermore, as s0 + s1 = a · b = ~aᵀ · Ud+1 ·~b,
we have M0 + M1 = Ud+1. Hence, via Lemma 4.1, there exists ~v ∈ Fd+1

2 and i ∈ {0, 1} such that
M i ·~v = ~ud+1 or Mᵀ

i ·~v = ~ud+1. This means that ~ud+1 is in the row subspace or in the column subspace
of M i, and therefore, Mi satisfies Condition 1. Therefore, as |Si| ≤ d, applying Theorem 3.1, A is not
d-private. Lemma 4.2 follows.

We use the above lemma to prove our lower bounds as follows: for proving that at least R(d) random
bits are required in order to achieve d-privacy for a compression algorithm for multiplication, we prove
that any algorithm with a lower randomness complexity is not d-private by exhibiting two sets of probes
S0 and S1 that satisfy the requirements of Lemma 4.2.

12



4.2 Simple Linear Lower Bound
As a warm-up, we show that at least d random bits are required, for d ≥ 2.

Theorem 4.3. Let d ≥ 2. Let us consider a d-compression algorithm for multiplication A. If A uses
only d− 1 random bits, then A is not d-private.

Theorem 4.3. Let r1, . . . , rd−1 denote the random bits used by A. Let c0, . . . , cd denote the outputs of
A. Let us define N ∈ F(d−1)×d

2 as the matrix whose coefficients ni,j are equal to 1 if and only if cj
functionally depends on ri, for 1 ≤ i ≤ d− 1 and 1 ≤ j ≤ d. Please note in particular that N does not
depend on c0.

As a matrix over F2 with d columns and d− 1 rows, there is necessarily a vector ~w ∈ Fd2 with ~w 6= ~0d
such that N · ~w = ~0d−1.

The latter implies that the expression s0 =
∑d
i=1 wi · ci does not functionally depend on any of the

rk’s. Furthermore, by correctness, we also have that s1 = c0 +
∑d
i=1(1 − wi) · ci does not functionally

depend on any of the rk’s, and s0 + s1 =
∑d
i=0 ci = a · b. Then, the sets of probes S0 = {ci | wi = 1}

and S1 = {c0}∪ {ci | wi = 0} (whose cardinalities are at most d) satisfy the requirements of Lemma 4.2,
and then, A is not d-private. Theorem 4.3 follows.

4.3 Better Linear Lower Bound
We now show that at least d+ 1 random bits are actually required if d ≥ 3.

Theorem 4.4. Let d ≥ 3. Let us consider a d-compression algorithm for multiplication A. If A uses
only d random bits, then A is not d-private.

The full proof is in Appendix C.1.

4.4 (Non-Constructive) Quasi-Linear Upper Bound
We now construct a d-private compression algorithm for multiplication which requires a quasi-linear
number of random bits. More precisely, we show that with non-zero probability, a random algorithm in
some family of algorithms (using a quasi-linear number of random bits) is secure, which directly implies
the existence of such an algorithm. Note that it is an interesting open problem (though probably difficult)
to derandomize this construction.

Concretely, let d be some masking order andR be some number of random bits (used in the algorithm),
to be fixed later. For i = 0, . . . , d− 1 and j = i+ 1, . . . , d, let us define ρ(i, j) as:

ρ(i, j) =
∑R
k=1 Xi,j,k · rk

with Xi,j,k
$← {0, 1} for i = 0, . . . , d−1, j = i+1, . . . , d and k = 1, . . . , R, so that ρ(i, j) is a random sum

of all the random bits r1, . . . , rR where each bit appears in ρ(i, j) with probability 1/2. We also define
Xd,d,k =

∑d−1
i=0

∑d
j=i+1 Xi,j,k and ρ(d, d) as:

ρ(d, d) =
∑R
k=1 Xd,d,k · rk.

We generate a (random) algorithm as in Algorithm 2. This algorithm is correct because the sum of
all ρ(i, j) is equal to 0.

We point out that we use two kinds of random which should not be confused: the R fresh random
bits r1, . . . , rR used in the algorithm to ensure its d-privacy (R is what we really want to be as low as
possible), and the random variables Xi,j,k used to define a random family of such algorithms (which are
“meta”-random bits). In a concrete implementation or algorithm, these latter values are fixed.

Lemma 4.5. Algorithm 2 is d-private with probability at least

1−
(

(R+ 3) · d · (d+ 1)/2
d

)
· 2−R

over the values of the Xi,j,k’s.
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Algorithm 2 Random algorithm
Require: sharing (αi,j)0≤i,j≤d
Ensure: sharing (ci)0≤i≤d
for i = 1 to R do

ri
$← F2

for i = 0 to d do
ci ← αi,i
for j = i+ 1 to d do

ci ← ci + ρ(i, j) + αi,j + αj,i . ρ(i, j) is not computed first
cd ← cd + ρ(d, d)

Lemma 4.5. In order to simplify the proof, we are going to show that, with non-zero probability, there is
no set of probes P = {p1, . . . , p`} with ` ≤ d that satisfies Condition 2. In particular, this implies that,
with non-zero probability, there is no set of probes P = {p1, . . . , p`} with ` ≤ d that satisfies Condition 1,
which, via Theorem 3.1, is equivalent to the algorithm being d-private.

One can only consider sets of exactly d probes as if there is a set of ` < d probes P ′ that satisfies
Condition 2, one can always complete P ′ into a set P with exactly d probes by adding d − ` times the
same probe on some input αi,j such that P ′ initially does not depend on αi,j . That is, if M ′ denotes
the matrix such that

∑
p′∈P ′ p

′ = ~a ·M ′ ·~b, one could complete P ′ with any αi,j such that m′i,j = 0, so
that P , with

∑
p∈P p = ~a ·M ·~b still satisfies Condition 2 if P ′ initially satisfied the condition.

Thus, let us consider an arbitrary set of d probes P = {p1, . . . , pd} and let us bound the probability
that P satisfies Condition 2. Let f =

∑d
i=1 pi. Let us first show that f has to contain at least one ρ(i, j)

(meaning that it appears an odd number of times in the sum). Let us assume the contrary, so f does not
contain any ρ(i, j). Every ρ(i, j) appears only once in the shares (in the share ci precisely). Then, one
can assume that every probe is made on the same share. Let us assume (without loss of generality) that
every probe is made on c0. If no probe contains any ρ(0, j), then clearly P cannot satisfy Condition 2
as this means that each probe contain at most one α0,j , to P cannot contain more than d different α0,j .
Hence, at least one (so at least two) probe contains at least one ρ(0, j). We note that every probe has
one of the following form: either it is exactly a random rk, a share α0,j , a certain ρ(0, j), a certain
ρ(0, j) + α0,j or ρ(0, j) + α0,j + αj,0, or a subsum (starting from α0,0) of c0. Every form gives at most
one α0,j with a new index j except probes on subsums. However, in any subsum, there is always a
random ρ(i, j) between α0,j and α0,j+1 and one needs to get all the d+ 1 indices to get a set satisfying
Condition 2. Then, it is clear that one cannot achieve this unless there is a ρ(i, j) that does not cancel
out in the sum, which is exactly what we wanted to show. Now, let 1 ≤ k ≤ R be an integer and let us
compute the probability (over the Xi,j,k’s) that f contains rk. There exists some set S of pairs (i, j),
such that f is the sum of

∑
(i,j)∈S Xi,j,k · rk and some other expression not containing any Xi,j,k · rk.

From the previous point, S is not empty. Furthermore, as there are d+ 1 outputs c0, . . . , cd and as there
are only d probes, S cannot contain all the possible pairs (i, j), and therefore, all the random variables
Xi,j,k for (i, j) ∈ S are mutually independent. Therefore,

∑
(i,j)∈S Xi,j,k is 1 with probability 1/2 and f

functionally depends on the random rk with probability 1/2. As there are R possible randoms, f does
not functionally depend on any rk (and then P satisfies Condition 2) with probability (1/2)R.

There are N possibles probes with

N ≤ d · (d+ 1)
2 +R+ (R+ 2) · d · (d− 1)

2 ≤ (R+ 3) · d · (d+ 1)
2

, as every ρ contains at most R random bits rk. Also, there are
(
N
d

)
possible sets P = {p1, . . . , pd}.

Therefore, by union bound, the above algorithm is not secure (so there is an attack) with probability at
most (

N

d

)
/2R ≤

(
(R+ 3) · d · (d+ 1)/2

d

)
· 2−R

which concludes the proof of Lemma 4.5.

Theorem 4.6. For some R = O(d · log d), there exists a choice of ρ(i, j) such that Algorithm 2 is a
d-private d-compression algorithm for multiplication, when d→∞.

We just need to remark that for some R = O(d · log d), the probability that Algorithm 2 is d-private,
according to Lemma 4.5 is non-zero.

14



α̂0,0 r0,1 r0,2 r0,3 r0,4 r0,5 r0,6
α̂1,1 (r0,1 α̂0,1) r1,2 r1,3 r1,4 r1,5 r1,6
α̂2,2 (r0,2 α̂0,2) (r1,2 α̂1,2) r2,3 r2,4 r2,5 r2,6
α̂3,3 (r0,3 α̂0,3) (r1,3 α̂1,3) (r2,3 α̂2,3) r3,4 r3,5 r3,6
α̂4,4 (r0,4 α̂0,4) (r1,4 α̂1,4) (r2,4 α̂2,4) (r3,4 α̂3,4) r4,5 r4,6
α̂5,5 (r0,5 α̂0,5) (r1,5 α̂1,5) (r2,5 α̂2,5) (r3,5 α̂3,5) (r4,5 α̂4,5) r5,6
α̂6,6 (r0,6 α̂0,6) (r1,6 α̂1,6) (r2,6 α̂2,6) (r3,6 α̂3,6) (r4,6 α̂4,6) (r5,6 α̂5,6)

Figure 2: ISW construction for d = 6, with α̂i,j = αi,j + αj,i

The full proof is given in Appendix C.2.

5 New Construction
The goal of this section is to propose a new d-private multiplication algorithm. Compared to the con-
struction in [ISW03], our construction halves the number of required random bits. It is therefore the
most efficient existing construction of a d-private multiplication.

Some rationales behind our new construction may be found in the two following necessary conditions
deduced from a careful study of the original work of Ishai, Sahai and Wagner [ISW03].

Lemma 5.1. Let A(~a,~b;~r) be a d-compression algorithm for multiplication. Let f be an intermediate
result taking the form f = ~aᵀ ·M ·~b+~sᵀ · ~r. Let t denote the greatest Hamming weight of an element in
the vector subspace generated by the rows of M or by the columns of M . If hw(~s) < t−1, then A(~a,~b;~r)
is not d-private.

Proof. By definition of ~s, the value ~aᵀ ·M · ~b can be recovered by probing f and then each of the
hw(~s) < t − 1 random bits on which ~sᵀ · ~r functionally depends and by summing all these probes. Let
P1 = {f, p1, . . . , pj} with j < t − 1 denote the set of these at most t − 1 probes. Then, we just showed
that f +

∑j
i=1 pi = ~aᵀ ·M ·~b.

To conclude the proof, we want to argue that there is a set of at most d − (t − 1) probes P2 =
{p′1, . . . , p′k} such that f +

∑j
i=1 pi +

∑k
`=1 p

′
` = ~aᵀ ·M ′ · ~b, where M ′ is a matrix such that ~ud+1 is

in its row space or in its column space. If such a set P2 exists, then the set of probes P1 ∪ P2 (whose
cardinality is at most d) satisfies Condition 1, and then A is not d-private, via Theorem 3.1.

We now use the fact that there is a vector of Hamming weight t in the row space or in the column
space of M . We can assume (without loss of generality) that there exists a vector ~w ∈ Fd+1

2 of Hamming
weight t in the column subspace of M , so that ~w =

∑
j∈J ~mj , with J ⊆ {0, . . . , d} and ~mj the j-th

column vector of M . Let i1, . . . , id+1−t denote the indices i of ~w such that wi = 0. Then, let j ∈ J , we
claim that P2 = {αi1,j , . . . , αid+1−t,j} allows us to conclude the proof. Please note that all these values
are probes of intermediate values of A.

Indeed, we have f +
∑j
i=1 pi +

∑d+1−t
k=1 αik,j = ~aᵀ ·M ′ ·~b where all coefficients of M ′ are the same

as coefficients of M except for coefficients in positions (i1, j), . . . , (id+1−t, j) which are the opposite, and
now

∑
j∈J ~m

′
j = ~ud+1, where ~m′j is the j-th column vector of M ′. Lemma 5.1 easily follows.

In our construction, we satisfy the necessary condition in Lemma 5.1 by ensuring that any interme-
diate result that functionally depends on t shares of a (resp. of b) also functionally depends on at least
t− 1 random bits.

The multiplication algorithm of Ishai, Sahai and Wagner is the starting point of our construction.
Before exhibiting it, we hence start by giving the basic ideas thanks to an illustration in the particular
case d = 6. In Figure 2 we recall the description of ISW already introduced in Section 2.3.

The first step of our construction is to order the expressions α̂i,j differently. Precisely, to compute
the output share ci (which corresponds, in ISW, to the sum ri,i,+

∑
j<i(rj,i + α̂j,i) +

∑
j>i ri,j from

left to right), we process ri,i,+
∑
j<d−i(ri,d−j + α̂i,j) +

∑
1≤j≤i rd−j,i from left to right. Of course, we

also put particular care to satisfy the necessary condition highlighted by Lemma 5.1. This leads to the
construction illustrated in Figure 3.

Then, the core idea is to decrease the randomness cost by reusing some well chosen random bit to
protect different steps of the processing. Specifically, for any even positive number k, we show that
replacing all the random bits ri,j such that k = j − i with a fixed random bit rk preserves the d-privacy
of ISW algorithm. Note, however, that the computations then have to be performed with a slightly
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α̂0,0 (r0,6 α̂0,6) (r0,5 α̂0,5) (r0,4 α̂0,4) (r0,3 α̂0,3) (r0,2 α̂0,2) (r0,1 α̂0,1)
α̂1,1 (r1,6 α̂1,6) (r1,5 α̂1,5) (r1,4 α̂1,4) (r1,3 α̂1,3) (r1,2 α̂1,2) r0,1
α̂2,2 (r2,6 α̂2,6) (r2,5 α̂2,5) (r2,4 α̂2,4) (r2,3 α̂2,3) r1,2 r0,2
α̂3,3 (r3,6 α̂3,6) (r3,5 α̂3,5) (r3,4 α̂3,4) r2,3 r1,3 r0,3
α̂4,4 (r4,6 α̂4,6) (r4,5 α̂4,5) r3,4 r2,4 r1,4 r0,4
α̂5,5 (r5,6 α̂5,6) r4,5 r3,5 r2,5 r1,5 r0,5
α̂6,6 r5,6 r4,6 r3,6 r2,6 r1,6 r0,6

Figure 3: First step of our new construction for d = 6, with α̂i,j = αi,j + αj,i

α̂0,0 (r0,6 α̂0,6 r5 α̂0,5) (r0,4 α̂0,4 r3 α̂0,3) (r0,2 α̂0,2 r1 α̂0,1)
α̂1,1 (r1,6 α̂1,6 r5 α̂1,5) (r1,4 α̂1,4 r3 α̂1,3) (r1,2 α̂1,2) r1
α̂2,2 (r2,6 α̂2,6 r5 α̂2,5) (r2,4 α̂2,4 r3 α̂2,3) r1,2 r0,2
α̂3,3 (r3,6 α̂3,6 r5 α̂3,5) (r3,4 α̂3,4) r3 r3 r3
α̂4,4 (r4,6 α̂4,6 r5 α̂4,5) r3,4 r2,4 r1,4 r0,4
α̂5,5 (r5,6 α̂5,6) r5 r5 r5 r5 r5
α̂6,6 r5,6 r4,6 r3,6 r2,6 r1,6 r0,6

Figure 4: Second step of our new construction for d = 6, with α̂i,j = αi,j + αj,i

different bracketing in order to protect the intermediate variables which involve the same random bits.
The obtained construction is illustrated in Figure 4.

Finally, we suppress from our construction the useless repetitions of random bits that appear at the
end of certain computations. Hence, we obtain our new construction, illustrated in Figure 5.

Before proving that this scheme is indeed d-private, we propose a formal description in Algorithm 3.
As can be seen, this new scheme involves 3d2/2 + d(d + 2)/4 + 2d sums if d is even and 3(d2 − 1)/2 +
(d + 1)2/4 + 3(d + 1)/2 if d is odd. In every case, it also involves (d + 1)2 multiplications and requires
the generation of d2/4 + d random values in F2 if d is even and (d2 − 1)/4 + d otherwise (see Table 1 for
values at several orders and comparison with ISW).

Proposition 5.2. Algorithm 3 is d-private.

Algorithm 3 was proven to be d-private with the verifier built by Barthe et al. [BBD+15b] up to
order d = 6. Furthermore, a pen-and-paper proof for any order d is given in Appendix D.

6 Optimal Small Cases
We propose three secure compression algorithms using less random bits than the generic solution given
by ISW and than our new solution for the specific small orders d = 2, 3 and 4. These algorithms actually
use only the optimal numbers of random bits for these small quantity of probes, as proven in Section 4.
Furthermore, since they all are dedicated to a specific order d (among 2, 3, and 4), we got use of the
verifier proposed by Barthe et al. in [BBD+15b] to formally prove their correctness and their d-privacy.

Proposition 6.1. Algorithms 4, 5, and 6 are correct and respectively 2, 3 and 4-private.

Table 1 (Section 5) compares the amount of randomness used by the new construction proposed in
Section 5 and by our optimal small algorithms. We recall that each of them attains the lower bound
proved in Section 4.

α̂0,0 (r0,6 α̂0,6 r5 α̂0,5) (r0,4 α̂0,4 r3 α̂0,3) (r0,2 α̂0,2 r1 α̂0,1)
α̂1,1 (r1,6 α̂1,6 r5 α̂1,5) (r1,4 α̂1,4 r3 α̂1,3) (r1,2 α̂1,2) r1
α̂2,2 (r2,6 α̂2,6 r5 α̂2,5) (r2,4 α̂2,4 r3 α̂2,3) r1,2 r0,2
α̂3,3 (r3,6 α̂3,6 r5 α̂3,5) (r3,4 α̂3,4) r3
α̂4,4 (r4,6 α̂4,6 r5 α̂4,5) r3,4 r2,4 r1,4 r0,4
α̂5,5 (r5,6 α̂5,6) r5
α̂6,6 r5,6 r4,6 r3,6 r2,6 r1,6 r0,6

Figure 5: Application of our new construction for d = 6, with α̂i,j = αi,j + αj,i
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Algorithm 3 New construction for d-secure multiplication
Require: sharing (αi,j)0≤i,j≤d
Ensure: sharing (ci)0≤i≤d
1: for i = 0 to d do . Random Bits Generation
2: for j = 0 to d− i− 1 by 2 do
3: ri,d−j

$← F2

4: for j = d− 1 downto 1 by 2 do
5: rj

$← F2

6: for i = 0 to d do . Multiplication
7: ci ← αi,i
8: for j = d downto i+ 2 by 2 do
9: ti,j ← ri,j + αi,j + αj,i + rj−1 + αi,j−1 + αj−1,i; ci ← ci + ti,j

10: if i 6≡ d (mod 2) then
11: ti,i+1 ← ri,i+1 + αi,i+1 + αi+1,i; ci ← ci + ti,i+1
12: if i ≡ 1 (mod 2) then . Correction ri
13: ci ← ci + ri
14: else
15: for j = i− 1 downto 0 do . Correction ri,j
16: ci ← ci + rj,i

Table 1: Complexities of ISW, our new d-private compression algorithm for multiplication and our specific algo-
rithms at several orders

Complexities Algorithm ISW Algorithm 3 Algorithms 4, 5 and 6
Second-Order Masking

sums 12 12 10
products 9 9 9

random bits 3 3 2
Third-Order Masking

sums 24 22 20
products 16 16 16

random bits 6 5 4
Fourth-Order Masking

sums 40 38 30
products 25 25 25

random bits 10 8 5
dth-Order Masking

sums 2d(d+ 1)
{

d(7d+ 10)/4 (d even)
(7d+ 1)(d+ 1)/4 (d odd)

-

products (d+ 1)2 (d+ 1)2 -

random bits d(d+ 1)/2
{

d2/4 + d (d even)
(d2 − 1)/4 + d (d odd)

-

Algorithm 4 Second-Order
Compression Algorithm
Require: sharing (αi,j)0≤i,j≤2
Ensure: sharing (ci)0≤i≤2

r0
$← F2; r1 ← F2

c0 ← α0,0 + r0 + α0,2 + α2,0
c1 ← α1,1 + r1 + α0,1 + α1,0
c2 ← α2,2 + r0 + r1 + α1,2 + α2,1

Algorithm 5 Third-Order
Compression Algorithm
Require: sharing (αi,j)0≤i,j≤3
Ensure: sharing (ci)0≤i≤3

r0
$← F2; r1

$← F2; r2
$← F2; r3

$← F2
c0 ← α0,0 + r0 + α0,3 + α3,0 + r1 + α0,2 + α2,0
c1 ← α1,1 + r2 + α1,3 + α3,1 + r1 + α1,2 + α2,1
c2 ← α2,2 + r3 + α2,3 + α3,2
c3 ← α3,3 + r3 + r2 + r0 + α0,1 + α1,0
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Algorithm 6 Fourth-Order Compression Algorithm
Require: sharing (αi,j)0≤i,j≤4
Ensure: sharing (ci)0≤i≤4

r0
$← F2; r1

$← F2; r2
$← F2; r3

$← F2; r4
$← F2

c0 ← α0,0 + r0 + α0,1 + α1,0 + r1 + α0,2 + α2,0
c1 ← α1,1 + r1 + α1,2 + α2,1 + r2 + α1,3 + α3,1
c2 ← α2,2 + r2 + α2,3 + α3,2 + r3 + α2,4 + α4,2
c3 ← α3,3 + r3 + α3,4 + α4,3 + r4 + α3,0 + α0,3
c4 ← α4,4 + r4 + α4,0 + α0,4 + r0 + α4,1 + α1,4

7 Composition
Our new algorithms are all d-private, when applied on the outputs of a multiplicative encoder param-
eterized at order d. We now aim to show how they can be involved in the design of larger functions
(e.g., block ciphers) to achieve a global d-privacy. In [BBD+15a], Barthe et al. introduce and formally
prove a method to compose small d-private algorithms (a.k.a., gadgets) into d-private larger functions.
The idea is to carefully refresh the sharings when necessary, according to the security properties of the
gadgets. Before going further into the details of this composition, we recall some security properties used
in [BBD+15a].

7.1 Compositional Security Notions
Before stating the new security definitions, we first need to introduce the notion of simulatability. For the
sake of simplicity, we only state this notion for multiplication algorithm, but this can easily be extended
to more general algorithms.

Definition 7.1. A set P = {p1, . . . , p`} of ` probes of a multiplication algorithm can be simulated with
at most t shares of each input, if there exists two sets I = {i1, . . . , it} and J = {j1, . . . , jt} of t indices
from {0, . . . , d} and a random function f taking as input 2t bits and outputting ` bits such that for any
fixed bits (ai)0≤i≤d and (bj)0≤j≤d, the distributions {p1, . . . , p`} (which implicitly depends on (ai)0≤i≤d,
(bj)0≤j≤d, and the random coins used in the multiplication algorithm) and {f(ai1 , . . . , ait , bj1 , . . . , bjt)}
are identical.

We write f(ai1 , . . . , ait , bj1 , . . . , bjt) = f(aI , bJ).

Definition 7.2. An algorithm is d-non-interferent (or d-NI) if and only if every set of at most d probes
can be simulated with at most d shares of each input.

While this notion might be stronger than the notion of security we used, all our concrete constructions
in Sections 5 and 6 satisfy it. The proof of Algorithm 3 is indeed a proof by simulation, while the small
cases in Section 6 are proven using the verifier by Barthe et al. in [BBD+15b], which directly proves NI.

Definition 7.3. An algorithm is d-tight non-interferent (or d-TNI) if and only if every set of t ≤ d
probes can be simulated with at most t shares of each input.

While this notion of d-tight non-interference was assumed to be stronger than the notion of d-non-
interference in [BBD+15a], we show hereafter that these two security notions are actually equivalent. In
particular, this means that all our concrete constructions are also TNI.

Proposition 7.4. (d-NI ⇔ d-TNI) An algorithm is d-non-interferent if and only if it is d-tight non-
interferent.

Proof. The right-to-left implication is straightforward from the definitions. Let us thus consider the
left-to-right direction.

For that purpose, we first need to introduce a technical lemma. Again, for the sake of simplicity, we
only consider multiplication algorithm, with only two inputs, but the proof can easily be generalized to
any algorithm.

Lemma 7.5. Let P = {p1, . . . , p`} be a set of ` probes which can be simulated by the sets (I, J) and also
by the sets (I ′, J ′). Then it can also be simulated by (I ∩ I ′, J ∩ J ′).
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Proof. Let f the function corresponding to I, J and f ′ the function corresponding to I ′, J ′. We have
that for any bits (ai)0≤i≤d and (bj)0≤j≤d, the distributions {p1, . . . , p`}, {f(aI , bJ)}, and {f ′(aI′ , bJ′)}
are identical. Therefore, f does not depend on ai nor bj for i ∈ I \ I ′ and j ∈ J \ J ′, since f ′ does not
depend on them. Thus, P can be simulated by only shares from I ∩I ′, J ∩J ′ (using the function f where
the inputs corresponding to ai and bj for i ∈ I \ I ′ and j ∈ J \ J ′ are just set to zero, for example).

We now assume that an algorithm A is d-NI, that is, every set of at most d probes can be simulated
with at most d shares of each input. Now, by contradiction, let us consider a set P with minimal
cardinality t < d of probes on A, such that it cannot be simulated by at most t shares of each input.
Let us consider the sets I, J corresponding to the intersection of all sets I ′, J ′ (respectively) such that
the set P can be simulated by I ′, J ′. The sets I, J also simulate P thanks to Lemma 7.5. Furthermore,
by hypothesis, t < |I| ≤ d or t < |J | ≤ d. Without loss of generality, let us suppose that |I| > t.

Let i∗ be an arbitrary element of {0, . . . , d} \ I (which is not an empty set as |I| ≤ d). Let us now
consider the set of probes P ′ = P ∪ {ai∗}. By hypothesis, P ′ can be simulated by at most |P ′| = t + 1
shares of each input. Let I ′, J ′ two sets of size at most t+ 1 simulating P ′. These two sets also simulate
P ⊆ P ′, therefore, I∩I ′, J∩J ′ also simulate P . Furthermore, i∗ ∈ I, as all the shares ai are independent.
Since i∗ /∈ I, |I ∩ I ′| ≤ t and I ∩ I ′ ( I, which contradicts the fact that I and J were the intersection of
all sets I ′′, J ′′ simulating P .

Definition 7.6. An algorithm A is d-strong non-interferent (or d-SNI) if and only if for every set I
of t1 probes on intermediate variables (i.e., no output wires or shares) and every set O of t2 probes on
output shares such that t1 + t2 ≤ d, the set I ∪ O of probes can be simulated by only t1 shares of each
input.

The composition of two d-SNI algorithms is itself d-SNI, while that of d-TNI algorithms is not neces-
sarily d-TNI. This implies that d-SNI gadgets can be directly composed while maintaining the d-privacy
property, whereas a so-called refreshing gadget must sometimes be involved before the composition of
d-TNI algorithms. Since the latter refreshing gadgets consume the same quantity of random values as
ISW, limiting their use is crucial if the goal is to reduce the global amount of randomness.

7.2 Building Compositions with our New Algorithms
In [BBD+15a], the authors show that the ISW multiplication is d-SNI and use it to build secure com-
positions. Unfortunately, our new multiplication algorithms are d-TNI but not d-SNI. Therefore, as
discussed in the previous section, they can replace only some of the ISW multiplications in secure com-
positions. Let us take the example of the AES inversion that is depicted in [BBD+15a]. We can prove
that replacing the first (A7) and the third (A2) ISW multiplications by d-TNI multiplications (e.g., our
new constructions) and moving the refreshing algorithm R in different locations preserves the strong
non-interference of the inversion, while benefiting from our reduction of the randomness consumption.

The tweaked inversion is given in Figure 6. ⊗ denotes the d-SNI ISW multiplication, ·α denotes the
exponentiation to the power α, Ai refers to the i-th algorithm or gadget (indexed from left to right),
R denotes the d-SNI refreshing gadget, Ii denotes the set of internal probes in the i-th algorithm, Sij
denotes the set of shares from the j inputs of algorithm Ai used to simulate all further probes. Finally,
x denotes the inversion input and O denotes the set of probes at the output of the inversion. The global
constraint for the inversion to be d-SNI (and thus itself composable) is that: |S8 ∪ S9| ≤

∑
1≤i≤9 |Ii|,

i.e., all the internal probes can be perfectly simulated with at most
∑

1≤i≤9 |Ii| shares of x.

Proposition 7.7. The AES inversion given in Figure 6 with A1 and A4 being d-SNI multiplications
and A2 and A7 being d-TNI multiplications is d-SNI.

Proof. From the d-probing model, we assume that the total number of probes used to attack the inversion
is limited to d, that is

∑
1≤i≤9 |Ii| + |O| ≤ d. As in [BBD+15a], we build the proof from right to

left by simulating each algorithm. Algorithm A1 is d-SNI, thus |S1
1 |, |S1

2 | ≤ |I1|. Algorithm A2 is
d-TNI, thus |S2

1 |, |S2
2 | ≤ |I1 + I2|. As explained in [BBD+15a], since Algorithm A3 is affine, then

|S3| ≤ |S2
1 + I3| ≤ |I1 + I2 + I3|. Algorithm A4 is d-SNI, thus |S4

1 |, |S4
2 | ≤ |I4|. Algorithm A5 is d-SNI,

thus |S5| ≤ |I5|. Algorithm A6 is affine, thus |S6| ≤ |S5 + I6| ≤ |I5 + I6|. Algorithm A7 is d-TNI, thus
|S7

1 |, |S7
2 | ≤ |S6 + S4

1 + I7| ≤ |I4 + I5 + I6 + I7|. Algorithm A8 is d-SNI, thus |S8| ≤ |I8|. Algorithm
A9 is affine, thus |S9| ≤ |I9 + S8| ≤ |I8 + I9|. Finally, all the probes of this inversion can be perfectly
simulated from |S9 ∪ S7

1 | ≤ |I4 + I5 + I6 + I7 + I8 + I9| shares of x, which proves that the inversion is
still d-SNI.
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Figure 6: AES ·254

From Proposition 7.7, our new constructions can be used to build d-SNI algorithms. In the case of
the AES block cipher, half of the d-SNI ISW multiplications can be replaced by ours while preserving
the whole d-SNI security.

8 New Automatic Tool for Finding Attacks
In this section, we describe a new automatic tool for finding attacks on compression algorithms for
multiplication which is developed in Sage (Python) [Sage]. Compared to the verifier developed by
Barthe et al. [BBD+15b] and based on Easycrypt, to find attacks in practice, our tool is not as generic
as it focuses on compression algorithms for multiplication and its soundness is not perfect (and relies on
some heuristic assumption). Nevertheless, it is order of magnitudes faster.

A non-perfect soundness means that the algorithm may not find an attack and can only guarantee
that there does not exist an attack except with probability ε. We believe that, in practice, this limitation
is not a big issue as if ε is small enough (e.g., 2−20), a software bug is much more likely than an attack
on the scheme. Furthermore, the running time of the algorithm depends only linearly on log(1/ε).
Concretely, for all the schemes we manually tested for d = 3, 4, 5 and 6, attacks on invalid schemes were
found almost immediately. If not used to formally prove schemes, our tool can at least be used to quickly
eliminate (most) incorrect schemes, and enables to focus efforts on trying to prove “non-trivially-broken”
schemes.

8.1 Algorithm of the Tool
From Theorem 3.1, in order to find an attack P = {p1, . . . , p`} with ` ≤ d, we just need to find a
set P = {p1, . . . , p`} satisfying Condition 1. If no such set P exists, the compression algorithm for
multiplication is d-private.

A naive way to check the existence of such a set P is to enumerate all the sets of d probes. However,
there are

(
N
d

)
such sets, with N being the number of intermediate variables of the algorithm. For

instance, to achieve 4-privacy, our construction (see Section 6) uses N = 81 intermediate variables,
which makes more than 220 sets of four variables to test. In [BBD+15b], the authors proposed a faster
way of enumerating these sets by considering larger sets which are still independent from the secret.
However, their method falls short for the compression algorithms in our paper as soon as d > 6, as
shown in Section 8.4. Furthermore even for d = 3, 4, 5, their tool takes several minutes to prove security
(around 5 minutes to check security of Algorithm 3 with d = 5) or to find an attack for incorrect schemes,
which prevent people from quickly checking the validity of a newly designed scheme.

To counteract this issue, we design a new tool which is completely different and which borrows ideas
from coding theory to enumerate the sets of d or less intermediate variables. Let γ1, . . . , γν be all the
intermediate results whose expression functionally depends on at least one random and γ′1, . . . , γ′ν′ be the
other intermediate results that we refer to as deterministic intermediate results (ν+ν′ = N). We remark
that all the αi,j = aibj are intermediate results and that no intermediate result can functionally depend
on more than one shares’ product αi,j = aibj without also depending on a random bit. Otherwise, the
compression algorithm would not be d-private, according to Lemma 5.1. As this condition can be easily
tested, we now assume that the only deterministic intermediate results are the αi,j = aibj that we refer
to as γ′k in the following. As an example, intermediate results of Algorithm 4 are depicted in Table 2.
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Table 2: Intermediate results of Algorithm 4

non-deterministic (ν = 12) deterministic (ν′ = 9)
γ1 = a0b0 + r0 γ7 = c1 γ′1 = a0b0 γ′6 = a1b0
γ2 = a0b0 + r0 + a0b2 γ8 = r1 γ′2 = a0b2 γ′7 = a2b2
γ3 = c0 γ9 = a2b2 + r1 γ′3 = a2b0 γ′8 = a1b2
γ4 = r0 γ10 = a2b2 + r1 + r0 γ′4 = a1b1 γ′9 = a2b1
γ5 = a1b1 + r1 γ11 = a2b2 + r1 + r0 + a1b2 γ′5 = a0b1
γ6 = a1b1 + r1 + a0b1 γ12 = c2

An attack set P = {p1, . . . , p`} can then be separated into two sets Q = {γi1 , . . . , γiδ} and Q′ =
{γi′1 , . . . , γi′δ′}, with ` = δ+ δ′ ≤ d. We remark that necessarily

∑
p∈Q p does not functionally depend on

any random value. Actually, we even have the following lemma:
Lemma 8.1. Let A(~a,~b;~r) be a compression algorithm for multiplication. Then A is d-private if and
only if there does not exist a set of non-deterministic probes Q = {γi1 , . . . , γiδ} with δ ≤ d such that∑
p∈Q p = ~aᵀ ·M ·~b where the column space or the row space of M contains a vector of Hamming weight

at least δ + 1.
Furthermore, if such a set Q exists, there exists a set {γi′1 , . . . , γi′δ′}, with δ + δ′ ≤ d, such that

P = Q ∪Q′ is an attack.
Moreover, the lemma is still true when we restrict ourselves to sets Q such that there exists no proper

subset Q̂ ( Q such that
∑
p∈Q̂ p does not functionally depend on any random.

Proof. The two first paragraphs of the lemma can be proven similarly to Lemma 5.1. Thus, we only
need to prove its last part.

By contradiction, let us suppose that there exists a setQ of non-deterministic probesQ = {γi1 , . . . , γiδ}
such that

∑
p∈Q p = ~aᵀ ·M ·~b and the column space (without loss of generality, by symmetry of the ai’s

and bi’s) of M contains a vector of Hamming weight at least δ+1, but such that any subset Q̂ ( Q where∑
p∈Q̂ p that does not functionally depend on any random. Consequently, the sum

∑
p∈Q̂ p = ~aᵀ · M̂ ·~b,

is such that the column space (still without loss of generality) of M̂ does not contain any vector of
Hamming weight at least |Q̂|+ 1.

First, let us set M̄ = M̂ +M (over F2), so
∑
p∈Q\Q̂ p = ~aᵀ ·M̄ ·~b, as

∑
p∈Q̂ p+

∑
p∈Q\Q̂ =

∑
p∈Q p =

~aᵀ ·M ·~b and let δ̂ = |Q̂| and δ̄ = |Q \ Q̂| = δ − δ̂. Let also ω, ω̂, and ω̄ be the maximum Hamming
weights of the vectors in the column space of M , M̂ , and M̄ , respectively. Since M = M̂ + M̄ , then
ω ≤ ω̂+ ω̄ and since ω > δ+1, and δ = δ̂+ δ̄, then ω̂ > δ̂ or ω̄ > δ̄. We set Q̃ = Q̂ if ω̂ > δ̂, and Q̃ = Q\Q̂
otherwise. According to the definitions of δ̂ and ω̄ , we have that Q̃ ( Q is such that

∑
p∈Q p = ~aᵀ ·M̃ ·~b

where the column space of M̃ contains a vector of Hamming weight at least |Q̃| + 1. This contradicts
the definition of Q and concludes the proof of the lemma.

To quickly enumerate all the possible attacks, we first enumerate the sets Q = {γi1 , . . . , γiδ} of size
δ ≤ d such that

∑
p∈Q p does not functionally depend on any random bit (and no proper subset of Q̂ ( Q

is such that
∑
p∈Q̂ p does not functionally depend on any random bit), using information set decoding,

recalled in the next section. Then, for each possible set Q, we check if the column space or the row space
of M (as defined in the previous lemma) contains a vector of Hamming weight at least δ + 1. A naive
approach would consist in enumerating all the vectors in the row space and the column space of M . Our
tool however uses the two following facts to perform this test very quickly in most cases:

• when M contains at most δ non-zero rows and at most δ non-zero columns, Q does not yield an
attack;

• when M contains exactly δ+ 1 non-zero rows (resp. columns), that we assume to be the first δ+ 1
(without loss of generality), Q yields an attack if and only if the vector (~uᵀδ+1,

~0ᵀd−δ) is in the row
space (resp. (~uδ+1,~0d−δ) is in the column space) of M (this condition can be checked in polynomial
time in d).

8.2 Information Set Decoding and Error Probability
We now explain how to perform the enumeration step of our algorithm using information set decoding.
Information set decoding was introduced in the original security analysis of the McEliece cryptosystem
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in [Pra62; McE78] as a way to break the McEliece cryptosystem by finding small code words in a
random linear code. It was further explored by Lee and Brickell in [LB88]. We should point out that
since then, many improvements were proposed, e.g., in [Leo88; Ste88]. However, for the sake of simplicity
and because it already gives very good results, we use the original information set decoding algorithm.
Furthermore, it is not clear that the aforementioned improvements also apply in our case, as the codes
we consider are far from the Singleton bound.

We assume that random bits are denoted r1, . . . , rR. For each intermediate γk containing some
random bit, we associate the vector ~τ ∈ ZR2 , where τi = 1 if and only if γk functionally depends on
the random bit ri. We then consider the matrix Γ ∈ ZR×ν2 whose k-th column is ~τ . For instance, for
Algorithm 4, we have:

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8 γ9 γ10 γ11 γ12

Γ =
(

1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1 0 1 1 1

)
r0
r1

.

For every δ ≤ d, enumerating the sets Q = {γi1 , . . . , γiδ}, such that
∑
p∈Q p does not functionally

depend on any random, consists in enumerating the vectors ~x of Hamming weight δ such that Γ · ~x = ~0
(specifically, {i1, . . . , iδ} are the coordinates of the non-zero components of ~x). Furthermore, we can
restrict ourselves to vector ~x such that no vector ~̂x < ~x satisfies Γ · ~̂x = ~0 (where ~̂x < ~x means that ~̂x 6= ~x
and for any 1 ≤ i ≤ ν, if xi = 0 then x̂i = 0), since we can restrict ourselves to sets Q such that no
proper subset Q̂ ( Q is such that

∑
p∈Q̂ p does not functionally depend on any random bit. This is close

to the problem of finding code words ~x of small Hamming weight for the linear code of parity matrix Γ
and we show this can be solved using information set decoding.

The basic idea is the following one. We first apply a row-reduction to Γ. Let us call the resulting
matrix Γ′. We remark that, for any vector ~x, Γ · ~x = 0 if and only if Γ′ · ~x = 0 and thus we can use
Γ′ instead of Γ in our problem . We assume in a first time that the first R columns of Γ are linearly
independent (recall that the number ν of columns of Γ is much larger than its number R of rows), so that
the R first columns of Γ′ forms an identity matrix. Then, for any k∗ > R, if the k∗-th column of Γ′ has
Hamming weight at most d− 1, we can consider the vector ~x defined as xk∗ = 1, xk = 1 when Γ′k,k∗ = 1
, and xk = 0 otherwise; and this vector satisfies the conditions we were looking for: its Hamming weight
is at most d and Γ′ · ~x = 0 . That way, we have quickly enumerated all the vectors ~x of Hamming weight
at most d such that Γ′ · ~x = 0 and with the additional property that xk = 0 for all k > R except for
at most2 one index k∗. Without the condition Γ′ · ~x = 0, there are (ν − R + 1) ·

∑d−1
i=0

(
R
i

)
+
(
R
d

)
such

vectors, as there are
∑d
i=0
(
R
i

)
vectors ~x such that HW(~x) ≤ d and xk = 0 for every k > R, and there

are (ν − R) ·
∑d−1
i=0

(
R
i

)
vectors ~x such that HW(~x) ≤ d and xk = 1, for a single k > R. In other words,

using row-reduction, we have been able to check (ν −R+ 1) ·
∑d−1
i=0

(
R
i

)
+
(
R
d

)
possible vectors ~x among

at most
∑d
i=1
(
ν
i

)
vectors which could be used to mount an attack, by testing at most ν −R vectors.3

Then, we can randomly permute the columns of Γ and repeat this algorithm. Each iteration would
find an attack (if there was one attack) with probability at least

(
(ν − R + 1) ·

∑d−1
i=0

(
R
i

)
+
(
R
d

))
/
∑d

i=1

(
ν
i

)
.

Therefore, after K iterations, the error probability is only

ε ≤

(
1−

(ν −R+ 1) ·
∑d−1
i=0

(
R
i

)
+
(
R
d

)∑d
i=1
(
ν
i

) )K
,

and the required number of iterations is linear with log(1/ε), which is what we wanted.
Now, we just need to handle the case when the first R columns of Γ are not linearly independent, for

some permuted matrix Γ at some iteration. We can simply redraw the permutation or taking the pivots
in the row-reduction instead of taking the first R columns of Γ. In both cases, this may slightly bias
the probability. We make the heuristic assumption that the bias is negligible. To support this heuristic
assumption, we remark that if we iterate the algorithm for all the permutations for which the first R
columns of Γ are not linearly independent, then we would enumerate all the vectors ~x we are interested
in, thanks to the additional condition that there is no vector ~̂x < ~x such that Γ · ~̂x = ~0.

2We have seen that for one index k∗, but it is easy to see that, as the first R columns of Γ′ form an identity matrix,
there does not exist such vector ~x so that xk = 0 for all k > R anyway.

3There are exactly
∑d

i=1

(
ν
i

)
vectors of Hamming weight at most d, but here we recall that we only consider vectors ~x

satisfying the following additional condition: there is no vector ~̂x < ~x such that Γ · ~̂x = ~0. We also remark that the vectors
~x generated by the described algorithm all satisfy this additional condition.
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Table 3: Complexities of exhibiting an attack at several orders

Time to find an attack
Order Target Algorithm Verifier [BBD+15b] New tool
d = 2 tweaked Algorithm 4 less than 1 ms less than 10 ms
d = 3 tweaked Algorithm 5 36 ms less than 10 ms
d = 4 tweaked Algorithm 6 108 ms less than 10 ms
d = 5 tweaked Algorithm 3 6.264 s less than 100 ms
d = 6 tweaked Algorithm 3 26 min less than 300 ms

8.3 The Tool
The tool takes as input a description of a compression algorithm for multiplication similar to the ones
we used in this paper (see Figure 2 for instance) and the maximum error probability ε we allow, and
tries to find an attack. If no attack is found, then the scheme is secure with probability 1− ε. The tool
can also output a description of the scheme which can be fed off into the tool in [BBD+15b].

The source code of the tool and its documentation are provided in [Tool].

8.4 Complexity Comparison
we try to give some values for the verification time of both tools when we intentionally modify our
constructions to yield an attack. From order 2 to 4, we start with our optimal constructions and we
just invert two random bits in an output share ci. Similarly, for orders 5 and 6, we use our generic
construction and apply the same small modification. The computations were performed on a Intel(R)
Core(TM) i5-2467M CPU @ 1.60GHz and the results are given in Table 3. We can see that in all the
considered cases, our new tool reveals the attack in less than 300 ms while the generic verifier of Barthe
et al. needs up to 26 minutes for order d = 6.
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A Proof of the Relation between Compression Algorithm and
Multiplication Algorithm (Proposition 2.6)

As explained in Section 2.2, to prove Proposition 2.6, we just need to prove that we can transform an
attack set P = {p1, . . . , p`} of size ` ≤ d for the multiplication algorithm B into an attack set P ′ for the
compression algorithm A. The only difference is that some probes in P may be the inputs ai or bi, while
such probes are forbidden in P ′.

This is actually surprisingly very hard. We first need to review Section 3 to add the possibility to have
probes for the inputs ai and bj . The following subsections (except the last one) follows the subsections
of Section 3. We highly recommend the reader to understand completely Section 3 before reading the
sequel.

A.1 Extended Matrix Notation
We now write probes p as:

p = ~aᵀ ·Mp ·~b+ ~aᵀ · ~mp,a + ~mp,b
ᵀ ·~b+ ~sp

ᵀ · ~r + cp,

where Mp is a matrix in F(d+1)×(d+1)
2 , ~mp,a and ~mm,b are two vectors in Fd+1

2 , and cp ∈ F2 is a constant
which is supposed to be zero in the sequel (as in Section 3). This notation can be extended to the sum
of probes.

Notice that actually, for all the probes we consider: at most one of the matrices or vectors Mp, ~mp,a,
and ~mp,b is non-zero. Furthermore the Hamming weight of ~mp,a, and ~mp,b is at most 1. However, it is
easier to deal with this slight generalization.

A.2 Extended Algebraic Condition
We now introduce our extended algebraic condition:

Condition 3. A set of probes P = {p1, . . . , p`} on a multiplication algorithm satisfies Condition 1 if
and only if the expression f =

∑`
i=1 pi can be written as f = ~aᵀ ·M ·~b+~aᵀ · ~ma + ~mb

ᵀ ·~b with M being
some matrix and ~ma and ~mb being some vectors such that ~ud+1 is in the affine space ~ma + im(M) or
~mb + im(Mᵀ), where im(M) is the column space of M and im(Mᵀ) is the row space of M .

A.3 Extended Algebraic Characterization
Theorem A.1. Let B be a multiplication algorithm constructed from a d-compression algorithm for
multiplication as in Remark 2.5. Then, B is d-private if and only if there does not exist a set P =
{p1, . . . , p`} of ` ≤ d probes that satisfies Condition 3. Furthermore any set P = {p1, . . . , p`} satisfying
Condition 1 is an attack.

Proof. The left-to-right direction can be proven similarly as for Theorem 3.1. Let us focus on the right-
to-left direction.

The proof is exactly the same up to the definition of the p′i (since what comes before that only
considers the random bits in the probes and hence is similar when probes of the form ai or bi are taken
into account), which can now be written as:

p′i = ~aᵀ ·M ′
i ·~b+ ~aᵀ · ~m′i,a + ~m′i,b

ᵀ
·~b,

for some matrix M ′
i and vectors ~m′i,a and ~m′i,b.

We now can conclude using the following lemma, which is an extended version of Lemma 3.4 and
whose proof is similar:

Lemma A.2. If (p′1, . . . , p′t) is an attack tuple, then there exists a vector ~b∗ ∈ Fd+1
2 such that ~ud+1 is in

the vector space 〈M ′
1 · ~b∗ + ~m′1,a, . . . ,M

′
t · ~b∗ + ~m′t,a〉.

Thanks to Lemma A.2, there exists a vector ~σ = (σ1, . . . , σt)ᵀ ∈ Ft2 and a vector ~b∗ ∈ Fd+1
2 , such that(

t∑
i=1

σi ·M ′
i

)
· ~b∗ +

(
t∑
i=1

σi · ~m′i,b

)
= ~ud+1 . (3)
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Let ~σ′ be the vector in F`2 defined by ~σ′
ᵀ

=
(
~σᵀ ~0ᵀ`−t

)
·N . We have:

~σ′
ᵀ
· ~p =

t∑
i=1

σi · p′i =
t∑
i=1

σi · ~aᵀ ·M ′
i ·~b+

t∑
i=1

σi · ~aᵀ · ~m′i,a +
t∑
i=1

σi · ~m′i,b
ᵀ
·~b

so that:
~σ′

ᵀ
· ~p = ~aᵀ ·

(
t∑
i=1

σi ·M ′
i

)
·~b+ ~aᵀ ·

(
t∑
i=1

σi · ~m′i,a

)
+
(

t∑
i=1

σi · ~m′i,b
ᵀ
)
·~b . (4)

Therefore, we can define the set P ′ = {pi | σi = 1}. This set satisfies Condition 3, according to
Equations (3) and (4).

This concludes the proof.

A.4 Proof of Proposition 2.6
We can now prove Proposition 2.6.

Proposition 2.6. Let us suppose by contraposition that B is not d-private. Thanks to Theorem A.1, this
means that there exists a set of probes P = {p1, . . . , p`} satisfying Condition 3. We suppose without loss
of generality that: ∑̀

i=1
pi = ~aᵀ ·M ·~b+ ~aᵀ · ~ma + ~mb

ᵀ ·~b

and ~ud+1 is in the affine space ~ma + im(M).
From the shapes of possibles probes, we know that for any i, if ma,i = 1, then one of the probe pj

has to be ai. Let us spit our set of probes P in three sets:

• P1 contains all the probes pj such that pj = ai and ma,i = 1;

• P2 contains all the probes which are not of the form ai or bj ;

• P3 contains all the other probes.

We remark that: ∑
p∈P1∪P2

p = ~aᵀ ·M ·~b+ ~aᵀ · ~ma.

Let ~b∗ ∈ Fd+1
2 be a vector such that ~ud+1 = ~ma + B · ~b∗. The Hamming weight of ~ma is exactly the

cardinality of P1 and is at most d. Therefore, ~b∗ 6= ~0d+1 and we can arbitrarily choose 0 ≤ j∗ ≤ d such
that b∗j∗ = 1. Finally, let us set P ′1 = {αi,j∗ | ma,i = 1}. We can write∑

p∈P ′1∪P2

p = ~aᵀ ·M ′ ·~b,

and we have that:
M ′ · ~b∗ = M · ~b∗ + ~ma = ~ud+1.

Therefore P ′1 ∪ P2 is a set of probes (for the compression algorithm A) which satisfies Condition 1.
This concludes the proof.

B Counterexample for a Variant of Theorem 3.1 with Condi-
tion 2

In this appendix, we show that Theorem 3.1 would not be valid with Condition 2 (instead of Condition 1).
Let us indeed consider the following 2-compression scheme for multiplication:

α2,0 r1 α0,0 r2 α0,2
α2,1 r1 α1,1 r3 α1,2
α1,0 r2 α0,1 r3 α2,2
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It is easy to see that the only set of probes satisfying Condition 2 is

P = {α2,0 + r1 + α0,0, α2,1 + r1 + α1,1} .

However, this set does not satisfy Condition 1, and therefore this compression algorithm is 2-private
(since any set satisfying Condition 1 also satisfies Condition 2).

C Proofs of Section 4
C.1 Proof of the Better Linear Lower Bound (Section 4.3)
Theorem 4.4. Let r1, . . . , rd denote the random bits used by A. Let c0, . . . , cd denote the outputs of A.
The proof is organized through 4 steps as follows:

1. we prove that at least one ci (further referred to as c0) functionally depends on at least two distinct
random bits,

2. we prove that at least two shares c0 and cj (further referred to as c1) both functionally depend on
at least two distinct random bits,

3. we prove that at least one random bit r1 is such that no additive share functionally depends on
only r1,

4. we exhibit an attack.

Step 1: c0 functionally depends on at least two distinct random bits.

Let us first show that at least one of the (ci)0≤i≤d functionally depends on two different random bits. By
contradiction, let us assume that every (ci)0≤i≤d functionally depends on at most 1 random bit. Then,
as there are d random bits, it implies that, either one ci does not functionally depend on any random
bit, or there exist i < j such that ci and cj functionally depend on the same random bit:

• In the first case, let us assume that c0 does not functionally depend on any random bit. Then, by
correctness, neither does

∑d
i=1 ci. Then, S0 = {c0} and S1 = {c1, . . . , cd} satisfy the requirements

of Lemma 4.2 and A is not d-private.

• In the second case, let us assume without loss of generality that c0 and c1 functionally depend on
the same random bit (and only on this one by assumption). Then, c0 + c1 does not depend on any
random bit and so does

∑d
i=2 ci via correctness. Then, S0 = {c0, c1} and S1 = {c2, . . . , cd} satisfy

the requirements of Lemma 4.2 and A is not d-private.

Then, we can now assume without loss of generality that c0 functionally depends on at least two distinct
random bits.

Step 2: both c0 and c1 functionally depend on at least two distinct random bits.

By contradiction, let us now assume that for all 1 ≤ i ≤ d, ci functionally depends on only one random
bit. In order to achieve correctness, there must exist ci, cj with 1 ≤ i < j ≤ d that respectively depend
on the first and second of the two distinct random bits on which c0 functionally depends on. As we
assume that there are d random bits in total, all the d random bits on which the ci’s functionally depend
on for i ≥ 1 have to be different. Hence, we can assume without loss of generality that ci functionally
depends on ri, for 1 ≤ i ≤ d. Thus, by correctness, c0 functionally depends on all ri for i = 1, . . . , d.

Then, we can simply probe the first subsum p of c0 that functionally depends on at least 2 distinct
random bits (actually, any subsum that functionally depends on at least 2 and at most d − 1 random
bits would work).

Let us denote by I = {i1, i2} the set of indices corresponding to the random bits on which p func-
tionally depends on. Then, S0 = {p, ci1 , ci2} and S1 = {c0, p} ∪ {ci | i ∈ {1, . . . , d}\{i1, i2}} satisfy the
requirements of Lemma 4.2 and A is not d-private.

Therefore, it is not possible that every ci for 1 ≤ i ≤ d functionally depends on only one random bit
and thus, there are at least two ci, cj with i 6= j that functionally depend on at least 2 distinct random
bits. We can assume without loss of generality that c0 and c1 each functionally depend on at least 2
distinct random bits.
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Step 3: r1 is such that no ci (for i = 0, . . . , d) functionally depends on only r1 (and on no
other random bits).

By correctness, c0 functionally depends on all the random bits on which
∑d
i=1 ci functionally depends on.

We just proved that c1 functionally depends on at least two distinct bits. Also, all random bits have to
be used (otherwise there are at most d− 1 bits and Theorem 4.3 already proves that A is not d-private).
Consequently, each of the at most d− 2 random bits on which c1 does not functionally depend on have
to satisfy that at least one of the ci for 2 ≤ i ≤ d functionally depends on this random bit. Thus, it is
not possible that all ci for i ≥ 2 functionally depend on only 1 random bit (otherwise, there would exist
2 ≤ i1 < i2 ≤ d such that ci1 and ci2 functionally depend only on the same random bit. Indeed, in that
case, S0 = {ci1 , ci2} and S1 = {c0} ∪ {ci | i ∈ {1, . . . , d}\{i1, i2}} satisfy the requirements of Lemma 4.2
and A is not d-private.

Thus, this proves that at least one of the random bits, say r1 without loss of generality, is such that
no ci (for i = 0, . . . , d) functionally depends on only r1 (and on no other random bits).

Step 4: there exists an attack with at most d probes.

Let us now consider, similarly to what we did in the proof of Theorem 4.3, the matrix N ∈ Fd×d2 defined
as the matrix whose coefficients ni,j are equal to 1 if and only if cj functionally depends on the random
bit ri, for 1 ≤ i, j ≤ d. Please note once again that this matrix does not depend of c0. In order to prevent
the same kind of attack than the one we used in the proof of Theorem 4.3, it is clear that this matrix
has to be invertible. Hence, there exists ~w ∈ Fd2 such that N · ~w = ~e1 where ~e1 denotes the first vector
of the canonical basis of Fd2. Moreover, since c0 and

∑d
i=1 ci both functionally depends on the same at

least 2 distinct random bits, then by correctness, we have ~w 6= 1d. Also, the Hamming weight of ~w is at
least 2, since r1 never appears alone in an additive share, which implies that ~e1 is not a column in N .
Hence, we have 2 ≤ hw(~w) ≤ d− 1.

To conclude the proof, we just note that S0 = {r′, c0} ∪ {ci | wi = 0} and S1 = {r′} ∪ {ci | wi = 1}
satisfy the requirements of Lemma 4.2 and A is not d-private.

Theorem 4.4 follows.

C.2 Proof of the Upper-Bound (Section 4.4)
Theorem 4.6. We remark that a random algorithm as defined in Algorithm 2 and Lemma 4.5 is secure
with probability at least

1−
(

(R+ 3) · d · (d+ 1)/2
d

)
· 2−R ≥ 1− ((R+ 3) · d · (d+ 1)/2)d · 2−R

= 1− 2d·log((R+3)·d·(d+1)/2)−R.

When this probability is greater than 0, then there exists necessarily a choice of ρ(i, j) leading to a secure
algorithm. This condition can be rewritten as:

d · log((R+ 3) · d · (d+ 1)/2)−R < 0.

Let us take R = K · d · log d− 3 with K some constant to be fixed later. As d · (d+ 1)/2 ≤ d2, we have

d · log((R+ 3) · d · (d+ 1)/2)−R ≤ d · log(K · d3 · log d)−K · d · log d+ 3
= d · ((3−K) · log d+ logK + log log d) + 3

When K is large enough, this is always negative. Theorem 4.6 easily follows.

D Proof of the New Construction (Section 5)
Proposition 5.2. Inspired from simulation-based proofs of multiplications in [RP10; CPRR14], our proof
consists in constructing two sets I and J of indices in [0, d] of size at most d and such that the
distribution of any d-tuple (v1, v2, . . . , vd) of intermediate variables can be perfectly simulated from
αI,J = (αi,j)i∈I,j∈J . This proves our statement as long as the cardinalities of I and J are smaller than
d+ 1. We now describe the construction of I and J .
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Construction of the sets I and J .

Initially, I and J are empty. We fill them in the following specific order according to the possible
attacker’s probes.

1. for any observed variable αi,i, add i to I and i to J .

2. for any observed variable αi,j , add i to I and j to J .

3. for any observed variable rj , put j in I and j in J .

4. for any observed intermediate sum occurring during the computation of ci, assign from shortest
sums (in terms of number of terms) to longest sums:

• if i 6∈ I, add i to I. Otherwise, if ci involves corrective terms (i.e., randoms not in ti,j),
consider them successively (from left to right). For a random of the form rj,i, if j 6∈ I, add
j to I, otherwise, consider the next random. For a random of the form rj , if j 6∈ I, add j to
I. If there are no more corrective terms to consider, or if ci does not involve corrective terms,
consider the involved ti,j in reverse order (from right to left). Add to I the first index j that
is not in I.

• if i 6∈ J , add i in J . Otherwise, if ci involves corrective terms (i.e., randoms not in ti,j),consider
them successively (from left to right). For a random of the form rj,i, if j 6∈ J , add j to J ,
otherwise, consider the next random. For a random of the form rj , if j 6∈ J , add j to J .
If there are no more corrective terms to consider, or if ci does not involve corrective terms,
consider the involved ti,j in reverse order (from right to left). Add to J the first index j that
is not in J .

5. for any observed variable ri,j :

• if i 6∈ I, add i to I, otherwise add j to I.
• if i 6∈ J , add i to J , otherwise add j to J .

6. for any observed intermediate sum t occurring during the computation of ti,j we distinguish two
cases:

• t is a sum of at most 3 terms4:
– if i 6∈ I, add i to I, otherwise add j to I.
– if i 6∈ J , add i to J , otherwise add j to J .

• t is a sum of strictly more than 3 terms:
– if j − 1 6∈ I, add j − 1 to I. Otherwise, if i 6∈ I, add i to I, otherwise add j to I.
– if j − 1 6∈ J , add j − 1 to J . Otherwise, if i 6∈ J , add i to J , otherwise add j to J .

We can check that these categories cover all possible intermediate variables in our algorithm. More-
over, each observation adds at most one index in I and one index in J . With at most d probes, their
cardinals hence cannot be greater than d.

Simulation phase.

Before simulating, we make the following useful observations.

(i). all variables whose expression involves ri,j are: ri,j , ti,j , ci, cj .

(ii). all variables whose expression involves rj−1 are: rj−1, tk,j , cj−1, ck, for any k ≤ j − 2.

(iii). all variables whose expression involves both ri,j and rj−1 are: ci and ti,j .

We now prove that every observed value can be perfectly simulated with the input shares whose
indexes are among I and J .

1. any variable αi,i is trivially simulated thanks to the fact that i is in I and in J .
4Note that the case where it involves only one term ri,j has already been treated.
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2. any variable αi,j is trivially simulated thanks to the fact that i is in I and j is in J .

3. any variable ri,j is assigned to a uniformly distributed random value, as it is the case in the real
algorithm.

4. any variable rj is assigned to a uniformly distributed random value, as it is the case in the real
algorithm.

5. for any variable t of at most three terms manipulated during the computation of ti,j :

• if t is a sum of at most 3 terms (i.e., t = ri,j + αi,j or t = ri,j + αi,j + αj,i), then necessarily
we have i ∈ I and i ∈ J . Moreover :
– if j ∈ I and j ∈ J , t can be perfectly simulated with αi,j and αj,i thanks to the indexes

in I and J .
– otherwise, we show that t can be assigned to a random value. In particular, we show that

if t is non-random, we must have i, j ∈ I and i, j ∈ J . The variable t involves ri,j . As
noted in Observation (i), this variable can only appear either alone, in ci, in cj , in another
t′ of less than three terms part of ti,j , or in another t′ of strictly more than three terms
part of ti,j .

∗ ri,j appears alone: this probe involved i ∈ I and i ∈ J , and hence the probe of t
added j in I and j in J

∗ ri,j appears in an observed ci: this probe involved i ∈ I and i ∈ J , and hence the
probe of t added j in I and j in J

∗ ri,j appears in an observed cj : this probe involved j ∈ I and j ∈ J and hence the
probe of t added i in I and i in J

∗ ri,j appears in another observed t′ of less than three terms: the probe of two variables
t and t′ of this kind leads to first i ∈ I and i ∈ J and then j ∈ I and j ∈ J

∗ ri,j appears in another observed t′ of strictly more than three terms: in this case,
t′ also involves the random rj−1. With Observation (ii), we know that rj−1 can
either be observed alone, in cj−1, in t′′ of more than three terms part of tk,j or in
ck. Once again, considering rj−1 or cj−1, and t and t′, we get that j − 1, j, i ∈ I and
j−1, j, i ∈ J . Considering t′′ of more than three terms, or ck, if k = i, we have already
treated this case and we have i, j ∈ I and i, j ∈ J , otherwise, the variable involves
rk,j . Once again thanks to Observation (i), we know exactly in which variables of
the protocol rk,j can be involved. It can be checked that i, j, k, j − 1 are in I and in
J for each variables that are not part of ck′ or tk,j . Consequently, each other probe
that does not imply i, j ∈ I and i, j ∈ J are variables of these kinds. However, each
of these variables involves both rj−1 and rk′,j for a certain k′. To summarize, t has
been queried, which involves only ri,j , and the only other possible variables involve
rj−1 and r`,j , where ` is the index of the line. Hence, the parity of the number of
occurrences of rj−1 is different from the parity of the number of occurrences of r`,j .
This ensures that it is impossible to get rid of rj−1 and all variables r`,j at the same
time. Therefore, in those cases t can be assigned to a random value.

• if t is a sum of strictly more than 3 terms:
– if i, j, j − 1 ∈ I and i, j, j − 1 ∈ J , then t can be simulated from the indexes in I and J .
– t involves ri,j and rj−1. Observations (i) and (ii) provide us the variables in which

these randoms are involved. For all but four cases, we trivially have i, j, j − 1 ∈ I and
i, j, j−1 ∈ J . Those four cases are the queries of (ri,j , t′) with t′ part of tk,j and involving
strictly more than three terms, (c, c′), where c and c′ are part of ci, (t′, t′′) with t′ part
of ti,j and t′′ part of tk,j , where t′′ is assigned before t′, both involving more than three
terms, and finally, any other couple involving a part of ck.

∗ the cases (ri,j , t′) and (t′, t′′) imply the involvement of rk,j . Thanks to Observation (i),
all possible cases can be exhausted, and we obtain i, k, j−1, j ∈ I and i, k, j−1, j ∈ J .

∗ the case (c, c′) is particular. Indeed, we can assume that c is computed during the
computation of c′. We can hence safely assign t to a random variable if this is the
only case where ri,j and rj−1 have been involved.
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∗ the query of a c, part of ck and involving rj−1 involves the variable rk,j . From
Observation (i), we can exhaust the possible cases. For each of these cases except
five, we have i, j, j − 1, k ∈ I and i, j, j − 1, k ∈ J . The five remaining cases are
(cj , cj), (cj , ck), (rk,j , ck), (ci, ck), (ti,j , ck). With the case involving cj , by construction
we have that rk,j and ri,j appear after the addition of all the terms of the form tj,`.
Consequently, this expression involves the term rj−1,j (if i = j−1, ti,j does not exist,
and if k = j − 1, the probe of ck assures that we have j − 1 in I and J , hence we also
get i, j ∈ I and i, j ∈ J). Using Observation (i), we find out that the only way not to
have i, j, j − 1 ∈ I and i, j, j − 1 ∈ I is to make another probe to cj . However, this
case is similar to the one we just observed: it is safe to randomly assign t. For any
another case, the random rk,j reappears, and we must hence query another variable to
get rid of it. The only possibility is to query ck once more. Hence t can be randomly
assigned.
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