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Abstract. The security of homomorphic encryption over the integetsitsvari-
ants depends on the hardness of the Approximate CommorobD{€D) prob-
lem. In this paper we review and compare existing algorittorsolve the ACD
problem using lattices. In particular we consider the standous Diophantine
approximation method, the orthogonal lattice method, amdethod based on
multivariate polynomials and Coppersmith’s algorithmttheas studied in de-
tail by Cohn and Heninger. We give a novel analysis of thegerathms that is
appropriate for some of the recent variants of the ACD proble

One of our main contributions is to compare the multivariptdynomial ap-
proach with other methods. We find that Cohn and Heninger noadain as-
sumptions that give a misleading view of the best choicesacdipeters for that
algorithm. Instead, the best parameters seem to be thosdfon the algorithm
becomes the orthogonal lattice algorithm.

Another contribution is to consider a sample-amplificatiechnique for ACD
samples, and to consider a pre-processing algorithm sitoilthe Blum-Kalai-
Wasserman (BKW) algorithm for learning parity with noisee \&xplain why,
unlike in other settings, the BKW algorithm does not give @piovement over
the lattice algorithms.

Keywords: Approximate common divisors, lattice attacks, orthogoiasice,
Coppersmith’s method.

1 Introduction

The approximate common divisor problem (ACD) was first stddiy Howgrave-Graham [HGO1].
Further interest in this problem was provided by the homgrhi@rencryption scheme
of van Dijk, Gentry, Halevi and Vaikuntanathan [DGHV10] atslvariants [CMNT11,CNT12,CS15].
The computational problem is to determine a secret integanen one is given many
samples of the form; = pq; + r; for small error terms;. More preciselyp is ann bit
odd prime, ther; are~ bits, and the-; arep bits, wherep is significantly smaller than
1.
The original papers [HG01,DGHV10] sketched a large numbpossible lattice at-
tacks on this problem. Futher cryptanalytic work was dongdy12,CNT12,CH13,DT14].
The main aim of our paper is to compare all known lattice &gam the approximate



common divisor problem. Rather than determining the examning time of these at-
tacks, the main focus in [DGHV10] was to determine paransdtarwhich the attacks
do not work, and so the analysis was not very precise. CohnHemihger [CH13]
analysed a method based on multivariate polynomials, loihdi compare it with the
orthogonal lattice methods in [DGHV10], and also their s was focussed on the
case where only a small number of ACD samples are availableomtrast, we study
these algorithms in the cryptographically relevant sitratvhere the number of ACD
samples is very large. We also consider these methods imttiext of more recent vari-
ants of the ACD problem, such as by Cheon and Stehlé [CSE5]cél our analysis of
these algorithms with respect to a common set of latticeatalu heuristics is a signif-
icant contribution to the literature on the problem. One wf main conclusions is that
the multivariate polynomial approach is not better thanatibogonal lattice approach.
We also propose a pre-processing idea, motivated by the-Blalai-Wasserman algo-
rithm for learning parity with noise (LPN), and a sample-difiqgation idea motivated
by work on LPN and learning with errors (LWE).

We do not consider in this paper the variants of “exhaustaach” over the errors
r;, as proposed by Chen and Nguyen [CN12], Coron, Naccacheibadchi [CNT12],
and Lee and Seo [LS14]. Such algorithms are important footlggnal version of the
ACD problem, but are less relevant for the Cheon-Stehliamar

2 Background and Notation

We use standard notation throughout the paper. The syri@sad > do not have a
precise technical meaning, but are supposed to convey amiaf assurance of “sig-
nificantly less (greater) than”.

2.1 Statement of the approximate common divisor problems

There are at least four variants of the approximate commuisati problem in the
literature. We now define these problems precisely.
Fix v, n, p € N. Letp be ann-bit odd prime. By this we mean that

217t < p < 21,

Actually it is not necessary fgrto be prime, and in some applications (e.g., Appendix
D of [DGHV10]) itis definitely not prime. Define the efficiegtsampleable distribution

D, ,(p) as
Dy p(p) ={pg+r|q< ZN[0,27/p),r + ZN(-2",2°)}. 1)

In practice we have significantly smaller thary and so all samples fro., ,(p)
will satisfy x; < 27 with overwhelming probability. Note also thatifis sufficiently
large andz1, . .., z; are sampled fror®,, ,(p) then we expect there to be at least one
index: such that
0t < < 20,



Definition 1. Let notation be as above. Thapproximate common divisor problem
(ACD) is: Given polynomially many samplesfrom D, ,(p), to compute.

Thepartial approximate common divisor problem (PACD) is: Given polynomially
many samples; from D, ,(p) and also a sample;y = pgo for uniformly chosen
q0 € ZN10,27/p), to compute.

In this paper we focus on the “computational” versions ofgtheblems. There are
also “decisional” versions, but it is known that the compiotzal and decisional prob-
lems are equivalent. Furthermore, there are no knownéadtitacks that directly solve
a decisional problem without first essentially solving tbenputational problem.

Let A be a security parameter. Van Dijk et al [DGHV10] set;? = w(log(\))
to thwart lattice attacks on the approximate common diysoblem. Concretely, the
parameters are set {@,7,7) = (A, A%, \%), so one sees that is extremely small
compared withy. The analysis in [DGHV10] is very conservative and seems&yes-
timate the size of required. For example, in [CNT12] one finds parameterg, v) =
(71,2698,19350000) that are claimed to have security level around 72-bits, &isl i
likely that~y can be taken considerably smaller than this while stillezinig the claimed
security level.

Cheon et al [CCK+13] have given a homomorphic encryptiomsahthat uses the
Chinese remainder theorem to pack more information intqphesiext. This system
featured n-bit primesp;. Letm = p; - - - pp andzy = mqq. A ciphertext is an element
¢ = mwq + r wherer is congruent modulo each primg to a small integer;, and
information can be encoded in each valydthese are called CRT-components). The
public key includes a number of ciphertextsthat are encryptions df, as well as a
number of ciphertexts that are encryptionsidh a single CRT component. We refer
to [CCK+13] and Chapter 7 of Lepoint [Lep14] for more detailsout parameters. We
call the problem of computing,, . . ., p, from the public key th&€€RT-ACD problem.

An important detail about CRT-ACD is that, singds very large compared with an
individualp;, one can use smaller values for thén terms of cryptanalysis, the problem
can be reduced to a standard PACD instance of the form p1¢(, andz; = p1¢; +r},
and it is these attacks that are used to specify the parasnéteeduction is given in
Lemma 1 of [CCK+13] that gives evidence that the CRT varidrihe ACD problem
is hard, but this reduction does not preserve the sizes ahpeters and so it is not very
useful for setting concrete parameters. It is an open prnoldtegive an algorithm to
solve the CRT-ACD problem that exploits the CRT structure.

Cheon and Stehlé [CS15] have given a scale-invariant hamngimc encryption
scheme that permits a very different flavour of parametarghErmore, they give an
explicit hardness result for their parameters, by showlirag if one can solve the (deci-
sional) approximate common divisor problem then one caredble (decisional) learn-
ing with errors problem. The parameters in [CS15] are set as

(p.1,7) = (A, A + dlog(N), 2(d*Aog(N))),

whered is the depth of the circuit to be evaluated homomorphicalite thatp is no
longer extremely small compared with We will sometimes refer to these parameters
as theCheon-Stehé approximate common divisor problem We draw the reader’s



attention to a typo in [CS15]: regarding the security of thegmeters against the mul-
tivariate polynomial attack the authors wrote< n? but should have writtey > n?;
in any case the condition > 7? is not required to have secure parameters.

We will see that the lattice algorithms for ACD seem to woidslevell for the CRT-
ACD and Cheon-Stehlé-ACD. Hence these two variants seasffépa higher degree
of security, at least according to our current knowledges Tperhaps not surprising
in the case of the Cheon-Stehlé-ACD, since that problemysrgome evidence for its
hardness.

2.2 Lattice basis reduction

The algorithms considered in this paper make use of latés#slreduction algorithms
such as LLL [LLL82]. Recall that a lattice of rank is a discrete subgroup @&™
that has rank: as aZ-module. In this paper we write elements of a lattice as row
vectors. Denote byu, v) the Euclidean inner product & and||v|| = (v, v)!/? the
Euclidean norm. We sometimes use the nfm, . .., v, )||1 = max{|v;|}. Alattice L
is described by giving basis vectors, . .., v,, suchthaf, = {Z?Zl a;v; : a; € Z}.

The volume of a latticd,, denotedlet(L), is the volume of the paralleliped formed
by any basis of the lattice. The successive miniyp@d) are the smallest real numbers
such thatl. containsi linearly independent vectors all of Euclidean norm less thia
equal to);(L). So\; (L) is the length of the shortest non-zero vector in the latfice
The Gaussian heuristic states that, for a “random lattibe’shortest non-zero vector in
the lattice has Euclidean norm approximately./(2we) det(L)/™. For details of the
Gaussian heuristic see Ajtai [Ajt06] (formalising what i®amt by a “random lattice”
is non-trivial and is beyond the scope of this paper). A comiynased heuristic is that
if L is a lattice that contains a vecterof Euclidean norm less thatet(L)'/" thenv
is (a multiple of) the shortest vector in the lattice. A fiatltonsequence of [Ajt06] is
that, for a “random” lattice of rank, there exists a lattice badis, ..., b,, of L such
that||b;|| =~ v/n/(2me) det(L)/" forall 1 < i < n.

Let1/4 < § < 1. Abasisby,..., b, for alatticeL is §-LLL-reduced if the Gram-
Schmidt vectord satisfy|u, ;| <1/2forl1 < j <i<mnand

15711% = (8 = g i) 1071117

for2 <i <n,wherey; ; = (b;,b})/(b},b’). Itis known thatan LLL-reduced lattice
basis satisfies

det(L) < [T IIbs]l < 2"~ 1/* det(L)

i=1

and||by|| < 2(»=1D/2)\;(L), where\; (L) is the length of the shortest non-zero vector
of L. Furthermore, it is known that an LLL-reduced basis sassfie

1/(n+1—1)
i) < (27~ 4 det(L))

forl1 <i<n.



It is folklore that LLL performs better on average than thesgst-case bounds
suggest. Nguyen and Stehlé [NgSt06] have studied the mmhraxf LLL on “random”
lattices and have hypothesised that an LLL-reduced bassisa the improved bound

[b1]| < (1.02)" det(L)'/™.

Based on this we suppose thiat; || < (1.04)";(L). Figure 4 of [NgSt06] shows that
by 1|l < [/bj] almost always, and certainljb;, || < 1.2|bj| with overwhelm-
ing probability. Hence, we make the heuristic assumptian, tfor “random” lattices,
|Ibx|| < ||bf|| forall 2 < i < n. From this it is easy to show that, for< i < n,

[bil| < v/1+ (i —1)/4]bu]].

In other words, on average LLL produces a basis that behdwss to the Gaussian
heuristic. The analysis of lattice attacks in [DGHV10,CHE$5nder an assumption of
this type. We formalise this with the below heuristic asstiomp

Assumption 1 Let L be a “random” lattice of rankn and letb,, ..., b, be an LLL-
reduced basis foE. Then

[bs]] < Vi(1.02)™ det(L)"™.

foralll <: < n.

3 Simultaneous Diophantine approximation approach (SDA)

In this and the following two sections we describe the threxsmsuccessful lattice-
based algorithms to solve the ACD problem when the error ietoo large for exhaus-
tive search and when sufficiently many samples are available

The basic idea of this attack is to note thatjf= pg; + r; for 1 < i < ¢, wherer;
is small, then

Zo qo0

for 1 < ¢ < ¢. In other words, the fractiong/qo are an instance of simultaneous
Diophantine approximation te; /x. This was first noted by Howgrave-Graham (see
Section 2 of [HGO01]) and was further developed in Sectionod [DGHV10]. Onceg;
is known one can compute = z; (mod ¢;) and hencéx; — r;)/q; = p and so the
problem is solved. Note that this attack does not benefitfgigntly from having an
exact sampley = pqo, SO we do not assume that such a sample is given.
Following [DGHV10] we build a lattice. of rankt + 1 generated by the rows of
the basis matrix
op+1 T1 Xy - Tt
— 20

B = —o . )

—x0



Note thatL contains the vector

V= (CIO7Q17" : aqt)B
(2p+1lJ0, qor1 — q1xo, " ,qoTt — qtlro)
= (902", qom1 — @170, , Q0T — Q7o)

Sinceqy ~ 27~ the Euclidean norm of is approximately/t + 127~7+,*1 We give
a more precise estimate in Lemma 1. We call this vectotdlget vector.

Since the basis matriB of the lattice L is given in upper triangular form, the
determinant of_ is easily computed adet(L) = 2,12}, Hence, if

VERTormert <y JOE der(r /e
e

then we expect by the Gaussian heuristic that the targebveds the shortest non-
zero vector in the lattice. The attack is to run a lattice astluction algorithm to get

a candidatev for the shortest non-zero vector. One then divides the firsyef w by

2¢+1 to get a candidate solution value fgrand then computes the remaining valggs
One then computes the and checks if they are sufficiently small and that— ;) /g;

all give the same value fqgr, in which case the attack has succeeded. We call this the
SDA algorithm.

This method is analysed in Section 5.2 of [DGHV10], wheresiargued that if
t < ~/p then there are likely many vectors of around the same sizenaller as the
desired vector. Hence it is required that- v/p to have any chance for this method
to succeed, even disregarding the difficulties of latticduntion methods to find the
shortest vector.

We make some specific remarks, that are relevant for congptinigattack with the
other attacks. First, this attack only requires a singletsrextor, not a large number of
short vectors. Second, the attack is heuristic becauseensssauming that is the only
vector in the lattice that is shorter than the length predidily the Gaussian heuristic.
However, this seems to be a relatively mild heuristic in picec Third, if we wish to use
LLL to break the system we requireto be shorter by an exponential factor than the
second successive minimum. In other words, we MB&d|v|| < \/ndet(L)Y/(t+1),
The factor2!/2 can be reduced using heuristics on the average-case behafid_L,
or by using more powerful basis reduction algorithms sucBKz.

We now repeat the analysis of [DGHV10], with an eye to the @h8tehle-ACD
parameters, and also using a more precise estimate of et tector than was given
in previous work.

Lemma 1. The expected length of the target vectas

Vi+1
047 Loptn,

p

Proof. Note that both the; and ther; are random variables dhwith distributions

¢ < Uni{0,...,|p727|} and r; < Uni{-27,...2°},



where Uni denotes the uniform distribution andrepresents sampling from a distribu-
tion. It follows thatE (¢?) ~ $p~22%", E(r;) = 0 andE (r?) ~ £2%. Furthermore,
all of these random variables are independent, so we have

E ((qori — ¢ir0)?) = E (¢3r?) + E (¢?r3) — 2E (qorigi70)

=E (qg) E (7}2) +E (qu) E (r%) —2E (qoq:) E (r;) E (r0)
~ %p*222(p+7)_

It follows that the root mean squared lengthvois given by
1 1 1 1
E([v]*)? ~ (2)2 (t+1)2p~ 12047 ~ 047 (¢t 4 1)zp~ 120+,
This completes the proafl

The estimate for the length efgiven in [DGHV10] is(¢ 4 1)22(+7=7) that is to
say about twice the above approximation (takirg 27).

The attacker hopes that the lattice is a “gap lattice” in #rgss that the first mini-
mum\; (L) = ||v|| is much shorter than the length (L) of the next shortest vector in
L independent ofr. We apply the Gaussian heuristic to estimate

Xo(L) = /(t +1)/(2me) det(L)Y D ~ /(t + 1)/ (2me) 2P+ 170/ (t+1),

We know LLL succeeds in finding if \o(L) > 2!/2X;(L), but on average one has
a smaller exponential factor (or one can use BKZ or otherrdtyos to find short
vectors). Hence, the target vector is the shortest vectthrd@rattice and is found by
LLL if

0.47VE + 1(1.04) 127,71 <\ /(¢ + 1) /(2me) 2170/, (3)

Van Dijk et al [DGHV10] show that, in order that is heuristically the shortest
vector in the lattice, one needs to use- ~/n samples and a lattice of dimension
t + 1. Their analysis assumes thats small and is not helpful when considering the
Cheon-Stehlé variant of the problem. Hence, we re-considgr analysis. Ignoring
constants in the above equation, we find that a necessarg\fffmient) condition for
the algorithm to succeed is

tr1>1—P (4)
n—p
For the Cheon-Stehlé variant we may havelose ton (e.g.,p = A andn = A +
101og(\)), which means the required dimension can grow very fast entbrrelatively
small values fory. More precisely, [CS15] suggests

(p,1,7) = (A, A + dlog()), £2(d*Nog(\)))

whered is the circuit depth and is the security parameter. Taking= 80 andd = 10
and setting?2(x) = x we have(p, 7, v) = (80, 143, 50575), which is very modest com-
pared with the parameters in [DGHV10]. However, for thedaes (v — p)/(n—p) >
800, should be large enough to prevent any practical latticgckttThese arguments



therefore confirm the analysis from [CS15] that their apphoshould provide more
efficient parameters for homomorphic encryption.

The above analysis ignored some terms, so as a final remanksivy jwhy these
approximations are reasonable. Equation (3) states thatee

(0.47)V2me(1.04)H 2P~ < 2l L=/ (t+1),
Taking logs and noting that < n < ~ gives
n—p—1—(t+1)logy(1.04) > (y—p—1)/(t+1)>0.
Writing A = log,(1.04), B=n—p—1andC =~ — p — 1 thisis
At+1)> =Bt +1)+C<0.

We are interested in the range ofor which this occurs, so it is natural to seek the
smallestz > 0 for which Az? — Bx + C = 0. Note that4 ~ 0.06, C ~ ~ and
B? ~ 7n?. If we assume that > 4p andn? > v then0 < 4AC/B? < 1. Using
B? —4AC = B?*(1 — 4AC/B?) andy/1 — 2¢ ~ 1 — ¢ for smalle we compute

VB2 — 4AC ~ B(1 — 2AC/B?).

The smallest choice fdrthat satisfies the inequality is therefore close to

B—+VB2—4AC _B- B(1-2AC/B? 7C/Bifyfp71
24 - 2A - T p—p—1

One sees that this agrees with the original estimate, andtkmthat range of param-
eters, the terni1.04)!*! does not have any significant effect on the performance of the
algorithm.

4 Orthogonal based approach (OL)

Nguyen and Stern (see for example [NgSt01]) have demoadttae usefulness of the
orthogonal lattice in cryptanalysis, and this has been usextveral ways to attack
the ACD problem. Appendix B.1 of [DGHV10] gives a method lthea vectors or-
thogonal to(z1, ..., x:). Their idea is that the lattice of integer vectors orthodona
(x1,...,2¢) contains the sublattice of integer vectors orthogonal tih b@, . . ., ¢:)
and (r1,...,r¢). Later in Appendix B.1 of [DGHV10] a method is given based di-
rectly on vectors orthogonal tol, —r; /R, ...,—r/R), where R = 27. Ding and
Tao [DT14] have given a method based on vectors orthogorigi fo. . , ¢;). Cheon and
Stehlé [CS15] have considered the second method from Afpp@&nl of [DGHV10].

Our analysis (as with that in [DGHV10]) and experiments sgjghese methods
all essentially have the same performance in both theoryeaxtice. Indeed, all three
methods end up computing short vectors that are orthogor{alt.. ., ¢:) and some
vector related to the error termg for example see Lemma 3. Hence, in this paper we
follow [DGHV10,CS15] and study the use of vectors orthodomél, —r; /R, ..., —7:/R).



These attacks do not benefit significantly from having anesampler, = pgo SO we
do not use it.

Let R = 2* be an upper bound on the absolute value of the erganse; = pq; +7;.
Let L be a lattice irZ! ™t with basis matrix

X1 R
X9 R

B=|%s R . (5)
Tt R
Clearly the rank of3 is t. The lattice volume was estimated in previous works, but we

give an exact formula.

Lemma 2. The Gram matriBB of L is of the formR>I;+x” x wherex = (z1,...,2¢)
andl, is thet x ¢ identity matrix. The volume of the lattice®~'\/R2 + 2? + - - - + 27,

Proof. The claim abouBBT is easily checked by induction. Writing this BB” =
A + xTx whereA = R?I, is invertible, the matrix determinant lemma states that
det(BBT) = det(A)(1 + xA~'xT). Sincedet(A) = R* andA~! = I, we find

24 ... 2
det(BB") = R* (1 + xl—'—]%#) = R*D(R? + 23 + -+ a).

The final claim comes from the fact that the lattice volume/idet(BBT). O

Any vectorv = (vg,v1,- -+ ,v;) € L is of the form

¢
v=(u, -, u)B= (Zuixi;U1R7U2R7"' ,UtR> ;

i=1
whereu; € Z. The main observation of Van Dijk et al. [DGHV10] is

t t

t t
UEDI EDIITEDD uﬁfﬁ = wi(w; —ri) = 0 (modp). ~ (6)
=1 i=1

i=1 i=1

Since we don’t knowp, we wish to have a linear equation ov&r The equation holds
t
if oo — > U—ém < p/2. The following lemma gives a bound anthat implies we get
=1

an integer equation as desired.

Lemma 3. Letv = (ug, u1, ug, - - - ,u;)B. Let||v|| < 27-271°82(¢+1) Then

t t
|vg — Zulm <p/2 and Zuiqi =0.
i=1 i=1



t
Proof. Letv = (vg, vy, -+ ,v:) = (Z ui i, U1 R, ua R, - -+ ,u R) and letN = [|v]].

=1
Then|vg| < N and|u;r;| < |u;R| < N for1 <4 <t Thus

t
Vo — E U;T5
=1

SinceN < 272~lo2(t+1) 'we have(t + 1)N < 27~% < p/2 sincep > 27~ 1. Hence

t
lvo — Zum‘| <p/2.
i=1

t
< fvol + Y Juirs| < (¢ +1)N.
i=1

t t t
To prove " uig; = 0, SUPPOSEY _ u;q; # 0 so thatp| » " wigi| > p > 277",
=1 i=1 =1
Sincex; = pq; + r;, we have

t t
Pl Zuzqz| = |Zuz($z —3)
i=1 i=1
t t
< IZuixilJrIZuml.
i=1 i=1

But, by the previous argument, thisis(t + 1) N < 271, which is a contradictiori]

In other words, every short enough vectoiin the lattice gives rise to an inho-
mogeneous equatiafy = > u,;r; in thet variablesr;, and a homogeneous equation
> uig; = 0in thet variablesy;. There are therefore two approaches to solve the sys-
tem. The papers [DGHV10,CS15,DT14] us@homogeneous equations and solve for
ther;, but we believe it is simpler and faster to use 1 equations and then find the
kernel of the matrix formed by them to solve far, ..., ¢:). We call these methods
theOL algorithm .

Hence, it suffices to have— 1 linearly-independent vectors in the lattiéethat
satisfy the bound of Lemma 3. Hence we run lattice reductimhtake the — 1 smallest
vectors in the output basis (they are linearly independentquired).

To analyse the method we use Assumption 1. This shows thatame&ompute
using LLL ¢ — 1 linearly-independent vectors of the correct size as long as

VE(1.02)! det (L) < gn—2-log2(t41)
By Lemma 2 we approximaiget(L) by 2°(:~1)+7, Hence, the condition for success is
4y/t(t + 1)(1.02)t2rT =P/t < om,
Following the analysis in [DGHV10,CS15], if one ignores stants and exponential

approximation factors in the lattice reduction algoritlthen a necessary condition on
the dimension i > (v — p)/(n — p), which is the same as equation (4) for the SDA

10



method® Hence, we deduce that the OL method is not more powerful thar8DA
method. Our experimental results confirm this, though thegest the OL method is
slightly faster (due to the smaller size of entries in thédbastrix defining the lattice).

We give one remark about the CRT-ACD problem. Recall thah &&eD instance
x; in this problem satisfies; = r; ; (mod p;) for many primeg;, wherer; ; is small.
Hence there are many variants of equation (6)

t

UQ—Z rij = Zuxl—z 7”1,3 Zul x; — ;) =0 (modp),.

i=1 =1

In practice this causes the lattice method to be much lesstefé, since different short
vectors may correspond to different choices of prgme&nd hence different values for
ther; ;. It remains an open problem to analyse the security of thiswaof the ACD
problem.

5 Multivariate polynomial approach (MP)

Howgrave-Graham [HGO01] was the first to consider reduciegiiproximate common
divisor problem to the problem of finding small roots of mwatiiate polynomial equa-
tions. The idea was further extended in Appendix B.2 of vajk Bt al [DGHV10].
Finally, a detailed analysis was given by Cohn and HeninGet1[3]. However, the pa-
per [CH13] focusses on the case when a small number of ACD learape available,
it uses worst-case rather than average-case LLL boundst andtains no compari-
son against the orthogonal lattice approaches. Henceisiiséktion we give a revised
analysis of the algorithm and report on experiments wit@iir heuristic analysis and
experimental results suggest that the best choice of paeasrfer the multivariate ap-
proach is to use linear polynomials, in which case the allgoriis equivalent to the
orthogonal lattice method. In other words, we find that thétirariate approach seems
to have no advantage over the orthogonal lattice method attecking ACD instances
coming from crypto applications.

The multivariate approach can be applied to both the full@artial ACD problems,
but it is simpler to explain and analyse for the partial AClgem. Hence, in this
section we restrict to this case orly.

We change notation from the rest of the paper to follow mooselly the notation
used in [CH13]. Note that the symbal§; are variables, not ACD samples. Hence, let
N = pqgo and leta; = pg; +r; for 1 <4 < m be our ACD samples, where;| < R for
some given boundk. The idea is to construct a polynomi@d{ X, Xs,..., X,,,) inm
variables such tha®(r,--- ,r,,) = 0 (modp*) for somek. The parameters: andk
are optimised later. In [CH13], such a multivariate polynalis constructed as integer

% There is no need to repeat the more careful analysis we gldiddfor SDA, since we are
lower-bounding the OL method by the SDA method.

4 Since the orthogonal lattice method performs equally wallifoth full and partial ACD, it
suffices to compare the methods in the case most favouralfe tmultivariate polynomial
approach.
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linear combinations of the products
(X1 —a)" - (X — am)'™ N*

wherel is chosen such that + --- + 4, + ¢ > k.

An additional generality is to choose a degree bourd &k (do not confuse this
with the use of the symbalpreviously) and impose the condition—+ - - - + 4, < t.
The valuet will be optimised later.

The latticeL is then defined by the coefficient row vectors of the polyndsnia

f[il,...,im](le s 7Xm> = (RXl - al)il T (RXm - amymNev (7)

such thatiy + -+ + i, < t and/ = max(k — > i;,0). For example, the values

(t,m,k) = (3,2,1) lead to the following basis matrix.

f[i1,i2] 1 X1 Xa X12 X1 Xs X22 X23
fooy [ N 0 0 0 0 0 0
Ji0 —a1 R 0 0 0 0 0
Jo,1 —ag 0 R 0 0 0 0
f12,0 a?  —20R 0 R? 0 0 0
B= fiy |aa -aR -aR 0 RR 0 0o [ (®
fon | @ 0 2R 0 0 R? 0
fos \—dd 0 3¢2R 0 0  —3aR® ... R3
Itis shown in [CH13] that. has dimensiod = (*7") and determinant
det(L) = R(T 7 N(W) 7 = odfg+ ()

A natural choice forR is 2°.
Let v be a vector inL. One can interpret = (vj, ...
cient vector of a polynomial

Q(Xl,...,Xm): Z Ujly...yij?-"Xg;".

Jism s Jm

i, Rit+im) as the coeffi-

sJm

If |Q(ry,--- ,7m)| < p* then we haveQ(ry,---,r,,) = 0 over the integers, so we
need to boundt)(r1, - - - , 7., )|. Note that

Q1 ) £ D0 (gl lral o
J1s s dm
< Y g | R R
J1s s dm
= (vl
Hence, if||v|; < p* then we have a suitable polynomial. We call a vestat L such

that|v||; < p* atarget vector. We will need (at least) algebraically independent tar-
get vectors to be able to perform elimination (using resititar Grobner basis method)

12



to reduce to a univariate polynomial equation and henceesoi(ry, ..., 7, ). One
then computep = ged(V,a; — r1). Note that solving multivariate polynomial equa-
tions of degree greater than one in many variables is very iomsuming and requires
significant memory. In practice, the elimination procesegi&robner basis methods is
faster if the system is overdetermined, so we generally use tihanm polynomials.
We call this process thiglP algorithm .

We remark that the cage, k) = (1, 1) gives essentially the same lattice as in equa-
tion (5) and so this case of the MP algorithm is the same asrthegonal lattice attack
(this was already noted in [DGHV10] and is also mentionedeot®n 6 of [CH13]).
Because of this, one can always say that the MP attack issttde@ood as the orthogo-
nal lattice attack. But the interesting question is whe#mgrother choices of parameters
for the MP algorithm give rise to better attacks.

5.1 The Cohn-Heninger Analysis

Cohn and Heninger [CH13] give a heuristic theoretical asialpf the MP algorithm
and suggest optimal parameter choifiesn, k). Their paper does this very briefly and
omits some details, so we sketch their approach here.

Cohn and Heninger [CH13] introduce a paramétet /v < 1 so thatp > N5,
They work with the equation

mtlogy(R) ~k™ B
(m +21)l<: + (m+1)tm <Pr=m ©

which is a version of equation (10) below, with some termetel. They make a num-
ber of simplifying assumptions, assume that the best esuilt come from takingt
large, and impose the asymptotic relationship 5~'/"k, which means that > k.
Their method allows errors up t8 = v3(m+1/™ They requires?log(N) > 1 for
the method to work which is equivalent to)> > ~. The lattice dimension in their
method is(*T"") = O(t™) = O(B~*k™) = O(v/n), and so yet again we encounter
the same dimension bound as the previous methods (at lelash pvis small). The
main “heuristic theorem” of [CH13] can be stated as: for fixedif 3 = n/y where
n? > v andp = log,(R) < n(1 + o(1))3'/™ then one can solve the ACD problem
in polynomial time. The claim of polynomial-time complexit correct, but does not
imply that the MP approach is better than the SDA or OL apgieacThe input size
is proportional toy and all the algorithms use lattices of dimension approxétyat/n
whenp is small, so they are all polynomial time if they return a eatrsolution to the
problem.

The conditionp? > ~ already means the MP attack can be avoided in practice
relatively easily. We remark that the orthogonal latticetimoe does not have any such
hard limit on its theoretical feasibility. However, in ptae the restrictiom? > ~ is
not so different from the usual condition that the dimensiwst be at least/#: if
~ > n? then the required dimension would be at leastvhich is infeasible for lattice
reduction algorithms for the sort of parameters used intfmec

® It is mentioned in Section 2.1 of [CH13] that this can be rethxo 5™ log(N) > 1ifa
lattice reduction algorithm with a sub-exponential apjmmation factor is available.

13



Itis also important to consider the parameters of interetste Cheon-Stehlé scheme.
Hence we now suppose~ 7 (e.g.,p/n = 0.9) andy = »'*? for somes > 0 and
ask if the MP method can be better than the OL method in thisngefThe condition
tp < kn implies thatt ~ k, (recall thatt > k) in which case(*™) ~ d = ("7™)
and so the bound from equation (12) suggests the MP appr@schchadvantage over
other methods for parameters of this type. Our experimeasallts confirm this (see

Table 1).

5.2 Improved Analysis

We closely follow the analysis in [CH13], but we use averagse bounds on LLL
(Assumption 1) rather than the worst-case bounds of equé®@®)® Another of our
main contributions is to consider the parameters more géipainlike in [CH13] where
it was assumed that the optimal solution would be to take> 1 (e.g., they write “If
t andk are large, then...” and “we take> m and... k™ =~ gt™"). Instead, we will
argue that the best choices for the MP algorithm(arg) = (1, 1). In other words, the
MP method seems to have no advantage over the orthogoiag latethod.
The MP algorithm succeeds if we can produgevectors in the lattice such that
[vlli < p*. Note that the heuristics immediately differ between theesa = 1 and
t > 1. Whent > 1 the number of target vectors required is much smaller than th
dimensiond = dim(L) = (tfnm), however we require the corresponding polynomials
to be algebraically independent which is a much strongarmagson than linear in-
dependence of the corresponding vectors. On the other draht = 1 we require
m = d — 1 short vectors so need a stronger assumption on the shapelaftibe basis,
however it suffices to have linearly independent vector®topete the attack.
Using||v||; < v/d||v| (where the latter is the Euclidean norm) and the bounds from
Assumption 1 we have that an LLL-reduced basis satisfies

[bs]l1 < d(1.02) det(L)/?

whered is the dimension of the lattice. If this bound is less thp&nx 27F then we will
have enough target vectors. Hence we need

d%(1.02)4" det(L) < 27+

and so we need

t k+m\ k
1 210g,(1.02) + dp——— G
dlogy(d) + d*log,y( O)+dpm+1+7( m )m+1<knd (10)

We now derive some useful necessary conditions for the igthgoito succeed. Noting

thatmLJf1 ~ t we see that it is necessary to have

tp < kn, (11)
% This does not have a major effect, since the analysis in [Qlti®red several “nuisance

factors” which boil down to the same thing as our assumption.
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and sot cannot grow too fast compared with Similarly, we see it is necessary that

v(*™) £+ < knd which is equivalent to

d<t+m)>1<k+m>;. (12)
m n m m-+1

Whenk = 1 then the right hand side is equal4dn, but it gets steadily larger ds
grows. Sincey/n is large, this shows thathas to be significantly larger than or else
m hasto be very large. At the very least, this condition dertrates that the MP method
does not overcome the minimal degree boyyig we already saw for the SDA and OL
methods. (In the cage, k) = (1, 1) equation (12) simply becomes—+1 > ~/n which
we have already seen in Sections 4 and 3.)

We now attempt to give some further justification of our clamat the Cohn and
Heninger analysis with > 1 does not give any advantage over the casel. To do
this, suppose = n'*? for somed < § < 1sothatd = 1/n° andB?y = n'=% > 1
as required. The analysis in [CH13] suggests thaand¢ should be large, but does
not seem to requirk to grow large, hence we takke= 1. Equation (9) then becomes,
recalling thatc™ = 5t™,

mt log,y () B
(m+1) (m+1)

<n

It therefore suffices that the lattice dimension should kenao bed ~ t"/m! =
1/(Bm!) = n®/m!, givingt ~ n°/™. Note that this lattice dimension is comparable
with the lower boundy/n = 7’ that we saw for the SDA and OL methods. From this
we find that we can handle errors of bitlengith, (R) ~ n/t. There are many ways to
choose parameters, but a reasonable choice seems to be tetak. This means that

de (t—l—m) - (Qm) ~ 4
m m
and som = log,(d) =~ Jlog,(n). Finally, we havep = log,(R) =~ n/(d log,(n)).

To make this concrete, let us take= 1000 andd = 1/2 soy = n'*° = 31622.
Choosing(t,m, k) = (5,4,1) gives a lattice of dimensio(i}) = 126 that can handle
errors of size up taR = 21000/5 = 2200 For these values, we have — p)/(n —
p) =~ 39 which suggests the instance can be more easily solved usrgRA and OL
methods or, equivalently, the MP method with parameters:, k) = (1,50, 1). Our
experimental results confirm these findings.

There are two further major advantages of the SDA and OL nastbompared with
the MP approach with > 1. The first is that one can choose any value desired for the
dimension, whereas in the MP method the dimension must beediorm (t;’”) and
so it only takes certain values. The second is that the MP adetlith¢ > 1 requires
solving systems of multivariate polynomial equations, #ma cost of this stage can
dwarf the cost of the lattice stage.

Table 1 gives a comparison of different parameters for thaiEhod. The left hand
table is forn = 100 and varying values of. For different choices dft, k) we determine
the maximal such that the MP algorithm with parametétsk) can solve the problem
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Table 1. Comparison between different parameter choigek) in the multivariate polynomial
algorithm. The left hand table reports, fipre= 100, the largest value fgs that can be solved with
reasonable probability for the given choieg 7, ¢, k, m). The right hand table compares running
times for larger exampledim(L), TLLL, and TGRB refer to the lattice dimension, running time
(seconds) of the LLL algorithm and running of the Grobnesi®algorithms to solve the resulting
polynomial systems respectively. The notation “** indiea that the computation was aborted
before a result was found after the fixed time period of a fenwutds.

v |p dim(L)| TLLL |[TGRB
300(10 5 0.020 | 0.000
35 0.300 [ 0.050

50| 7 0.010 | 0.010

35 0.110| 0.030

60010 8 0.020 | 0.000
35 1.070 | 6.100

30 10 0.030 | 0.010

35 1.020 | 5.330

@ ¢l N | B |
o G ol N o 5| ol B & of B~ & o & |3
=
a

[k
11
32
/T
32
11
32
1T
32
Y [pmax|t]k]m|dim(L) | TLLL|TGRB| [120010[1]1 0.030 | 0.010
150 95 [1]1]30] 31 | 0.020| 0.020 32 56 | 14.130|347.200
90 [3[2[ 8| 165 |0.350| 0.070 20(1[1 16 | 0.030 | 0.010
85 [4|3[4| 70 |0.220] 0.040 32 56 | 13.890|297.82(
300 90 |1|1]|30] 31 |0.030] 0.130| [2400/10/1|1 28 | 0.190 | 0.010
60 [3|2[5| 56 |0.310] 0.770 32 56 | 32.710] **
60 [4]3[4| 70 | 4.150] 15.150 20(1(1 31 | 0.260 | 0.020
600] 80 |1]1]30] 31 | 0.070] 0.020 32 56 | 32.480] *
35 [3[2[ 4| 35 | 1.020| 0.170| [500015|1|1|119 120 |102.66Q 0.675
10 |4|3|3| 35 | 2.930] 4.640 2[I[ 10| 66 |10.380] *
30/1[1[ 72| 120 | 84.070] 0.680
2[I[11] 78 [18.010] *
8000/10{1|1]119] 120 |136.530 0.670
2[1[ 14| 120 [219.140 **
3[1[ 6| B84 |74.490] *
T5[T[I[119] 120 |145.77Q 0.670
2[I[ 14| 120 (226370 *
20(1[1
21

1 120 [164.75Q 0.670
14| 120 [300.10Q **

with high probability. This table shows th@t k) = (1, 1) allows to solve a wider range
of parameters than other choices, which confirms our argtithah(¢, k) = (1,1) is
better than other parameter choices. The second tabledesasarger values foy and
the aim of this table is to emphasise the considerable iserigethe running time when
usingt > 1.

6 Experimental Observation

We have conducted extensive experiments with the SDA, OLMIRdnethods. For a
small summary see Table 2. As with all lattice attacks, tiing time depends mostly
on the dimension of the lattice, and then on the size of tregts in the basis for the
lattice. In general our experiments confirm that the OL mefisahe fastest and most
effective algorithm for solving the ACD problem. For manymatables of experimental
results we refer to Chapter 5 of [Geb16].

The parameter&p, n, ) in Table 2 are selected according to the forma\ +
dlog(\),d*Xlog(\)) from [CS15], where) is a security parameter artd> 0 is the
depth of a circuit to allow decryption of depth We took\ = 80 and varyd from 1 to
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Table 2. Comparison of orthogonal lattice (OL) and simultaneouspbanmtine approximation
(SDA) algorithms (note that the MP method with k) = (1, 1) is the same as the OL method).

n v p dim(L) | OL time (seconds)] SDA time (seconds
86 [ 480 | 75 120 1.700 2.380
70 40 0.110 0.200
50 24 0.030 0.050
92 [ 1920 50 56 1.540 5.020
98 | 4320 50 200 1242.640 4375.120
104| 7680 50 200 3047.500 14856.630
11012000 20 200 5061.760 27578.560
10 200 3673.160 23428.410

5. Of course, we did not expect to solve this system quickiyttie choicep = A (and
our experiments confirmed this). We only report timings tagtgly smaller values for

p-

7 Pre-processing of the ACD samples

The most important factor in the difficulty of the ACD problésrthe ratioy/n, which
is the size of the integers; relative to the size op. If one can lowery for the same
and without changing the size of the errors then one getssiargéastance of the ACD
problem.

Hence, it is natural to consider a pre-processing step whikznge number of initial
samplesy; = pqg; +r; are used to form new sample$ = pq’; + 1’ with ¢; significantly
smaller thany;. The main idea we consider for doing this is by taking differesc;, —x;
for z; > x; andz; =~ ;. The essential property is thatif, ~ x; theng;, ~ ¢; butry
andr; are not necessarily related at all. Henge— x; = p(qx — ¢;) + (r —7;) is an
ACD sample for the same unknowrbut with a smaller value foy and a similar sized
errorr. It is natural to hope that one can iterate this process th@isamples are of a
size suitable to be attacked by the orthogonal lattice atyor

This idea is reminiscent of the Blum-Kalai-Wasserman (BKalgprithm [BKWO03]
for learning parity with noise (LPN). In that case we have gkas(a, b) wherea € Zj
is a vector of lengtlw andb = a - s + ¢, wheres € ZJ is a secret and is a noise
term which is usually zero. we wish to obtain samples suchgha (1,0,0,...,0),
or similar, and we do this iteratively by adding samplas, bx.) + (a;, b;) where some
coordinates oh;, anda; agree. The result is an algorithm with subexponential com-
plexity 2"/1°8(") compared with the naive algorithm (guessingsa#t Z.) which has
complexity2™. In our context we do not have;, pg; + ;) but onlyz;, = pg; + 4,
however we can use the high-order bitscpfis a proxy for the high order bits gf and
hence perform a similar algorithm. A natural question is tlikethis leads to a faster
algorithm for the ACD problem.

There are several approaches one might attempt:{et . , z, be the initial list of
~-bit ACD samples.

1. (Preserving the sample size) Fix a small bouhde.g., B = 16) and selectB
samples (without loss of generality call them, ..., xg) such that the leading
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coefficients in basés are all distinct. For each of the remaining- B samples,
generate a new sample by subtracting the one with the sardimdeeoefficient.
The resultisr — B samples each of size— log,(B) bits.

2. (Aggressive shortening) Sort the samples< 2o < --- < 2, and, for some small
thresholdl” = 27—, generate new samples by subtracting,; — x; when this
difference is less thafi. The new samples are of size at mgst p bits, but there
are far fewer of them.

7.1 Preserving the sample size

This first method is analysed briefly in [Geb16] and we givétfer informal discussion
here. Suppos® = 2°. After I iterations of the method we have generated approxi-
matelyr — I B samples, each of — Ib bits. However, we must consider the size of the
errors. The original samples = pg; + r; have errordr;| < 2°, and the samples at
iterationk are of the form

2k‘
T = Zcizi where ¢; = +1

=1

and so the error terms behave like a “random” sur?*of-bit integers. Since the; are
uniformly distributed in[—27, 27}, for largek the valuer = ). ¢;r; has meard and
variance:2%**+*. So we expectr| < 2/7%/2. Oncep + k/2 > n then the errors have
grown so large that we have essentially lost all informatiboutp, and the method is
no good. Hence, an absolute upper limit on the number oftitersiis2(n — p). This
means that after the final iteration the samples are reducbiléngth no fewer than
v —2b(n — p) bits.

In terms of lattice attacks, an attack on the original problequires a lattice of
dimension roughlyy/n (assuming < 7). After the pre-processing we would need a
lattice of dimension

y=20(n—p)

n n

Since a typical value fa¥is 8 or 16, we see that very little difference has been made to
the problem.

— 2b.

7.2 Sample amplification

First experiments may lead one to believe that the aggeessiortening approach is
fruitless. It is natural to choose parameters so that the dise reduced at each itera-
tion by some constant factor, and so the number of samplesakes exponentially in
terms of the number of iterations. Eventually one has toodfamiples to run any of the
previously mentioned lattice algorithms.

However, it turns out that a very simple strategy can be useaddctice to increase
the number of samples again. The idea is to generate newasi(tipht are still about the
same bitlength) by taking sums/differences of the iniigtldf samples. This is similar
to ideas used to amplify the number of samples for solving bPNWE [Lyu05].
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Let £ = {x1,...,2,} be alist of ACD samples, with, = pgi + r having mean
and variance given by = E(zy) = pE(qx) = 27! and variance given by

Var(zy) = p*Var(qi) + Var(ry) = %QQ(V_” + éQQ”
_ 1o2(y-—1 —2(y—
=12 (v )(1+2 (v p)).
We generaten random sums’y, ..., S, of [ elements ofZ, that is to say we consider

values of the form
l

Sk:Zxki [k=1,...,m],
i=1

which have mean and variance given by
E(Sk) = 127! and Var ;) = 1122071 (1 + 27200,

We note that (provided is not too large) two such random variablgs and Sy, are
usually sums of different ACD samples and so are usuallygeddent. In any case, we
can obtain many samples (with potentially up to(?)) of a more peaked distribution,
albeit with a slightly larger variance. Hence, not only hawe created a much larger
pool of samples, the non-uniform distribution of these siesmmakes them even more
attractive for an algorithm based on computing neighbaydifferences.

Recall that the next stage of the algorithm will be to sorttbe samples’, . .., S,
to obtain the listS(;) < --- < S(,,,). We call these therder statistics We then consider
the neighbouring differences spacingsly = S(x41) — Sy fork = 1,...,m — 1.

In order to analyse the effectiveness of this approach wd teederive the statistical
distribution of the spacings.

The statistical distribution of spacings arising from agmehdistribution is consid-
ered by Pyke [Pyk65], where it is shown that such genericisgadave Exponential
distributions, and such an approach gives Lemma 4. We ribealihe distribution func-
tion F for a random variabl&” onR is the monotonic functiod'(w) = P(W < w),
which gives the density functioh = F’ of W as the derivative of" (where this exists)
and the inverse distribution functiafi—! of IV as the inverse function t6. Further-
more, a positive random variabl® ~ Exp()) is an Exponential random variable
with (rate) parametex if its density functionfy (w) = Aexp(—Aw) (w > 0), when
E(W) = A~! and Va(W) = A2, so an Exponential random variable has the same
mean and standard deviation.

Lemma 4. SupposeZy, . .., Z,, are independent and identically distributed random
variables onR with common distribution functiof, inverse distribution functiofr —*
and density functiorf = F”. If Zay < ... < Zuy) denote the order statistics of
Z1, ..., Zm, then thekth spacingZ 1y — Zx) is well-approximated for largen as

an Exponential random variable with (rate) parameterf (F~! (£)).

Proof. Equations (4.9) and (4.10) of Pyke [Pyk65] show that#Hespacing

! (1= A1)
Zk+1) = (k) = (m—k) f(F~1 (Ags1))

Yka
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Fig. 1. Graph of the Functiod! (u) = g (G~ (u))

whereY, ~ Exp(1) is an Exponential random variable ardd ., essentially lies be-
tween thek*® and(k+1)*® order statistics ofn random variables uniformly distributed
on (0, 1). ThusA; essentially lies between two random variables with nﬁ@g and

k41 ; ; ~ k
1, S0 to a good approximatioty, 1 ~ ;- for largem.

1 (1-App)  1-K 1 7 1
(m—k) (P (Agia)) (=) f(P-1(E))  mf (F1 ()

As the multiple of an Exponential random variable is also apdaential distribution
with a suitably defined parameter, we to a very close apprati@n

Zerry — Zgy ~Exp(m f(F71(E))). O

We use Lemma 4 to give the distribution of the spacings inetlsituations of in-
terest, namely when the underlying distributions are UnifoExponential and Nor-
mal. The distribution of the original ACD samples, . . ., z,, and hence random sums
Si,...,S, whenl = 1, are well-approximated by a Uniform distribution ¢i 27),

In such a situation, the distribution of the consequentigsgacas an Exponential dis-
tribution. More generally, the sum 6f> 1 such distributions (Uniform or Exponential)
is well-approximated by a Normal distribution even for maadel/, but the distribution
of such a sum could always be calculated exactly if requiggtiglLemma 4.

— Uniform Distribution. Suppos&Zs, ..., Z,, ~ Uni(0, A) are uniformly distributed
on (0, A), thenZy, ..., Z,, have inverse distribution functioR—!(u) = Au (0 <
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u < 1) and density functiorf (z) = A7 (0 < z < A). Thusf (F~! (u)) = A7,
and the spacings have an Exponential distribution given by

. A
Zer1y — Zxy ~ Exp(mA™")  with mean—.

— Exponential Distribution. SupposeZy, ..., Z,, ~ Exp(\) are exponentially dis-
tributed with (rate) parameter (mean)\—1!), thenZy, ..., Z,, have inverse distri-
bution functionF~!(u) = —A7'log(1 — u) (0 < u < 1) and density function
f(z) = Xexp(—=Az) (z > 0). Thusf (F~! (u)) = A(1 — u) (0 < u < 1), and the
spacings have an Exponential distribution given by

. 1
Zes1) — Zy ~ EXp(A(m — k))  with meanm.
— Normal Distribution. SupposeZy, ..., Zn, ~ N (u,c?) are normally distributed

with meany and variance?. If we let F~! and f respectively denote the inverse
distribution function and density function of such &No?) random variable, then

_ g (G (u
g
whereG~! andg are respectively the inverse distribution function andsitgriunc-
tion of a standard Normal (9, 1) random variable. We therefore 1&f(«) denote
the functiong(G~1(u))~ 1, so

= (2#)% exp (I nverseErfc(2u)?) [0<u<1],

wherelInverseErfc denotes the inverse function to the complementary errar-fun
tion, and we illustrate this functioA in Figure 1. It can be seen thAtis a moder-
ately small value away from the extreme order statistiasefampleH (u) = 4 for
0.2 < u < 0.8. Thus the spacings have an Exponential distribution (wattameter
depending ork) given by

with meang H
cH (ﬁ)

m

Zk+1) — L(k) ~ Exp<

7.3 Aggressive shortening

Having shown that the sample amplification technique leadglatively small spac-
ings, we can now put everything together. The ideais towi#inta list£ = {z1,...,2z,}
of ACD samples of mean vall® —! and standard deviatian, ~ 3-2200=1)_ One first

amplifies this to a list ofn samplesS;,. One then sorts th§;, to get the order statistics

S(k).7 Compute the spacindg; = S(41) — S fork = 1,...,m — 1 and store the

" In practice one can store ttf, in a binary search tree, in which case an explicit sorting ste
is not required.
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7 = m/2 “middle” spacings as input to the next iteration of the aithon. After I
iterations one then applies the orthogonal lattice attack.

We now analyse the method. The complexity is proportiondktdog(m), since
each iteration computes a sorted list of size The mean and the standard deviation
of the spacings is inversely proportionaltg so we would wish to take: to be very
large. Suppose, at theth iteration, we have a list of;_; vaIuesYl(]’l), . ,YT(]?;”
(sory = 7) with standard deviation;_;. As noted above, a random susp is well-
approximated as a Normal random variable with variaka§g1 for/ > 1. Lemma 4
shows that thé&*" spacing in this Normal approximation case essentially hdistai-
bution given by

1
m o H (%)
S - Sy ~Exp| ————— with mean——"%¢;_;.
e ey es) m

Figure 1 shows that/ (£) ~ 4 when0.2m < k < 0.8m, so by considering the
“middle” spacings ofl1, ..., T,,—1, we can obtain; = %m random variables with
approximately the same distribution that are in generadjieshdent. Thus at the end of
the jt* iteration, we obtain random variables

1

; ; . - 4]z
YY,...,Y]  with mean and standard deviation = —20j_1.
m

T

The main question is how many times the method can be itetatdidthe errors
grow so large thap is not determined anymore. Aftgiterations, the random variables
Y!, ..., Y% are sums of2/)’ of the original ACD samples, so the standard deviation

of an error term in the output of theth has increased by a multiple (#)%. Hence,
the total number of iterations performed satisfies 7.

Our analysis shows that the average size of samplesi ititeations i4+/1/m)?27 .
To have samples of size closefébits thus requires

n ~ ilogy(4V1/m) + v — 1.
Hence, optimistically taking = 7, we need
logy(m) ~ (v — 1+ n(log(4V1) — 1)/n

In other words, the lists are of size closetd”, which is prohibitively large in practice.
Even for the toy paramete(s, ,v) = (71,2698, 19350000) from [CNT12] we would
havem = 27990 which is absurd.

In summary, the detailed statistical analysis of this $&clias essentially shown
that a neighbouring difference approach, whilst initiafpearing promising, can only
reduce the essential magnitude and variability of the sasypmloduced at each iteration
by a factor that depends linearly on the number of sums cersitht each iteration. For
the parameter sizes required for a cryptographic systeisiptbans that the resulting
errors grow too rapidly for this approach to be useful.

It is natural to wonder why the BKW algorithm is a useful toof LPN, and yet
similar ideas are not useful for ACD. One answer is that ACBcisially a much easier
problemthan LPN: The naive attack on LPN tak&operations, whereas one can solve
ACD in vastly fewer thar2” steps.
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8 Conclusions

We have surveyed known attacks on the ACD problem. Our madiniinis that the
multivariate polynomial attack is not more powerful thae thrthogonal lattice attack,
thereby clarifying the contribution of Cohn and HeningeH[3]. We have developed
a sample amplification method for ACD which may have appiicetin cryptanalysis.
We have also investigated a pre-processing approach asitoithe BKW algorithm,
and given a statistical analysis that explains why this mettoes not lead to an attack
on ACD.
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