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Abstract

Zero-knowledge proofs have driven the field of cryptography since their conception over thirty
years ago. It is well established that two-message zero-knowledge protocols for NP do not exist,
and that four-message zero-knowledge arguments exist under the minimal assumption of one-way
functions. Resolving the precise round complexity of zero-knowledge has been an outstanding open
problem for far too long.

In this work, we present a three-message protocol with soundness against uniform cheating
provers. The main component in our construction is the recent delegation protocol for RAM com-
putations (Kalai and Paneth, ePrint 2015). Concretely, we rely on a 3-message variant of their
protocol based on keyless collision-resistant hash functions against uniform adversaries and sub-
exponentially-secure fully homomorphic encryption.

More generally, beyond uniform provers, our protocol provides a natural and meaningful secu-
rity guarantee against real-world adversaries, which we formalize following Rogaway’s “human-
ignorance” approach (VIETCRYPT 2006): in a nutshell, we give an explicit uniform reduction from
any adversary breaking the soundness of our protocol to finding collisions in the underlying hash
function.
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1 Introduction

Since its introduction over thirty years ago [GMR89], researchers have been fascinated by the notion
of zero-knowledge proofs. Over the years, prolific engagement with zero knowledge has given birth
to ideas that revolutionized cryptography, including the simulation paradigm, passive-to-active security
transformations, and more [GMW91, FLS99, Bar01, IKOS09].

A central and persistent open question in the theory of zero knowledge is that of round complex-
ity (or message complexity). A lower bound of three messages was shown by Goldreich and Oren
[GO94] for zero knowledge against non-uniform adversarial verifiers. Zero knowledge in the pres-
ence of non-uniform advice is often essential for secure composition and has become the gold stan-
dard. While four-message arguments are known from minimal assumptions [FS89, BJY97], all three-
message protocols suggested so far were based on strong “auxiliary-input knowledge assumptions”
[HT98, BP04, CD09, BP12, BCC+14]. The plausibility of the latter assumptions was questioned already
around their introduction [HT98] and concrete barriers were recently demonstrated [BCPR14, BM14].
Finding a three-message protocol matching the Goldreich-Oren lower bound remains wide open.

What makes 3-message zero knowledge so interesting. Aside from its significance to the theory of
zero knowledge, the question of 3-message zero knowledge is further motivated by its connections to
fundamental notions in cryptography such as non-black-box security proofs and verifiable computation.

While in the existing 4-message zero-knowledge protocols the simulator treats the verifier as a black-
box, Goldreich and Krawczyk show that in any 3-message zero-knowledge protocol, the simulator must
make non-black-box use of the verifier’s code.1 The pioneering work of [Bar01] demonstrated that bar-
riers of this kind can sometimes be crossed via non-black-box simulation. However, Barak’s technique,
and all other non-black-box techniques developed thus far have only lead to protocols with at least four
messages [BP13, COP+14].

A bottleneck to reducing the round-complexity of Barak’s protocol is the reliance on 4-message uni-
versal arguments [BG08] which allow fast verification of NP computations. Accordingly, developments
in round-efficient systems for verifiable computation may very well lead to corresponding developments
in 3-message zero knowledge. In fact, strong forms of verifiable computation have already proven instru-
mental in producing novel non-black-box simulation techniques, such as in the context of constant-round
concurrency [CLP13b, CLP15].

Bounded non-uniformity. Bitansky et al. [BCPR14] study 3-message protocols satisfying a relaxed
notion of zero knowledge. Instead of requiring the zero knowledge guarantee against all non-uniform
verifiers, they only consider verifiers that have an a priori bounded amount of non-uniformity (but may
still run for an arbitrary polynomial time). This includes, in particular, zero-knowledge against uniform
verifiers. They demonstrate a 3-message zero-knowledge protocol against verifiers with bounded non-
uniformity based on the verifiable delegation protocol of Kalai, Raz, and Rothblum [KRR14].

Notably, restricting attention to verifiers with bounded uniformity comes with a great compromise.
For once, the zero knowledge property is not preserved under sequential composition. More broadly,
such protocols may not provide a meaningful security guarantee against real-world adversaries. As
a concrete example, the zero knowledge property of the protocol in [BCPR13] crucially relies on the
fact that messages sent by the verifier can be simulated by a Turing machine with a short description,
shorter then the protocol’s communication. However, this assumption does not seem to hold for real-
world adversaries, which may certainly have access to arbitrarily long strings with no apparent short
description.

1For the case of proofs (rather than arguments), the lower bound extends to four messages [Kat12].
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1.1 This Work

In this work ,we construct a 3-message protocol that is zero knowledge against fully non-uniform veri-
fiers and sound against provers with bounded non-uniformity. The main component in our construction
is the recent verifiable delegation protocol for RAM computations of Kalai and Paneth [KP15]. Con-
cretely, we rely on a 3-message variant of their protocol based on keyless collision-resistant hash func-
tions against adversaries with bounded non-uniformity and slightly super-polynomial running time, and
sub-exponentially-secure fully homomorphic encryption.

In contrast to the setting of verifiers with bounded non-uniformity, our protocol remains secure
under sequential composition. Furthermore, our protocol provides a natural and meaningful security
guarantee against real-world adversaries, which we formalize following Rogaway’s human-ignorance
approach [Rog06].

Human ignorance and real-world security. A more informative way of describing the soundness of
our protocol is by the corresponding security reduction: any prover that breaks soundness, regardless
of how non-uniform it is, can be reduced to a collision finder for an underlying hash function. In our
protocol, however, the hash function must already be determined before the first message is sent, thus
requiring that we rely on a fixed (keyless) function. Clearly a fixed hash function cannot be collision-
resistant against non-uniform adversaries. However, as argued by Rogaway, a reduction to finding colli-
sions in such a function is sufficient for all practical purposes. Indeed, for common constructions, such
as SHA-3, collisions (while surely exist) are simply not known.

Our main result can be accordingly stated as follows:

Informal Theorem 1.1 (See Theorem 3.1). Assuming a sub-exponentially secure fully homomorphic
encryption scheme, a circuit-private 1-hop homomorphic encryption scheme, and a non-interactive com-
mitment scheme, there exists a 3-message protocol with a uniform reduction R (described in the proof
of Theorem 3.1) running in quasi-polynomial time such that for every non-uniform PPT adversary A, if
A breaks the soundness of the protocol instantiated with a keyless hash function H, then RA outputs a
collision inH. The protocol is zero knowledge against non-uniform PPT verifiers.

Asymptotic interpretations. As discussed above, implementing our protocol with a keyless hash such
as SHA-3 guarantees security against “ignorant” adversaries that are unable to find hash collisions. This
class of adversaries may include all the adversaries we care about in practice, however, since functions
like SHA-3 does not provide any asymptotic security, we cannot use standard asymptotic terminology
to define the class of “SHA-ignorant adversaries”.

We formalize the security of our protocol and hash function in conventional asymptotic terms. For
any asymptotic hash family H = {Hn}n∈N, we can accordingly think of the class of adversaries that
are H-ignorant. Trying to capture more natural classes of adversaries, we focus on the subclass of
adversaries with bounded-non uniformity. It may be reasonable to assume that an asymptotic keyless
hash function is indeed collision-resistant against this class as long as the corresponding non-uniform
advice is shorter than the hash input length. Therefore, the result for adversaries with bounded-non
uniformity stated above follows as a corollary of our explicit reduction.

The global common random string model and resettable security. Another direct corollary of our
result is that assuming (the standard notion of) keyed collision-resistant hash-function families, there
is a 3-message zero-knowledge protocol that is sound against fully non-uniform provers in the global
(or non-programable) common random string model [CDPW07] or in the global hash model [CLP13a].
(We note that the Goldreich-Oren lower bound and the Goldreich-Krawczyk Black-Box lower bound
hold even in these models.)

Another property of the protocol is that it can be made resettably-sound [BGGL01] via the (round-
preserving) transformation of Barak et al. [BGGL01]. This holds for the 3-message version of the
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protocol (against provers with bounded uniformity, or against non-uniform provers in the global random
string model).

1.2 Techniques

We now give an overview of the main ideas behind the new protocol.

Barak’s protocol. As explained above, 3-message zero-knowledge can only be achieved via non-black-
box simulation (and the Goldreich-Krawczyk lower bound, in fact, holds even when considering uniform
provers). Thus, a natural starting point is the non-black-box simulation technique of Barak [Bar01],
which we outline next. Following the Feige-Lapidot-Shamir paradigm [FLS99], the prover and ver-
ifier in Barak’s protocol first execute a trapdoor generation preamble: the verifier sends a key h for
a collision-resistant hash function, the prover responds with a commitment cmt, and then, the verifier
sends a random challenge u. The preamble defines a ”trapdoor statement” asserting that there exists
a program Π such that cmt is a commitment to h(Π) and Π(cmt) outputs u. Intuitively, no cheating
prover is able to commit to a code that predicts the random u ahead of time, and thus cannot obtain a
witness (a program Π) for the trapdoor statement. In contrast, a simulator that is given the code of the
(malicious) verifier, can commit to it in the preamble and use it as witness for the trapdoor statement.

In the second stage of the protocol the prover gives a witness-indistinguishable (WI) proof of ei-
ther the real statement or the trapdoor statement. Here, since the trapdoor statement corresponds to a
computation Π(cmt) that may be longer than the honest verifier’s runtime, a standard WI system is in-
sufficient. This difficulty is circumvented using the 4-message universal arguments mentioned before,
where verification time is independent of the statement being proven.

Overall, Barak’s protocol is executed in six messages. In the first message, the verifier sends a key
for a collision-resistant hash function, which effectively serves both as the first message (out of three)
of the preamble and as the first message (out of four) of the universal argument to come. Then, the
two remaining messages of the preamble are sent, following by the remaining three messages of a WI
universal argument.2

Squashing Barak. To achieve a 3-message protocol we aim to squash Barak’s protocol. Using a
keyless hash function, we can eliminate the first verifier message (where a key for a collision-resistant
hash function is sent). It is only this step that restricts our soundness guarantee to only hold against
provers that are unable to find collisions in the keyless hash (e.g., provers with bounded non-uniformity).
This leaves us with a 5-message protocol, which is still worse than what is achievable using black-box
techniques. The bulk of technical contribution of this work is devoted to the task of squashing this
protocol into only 3 messages.

Having eliminated the verifier’s first message, we are now left with a 2-message preamble followed
by a 3-message WI universal argument. A natural next step is to attempt executing the preamble and
the WI argument in parallel. The main problem with this idea is that in Barak and Goldreich’s universal
arguments, the statement must be fixed before the first prover message is computed. However, in the
protocol described, the trapdoor statement is only fixed once the entire preamble has been executed.

We observe that, paradoxically, while the trapdoor statement is only fixed after the preamble has been
executed, the witness for this statement is fixed before the protocol even starts! Indeed, this witness is
simply the verifier’s code. It is therefore sufficient to replace Barak and Goldreich’s universal arguments
with a 3-message verifiable delegation protocol that has the following structure: the first prover message
depends on the witness alone, the verifier’s message fixes the statement, and the third and last prover
response includes the proof (which already depends on both the statement and witness).

Verifiable memory delegation. To obtain a verifiable delegation scheme with the desired structure, we
2Barak’s original construction, in fact, consists of seven messages, but can be squashed into six by using an appropriate WI

system [OV12].
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consider the notion of verifiable memory delegation [CKLR11]. In memory delegation, the prover and
verifier interact in two phases. In the off-line phase the verifier sends a large memory string m to the
prover, saving only a short digest of m. In the on-line phase the verifier sends a function f to the prover
and the prover responds with the output f(m) together with a proof of correctness. The time to verify
the proof is independent of the memory’s size and the function’s running time.

In our setting, we think of the memory as a witness and of the delegated function as verifying that
its input is a valid witness for a specified statement. One important difference between the settings of
verifiable memory delegation and ours is that in the former, the off-line phase is executed by the verifier,
but in our setting, the prover may adversarially choose any digest (which may not even correspond
to any memory string). We therefore rely on memory delegation schemes that remain secure for an
adversarially chosen digest. We observe that the verifiable delegation protocol for RAM computations
of Kalai and Paneth [KP15] yields exactly such a memory delegation scheme, and when implemented
using a keyless hash function this delegation scheme is secure against the class of adversaries that cannot
find collisions in the hash function (e.g. adversaries with bounded non-uniformity).

Fulfilling the above plan encounters additional hurdles. The main such hurdle is the fact that the
verifiable delegation scheme of Kalai and Paneth is not witness indistinguishable. We ensure witness
indistinguishability by leveraging special properties of the Lapidot-Shamir WI protocol [LS90, OV12],
and 1-hop homomorphic encryption [GHV10] (similar ideas were used in [BCPR14]).

Organization. In Section 2, we give the basic definitions used throughout the paper, including the
modeling of adversaries and reductions, the definition of keyless hash functions, and memory delegation.
In Section 3, we describe and analyze the new protocol.

2 Definitions and Tools

In this section, we define the adversarial model we work in, zero-knowledge protocols against restricted
classes of provers (e.g., ones with bounded non-uniformity), as well as the tools used in our construction.

2.1 Modeling Adversaries, Reductions, and Non-Uniformity

In this section, we recall the notion of (black-box) reductions, and address two general classes of adver-
saries touched in this paper. Commonly in crypto, we consider (uniform) polynomial time reductions
between different non-uniform polynomial time adversaries. In this paper, we will sometimes consider
more general types of reductions, e.g. uniform reductions that run in slightly super-polynomial time, as
well as different classes of adversaries, e.g. uniform PPT adversaries, or adversaries with bounded non-
uniformity. In such cases, we will be explicit about the concrete classes of reductions and adversaries
involved.

Rogaway’s human-ignorance approach. As discussed in the introduction, the most informative way
of describing the soundness of our protocol is by the corresponding security reduction from soundness
to collision-resistant. Rogaway [Rog06] suggests a framework for formalizing such statements. In this
work however, for the sake of simpler exposition, we do not fully follow Rogaway’s framework. We
next explain the differences.

While Rogaway’s approach gives a meaningful result even for non-asymptotic hash functions such
as SHA-3 in terms of concrete security, our security definitions are still formalized in asymptotic terms.
We parameterize the security definitions by the class of adversaries. Our main theorem states that for
every class of adversaries A, the soundness of the protocol against adversaries in A can be reduced to
the security of the hash function against the same class of adversaries.

We note that the security of our protocol is based on other primitives except keyless collision-
resistent hash. in our theorems, we do not emphasize the reduction to these primitives, we simply
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restrict our result only to classes of adversaries that are unable to break the security of these primitives
(most naturally non-uniform polynomial time adversaries).

Reductions. For two classes of adversaries R,A, we denote by RA the class of adversaries RA ={
RAn
n

}
n∈N whereRn makes calls to An.3

The class P of non-uniform PPT adversaries. A general class of adversaries considered in this paper
are non-uniform probabilistic Turing machines, or in short non-uniform PPT, which we denote by P.
Any such adversary A ∈ P is modeled as a sequence {An}n∈N, where n is the security parameter, and
where the description and running time of An are polynomially bounded in n.

For a super-polynomial γ(n) = nω(1), we denote by Pγ the class of non-uniform probabilistic
adversaries whose description and running time is polynomial in γ(n).

The class B of PPT adversaries with bounded non-uniformity. We shall also consider the class Bβ ⊂
P of adversaries with bounded non-uniformity O(β). Concretely, for a fixed function β(n) ≤ nO(1), the
class Bβ consists of all non-uniform adversariesA ∈ P whose description |An| is bounded by O(β(n)),
but their running time could be an arbitrary polynomial. In particular, B1 is the class of uniform PPT
adversaries.

For a super-polynomial function γ(n) = nω(1), we denote by Bβ,γ the class of non-uniform proba-
bilistic adversaries whose description is bounded by O(β(n)) and running time is polynomial in γ(n).

2.2 Zero Knowledge Arguments of Knowledge against Provers with Bounded Non-Uniformity

The standard definition of zero knowledge [GMR89, Gol04] considers general non-uniform provers
(and verifiers). We define soundness (or argument of knowledge) more generally against provers from a
given class A ⊂ P. In particular, we will be interested in strict subclasses of P, such as adversaries with
bounded non-uniformity .

In what follows, we denote by 〈P � V 〉 a protocol between two parties P and V . For input w for
P , and common input x, we denote by 〈P (w) � V 〉(x) the output of V in the protocol. For honest
verifiers this output will be a single bit indicating acceptance (or rejection), whereas we assume (without
loss of generality) that malicious verifiers outputs their entire view.

Definition 2.1. A protocol 〈P � V 〉 for an NP relation RL(x,w) is a zero knowledge argument of
knowledge against provers in class A ⊂ P if it satisfies:

1. Completeness: For any n ∈ N, x ∈ L ∩ {0, 1}n, w ∈ RL(x):

Pr [〈P (w) � V 〉(x) = 1] = 1 .

2. Zero knowledge: For every non-uniform PPT verifier V ∗ = {V ∗n }n∈N ∈ P, there exists a (uni-
form) PPT simulator S such that:

{〈P (w) � V ∗n (x)〉}(x,w)∈RL
|x|=n

≈c {S(V ∗n , x)}(x,w)∈RL
|x|=n

.

3. Argument of knowledge: There is a uniform PPT extractor E ∈ B1, such that for any noticeable
function ε(n) = n−O(1), any prover P ∗ = {P ∗n}n∈N ∈ A, any security parameter n ∈ N, and
any x ∈ {0, 1}n generated by P ∗n prior to the interaction:

if Pr [〈P ∗n � V 〉(x) = 1] ≥ ε(n) ,

then Pr

[
w ← EP ∗n (11/ε(n), x)
w /∈ RL(x)

]
≤ negl(n) .

3In this paper, we shall explicitly address different classes of black-box reductions. One can analogously define non-black-
box reductions.
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2.3 Collision-Resistant Hashing

We define the notion of a keyless hash function that is collision resistant against a class A ⊆ Pγ of
adversaries. In particular, the definition may be realizable only for strict subclasses of Pγ , such as
the class Bβ,γ of adversaries with bounded non-uniformity and poly(γ(n)) running time (where the
description of the adversary will be shorter than the length of the input to the hash).

Definition 2.2. Let n < `(n) ≤ nO(1). A polynomial-time computable function

H = {Hn}n∈N ,Hn : {0, 1}`(n) → {0, 1}n ,

is collision resistant against adversaries in A if for any A = {An}n∈N ∈ A, and every n ∈ N

Pr
An

[
x, y ← An;
Hn(x) = Hn(y)

]
≤ negl(n) .

Instantiation. Common constructions of keyless hash functions such as SHA-3 have a fixed output
length and therefore do not directly provide a candidate for an asymptotic hash function as in Defini-
tion 2.2. One way to obtain candidates for an asymptotic hash function is to start with a family H′ of
(keyed) hash-functions

H′ =
{
H′n,k

}
n∈N,k∈{0,1}n ,H

′
n,k : {0, 1}`(n) → {0, 1}n ,

and fix a uniform polynomial time algorithm K that given a security parameter 1n outputs a key k ∈
{0, 1}n. The keyless hashH is then given by

Hn = H′n,K(1n) .

For Hn to be a good candidate collision resistant hash against adversaries in Bβ , we should make
sure that β = o(`), the family H′ is collision resistent, and the algorithm K behaves “sufficiently like a
random oracle”. For example we can choose an algorithm K that uses a hash function like SHA-3 (or
a version of it that can hash strings of arbitrary length) as a random oracle to output sufficiently many
random bits.

2.4 Memory Delegation with Public Digest

A two-message memory delegation scheme [CKLR11] allows a client to delegate a large memory to
an untrusted server, saving only a short digest of the memory. The client then selects a deterministic
computation to be executed over the memory and delegates the computation to the server. The server
responds with the computation’s output as well as a short proof of correctness that can be verified by the
client in time that is independent of the delegated computation and memory.

The notion of memory delegation we consider here differs from that of [CKLR11] in the following
ways.

• Read-only computation. We do not consider computations that update the memory. In particular,
the digest of the delegated memory is computed once and does not change as a result of the
computations.

• Soundness. We define soundness more generally for servers from a given class A ⊂ P. Whereas
soundness is usually required against the class of all non-uniform PPT adversaries P, we will also
be interested in strict subclasses of P, such as adversaries with bounded non-uniformity .
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• Soundness for slightly super-polynomial computations. We require soundness to hold even for
delegated computations running in slightly super-polynomial time.

• Public digest. We require that the digest of the memory can be computed non-interactively,
and can be made public and used by any client to delegate computations over the same memory
without compromising soundness. In particular, the client is not required to save any secret state
when delegating the memory.

Importantly, we do not assume that the party computing the digest is honest. We require that no
efficient adversary can produce valid proofs for two different outputs for the same computation
with respect to the same digest, even if the digest and computation are adversarially chosen.4

• First message independent of function being delegated. The first message of the delegation
scheme (denoted below by q) depends only the security parameter, and does not depend on the
public digest or on the function being delegated.

Concretely, a two-message memory delegation scheme with public digest consists of four polynomial-
time algorithms:

• d← Digest(1n, D) is a deterministic algorithm that takes a security parameter 1n and memory D
and outputs a digest d ∈ {0, 1}n.

• (q, τ) ← Query(1n) is a probabilistic algorithm that outputs a query q and a secret state τ . We
assume w.l.o.g that the secret state τ is simply the random coins used by Query.

• π ← Prov(1t,M, D, q) is a deterministic algorithm that takes a description of a Turing machine
M and a bound t on the running time ofM(D) and outputs a proof π ∈ {0, 1}n.

• b ← Ver(d, τ,M, t, y, π) is a deterministic algorithm that takes a computation output y and
outputs an acceptance bit b.

Definition 2.3 (Memory delegation with public digest). Let γ(n) be a super-polynomial function such
that nω(1) = γ(n) < 2n. A two-message memory delegation scheme (Digest,Query,Prov,Ver) for
γ-time computations with public digest against provers in a class A ⊂ P satisfies the following.

• Completeness. For every security parameter n ∈ N, every Turing machineM and every memory
D ∈ {0, 1}∗ such thatM(D) outputs y within t ≤ 2n steps:

Pr


d← Digest(1n, D);
(q, τ)← Query(1n);
π ← Prov(1t,M, D, q);
1← Ver(d, τ,M, t, y, π);

 = 1 .

• Soundness. For every adversary A = {An}n∈N ∈ A, there exists a negligible function negl such
that for every security parameter n ∈ N,

Pr


(M, t, d, y, st)← An;
(q, τ)← Query(1n);
(π, π′)← An(q, st);
1← Ver(d, τ,M, t, y, π);
1← Ver(d, τ,M, t, y′, π′)

 ≤ negl(n) ,

whereM is a Turing machine, t ≤ γ(n) a time bound, d ∈ {0, 1}n a digest, and y 6= y′ a pair of
distinct outputs.

4Soundness with respect to an adversarial digest can be defined in a stronger way, for example, requiring knowledge of the
memory corresponding to the digest. However, the requirement above is sufficient for our application.
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Instantiation. A memory delegation scheme satisfying Definition 2.3 can be obtained based on the
delegation scheme for RAM computation of Kalai and Paneth [KP15] with slight adaptations.5 Below
we describe the required adaptations to the scheme in [KP15].

• Remove public parameters. The scheme of [KP15] has public parameters that are generated
honestly before the memory is delegated. These parameters include the description of a hash
function chosen randomly from a family of collision-resistant hash functions. Here we modify
the [KP15] scheme, removing the public parameters and instead using a keyless collision resistant
hash against adversaries from a restricted class A. (E.g., A can be the class of adversaries with
β-bounded non-uniformity Bβ .) The security of our modified scheme against provers from A
follows the same argument as in [KP15], who show a black-box reduction from a cheating prover
to an adversary that finds collisions.

• Soundness for slightly super-polynomial computations. While the scheme of [KP15] has com-
pleteness even for exponentially long delegated computations, soundness is only proved when the
delegated computation is polynomial time. Here we require soundness even against slightly super-
polynomial time γ = nω(1). In the [KP15] reduction the running time of the adversary breaking
the hash is proportional to the running time of the delegated computation. Therefore, soundness
for slightly super-polynomial computations follows by the same argument, assuming a slightly
stronger collision-resistance against adversaries from BA

1,γ who can run in time γ and use A as a
black-box.

• Assumptions. The security of the [KP15] scheme is based on collision-resistant hashing and
FHE (or alternatively, on a computationally-secure PIR scheme). In their security reduction
there is a tradeoff between the required security of the hash function and the FHE. Kalai and
Paneth choose to rely on collision-resistant hashing with sub-exponential security and FHE with
quasi-polynomial security. However, the security of their scheme can also be based on collision-
resistant hashing with polynomial security and FHE with sub-exponential security (see [KP15,
Remark 5.2]). Our modified scheme relies on FHE with sub-exponential security and a keyless
collision-resistant hash function against adversaries with bounded non-uniformity (which is not
implied directly by FHE). Additionally, to support slightly super-polynomial computations, we
require collision resistance for slightly super-polynomial adversaries.

Recall that BA
1,γ is the class of uniform probabilistic machines running in time γ(n)O(1) and given

oracle access to an adversary in A. Kalai and Paneth prove that there is a γO(1)-time uniform reduc-
tion from breaking the soundness of their scheme to breaking any underlying hash function, assuming
subexponentially-secure FHE.

Theorem 2.1 ([KP15]). For any A ⊂ P, assuming collision-resistant hash functions against adversaries
in BA

1,γ and sub-exponentially secure FHE, there exists a two-message memory delegation scheme for
γ-time computations with public digest against provers in A.

2.5 Witness Indistinguishability with First-Message-Dependent Instances

We define 3-message WI proofs of knowledge where the choice of statement and witness may depend
on the first message in the protocol. In particular, the first message is generated independently of the
statement and witness. Also, while we do allow the generation process to depend on the length ` of the
statement, the message itself should be of a fixed length n (this allows to also deal with statements of
length ` > n ).

5We note that we cannot use here the memory delegation scheme of [CKLR11] (together with the delegation scheme of
[KRR14] for deterministic polynomial time computations), since the soundness of their scheme assumes that the digest is
honestly generated.
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Definition 2.4 (WIPOK with first-message-dependent instances). Let 〈P � V 〉 be a 3-message proof
system for L with messages (wi1,wi2,wi3); we say that it is a WIPOK with first-message-dependent
instances if it satisfies:

1. Completeness with first-message-dependent instances: For any `, n ∈ N, and instance choos-
ing function X ,

Pr

V (x,wi1,wi2,wi3; r′) = 1

∣∣∣∣∣∣∣∣∣∣
wi1 ← P (1n, `; r)
(x,w)← X(wi1)
x ∈ L, w ∈ RL(x)
wi2 ← V (`,wi1; r′)

wi3 ← P (x,w,wi1,wi2; r)

 = 1 ,

where r, r′ ← {0, 1}poly(n) are the randomness used by P and V .

The honest prover’s first message wi1 is of length n, independent of the length ` of the statement
x.

2. Adaptive witness-indistinguishability: for any polynomial `(·), non-uniform PPT verifier V ∗ =
{V ∗n }n∈N ∈ P and all n ∈ N:

Pr

V ∗n (x,wi1,wi2,wi3) = b

∣∣∣∣∣∣
wi1 ← P (1n, `(n); r)

x,w0, w1,wi2 ← V ∗n (wi1)
wi3 ← P (x,wb,wi1,wi2; r)

 ≤ 1

2
+ negl(n) ,

where b ← {0, 1}, r ← {0, 1}poly(n) is the randomness used by P , x ∈ L ∩ {0, 1}`(n) and
w0, w1 ∈ RL(x).

3. Adaptive proof of knowledge: there is a uniform PPT extractor E ∈ B1 such that for any
polynomial `(·), all large enough n ∈ N, and any deterministic prover P ∗:

if Pr

 V (tr; r′) = 1

∣∣∣∣∣∣∣∣
wi1 ← P ∗

wi2 ← V (`(n),wi1; r′)
x,wi3 ← P ∗(wi1,wi2)
tr = (x,wi1,wi2,wi3)

 ≥ ε ,

then Pr

 V (tr; r′) = 1

w ← EP ∗(11/ε, tr)
w /∈ RL(x)

∣∣∣∣∣∣∣∣
wi1 ← P ∗

wi2 ← V (`(n),wi1; r′)
x,wi3 ← P ∗(wi1,wi2)
tr = (x,wi1,wi2,wi3)

 ≤ negl(n) ,

where x ∈ {0, 1}`(n), and r′ ← {0, 1}poly(n) is the randomness used by V .

Instantiation. Protocols with first-message-dependent instances follow directly from the WIPOK proto-
col constructed in [BCPR14], assuming ZAPs and non-interactive commitments (there the first message
is taken from a fixed distribution that is completely independent of the instance).

Next, we sketch how such a protocol can be constructed without ZAPs assuming keyless collision-
resistant hash functions, thus collapsing to an argument of knowledge against adversaries that cannot
break the hash (which will anyhow be the class of interest in our zero-knowledge protocol in Section 3).

The Lapidot-Shamir protocol. As observed in [OV12], the Lapidot-Shamir variant of the Hamiltonic-
ity zero-knowledge 3-message protocol is such that the first and second messages only depend on the
size of the instance |x| = `, but not on the instance and witness themselves. The protocol, in particular,
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supports instances up to size ` that depend on the prover’s first message. However, the size of the first
message wi1 in the protocol is |wi1| > `. We, on the other hand, would like to allow the instance x to be
of an arbitrary polynomial size in |wi1|, and in particular such that |wi1| < `.

We now sketch a simple transformation from any such protocol where, in addition, the verifier’s mes-
sage is independent of the first prover message, into a protocol that satisfies the required first-message
dependence of instances. Indeed, the verifier message in the Lapidot-Shamir protocol is simply a uni-
formly random string, and hence the transformation can be applied here.

The transformation. Let `(n) > n be any polynomial function and letH be a keyless collision-resistant
hash function from {0, 1}`(n) to {0, 1}n. In the new protocol (Pnew, Vnew), the prover computes the first
message mes1 for instances of length `(n). Then, rather than sending mes1 in the clear, the prover Pnew

sends y = Hn(mes1) ∈ {0, 1}n. The verifier proceeds as in the previous protocol (P, V ) (note that
mes1 is not required for it to compute mes2). Finally the prover Pnew answers as in the original protocol,
and also sends mes1 in the clear. The verifier Vnew accepts, if it would in the original protocol and mes1
is a preimage of y underHn.

We first note that now the size of the instance ` can be chosen to be an arbitrary polynomial in the
length n = |wi1| of the first WI message. In addition, we note that the protocol is still WI, as the view
of the verifier Vnew in the new protocol can be perfectly simulated from the view of the verifier V in the
old protocol, by hashing the first message on its own.

Finally, we observe that any prover P ∗new that convinces the verifier in the new protocol of accepting
with probability ε, can be transformed into a prover P ∗ that convinces the verifier of the original proto-
col, or to a collision-finder. Indeed, the prover P ∗ would first run P ∗new until the last message, i.e., until
it obtains a valid preimage mes1 of y. Then it would proceed interacting with V using mes1 as its first
message, and using P ∗new to emulate the third message. By the collision resistance ofH the prover P ∗new
indeed cannot make the verifier Vnew accept with respect to two different perimages mes1,mes′1, except
with negligible probability. Thus the prover P ∗ convinces V with probability ε− negl(n).

2.6 1-Hop Homomorphic Encryption

A 1-hop homomorphic encryption scheme [GHV10] allows a pair of parties to securely evaluate a func-
tion as follows: the first party encrypts an input, the second party homomorphically evaluates a function
on the ciphertext, and the first party decrypts the evaluation result. (We do not require any compactness
of post-evaluation ciphertexts.)

Definition 2.5. A scheme (Enc,Eval,Dec), where Enc,Eval are probabilistic and Dec is deterministic, is
a semantically-secure, circuit-private, 1-hop homomorphic encryption scheme if it satisfies the following
properties:

• Perfect correctness: For any n ∈ N, x ∈ {0, 1}n and circuit C:

Pr
(ct,sk)←Enc(x)

Eval

[
ĉt← Eval(ct, C)
Decsk(ĉt) = C(x)

]
= 1 .

• Semantic security: For any non-uniform PPT A = {An}n∈N ∈ P, every n ∈ N, and any pair of
inputs x0, x1 ∈ {0, 1}poly(n) of equal length,

Pr
b←{0,1}

ct←Enc(xb)

[An(ct) = b] ≤ 1

2
+ negl(n) .

• Circuit privacy: The randomized evaluation procedure, Eval, should not leak information on
the input circuit C. This should hold even for malformed ciphertexts. Formally, let E(x) =
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Supp(Enc(x)) be the set of all legal encryptions of x, let En = ∪x∈{0,1}nE(x) be the set legal
encryptions for strings of length n, and let Cn be the set of all circuits on n input bits. There exists
a (possibly unbounded) simulator S1hop such that:

{C,Eval(c, C)} n∈N,C∈Cn
x∈{0,1}n,c∈E(x)

≈c {C,S1hop(c, C(x), |C|)} n∈N,C∈Cn
x∈{0,1}n,c∈E(x)

{C,Eval(c, C)} n∈N
C∈Cn,c/∈En

≈c {C,S1hop(c,⊥, |C|)} n∈N
C∈Cn,c/∈En

.

Instantiation. 1-hop homomorphic encryption schemes can be instantiated based on garbled-circuits
and an appropriate 2-message oblivious transfer protocol, based on either Decision Diffie-Hellman or
Quadratic Residuosity [Yao86, GHV10, NP01, AIR01, HK12].

2.7 Non-Interactive Commitments

3 The Protocol

In this section, we construct a 3-message ZK argument of knowledge based on 2-message memory
delegation schemes. More precisely, we show that for any class of adversaries A ⊆ P, given a delegation
scheme that is sound against BA

1 , the protocol is an argument of knowledge against A. For simplicity we
focus on classes A that are closed under uniform reductions; namely BA

1 ⊆ A. These will indeed capture
the adversary classes of interest for this work.

We start by listing the ingredients used in the protocol, as well as introducing relevant notation.

Ingredients and notation:

• A 2-message memory delegation scheme for γ-bounded computations (Digest,Query,Prov,Ver)
sound against provers in A ⊆ P, for a class A closed under uniform reductions as in Definition 2.3.

• A semantically-secure, circuit-private, 1-hop homomorphic encryption scheme (Enc,Eval,Dec)
as in Definition 2.5.

• A 3-message WIPOK with first-message-dependent instances as in Definition 2.4. We denote its
messages by (wi1,wi2,wi3).

• A non-interactive perfectly-binding commitment scheme Com.

• For some wi1, cmt, denote byMwi1,cmt a Turing machine that given memory D = V ∗ parses V ∗

as a Turing machine, runs V ∗ on input (wi1, cmt), parses the result as (u,wi2, q, ĉtτ ), and outputs
u.

• Denote by Vparam a circuit that operates as follows:

– given as input a verification state τ for the delegation scheme,

– parse param = (wi1, cmt, q, u, d, t, π),

– return 1 (“accept”) if either of the following occurs:

∗ the delegation verifier accepts: Ver(d, τ,Mwi1,cmt, t, u, π) = 1,
∗ the query is inconsistent: q 6= Query(1n; τ).

In words, Vparam, given the verification state τ , first verifies the proof π that “Mwi1,cmt(D) =
(u, · · · )” where D is the database corresponding to the digest d. In addition, it verifies that q is
truly consistent with the coins τ . If the query is consistent, but the proof is rejected Vparam also
rejects.
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• Denote by 1 a circuit of the same size as Vparam that always returns 1.

We now describe the protocol in Figure 1.

Protocol 1

Common Input: an instance x ∈ L ∩ {0, 1}n, for security parameter n.

P : a witness w ∈ RL(x).

1. P computes

• wi1, the first message of the WIPOK for statements of length `Ψ(n), where `ψ is spec-
ified below,

• cmt← Com(0n, 0log γ(n)), a commitment to the all zero string,

and sends (wi1, cmt).

2. V computes

• wi2, the second message of the WIPOK.

• (τ, q)← Query(1n), verification state (w.l.o.g the coins of Query) and query,

• (ctτ , sk)← Encsk(τ), an encryption of the verification state,

• u← {0, 1}n, a uniformly random string,

and sends (u,wi2, q, ctτ ).

3. P computes

• ĉt← Eval(1, ctτ ), an evaluation of the constant one function,

• wi3, the third WIPOK message for the statement Ψ = Ψ1(x) ∨
Ψ2(wi1, cmt, q, u, ctτ , ĉt) of length `Ψ(n) given by:{

∃w

∣∣∣∣∣ (x,w) ∈ RL

}∨
{
∃ d, π, rcmt ∈ {0, 1}n
t ≤ γ(n)

∣∣∣∣∣
ĉt = Eval(Vparam, ctτ )
param = (wi1, cmt, q, u, d, t, π)
cmt = Com(d, t; rcmt)

}
,

using the witness w ∈ RL(x) for Ψ1,

and sends (ĉt,wi3).

4. V verifies the WIPOK proof (wi1,wi2,wi3) for the statement Ψ and that Decsk(ĉt) = 1.

Figure 1: A 3-message ZK argument of knowledge against prover in A.

Theorem 3.1. Given a 2-message memory delegation scheme for γ-bounded computations sound against
provers in A, a semantically-secure, circuit-private, 1-hop homomorphic encryption scheme, a 3-message
WIPOK with first-message-dependent instances, and a non-interactive perfectly-binding commitment
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scheme. The corresponding Protocol 1 is a zero-knowledge argument of knowledge against provers in
A.

Overview of proof. For simplicity, let us focus on showing that the protocol is sound and zero knowl-
edge. (Showing it is an argument of knowledge follows a similar reasoning.) We start with soundness.
Assuming that x /∈ L, in order to pass the WIPOK with respect to an evaluated cipher ĉt that decrypts
to 1, the prover must know a digest d ∈ {0, 1}n, a time bound t ≤ γ(n), and proof π ∈ {0, 1}n, such
that Vparam(τ) = 1. This, by definition, means that (d, t, π) are such that the delegation verifier Ver is
convinced that the digest d corresponds to a machine V ∗ such that V ∗(wi1, cmt) = u. Intuitively, this
implies that the prover managed to commit to a program that predicts the random string u before it was
ever sent, which is unlikely. Formally, we show that such a prover can be used to break the underlying
delegation scheme. Here we will also rely on the semantic security of the encryption scheme to claim
that the encrypted verification state τ is hiding. Since the delegation scheme is sound against provers in
A, we shall only get soundness against such provers.

To show ZK, we construct a non-black-box simulator following the simulator of Barak [Bar01]. At
high-level, the simulator uses the code of the (malicious) verifier V ∗ as the memory for the delegation
scheme, and completes the WIPOK using the trapdoor branch Ψ2 of the statement Ψ = Ψ1 ∨Ψ2. The
trapdoor witness is basically (d, t, π), where d is the digest corresponding to V ∗, t ≈ |V ∗| and π is the
corresponding delegation proof that V ∗(wi1, cmt) = u, which is now true by definition. By the perfect
completeness of the delegation scheme, we know that as long as the verifier honestly encrypts some
randomness τ as the private state, and gives a query q that is consistent with τ , the delegation verifier
Ver will accept the corresponding proof. Thus, the circuit privacy of homomorphic evaluation (which
holds also if the verifier produces a malformed ciphertext) would guarantee indistinguishability from a
real proof, where the prover actually evaluates the constant 1 circuit.

A detailed proof follows. We first prove in Section 3.1 that the protocol is an argument of knowledge.
Then we prove in Section 3.2 that the protocol is zero knowledge.

3.1 Proving that the Protocol is an Argument of Knowledge

In this section, we show that the protocol is an argument of knowledge against provers in A.

Proposition 3.1. Protocol 1 is an argument of knowledge against against provers in A.

Proof. We show that there exists a uniform PPT extractor E ∈ B1 and a uniform PPT reductionR ∈ B1,
such that for any prover P ∗ = {P ∗n}n∈N ∈ A that generates xn ∈ {0, 1}n and convinces V of accepting
xn with non-negligible probability ε(n), one of the following holds:

• EP ∗n (1ε(n), xn) outputs w ∈ RL(xn) with probability ε(n)2/4− negl(n),6 or

• RP ∗n breaks the soundness of the delegation scheme with probability n−O(1).

We start by describing the extractor. Throughout the description (and following proof), we will often
omit n, when it is clear from the context.

The witness extractor EP ∗n (1ε(n), xn) operates as follows:

1. Derives from P ∗ a new prover P ∗wi for the WIPOK as follows. P ∗wi emulates the role of P ∗ in
the WIPOK; in particular, it would (honestly) sample (τ, (sk, ctτ ), u) on its own to compute the
second verifier message (wi2, q, ctτ , u) that P ∗ receives.

6We note that the extraction probability can then be amplified to 1− negl(n) by standard repetition.
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2. Chooses the random coins r for P ∗wi, and samples a transcript tr = (Ψ,wi1,wi2,wi3) of an execu-
tion with the honest WIPOK verifier Vwi.

3. Applies the WIPOK extractor Ewi on the transcript tr, with oracle access to P ∗wi, and extraction

parameter 2/ε. That is, computes w ← EP
∗
wi(r)

wi (12/ε, tr).

4. Outputs w.

Our strategy will be to show the required reduction R, such that if the extractor fails to extract with the
required probability, then the reduction breaks the underlying delegation scheme. Thus from hereon,
we assume that for some noticeable function η(n) = n−O(1), with probability at most ε2/4 − η the
extracted witness w is inRL(x). Rather than already describing the reductionR, we shall first establish
several claims regarding the extraction procedure and the consequences of extraction failure. These will
motivate our concrete construction of the reductionR.

We start by noting that an execution of P ∗wi(r) with the honest WIPOK verifier Vwi induces a perfectly
emulated execution of P ∗ with the honest verifier V . Thus, we know that V , and in particular Vwi,
accepts in such an execution with probability ε(n) ≥ n−O(1).

Good coins r. We say that random coins r for P ∗wi are good if with probability at least ε/2 over the
coins of the WIPOK verifier Vwi, the induced execution of P ∗ with V is such that the zero-knowledge
verifier V accepts. By a standard averaging argument, at least an (ε/2)-fraction of the coins r for P ∗wi
are good.

Recall that every execution of Ewi induces a choice r forP ∗wi, a WIPOK transcript tr = (Ψ,wi1,wi2,wi3),
and values (cmt, q, u, ctτ , ĉt) exchanged in the induced interaction between the zero-knowledge proverP ∗

and the zero-knowledge verifier V . These values, in turn, determine the formula

Ψ = Ψ1(x) ∨Ψ2(wi1, cmt, q, u, ctτ , ĉt).

We next claim that for any good r, such an extraction procedure outputs a witness for Ψ and simultane-
ously the homomorphic evaluation result ĉt decrypts to one (under the secret key sk sampled together
with ctτ ), with non-negligible probability.

Claim 3.1 (Extraction for good r). For any good r for P ∗wi, it holds thatw satisfies the induced statement
Ψ and Decsk(ĉt) = 1 with probability ε(n)/2− negl(n) over a transcript tr, and coins for Ewi.

Proof of Claim 3.1. Fix some good coins r. Since the coins r are good, the WIPOK verifier Vwi is
convinced by P ∗wi with probability at least ε/2, meaning that Vwi accepts and in addition Decsk(ĉt) = 1.
We claim that when this occurs then, except with probability negl(n), the extractor Ewi, also outputs a
valid witness w for Ψ. This follows directly from the extraction guarantee of the WIPOK.

Now, relying on the fact that overall the extractor fails to output a witness for x, we deduce that with
non-negligible probability, the extracted witness satisfies the trapdoor statement Ψ2.

Claim 3.2 (Extracting a trapdoor witness). In a random execution of the extractor, the extracted wit-
ness w satisfies the trapdoor statement Ψ2(wi1, cmt, q, u, ctτ , ĉt), and in addition Decsk(ĉt) = 1, with
probability at least η(n)− negl(n) over the choice of r for P ∗wi, a transcript tr, and coins for Ewi.

Proof of Claim 3.2. First, by the (ε/2)-density of good r’s and Claim 3.1, we deduce that in a random
execution the extracted w satisfies the statement Ψ = Ψ1 ∨ Ψ2, and in addition Decsk(ĉt) = 1, with
probability at least ε2/4 − negl(n). Combining this with the fact that w ∈ RL(x) with probability at
most ε2/4− η, the claim follows.
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Next, recall that by the definition of Ψ2, whenever w is a witness for Ψ2, it holds that

w = (d, π, t, rcmt) :

d, π ∈ {0, 1}n, t ≤ γ(n)
ĉt = Eval(Vparam, ctτ )
param = (wi1, cmt, q, u, d, t, π)
cmt = Com(d, t; rcmt)

.

Furthermore, by the definition of Vparam and the perfect completeness of the 1-hop homomorphic en-
cryption,

Decsk(ĉt) = Vparam(τ) = Ver(d, τ,Mwi1,cmt, t, u, π) .

We can thus deduce that, with probability η, the witness w = (d, π, t, rcmt) extracted by E is such that:
(a) Ver(d, τ,Mwi1,cmt, t, u, π) = 1, and (b) cmt = Com(d, t; rcmt).

An equivalent experiment that hides the secret verification state τ . We now consider an augmented
extraction procedure Eaug ∈ B1 that behaves exactly as the original extractor E , except that, when P ∗wi
emulates P ∗, it does not sample an encryption ctτ of the secret verification state τ , but rather it samples
an encryption ct0 of 0|τ |. We claim that in this alternative experiment, the above two conditions (a) and
(b) still hold with the same probability up to a negligible difference.

Claim 3.3 (Convincing probability in alternative experiment.). With probability η−negl(n), the witness
w = (d, π, t, rcmt) extracted by Eaug is such that: (a) Ver(d, τ,Mwi1,cmt, t, u, π) = 1, and (b) cmt =
Com(d, t; rcmt).

Proof sketch of Claim 3.3. This claim follows from the semantic security of the 1-hop homomorphic
encryption scheme. Indeed, if the above was not the case, we can distinguish between an encryption of
τ and one of 0|τ |. For this, note that the first experiment with ctτ (respectively, the second with ct0) can
be perfectly emulated given τ and the ciphertext ctτ (respectively, ct0), and in addition the above two
conditions (a) and (b) can be tested efficiently.

The reduction R to the soundness of delegation. We are now ready to describe the reduction R that
breaks the soundness of the delegation scheme. In what follows, we view the randomness r for P ∗wi
as split into r = (r1, τ, u, r2), where r1 is any randomness used to generate the first prover message
(wi1, cmt), τ is the randomness for Query and u is the random string both used to emulate the second
verifier message, and r2 are any additional random coins used by P ∗wi.

The reductionRP ∗n (1ε(n), xn) breaks the delegation scheme as follows:7

1. Samples r∗ = (r∗1, τ
∗, u∗, r∗2) uniformly at random.

2. Runs EP ∗aug(11/ε, x) using r∗ as the randomness for Pwi. Let (cmt∗,wi∗1) be the correspond-
ing first prover message (which is completely determined by the choice of r∗1), and let w∗ =
(d∗, π∗, t∗, r∗cmt) be the witness output by the extractor.

3. Samples u, u′ ← {0, 1}n uniformly at random.

4. Declares d∗ as the digest,Mwi∗1,cmt∗ as the machine to be evaluated over the memory, t∗ the bound
on its running time, and (u, u′) as the two outputs for the attack.

5. Given a delegation query q,R generates two proofs π and π′ for u and u′ respectively as follows:

7Here we give the reduction (1ε(n), xn) for the sake of simplicity and clarity of exposition. Recall that xn is generated by
P ∗n . Also, ε can be approximated by sampling. Thus the reduction can (uniformly) obtain these two inputs from P ∗.
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(a) Samples r = (r∗1,⊥, u, r2) and r′ = (r∗1,⊥, u′, r′2), where in both r∗1 is the same randomness
sampled before, (u, u′) are the random strings sampled before, and (r2, r

′
2) are uniformly

random strings.

(b) Runs EP ∗aug(11/ε, x) once with respect to r and another time with respect to r′, with one
exception — the prover P ∗wi constructed by EP ∗aug does not emulate on its own the delegation
query in the verifier’s message, but rather it uses the external query q that R is given. The
two executions of EP ∗aug then produce witnesses w = (d, π, t, rcmt) and w′ = (d′, π′, t′, r′cmt).

(c) Output (π, π′).

We first note that the running time of R is polynomial in n and in the running of Eaug, which is in turn
polynomial in the running time of P ∗ and in 1/ε(n) = nO(1). Thus it is overall polynomial in n.

To complete the proof, we show thatR breaks the scheme with noticeable probability.

Claim 3.4. u 6= u′ and π and π′ both convince the delegation verifier with probability Ω(η(n)5).

Proof of Claim 3.4. Throughout, let us denote by G the event that the witness w = (d, π, t, rcmt)
extracted by Eaug is such that: (a) Ver(d, τ,Mwi1,cmt, t, u, π) = 1, and (b) cmt = Com(d, t; rcmt). We
will call r∗1 good1, if with probability η/2 (over all other randomness), G occurs. Then by Claim 3.3 and
averaging, with probability η/2−negl(n) over a choice of a random r∗1, it is good1. Next, for a fixed r∗1
and τ , we will say that τ is r∗1-good, if with probability η/4 over a choice of random (u, r∗2), G occurs.
Then, by averaging, for any good1 r

∗
1, with probability η/4− negl(n) over a choice of a random τ , it is

r∗1-good.
We are now ready to lower bound the probability thatR breaks the delegation scheme. This is based

on the following assertions:

1. In Step 1, with probability η/2− negl(n),R samples a good1 r
∗
1.

2. Conditioned on r∗1 being good1:

(a) In Step 2, with probability η/2, G occurs. In particular, the extracted (d∗, t∗, r∗cmt) are valid
in the sense that cmt∗ = Com(d∗, t∗; r∗cmt), cmt∗ is the commitment generated in the first
prover message (determined by the choice of r∗1).

(b) In Step 5, with probability η/4 − negl(n), the coins τ chosen by the delegation Query
algorithm (inducing the query q) are r∗1-good.

(c) Conditioned on the coins τ of Query being r∗1-good:

i. In Step 5, with probability η/4, G occurs. Thus the extracted (d, t, rcmt, π) are valid
in the sense that cmt∗ = Com(d, t; rcmt), as well as Ver(d, τ,Mwi∗1,cmt∗ , t, u, π) = 1.
Recall that (wi∗1, cmt∗) are generated in the first prover message (and are determined by
the choice of r∗1).

ii. The same holds independently for the second random output u′.

3. In Step 3, with probability 1− 2−n, the outputs u, u′ sampled byR are distinct.

4. If cmt∗ = Com(d∗, t∗; r∗cmt) = Com(d, t; rcmt) = Com(d′, t′; r′cmt), then (d, t) = (d′, t′) =
(d∗, t∗).

The first two assertions follow directly from the definitions and averaging arguments made above. The
third assertion follows from the collision probability of two random strings of length n. The last assertion
follows from the fact that the commitment Com is perfectly binding.
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It is left to note that if all of the above occur, then R manages to produce accepting proofs (π, π′)
for two different outcomes (u, u′) with respect to the same digest d∗ and machineMwi∗1,cmt∗ ; thus, it
breaks soundness. This happens with probability(η

2
− negl(n)

)
· η

2
·
(η

4
− negl(n)

)
·
(η

4

)2
− 2−n = Ω(η5) .

This completes the proof of Claim 3.4.
This completes the proof of Proposition 3.1.

3.2 Proving that the Protocol is Zero Knowledge

In this section, we prove

Proposition 3.2. Protocol 1 is ZK against non-uniform PPT verifiers.

Proof. We describe a universal ZK simulator S that given the code of any non-uniform PPT V ∗ =
{V ∗n }n∈N, a polynomial bound t(n) = nO(1) on its running time (or more precisely the time required for
a universal machine to run it), and x ∈ L, simulates the view of V . We shall assume V ∗ is deterministic;
this is w.l.o.g as we can always sample random coins for V ∗ and hardwire them into its non-uniform
description. Throughout, we often omit the security parameter n when clear from the context.

The simulator S(V ∗n , t(n), x), where |x| = n, operates as follows:

1. Generates the first message (wi1, cmt) as follows:

(a) Samples a first message wi1 ∈ {0, 1}n of the WIPOK.

(b) Computes a digest d = Digest(1n, V ∗) of the verifier’s code.

(c) Computes a commitment cmt = Com(d, t; rcmt) to the digest d and V ∗’s running time t,
using random coins rcmt ← {0, 1}n. Here t is interpreted as string in {0, 1}log γ(n). This is
possible, for all large enough n, as t(n) = nO(1) � nω(1) = γ(n).

2. Runs the verifier to obtain (wi2, q, u, ctτ )← V ∗(wi1, cmt).

3. Computes the third message (ĉt,wi3) as follows:

(a) Computes a proof π = Prov(1t,Mwi1,cmt, V
∗, q) that the digested code of V ∗ outputs u.

(b) Samples ĉt← Eval(Vparam, ctτ ), for param = (wi1, cmt, q, u, d, t, π).

(c) Computes the third WIPOK message wi3 for the statement Ψ = Ψ1(x)∨Ψ2(wi1, cmt, q, u, ctτ , ĉt)
given by:{
∃w

∣∣∣∣∣ (x,w) ∈ RL

}∨{
∃ d, π, rcmt ∈ {0, 1}n
t ≤ γ(n)

∣∣∣∣∣
ĉt = Eval(Vparam, ctτ )
param = (wi1, cmt, q, u, d, t, π)
cmt = Com(d, t; rcmt)

}
,

using the witness (d, π, rcmt, t) for the trapdoor statement Ψ2.

(d) Outputs the view (wi1, cmt, ĉt,wi3) of V ∗.

We now show that the view generated by S is computationally indistinguishable from the view of
V ∗ in an execution with the honest prover P . We do this by exhibiting a sequence of hybrids.

Hybrid 1: The view (wi1, cmt, ĉt,wi3) is generated by S.
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Hybrid 2: Instead of generating wi3 using the witness (d, π, rcmt, t) for Ψ2, it is generated using a
witness w for Ψ1 = {x ∈ L}. By the adaptive witness-indistinguishability of the WIPOK system, this
hybrid is computationally indistinguishable from Hybrid 1.

Hybrid 3: Instead of generating cmt as a commitment cmt = Com(d, t; rcmt) to (d, t), it is generated
as a commitment to 0n+log γ(n). Note that in this hybrid the commitment’s randomness rcmt is not used
anywhere, but in the generation of cmt. Thus, by the computational hiding of the commitment, this
hybrid is computationally indistinguishable from Hybrid 2.

Hybrid 4: The view (wi1, cmt, ĉt,wi3) is generated in an interaction of V ∗ with the honest prover P .
The difference from Hybrid 3 is in that ĉt is sampled from Eval(1, ctτ ) instead of Eval(Vparam, ctτ ).
First, note that by the perfect completeness of the delegation scheme, for any τ ∈ {0, 1}n, Vparam(τ) =
1(τ) = 1. Indeed, by definition we know that

Mwi1,cmt(V
∗) = V ∗(wi1, cmt)[1] = u ,

and this output is produce after at most t steps. Thus, assuming q = Query(1n; τ), the delegation
verifier accepts; namely, Ver(d, τ,Mwi1,cmt, t, u, π) = 1, and by definition Vparam(τ) = 1. Also, if
q 6= Query(1n; τ), the Vparam(τ) = 1 by definition.

By the circuit privacy of the 1-hop homomorphic encryption, the above guarantees indistinguisha-
bility whenever ctτ is a well-formed ciphertext since

Eval(Vparam, ctτ ) ≈c S1hop(ctτ ,Vparam(τ), |Vparam|) ≡ S1hop(ctτ ,1(τ), |1|) ≈c Eval(1, ctτ ) .

Also, for any malformed ciphertext ct∗ it holds that

Eval(Vparam, ct∗) ≈c S1hop(ct∗,⊥, |Vparam|) ≡ S1hop(ct∗,⊥, |1|) ≈c Eval(1, ct∗) .

It follows that Hybrid 4 is computationally indistinguishable from Hybrid 3.

This completes the proof of Proposition 3.2.

Acknowledgments. We thank Ran Canetti, Shai Halevi and Hugo Krawczyk for helpful comments and
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References

[AIR01] William Aiello, Yuval Ishai, and Omer Reingold. Priced oblivious transfer: How to sell
digital goods. In EUROCRYPT, pages 119–135, 2001.

[Bar01] Boaz Barak. How to go beyond the black-box simulation barrier. In FOCS, pages 106–115,
2001.

[BCC+14] Nir Bitansky, Ran Canetti, Alessandro Chiesa, Shafi Goldwasser, Huijia Lin, Aviad Rubin-
stein, and Eran Tromer. The hunting of the SNARK. IACR Cryptology ePrint Archive,
2014:580, 2014.

[BCPR13] Nir Bitansky, Ran Canetti, Omer Paneth, and Alon Rosen. More on the impossibility
of virtual-black-box obfuscation with auxiliary input. IACR Cryptology ePrint Archive,
2013:701, 2013.

[BCPR14] Nir Bitansky, Ran Canetti, Omer Paneth, and Alon Rosen. On the existence of extractable
one-way functions. In Symposium on Theory of Computing, STOC 2014, New York, NY,
USA, May 31 - June 03, 2014, pages 505–514, 2014.

18



[BG08] Boaz Barak and Oded Goldreich. Universal arguments and their applications. SIAM J.
Comput., 38(5):1661–1694, 2008.

[BGGL01] Boaz Barak, Oded Goldreich, Shafi Goldwasser, and Yehuda Lindell. Resettably-sound
zero-knowledge and its applications. In FOCS, pages 116–125, 2001.

[BJY97] Mihir Bellare, Markus Jakobsson, and Moti Yung. Round-optimal zero-knowledge argu-
ments based on any one-way function. In Advances in Cryptology - EUROCRYPT ’97,
International Conference on the Theory and Application of Cryptographic Techniques, Kon-
stanz, Germany, May 11-15, 1997, Proceeding, pages 280–305, 1997.

[BM14] Christina Brzuska and Arno Mittelbach. Indistinguishability obfuscation versus multi-bit
point obfuscation with auxiliary input. In Advances in Cryptology - ASIACRYPT 2014 - 20th
International Conference on the Theory and Application of Cryptology and Information
Security, Kaoshiung, Taiwan, R.O.C., December 7-11, 2014, Proceedings, Part II, pages
142–161, 2014.

[BP04] Mihir Bellare and Adriana Palacio. The knowledge-of-exponent assumptions and 3-round
zero-knowledge protocols. In Proceedings of the 24th Annual International Cryptology
Conference, pages 273–289, 2004.

[BP12] Nir Bitansky and Omer Paneth. From the impossibility of obfuscation to a new non-black-
box simulation technique. In FOCS, 2012.

[BP13] Nir Bitansky and Omer Paneth. On the impossibility of approximate obfuscation and appli-
cations to resettable cryptography. In STOC, pages 241–250, 2013.

[CD09] Ran Canetti and Ronny Ramzi Dakdouk. Towards a theory of extractable functions. In
TCC, pages 595–613, 2009.

[CDPW07] Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. Universally composable
security with global setup. In Theory of Cryptography, 4th Theory of Cryptography Confer-
ence, TCC 2007, Amsterdam, The Netherlands, February 21-24, 2007, Proceedings, pages
61–85, 2007.

[CKLR11] Kai-Min Chung, Yael Tauman Kalai, Feng-Hao Liu, and Ran Raz. Memory delegation.
In Advances in Cryptology - CRYPTO 2011 - 31st Annual Cryptology Conference, Santa
Barbara, CA, USA, August 14-18, 2011. Proceedings, pages 151–168, 2011.

[CLP13a] Ran Canetti, Huijia Lin, and Omer Paneth. Public-coin concurrent zero-knowledge in the
global hash model. In TCC, pages 80–99, 2013.

[CLP13b] Kai-Min Chung, Huijia Lin, and Rafael Pass. Constant-round concurrent zero knowledge
from p-certificates. In FOCS, 2013.

[CLP15] Kai-Min Chung, Huijia Lin, and Rafael Pass. Constant-round concurrent zero-knowledge
from indistinguishability obfuscation. In Advances in Cryptology - CRYPTO 2015 - 35th
Annual Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceed-
ings, Part I, pages 287–307, 2015.

[COP+14] Kai-Min Chung, Rafail Ostrovsky, Rafael Pass, Muthuramakrishnan Venkitasubramaniam,
and Ivan Visconti. 4-round resettably-sound zero knowledge. In Theory of Cryptography
- 11th Theory of Cryptography Conference, TCC 2014, San Diego, CA, USA, February
24-26, 2014. Proceedings, pages 192–216, 2014.

19



[FLS99] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple noninteractive zero knowledge proofs
under general assumptions. SIAM J. Comput., 29(1):1–28, 1999.

[FS89] Uriel Feige and Adi Shamir. Zero knowledge proofs of knowledge in two rounds. In
CRYPTO, pages 526–544, 1989.

[GHV10] Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. i-hop homomorphic encryption and
rerandomizable yao circuits. In CRYPTO, pages 155–172, 2010.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of inter-
active proof systems. SIAM J. Comput., 18(1):186–208, 1989.

[GMW91] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their
validity for all languages in np have zero-knowledge proof systems. J. ACM, 38(3):691–
729, 1991.

[GO94] Oded Goldreich and Yair Oren. Definitions and properties of zero-knowledge proof sys-
tems. Journal of Cryptology, 7(1):1–32, December 1994.

[Gol04] Oded Goldreich. Foundations of Cryptography: Volume 2, Basic Applications. Cambridge
University Press, New York, NY, USA, 2004.

[HK12] Shai Halevi and Yael Tauman Kalai. Smooth projective hashing and two-message oblivious
transfer. J. Cryptology, 25(1):158–193, 2012.

[HT98] Satoshi Hada and Toshiaki Tanaka. On the existence of 3-round zero-knowledge protocols.
In Proceedings of the 18th Annual International Cryptology Conference, pages 408–423,
1998.

[IKOS09] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge proofs
from secure multiparty computation. SIAM J. Comput., 39(3):1121–1152, 2009.

[Kat12] Jonathan Katz. Which languages have 4-round zero-knowledge proofs? J. Cryptology,
25(1):41–56, 2012.

[KP15] Yael Tauman Kalai and Omer Paneth. Delegating ram computations. Cryptology ePrint
Archive, Report 2015/957, 2015. http://eprint.iacr.org/.

[KRR14] Yael Tauman Kalai, Ran Raz, and Ron D. Rothblum. How to delegate computations: the
power of no-signaling proofs. In Symposium on Theory of Computing, STOC 2014, New
York, NY, USA, May 31 - June 03, 2014, pages 485–494, 2014.

[LS90] Dror Lapidot and Adi Shamir. Publicly verifiable non-interactive zero-knowledge proofs.
In CRYPTO, pages 353–365, 1990.

[NP01] Moni Naor and Benny Pinkas. Efficient oblivious transfer protocols. In SODA, pages 448–
457, 2001.

[OV12] Rafail Ostrovsky and Ivan Visconti. Simultaneous resettability from collision resistance.
Electronic Colloquium on Computational Complexity (ECCC), 2012.

[Rog06] Phillip Rogaway. Formalizing human ignorance. In Progressin Cryptology - VIETCRYPT
2006, First International Conferenceon Cryptology in Vietnam, Hanoi, Vietnam, September
25-28, 2006, Revised Selected Papers, pages 211–228, 2006.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In
FOCS, pages 162–167, 1986.

20

http://eprint.iacr.org/

	Introduction
	This Work
	Techniques

	Definitions and Tools
	Modeling Adversaries, Reductions, and Non-Uniformity
	Zero Knowledge Arguments of Knowledge against Provers with Bounded Non-Uniformity
	Collision-Resistant Hashing
	Memory Delegation with Public Digest
	Witness Indistinguishability with First-Message-Dependent Instances
	1-Hop Homomorphic Encryption
	Non-Interactive Commitments

	The Protocol
	Proving that the Protocol is an Argument of Knowledge
	Proving that the Protocol is Zero Knowledge

	References

