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Abstract

In this paper, we propose a construction of fair and efficient mutual Private Set In-
tersection (mPSI) with linear communication and computation complexities, where the
underlying group is of prime order. The main tools in our approach include: (i) ElGamal
and Distributed ElGamal Cryptosystems as multiplicatively Homomorphic encryptions,
(ii) Cramer-Shoup Cryptosystem as Verifiable encryption. Our mPSI is secure in stan-
dard model against malicious parties under Decisional Diffie-Hellman (DDH) assumption.
Fairness is achieved using an off-line semi-trusted arbiter. Further, we extend our mPSI to
mutual Private Set Intersection Cardinality (mPSI-CA) retaining all the security properties
of mPSI. More interestingly, our mPSI-CA is the first fair mPSI-CA with linear complex-
ity.

Keywords: mPSI, mPSI-CA, malicious adversary, fairness, semi-trusted arbiter.

1 Introduction

In everyday life, dependence on the availability of electronic information increases rapidly. As
a consequence, there is a strong need for efficient cryptographic techniques that allow secret
sharing of information. Among these, Private Set Intersection (PSI) has received considerable
attention to the recent research community due to its importance and wide applications. PSI
enables two parties to compute secretly the intersection of their respective private input sets. At
the end of the protocol, one or both parties must obtain the intersection, but not more than that.

The PSI protocol that enables both the parties to learn the intersection, is known as mutual
PSI (mPSI). If only one of the parties learns the intersection, then the protocol is known as one-
way PSI. PSI protocols have found several practical applications, particularly in location-based
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services, privacy preserving data mining, social networks, testing of fully sequenced human
genomes, collaborative botnet detection, on-line gaming etc. For instance, suppose two real
estate companies want to detect the customers (e.g., homeowners) who are double dealing, i.e.
have signed exclusive contracts with both the companies to assist them in selling their house.
mPSI is a proper choice for this situation.

There are several existing works on mPSI. Two main challenges in this area – apart from
establishing security in standard model against malicious adversaries to obtain efficient mPSI
construction and to obtain fairness for such construction. Efficiency is measured by commu-
nication and computation complexities while fairness means if one party gets the intersection
then the other party should also get the intersection. An mPSI can be obtained by two instan-
tiations of an one-way PSI protocol [12]. However, this approach does not prevent a player
from unfairly aborting the protocol, thereby unable to maintain fairness. Most of the fair cryp-
tographic protocols achieve fairness in the optimistic way i.e., they use an off-line trusted third
party, called arbiter who involves in the protocol to recover the output for the honest party
only if a corrupted player prematurely aborts the protocol. However, in real life it is practically
infeasible to find such a fully trusted third party. Achieving optimistic fairness in PSI protocol
is not an easy task mainly due to – (a) lack of generic construction for optimistic fair protocols,
(b) use of fully trusted arbiter who gets access to some private information.

Consider the scenario, where the parties may wish to learn cardinality rather than the
contents of the intersection of their respective private sets. Private Set Intersection Cardinality
(PSI-CA) is an appropriate choice for this scenario. PSI-CA has emerged as an object of funda-
mental interest for many real life applications such as privately compare equal-size low-entropy
vectors, genomic operations, affiliation-hiding authentication, social networks, location shar-
ing, role-based association mining, etc.

Mutual private set intersection cardinality (mPSI-CA) is another flavor of PSI-CA, where
both the parties obtain the cardinality of the intersection. For instance, suppose two different
health organizations want to know the number of common villagers who are suffering from a
particular disease in a village. None of the organizations will disclose their list of suspects but
they may learn the number of common suspects by running an mPSI-CA.
Our Contribution: In this paper, we restrict ourselves to mPSI and its cardinality variant
mPSI-CA. ElGamal encryption [17], distributed ElGamal encryption [4] and Cramer-Shoup
cryptosystem [8] are important ingredient of our constructions. We provide a novel and unique
approach for unification of the above ingredients to realize practical mPSI and mPSI-CA pro-
tocols. The importance of this work is two fold:
• In the first phase we design a fair mPSI protocol with linear complexity over prime order
group. Our mPSI is secure against both the malicious parties under the DDH assumption.

Fairness is arguably hardest part to achieve for mPSI. We achieve fairness in the optimistic
way by using an off-line arbiter. While most of the prior works use fully trusted arbiter, our
mPSI uses only semi-trusted arbiter who does not have access to the private information of any
of the parties, but follows the protocol honestly.

We emphasize that our mPSI protocol is more efficient than the existing mPSI protocols
[7, 14, 15, 28, 29]. The mPSI constructions of [15], [7] and [29] attain quadratic computa-
tion complexities. The mPSI of [15] has the additional restriction that the party constructing
the polynomial should have more number of inputs than the other party, whereas our protocol
does not have any such restriction. The mPSI of [29] and [28] do not preserve fairness. To
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the best of our knowledge, [14, 15] are the most efficient fair mPSI protocols. More precisely,
[14] requires approximately 182(v + w) exponentiations and 119(v + w) group elements over
composite order group. In contrast, our mPSI requires only 55v + 82w + 27 exponentiations
and 22v+ 31w+ 20 group elements over prime order group. The security analysis in [14] is in
hybrid model.
• The second phase of this work extends our mPSI to mPSI-CA utilizing two random permu-
tations. Before our work, no fair mPSI-CA were known over prime order group with linear
complexity. To the best of our knowledge, there are only two mPSI-CA protocols [7, 29],
both of which are based on composite order group and attain quadratic computational overhead
which is linear for our case. The mPSI-CA of [7] can be made to achieve fairness using an
optimistic fair exchange scheme. However, this approach does not work in general cases where
inputs are not certified as it is hard to force the participants to use the same inputs in two differ-
ent instances. On the contrary, our mPSI-CA achieves fairness using only a semi-trusted arbiter.
Particularly, our mPSI-CA is the first fair mPSI-CA which is proven to be secure against mali-
cious adversaries with linear complexity.
Related Works: There has been a sequence of works on constructing PSI [7, 11–16, 19, 21–
23, 25–30]. These works employed several existing ideas and advances such as Oblivious Poly-
nomial Evaluations (OPE), Oblivious Pseudorandom Function (OPRF), Unpredictable function
(UPF), Additively Homomorphic Encryption (AHE), Garble Circuit (GC), Bloom filter (BF)
etc. While the PSI schemes [7, 11, 14–16, 21–23, 26, 27, 29] are secure in malicious model,
the constructions [12, 13, 19, 25, 28, 30] are secure only in semi-honest model. In malicious
model, adversaries can run any efficient strategy in order to carry out their attack and can devi-
ate at will from the prescribed protocol. On the other hand, in semi-honest model, adversaries
follow the prescribed protocol, but try to gain more information than allowed from the protocol
transcript.
PSI-CA has been studied extensively and a variety of solutions are provided with improved
efficiency and security level [1, 7, 10, 19, 24, 29].

Kissner and Song [29] presented the first mPSI protocol based on OPE that can support
more than two players in the communication system. However, it does not guarantee fairness.
Later on, another OPE-based mPSI was proposed by Camenisch and Zaverucha [7], where the
inputs must be certified by a trusted party. Computation overhead of the scheme is quadratic
and fairness can be achieved using an optimistic fair exchange scheme. However, it does not
work in general cases where inputs are not certified. Kim et al. [28] proposed an mPSI using
prime representation technique and threshold additive homomorphic encryption [9]. Fairness
is not considered in their security model. Dong et al. [15] sketched the first fair optimistic
mPSI protocol with quadratic computation overhead. Prior to our work, the only fair optimistic
mPSI protocol [14] with linear computation and communication overhead was over composite
order group. However, constructions for fair mPSI-CA with linear complexity have remained
elusive.

Kissner and Song [29] designed a mPSI-CA protocol which can support more than two
participants. The scheme does not preserve fairness. Camenisch and Zaverucha [7] constructed
an OPE-based fair mPSI-CA protocol for certified sets with quadratic communication and com-
putation complexity. Both the constructions [7, 29] are over composite order group. We briefly
summarize the results on mPSI and mPSI-CA from prior work in Table 1. While existential
results have been obtained for efficient mPSI and mPSI-CA constructions, achieving fairness
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Table 1 : Comparative summary of mutual PSI and mutual PSI-CA protocols

mPSI Adv. Security Comm. Comp. Fairness Optimistic Group
Protocol model assumption cost cost order
[29] Mal AHE O(w + v) O(wv) no no composite
[7] Mal Strong RSA O(w + v) O(wv) yes yes composite
[28] SH AHE O(w + v) O(w + v) no no composite
[15] Mal AHE,VE O(w + v) O(wv) yes yes prime
[14] Mal Dq-DHI, O(w + v) O(w + v) yes yes composite

DCR, DDH
Our Mal DDH O(w + v) O(w + v) yes yes prime
mPSI-CA Adv. Security Comm. Comp. Fairness Optimistic Group
Protocol model assumption cost cost order
[29] Mal AHE O(v) O(v2) no no composite
[7] Mal Strong RSA O(w + v) O(wv) yes yes composite
Our Mal DDH O(w + v) O(w + v) yes yes prime

AHE=Additively Homomorphic Encryption, VE=Verifiable Encryption, SH= Semi-honest,
Dq-DHI=Decisional q-Diffie-Hellman Inversion, DCR=Decisional Composite Residuosity,

DDH=Decisional Diffie-Hellman, Mal=Malicious, v, w are the sizes of input sets.

have turned out to be much harder.

1.1 Organization

The rest of the paper is organized as follows. In Section 2 we provide preliminaries. We
describe constructions and security proofs of our mPSI and mPSI-CA in Section 3 and 4 re-
spectively. The efficiency is given in Section 5. We conclude the paper in Section 6.

2 Preliminaries

Throughout the paper the notations κ, a ← A, x � X and {Xt}t∈N ≡c {Yt}t∈N are
used to represent “security parameter”, “a is output of the procedure A”, “variable x is cho-
sen uniformly at random from set X” and “the distribution ensemble {Xt}t∈N is computa-
tionally indistinguishable from the distribution ensemble {Yt}t∈N ” respectively. Informally,
{Xt}t∈N ≡c {Yt}t∈N means for all probabilistic polynomial time (PPT) distinguisher Z , there
exists a negligible function ε(t) such that |Probx←Xt [Z(x) = 1]−Probx←Yt [Z(x) = 1]| ≤ ε(t).

Definition 2.1. Negligible Function: A function ε : N→ R is said to be negligible function of
κ if for each constant c > 0, we have ε(κ) = o(κ−c) for all sufficiently large κ.

Definition 2.2. A functionality FΠ, computed by two parties A and B with inputs XA and XB

respectively by running a protocol Π, is defined as FΠ : XA ×XB → YA × YB, where YA and
YB are the outputs of A and B respectively after completion of the protocol Π between A and
B.

Definition 2.3. Decisional Diffie-Hellman (DDH) Assumption [3]: Let the algorithm gGen
generates a modulus n and a generator g of a multiplicative group G of order n on the input 1κ.
Suppose a, b, c � Zn. Then the DDH assumption states that no PPT algorithm A can distin-
guish between the two distributions 〈ga, gb, gab〉 and 〈ga, gb, gc〉 i.e., |Prob[A(g, ga, gb, gab) =
1]− Prob[A(g, ga, gb, gc) = 1]| is negligible function of κ.
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2.1 Security Model

Informally, the basic security requirements of any multi-party protocol are

(a) Correctness. At the end of the protocol an honest party should receive the correct output.

(b) Privacy. After completion of the protocol, no party should learn more than its prescribe
output.

(c) Fairness. A dishonest party should receive its output if and only if the honest party also
receives its output.

In this work, we focus on the malicious model where the adversary can behave arbitrarily. The
security is formalized by an ideal process that involves an incorruptible trusted third party, who
receives the inputs of the involved parties, computes the functionality on the receiving inputs
and sends outputs back to the parties. A protocol is said to be secure if any adversary in the
real protocol can be simulated by an adversary in the ideal world. The security framework of
mPSI is formally described below following [15].

The real world : The protocol has three participants – partyA, partyB and an arbiterAr. All
the participants have access to the public parameters of the protocol including the functionality
FmPSI : (X, Y ) → (X ∩ Y,X ∩ Y ), the security parameter κ, Ar’s public key pkAr and other
cryptographic parameters to be used. Party A has a private input X , party B has a private input
Y and Ar has an input ∈ {◦,⊥}. The adversary C can corrupt upto two parties in the protocol
and can behave arbitrarily. At the end of the execution, an honest party outputs whatever
prescribed in the protocol, a corrupted party outputs nothing, and an adversary outputs its view
which consists of the transcripts available to the adversary. The joint output of A,B,Ar, C in
the real world is denoted by REALmPSI,C(X, Y ).
The ideal process : In the ideal process, there is an incorruptible trusted party T who can
compute the ideal functionality FmPSI, and parties Ā, B̄ and Ār. Party Ā has input X , B̄ has
input Y and Ār has an input ∈ {◦,⊥}. The interaction is as follows:

(i) Ā sends X or⊥ to T , following it B̄ sends Y or⊥ to T ; and then Ār sends two messages
bA ∈ {◦,⊥} ∪XA and bB ∈ {◦,⊥} ∪ YB to T , where XA and YB are two arbitrary sets.
The inputs X and Y may be different from X and Y respectively if the party is malicious.

(ii) T sends private delayed output to Ā and B̄. T ’s reply to Ā(B̄) depends on Ā and B̄’s
messages and bA(bB). Response of T to Ā(B̄) is as follows:

(a) If bA(bB) = ◦, and T has received X 6=⊥ from Ā and Y 6=⊥ from B̄, then T sends
X ∩ Y to Ā(B̄).

(b) Else if bA(bB) = ◦, but T has received ⊥ from either Ā or B̄, then T sends ⊥ to
Ā(B̄).

(c) Else bA(bB) 6= ◦, then T sends bA(bB) to Ā(B̄).
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In the ideal process, if Ā, B̄ and Ār are honest then they behave as follows: Ā and B̄ send
their inputs to T and Ār sends bA = ◦ and bB = ◦. The ideal process adversary SIM gets the
inputs of the corrupted parties and may replace them and gets T ’s response to corrupted parties.
The joint output of Ā, B̄, Ār,SIM in the ideal process is denoted by IDEALFmPSI,SIM(X, Y ).
The security definition in terms of simulatability is

Definition 2.4. Simulatability: Let FmPSI : (X, Y )→ (X ∩Y,X ∩Y ) be the functionality for
mPSI protocol. Then the protocol mPSI is said to securely compute FmPSI in malicious model
if for every real world adversary C, there exists an ideal world adversary SIM such that the
joint distribution of all outputs of the ideal world is computationally indistinguishable from the
outputs in the real world, i.e., IDEALFmPSI,SIM(X, Y ) ≡c REALmPSI,C(X, Y ).

Note that the security framework for mPSI-CA is same as the security framework of mPSI
except that each X ∩ Y will be changed to |X ∩ Y |.

2.2 Homomorphic Encryption [5]

We describe below multiplicatively homomorphic encryption schemes the ElGamal encryption
[17] and the distributed ElGamal encryption [4] which are semantically secure provided DDH
problem is hard in underlying group.
ElGamal encryption: The ElGamal encryption [17] is a multiplicatively homomorphic en-
cryption EL = (EL.Setup, EL.KGen, EL.Enc, EL.Dec) which works as follows:

EL.Setup(1κ) – On input 1κ, a trusted third party outputs a public parameter par=(p, q, g),
where p, q are primes such that q divides p − 1 and g is a generator of the unique cyclic
subgroup G of Z∗p of order q.

EL.KGen(par) – User Ai chooses ai � Zq, computes yAi = gai , reveals epkAi = yAi as his
public key and keeps eskAi = ai secret to himself.

EL.Enc(m, epkAi , par, r) – Encryptor encrypts a messagem ∈ G using the public key epkAi =
yAi by computing ciphertext tuple eEepkAi (m) = (α, β) = (gr,myrAi), where r � Zq.

EL.Dec(eEepkAi (m), eskAi) – On receiving ciphertext tuple eEepkAi (m) = (α, β) = (gr,myrAi),
decryptor Ai decrypts it using the secret key eskAi = ai by computing β

(α)ai
= m(gai )r

(gr)ai
=

m.

Distributed ElGamal encryption [4]: The distributed ElGamal encryptionDEL = (DEL.Setup,
DEL.KGen,DEL.Enc,DEL.Dec) is executed between two parties A1 and A2 as follows:

DEL.Setup(1κ) – Same as the ElGamal encryption.

DEL.KGen(par) – Each participant Ai, i = 1, 2 selects ai � Zq, publishes yAi = gai along
with a zero-knowledge proof PoK

{
ai|yAi = gai

}
. Then, each of A1, A2 publishes the

public key for theDEL as pk = h = ga1+a2 , while the secret key forDEL is sk = a1+a2.
Note that sk is not known to anyone under the hardness of DLP in G.
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DEL.Enc(m, pk, par, r) – Encryptor encrypts a message m ∈ G using public key pk = h =
ga1+a2 and computes the ciphertext tuple dEpk(m) = (α, β) = (gr,mhr), where r � Zq.

DEL.Dec(dEpk(m), a1, a2) – Given a ciphertext dEpk(m) = (α, β) = (gr,mhr), each par-
ticipant Ai publishes αi = αai and proves the correctness of the proof PoK

{
ai|yAi =

gai ∧ αi = αai
}

to Aj , where i, j ∈ {1, 2} and i 6= j. If proofs are valid, then each of
A1, A2 recovers the message m as β

α1α2
= β

(α)(a1+a2) = mhr

gr(a1+a2) = mhr

hr
= m.

2.3 Verifiable Encryption [5]

We describe below a CCA2-secure verifiable encryption scheme VE= (VE .Setup,
VE .KGen,VE .Enc,VE .Dec) which is a variant of Cramer-Shoup cryptosystem [8] over prime
order group [15].

VE .Setup(1κ) – On input 1κ, a trusted third party outputs a public parameter gpar=(par, ĝ,H),
where par = (p, q, g), p, q are primes such that q divides p − 1 and g, ĝ are generators
of the unique cyclic subgroup G of Z∗p of order q, H : {0, 1}∗ → Zq is an one-way hash
function.

VE .KGen(par, ĝ) – User U chooses u1, u2, v1, v2, w1 � Zq, computes a = gu1 ĝu2 , b =
gv1 ĝv2 , c = gw1 , publishes vpkU = (a, b, c) as his public key and keeps vskU = (u1, u2, v1,
v2, w1) secret to himself.

VE .Enc(m, vpkU , gpar, z, L,H) – To encrypt a message m ∈ G using public key vpkU =
(a, b, c), encryptor picks z � Zq and sets e1 = gz, e2 = ĝz, e3 = czm, constructs
a label L ∈ {0, 1}∗ using information that are available to both encryptor and de-
cryptor, computes ρ = H(e1, e2, e3, L), sets e4 = azbzρ, and computes the ciphertext
vEvpkU (m) = (e1, e2, e3, e4).

VE .Dec(vEvpkU (m), vskU , L,H) – Decryptor U , on receiving ciphertext vEvpkU (m) = (e1, e2,
e3, e4), computes ρ = H(e1, e2, e3, L) and then verifies eu1

1 e
u2
2 (ev1

1 e
v2
2 )ρ = e4 using secret

key vskU = (u1, u2, v1, v2, w1). If the verification succeeds, then he recovers the message
m by computing e3/(e1)w1 = czm/gzw1 = gzw1m/gzw1 = m.

2.4 Zero-Knowledge Proof of Knowledge [2]

Zero-Knowledge proof [2] π is a two-party protocol, where prover (P ) wants to convince the
verifier (V ) about the truth of the claim that he knows some secret values, and the verifier
wants to check that the claim is true. The prover can prove to the verifier that the claim is true,
without conveying any additional information apart from the fact that the claim is indeed true.
A zero-knowledge proof protocol π for relation R should satisfy following three properties:

(a) Completeness – If P and V follow on input x and secret value w (witness) to P where
(x,w) ∈ R, then V always accepts.
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(b) Soundness – Given any input x and any pair of accepting transcripts (v, c, r), (v, c′, r′)
on x with c 6= c′ , there exists a polynomial-time algorithm B that outputs w such that
(x,w) ∈ R.

(c) Zero-knowledge – There exists a PPT algorithm A such that
{〈
P (x,w), V (x, c)

〉}
(x,w)∈R,c∈{0,1}∗ ≡ {A(x, c)}x∈LR,c∈{0,1}∗ ,

where LR is the language of relation R,A(x, c) denotes the output of A upon input x and
c, and

〈
P (x,w), V (x, c)

〉
denotes the output transcript of an execution between P and V ,

where P has input (x,w), V has input x, and V ’s random tape (determining its query)
equals c.

Zero-Knowledge Proof for Discrete Logarithm:
We follow the notations introduced by [6] for the various zero-knowledge proofs of knowl-
edge of discrete logarithms and proofs of validity of statements about discrete logarithms. We
describe below a general construction of interactive zero-knowledge proofs of knowledge, de-
noted by

PoK{(α1, ..., αl) | ∧mi=1 Xi = fi(α1, ..., αl)}, (2.1)

where the prover wants to prove the knowledge of (α1, ..., αl) to the verifier by sending the
commitments Xi = fi(α1, ..., αl), i = 1, ...,m such that extracting (α1, ..., αl) from X1, ..., Xm

is infeasible for anyone. For each i = 1, ...,m, fi is publicly computable linear function from
X l to Y , where X is additive set and Y is multiplicative set. The verification of the proof is
done by executing the following steps:

1. The prover chooses v1, ..., vl and sends the commitments X i = fi(v1, ..., vl), i = 1, ...,m
to the verifier.

2. The verifier sends a challenge c ∈ X to the prover.

3. For each j = 1, ..., l, prover sets rj = vj + cαj and sends the response (r1, ..., rl) to the
verifier.

4. The verifier checks whether the relations fi(r1, ..., rl) = X iX
c
i , i = 1, ...,m hold or not.

If all of them hold then the verifier accepts it, else rejects it.

Lemma 2.1. If EXP be the number of exponentiations and GE be the total number of group
elements for verification of the proof system represented by the equation 2.1, then we have: (a)
Exp = m+ 2Σm

i=1(number of exponentiations to compute Xi), (b) GE = m+ l + 1.

Zero-Knowledge Argument for Shuffle [20]:
We briefly discuss the zero-knowledge argument for shuffle of [20] which we use in our mPSI-
CA. Let p, q be two primes such that q divide p− 1, G be a subgroup of Z∗p of order q, g0(6= 1)
be an element of G, x � Zq be a private key and m0 = gx0 mod p be a public key used
for re-encryption in shuffling. The prover P chooses {A0i � Zq}vi=1 and a permutation matrix
(Aji)j,i=1,...,v of order v×v corresponding to a permutation φ ∈ Σv, where Σv denotes the set of
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all possible permutations over the set {1, ..., v}. P shuffles v ElGamal ciphertexts {(gi,mi)}vi=1

to {(g′i,m′i)}vi=1 as

(g′i,m
′
i) = (

v∏

u=0

gAuiu ,

v∏

u=0

mAui
u ) = (gA0i

0 gφ−1(i),m
A0i
0 mφ−1(i)) mod p. (2.2)

The zero-knowledge argument of [20] for the correctness of a shuffle is denoted by

π̂ = PoK
{

(φ ∈ Σv, A01, ...., A0v ∈ Zq)|{(g′i,m′i) = (gA0i
0 gφ−1(i),m

A0i
0 mφ−1(i))}vi=1

}
. (2.3)

The prover P wants to prove the knowledge of the permutation φ ∈ Σv and randomness {A0i ∈
Zq}vi=1 to the verifier V such that equation 2.2 holds for each i = 1, ..., v. Note that decryption
of the ciphertexts (g′i,m

′
i) and (gφ−1(i),mφ−1(i)) give same message. The prover P and the

verifier V executes the following steps for the verification of π̂:

Commitment: P chooses {Au0, A
′
u � Zq}vu=−4, {A−1i � Zq}vi=1 and computes the follow-

ings:

A−2i =
v∑

j=1

3A2
j0Aji mod q, i = 1, ..., v;

A−3i =
v∑

j=1

3Aj0Aji mod q, i = 1, ..., v;

A−4i =
v∑

j=1

2Aj0Aji mod q, i = 1, ..., v;

f ′k =
v∏

u=−4

fAuku mod p, k = 0, ..., v;

f̃ ′0 =
v∏

u=−4

fA
′
u

u mod p;

g′0 =
v∏

u=0

gAu0
u mod p;

m′0 =
v∏

u=0

mAu0
u mod p;

w =
v∑

j=1

A3
j0 − A−20 − A′−3 mod q;

ŵ =
v∑

j=1

A2
j0 − A−40 mod q.

Finally P sends g′0,m
′
0, f̃

′
0, {f ′k}vk=0, w, ŵ as a commitment to V .

Challenge: V chooses {ci � Zq}vi=1 and sends it as challenge to P.
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Response: P sets c0 = 1 mod q and for each u = −4, ..., v computes the following:

ru =
v∑

k=0

Aukck mod q;

r′u =
v∑

i=1

Auic
2
i + A′u mod q

P then sends the responses {ru, r′u}vu=−4 to V .

Verification: V accepts the shuffle if each of the following equations holds for an α � Zq:

v∏

u=−4

f ru+αr′u
u ≡ f ′0f̃

′α
0

v∏

i=1

f
′ci+αc2i
i mod p;

v∏

u=0

gruu ≡
v∏

u=0

g′cuu mod p;

v∏

u=0

mru
u ≡

v∏

u=0

m′cuu mod p;

v∑

i=1

(r3
i − c3

i ) ≡ r−2 + r′−3 + w mod q;

v∑

i=1

(r2
i − c2

i ) ≡ r−4 + ŵ mod q.

This proof system satisfies soundness property under the hardness of DDH assumption. Total
number of exponentiations and group elements for verification of the proof system are respec-
tively 15v + 22 and 4v + 16. For the distributed ElGamal encryption DEL presented in the
section 2.2, the zero-knowledge argument for shuffle will be of the form

PoK
{

(φ ∈ Σv, ρ1, ...., ρv ∈ Zq)|{C ′i = Cφ−1(i)DEL.Enc(1, pk, par, ρi)}vi=1

}
,

where ciphertexts {Ci = (gi,mi)}vi=1 and {C ′i = (gi′ ,mi′)}vi=1.
Note that using Fiat-Shamir method [18], the interactive proof systems represented by the equa-
tions 2.1 and 2.3 can be converted to non-interactive proof system.

3 The mPSI

3.1 Construction

Our mPSI protocol consists of

– a Setup algorithm to generate global parameter by a trusted third party, public/private key
generation of participants A, B and an arbiter Ar,

10
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– an mPSI Protocol executed between two parties A, B with their private input sets X , Y
respectively to compute X ∩ Y , and

– a Dispute Resolution Protocol involving an off-line arbiter Ar. The arbiter Ar takes part
into the Dispute Resolution protocol only when a corrupted player prematurely aborts
the protocol and resolve the dispute without knowing the private information of A and
B.

The Setup algorithm is represented by Figure 1.

Setup(1κ) – We use the ElGamal encryption EL, the distributed ElGamal encryption DEL
and the verifiable encryption VE over prime order group as described in the sections 2.3
and 2.4.

– A trusted third party generates global parameter

gpar = (par, ĝ,H)← VE .Setup(1κ), where par = (p, q, g).

– Each of A, B generates

(epkA = yA = ga1 , eskA = a1)← EL.KGen(par), where a1 � Zq,
(epkB = yB = ga2 , eskB = a2)← EL.KGen(par), where a2 � Zq.

They publishe the public keys epkA, epkB through the trusted third party who acts as
certifying authority in this case. Parties A, B keeps the respcetive secret keys eskA,
eskB to themselves.

– Arbiter Ar generates

(vpkAr = (a = gu1 ĝu2 , b = gv1 ĝv2 , c = gw1), vskAr = (u1, u2, v1, v2, w1))

← VE .KGen(par, ĝ), where u1, u2, v1, v2, w1 � Zq

and publishes the public key vpkAr through the trusted third party who works as
certifying authority in this case.

– Let pk = h = epkA · epkB = ga1+a2 and sk = a1 + a2. Then (pk, sk) pair serves as the
public-secret key pair forDEL. Note that the secret key sk = a1+a2 forDEL is not
known to anyone. However, the public key pk for DEL is publicly computable from
epkA and epkB.

1

Figure 1 : Setup algorithm of our mPSI

We use the multiplicatively homomorphic property of DEL i.e.,

(dEpk(m1))(dEpk(m2)) = dEpk(m1m2), (dEpk(m))k = dEpk(m
k), where k ∈ Zq.

11
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mPSI Protocol: The 5 round mPSI protocol (see Figure 2) is an interactive protocol between
parties A and B. In each round, an interactive proof is generated and sent by one party, which
is then verified by the other party using a similar technique presented in section 2.4. Party A
with private input set X = {x1, ..., xv} and B with private input set Y = {y1, ..., yw} engage in
mPSI protocol, where (gpar, epkA, epkB, pk = epkA · epkB) is their common input. To get the
intersection X ∩ Y , A and B proceed in 6 steps as follows:

Step 1. Party A
(i) chooses rx1 , ..., rxv � Zq and encrypts each member xi ∈ X with the public key
pk = h = ga1+a2 to get

dEpk(xi) = (cxi = grxi , dxi = xih
rxi )← DEL.Enc(xi, pk, par, rxi);

(ii) generates the proof

π1 = PoK
{

(rx1 , ..., rxv)| ∧vi=1 (cxi = grxi )
}

;

(iii) sends R1 = 〈{dEpk(xi)}vi=1, π1〉 to B.

Step 2. On receiving R1 = 〈{dEpk(xi)}vi=1, π1〉 from A, party B verifies the validity of the
proof π1. If verification fails, then B aborts. Otherwise, B does the following:
(i) chooses ry1 , ..., ryw � Zq and encrypts each yj ∈ Y with the public key
pk = h = ga1+a2 and generates

dEpk(yj) = (cyj = gryj , dyj = yjh
ryj )← DEL.Enc(yj, pk, par, ryj);

(ii) selects r, rĝ, α� Zq and computes ĝ = gα,

dEpk(ĝ
r) = (cĝ = grĝ , dĝ = ĝrhrĝ)← DEL.Enc(ĝr, pk, par, rĝ),

dEpk((yj)
r) = (ĉyj = (cyj)

r, d̂yj = (dyj)
r) for 1 ≤ j ≤ w,

dEpk((xi)
r) = (ĉxi = (cxi)

r, d̂xi = (dxi)
r) for 1 ≤ i ≤ v;

(iii) constructs proof

π2 = PoK
{

(ry1 , ..., ryw , r, rĝ)| ∧wj=1 (cyj = gryj )(ĉyj = (cyj)
r)(d̂yj = (dyj)

r)

∧vi=1 (ĉxi = (cxi)
r)(d̂xi = (dxi)

r) ∧ (cĝ = grĝ) ∧ (dĝ = ĝrhrĝ)}
}

;

(iv) sends R2 =
〈
{dEpk(yj), dEpk((yj)r)}wj=1, {dEpk((xi)r)}vi=1, dEpk(ĝ

r), ĝ, π2

〉
to A.

Step 3. PartyA, on receivingR2 =
〈
{dEpk(yj), dEpk((yj)r)}wj=1, {dEpk((xi)r)}vi=1, dEpk(ĝ

r), ĝ,

π2

〉
from B, checks the validity of the proof π2. Party A aborts if the verification fails,

else dose the following:
(i) selects r′, rḡ, β � Zq and computes ḡ = gβ

dEpk(ḡ
r′) = (cḡ = grḡ , dḡ = ḡr

′
hrḡ)← DEL.Enc(ḡr′ , pk, par, rḡ),

dEpk((xi)
rr′) = (c̄xi = (ĉxi)

r′ = (cxi)
rr′ , d̄xi = (d̂xi)

r′ = (dxi)
rr′), 1 ≤ i ≤ v,

dEpk((yj)
rr′) = (c̄yj = (ĉyj)

r′ = (cyj)
rr′ , d̄yj = (d̂yj)

r′ = (dyj)
rr′), 1 ≤ j ≤ w;

12
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(ii) chooses α1, ..., αv � Zq and for each i = 1, ..., v, computes (Cxi)
a1 = (c̄xicḡcĝ)

a1

with his secret key eskA = a1 and encrypts (Cxi)
a1 usingB’s public key epkB to generate

eEepkB((Cxi)
a1) = (uxi = gαi , ūxi = (Cxi)

a1(yB)αi)

← EL.Enc((Cxi)a1 , epkB = yB, par, αi);

(iii) generates a label L ∈ {0, 1}∗ using a session ID which has been agreed by all parities
beforehand and the hash of past communication;
(iv) chooses r1, ..., rw, z1, ..., zw � Zq, computes {ūyj = (Cyj)

a1grj = (c̄yjcḡcĝ)
a1grj}wj=1

and for each j = 1, ..., w, generates

vEvpkAr(g
rj) = (t1j = gzj , t2j = ĝzj , t3j = czjgrj , t4j = azjbzjρj)

← VE .Enc(grj , vpkAr, gpar, zj, L,H),

where vpkAr = (a, b, c), ρj = H(t1j, t2j, t3j, L);

(v) constructs proof

π3 = PoK
{

(a1, r
′, r1, ..., rw, z1, ..., zw, α1, ..., αv, rḡ)|(yA = ga1)

∧wj=1 (c̄yj = (ĉyj)
r′)(d̄yj = (d̂yj)

r′)(ūyj = (Cyj)
a1 · grj) ∧ (dḡ = ḡrhrḡ)

∧wj=1 (t1j = gzj)(t2j = ĝzj)(t3j = czjgrj)(t4j = azjbzjρj) ∧ (cḡ = grḡ)

∧vi=1 (c̄xi = (ĉxi)
r′)(d̄xi = (d̂xi)

r′)(uxi = gαi)(ūxi = (Cxi)
a1(yB)αi)

}
;

(vi) sendsR3 =
〈
{dEpk((xi)rr′), eEepkB((Cxi)

a1)}vi=1, {dEpk((yj)rr
′
), vEvpkAr(g

rj), ūyj}wj=1,

dEpk(ḡ
r′), ḡ, π3

〉
to B.

Step 4. On receiving R3 =
〈
{dEpk((xi)rr′), eEepkB((Cxi)

a1)}vi=1, {dEpk((yj)rr
′
), vEvpkAr(g

rj),

ūyj}wj=1, dEpk(ḡ
r′), ḡ, π3

〉
, party B verifies the validity of the proof π3. If the verification

fails, then B aborts. Otherwise, B proceeds as follows:
(i) extracts {c̄xi}vi=1, {c̄yj}wj=1, cḡ from {dEpk((xi)rr′)}vi=1, {dEpk((yj)rr

′
)}wj=1, dEpk(ḡ

r′)
respectively in R3 and computes {sxi = (Cxi)

a2 = (c̄xicḡcĝ)
a2}vi=1, {syj = (Cyj)

a2 =
(c̄yjcḡcĝ)

a2}wj=1 using his secret key eskB = a2 and cĝ computed in Step 2;
(ii) constructs the proof

π4 = PoK
{

(a2)|(yB = ga2) ∧vi=1 (sxi = (Cxi)
a2) ∧wj=1 (syj = (Cyj)

a2)
}

;

(iii) sends R4 =
〈
{sxi}vi=1, {syj}wj=1, π4

〉
to A.

Step 5. Party A, on receiving R4 =
〈
{sxi = (Cxi)

a2}vi=1, {syj = (Cyj)
a2}wj=1, π4

〉
from B,

checks the validity of the proof π4. Party A aborts if the verification does not succeed,
else extracts dĝ from dEpk(ĝ

r) in R2, does the following using his secret key eskA = a1

and {Cxi , d̄xi}vi=1, {Cyj , d̄yj}wj=1, dḡ computed in Step 3:
(i) computes

d̄xidĝdḡ
(Cxi)

a1sxi
=

d̄xidĝdḡ
(c̄xicĝcḡ)

(a1+a2)
=

(dxi)
rr′dĝdḡ

((cxi)
rr′cĝcḡ)a1+a2

13
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Common input: gpar, epkA, epkB, pk = epkA · epkB, vpkAr
A’s private input: B’s private input:
X = {x1, ..., xv}, eskA = a1 Y = {y1, ..., yw}, eskB = a2

rx1 , ..., rxv � Zq
for 1 ≤ i ≤ v,
dEpk(xi) = (cxi = grxi , dxi = xih

rxi )
R1−−−→

← DEL.Enc(xi, pk, par, rxi) ry1 , ..., ryw , r, rĝ, α� Zq, ĝ = gα,
R1 = 〈{dEpk(xi)}vi=1, π1〉 dEpk(ĝ

r) = (cĝ = grĝ , dĝ = ĝrhrĝ)
← DEL.Enc(ĝr, pk, par, rĝ)

for 1 ≤ j ≤ w,
dEpk(yj) = (cyj = gryj , dyj = yjh

ryj )
← DEL.Enc(yj, pk, par, ryj),

dEpk((yj)
r) = (ĉyj = (cyj)

r, d̂yj = (dyj)
r)

R2←−−− for 1 ≤ i ≤ v,

α1, ..., αv, r1, ..., rw, z1, ..., zw, r
′, rḡ, β � Zq dEpk((xi)

r) = (ĉxi = (cxi)
r, d̂xi = (dxi)

r)
ḡ = gβ and dEpk(ḡ

r′) = (cḡ = grḡ , dḡ = ḡr
′
hrḡ) R2 =

〈
{dEpk(yj), dEpk((yj)r)}wj=1,

← DEL.Enc(ḡr′ , pk, par, rḡ), {dEpk((xi)r)}vi=1, dEpk(ĝ
r), ĝ, π2

〉

for 1 ≤ i ≤ v,

dEpk((xi)
rr′) = (c̄xi = (ĉxi)

r′ , d̄xi = (d̂xi)
r′),

eEepkB((Cxi)
a1 = (c̄xicḡcĝ)

a1)
← EL.Enc((Cxi)a1 , epkB, par, αi)

for 1 ≤ j ≤ w,

dEpk((yj)
rr′) = (c̄yj = (ĉyj)

r′ , d̄yj = (d̂yj)
r′),

ūyj = (Cyj)
a1grj = (c̄yjcḡcĝ)

a1grj ,
vEvpkAr(g

rj)← VE .Enc(grj , vpkAr, gpar, zj, L,H)
R3−−−→

R3 =
〈
{dEpk((xi)rr′), eEepkB((Cxi)

a1)}vi=1, ḡ, for 1 ≤ i ≤ v, Cxi = c̄xicḡcĝ and
{dEpk((yj)rr′), vEvpkAr(grj), ūyj}wj=1, dEpk(ḡ

r′), π3

〉
sxi = (Cxi)

a2

for 1 ≤ j ≤ w,Cyj = c̄yjcḡcĝ and
syj = (Cyj)

a2

R4←−−− R4 =
〈
{sxi}vi=1, {syj}wj=1, π4

〉

for 1 ≤ i ≤ v, d̄xidḡdĝ
(Cxi )

a1sxi
= ḡr

′
ĝr(xi)

rr′

for 1 ≤ j ≤ w,
d̄yj dḡdĝ

(Cyj )a1syj
= ḡr

′
ĝr(yj)

rr′

X ∩ Y = {xi ∈ X|ḡr′ ĝr(xi)rr′ R5−−−→
∈ {ḡr′ ĝr(y1)rr

′
, ..., ḡr

′
ĝr(yw)rr

′}} for 1 ≤ i ≤ v,
R5 =

〈
{(grj)}wj=1, π5

〉
(Cxi)

a1 ← EL.Dec(eEepkB((Cxi)
a1), eskB)

d̄xidḡdĝ
(Cxi )

a1sxi
= ḡr

′
ĝr(xi)

rr′

for 1 ≤ j ≤ w,
ūyj
grj

= (Cyj)
a1 ,

d̄yj dḡdĝ

(Cyj )a1syj
= ḡr

′
ĝr(yj)

rr′

X ∩ Y = {yj ∈ Y |ḡr′ ĝr(yj)rr′
∈ {ḡr′ ĝr(x1)rr

′
, ..., ḡr

′
ĝr(xv)

rr′}}

1Figure 2 : Communication flow of our mPSI
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=
ḡr
′
ĝr(xi)

rr′g(rxirr
′+rḡ+rĝ)(a1+a2)

g(rxirr
′+rḡ+rĝ)(a1+a2)

= ḡr
′
ĝr(xi)

rr′ , 1 ≤ i ≤ v,

and
d̄yjdĝdḡ

(Cyj)
a1syj

=
d̄yjdĝdḡ

(c̄yjcĝcḡ)
(a1+a2)

=
(dyj)

rr′dĝdḡ

((cyj)
rr′cĝcḡ)a1+a2

=
ḡr
′
ĝr(yj)

rr′g(ryj rr
′+rḡ+rĝ)(a1+a2)

g(ryj rr
′+rḡ+rĝ)(a1+a2)

= ḡr
′
ĝr(yj)

rr′ , 1 ≤ j ≤ w;

(ii) sets X ∩ Y = {xi ∈ X|ḡr′ ĝr(xi)rr′ ∈ {ḡr′ ĝr(y1)rr
′
, ..., ḡr

′
ĝr(yw)rr

′}};
(iii) constructs the proof

π5 = PoK{(z1, ..., zw)| ∧wj=1 (t1j = gzj)(t2j = ĝzj)(t3j = czjgrj)(t4j = azjbzjρj)};

(iv) sends R5 =
〈
{(grj)}wj=1, π5

〉
to B.

Step 6. On receiving R5 =
〈
{(grj)}wj=1, π5

〉
from A, party B verifies the validity of the proof

π5. If the verification of the proof succeeds, then B
(i) for each i = 1, ..., v, decrypts eEepkB((Cxi)

a1) received in Step 3 using his secret
key eskB = a2 to get (Cxi)

a1 ← EL.Dec(eEepkB((Cxi)
a1), eskB), extracts d̄xi , dḡ from

dEpk((xi)
rr′), dEpk(ḡ

r′) respectively in R3, uses sxi computed in Step 4 and dĝ computed
in Step 2 to generate

d̄xidĝdḡ
(Cxi)

a1sxi
=

d̄xidĝdḡ
(c̄xicĝcḡ)

(a1+a2)
=

(dxi)
rr′dĝdḡ

((cxi)
rr′cĝcḡ)a1+a2

=
ḡr
′
ĝr(xi)

rr′g(rxirr
′+rḡ+rĝ)(a1+a2)

g(rxirr
′+rḡ+rĝ)(a1+a2)

= ḡr
′
ĝr(xi)

rr′ ;

(ii) for each j = 1, ..., w, extracts d̄yj , dḡ from dEpk((yj)
rr′), dEpk(ḡ

r′) from inR3 respec-
tively, uses ūyj obtained from R3, syj computed in Step 4 and dĝ computed in Step 2 to
generate

ūyj
grj

=
(Cyj)

a1 · grj
grj

= (Cyj)
a1 ,

and
d̄yjdĝdḡ

(Cyj)
a1syj

=
d̄yjdĝdḡ

(c̄yjcĝcḡ)
(a1+a2)

=
(dyj)

rr′dĝdḡ

((cyj)
rr′cĝcḡ)a1+a2

=
ḡr
′
ĝr(yj)

rr′g(ryj rr
′+rḡ+rĝ)(a1+a2)

g(ryj rr
′+rḡ+rĝ)(a1+a2)

= ḡr
′
ĝr(yj)

rr′ ;

(iii) sets X ∩ Y = {yj ∈ Y |ḡr′ ĝr(yj)rr′ ∈ {ḡr′ ĝr(x1)rr
′
, ..., ḡr

′
ĝr(xv)

rr′}}.
If the verification of π5 does not succeed or B does not get R5 =

〈
{(grj)}wj=1, π5

〉
from

A i.e., if A prematurely aborts, then B sends a dispute resolution request to the arbiter
Ar.

We now describe the Dispute Resolution Protocol in Figure 3.

15



Efficient and Fair mPSI and mPSI-CA

The arbiter Ar, on receiving a dispute resolution request from B, interacts with A and B in
the following way:

Step 1. Party B sends all the messages sent and received in Step 1-3 of the mPSI protocol
to the arbiter Ar. On receiving the messages, Ar verifies the consistency between
messages and the label L. If the verification fails or if the transcript ends before
the end of Step 3 of the mPSI protocol then Ar aborts so that neither party gets any
advantage. Otherwise, Ar continue with the following steps.

Step 2. Similar to Step 4 of the mPSI protocol, B sends R4 =
〈
{sxi = (Cxi)

a2}vi=1,
{syj = (Cyj)

a2}wj=1, π4
〉

to Ar, where π4 is same the as π4 of the mPSI protocol.

Step 3. The arbiter Ar, on receiving R4 =
〈
{sxi = (Cxi)

a2}vi=1, {syj = (Cyj)
a2}wj=1

, π4
〉

from B, verifies the validity of the proof π4. If the verification does not succeed
then Ar aborts, there by neither party gets any advantage. Otherwise, Ar decrypts
{vEvpkAr(grj)}wj=1 and sends {grj}wj=1 to B so that B can compute X ∩ Y using the
similar technique as described in Step 6 of our mPSI protocol. The arbiter Ar also
forwards

〈
{sxi}vi=1, {syj}wj=1

〉
toAwho in turns can computeX∩Y using the similar

technique as explained in Step 5 of our mPSI protocol.

1

Figure 3 : Dispute Resolution Protocol of our mPSI

Remark 3.1. In Step 3 of our mPSI protocol, A encrypts each grj to get vEpkAr(g
rj) for 1 ≤

j ≤ w, using the public key pkAr of Ar and a label L ∈ {0, 1}∗. Note that the label L used
by Ar should be same as the label L used by A. Party A generates label L using the following
two inputs –
(i) a session ID which has been agreed by all parities beforehand,
(ii) the hash of past communication.
As Ar knows the session ID, after receiving all the messages from B in the Step 1 of dispute
resolution protocol Ar can compute the label L. Due to the session ID, Ar can verify the
identities of A, B and that the protocol execution is within a certain time window. As only B
can raise a dispute resolution request to Ar, party A uses the hash of past communication as
an input of L to ensure that B cannot get any advantage by modifying messages.

Remark 3.2. Note that sometimes the construction may reveal more information than claimed.
Let us consider the simplest case where all parties faithfully follow the protocol. Party A holds
set {1, 2, 4, 8} while party B holds set {16, 32, 64, 128}. Ideally any secure protocol should
reveal ⊥ to both parties since the intersection is empty. But at the end of the construction, both
parties actually learn {ḡr′ ĝrxrr′i }vi=1 and {ḡr′ ĝryrr′j }wj=1. By dividing neighboring elements in
these two sets respectively, the random mask ḡr

′
ĝr cancels out, leaving only 6 elements: 2rr

′
.

As a result, both party knows that two sets are both geometry sequence with the same scaling
factor 2. This kind of attack (or similar attacks) can be prevented by adopting the following
steps:

1. In Step 1 of mPSI protocol, A has to give a random permutation φ to his private set
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X = {x1, ..., xv} before encrypting the elements of X . Due to this, again in Step 5
of mPSI protocol or in Step 3 of dispute resolution protocol, A has to give the inverse
permutation φ−1 to the set {ḡr′ ĝrxrr′φ(i)}vi=1 to get {ḡr′ ĝrxrr′i }vi=1 just before computing
X ∩ Y .

2. In Step 2 of mPSI protocol, B has to give a random permutation ψ to his private set
Y = {y1, ..., yw} before encrypting the elements of Y . Due to this, again in Step 6
of mPSI protocol or in Step 3 of dispute resolution protocol, B has to give the inverse
permutation ψ−1 to the set {ḡr′ ĝryrr′ψ(j)}wj=1 to get {ḡr′ ĝryrr′j }wj=1 just before computing
X ∩ Y .

3.2 Security

We consider two cases: (case I) when the adversary corrupts two parties among the three parties
and (case II) when the adversary corrupts only one party among the three parties.

Theorem 3.1. If the encryption schemes EL, DEL and VE are semantically secure, the asso-
ciated proof protocols are zero knowledge proof, then the protocol mPSI presented in section 3
is a secure computation protocol for the functionality FmPSI : (X, Y )→ (X ∩Y,X ∩Y ) in the
security model described in section 2.1.

Proof. Let us consider C as the real world adversary that breaks the security of our mPSI pro-
tocol among three parties A with private input set X , B with private input set Y and Ar. Also
let there be an incorruptible trusted party T , parties Ā, B̄, Ār and simulator SIM in the ideal
process. In real world, the global parameter gpar = (par, ĝ,H), where par = (p, q, g) is gen-
erated by a trusted party who certifies the public key pkA, pkB, pkAr of A,B,Ar respectively.
In contrast, in ideal process simulator SIM does those things. We denote the joint output of
A,B,Ar, C in the real world as REALmPSI,C(X, Y ) and the joint output of Ā, B̄, Ār,SIM in
the ideal process as IDEALFmPSI,SIM(X, Y ).
• Case I ( When the adversary C corrupts two parties ).

1. A and Ar are corrupted. Let Z be a distinguisher who controls C, feeds the input
of the honest party B, and also sees the output of B. Now we will present a series of
games Game0, ..., Game4 to prove that Z’s view in the real world (C’s view +B’s out-
put) and its view in the ideal world (C’s view + B̄’s output) are indistinguishable. For
each i = 0, ..., 3, Gamei+1 modifies Gamei slightly such that Z’s views in Gamei and
Gamei+1 remain indistinguishable. The probability that Z distinguishes the view of
Gamei from the view of real protocol, is denoted by Pr[Gamei] and Si is considered as
simulator in Gamei.
Game0: This game is same as real world protocol, where the simulator S0 has full knowl-
edge of B and interacts with C. Hence,

Prob[REALmPSI,C(X, Y )] = Prob[Game0].

Game1: Game1 is same as Game0 except that if the proof π1 is valid then the simulator
S1 runs the extractor algorithm for π1 with C to extract the exponents {rx1 , ..., rxv}. The
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simulator S1 then extracts xi =
dxi
hrxi

by extracting dxi = xih
rxi from dEpk(xi) in R1,

h from pk = epkA · epkB and using the exponent rxi for 1 ≤ i ≤ v. In this way S1

extracts the private input set X = {x1, ..., xv} of A. Z’s views in Game0 and Game1 are
indistinguishable because of simulation soundness of the proof π1. Therefore,

|Prob[Game1]− Prob[Game0]| ≤ ε1(κ), where ε1(κ) is a negligible function.

Game2: Note that in this game the simulator S2 has the knowledge of extracted set
X = {x1, ..., xv}, input set Y = {y1, ..., yw} and secret key eskB = a2 of B. Game2 is
same as Game1 except that

(a) if the verification of the proof π5 succeeds then S3 outputs X ∩ Y as the final output
of B making use of the extracted X ,

(b) if the verification of the proof π5 does not succeed or C aborts prematurely in mPSI
protocol then the following cases arise:
� if C sends {g1, ..., gw} ⊂ G to S3 in dispute resolution protocol then S3 does the
following:
– for each i = 1, ..., v, decrypts eEepkB((Cxi)

a1) using eskB = a2 to get (Cxi)
a1 ←

EL.Dec(eEepkB((Cxi)
a1), eskB), extracts d̄xi , c̄xi from dEpk((xi)

rr′) and cḡ, dḡ from
dEpk(ḡ

r′) in R3 and uses cĝ, dĝ computed in Step 2 to compute d̄xidḡdĝ
(Cxi )

a1 (c̄xicḡcĝ)a2
=

ḡr
′
ĝrxrr

′
i ;

– for each j = 1, ..., w,, computes
d̄yj dḡdĝ

ūyj
gj

(c̄yj cḡcĝ)a2
= ŷj by extracting d̄yj , c̄yj from

dEpk((yj)
rr′) and cḡ, dḡ from dEpk(ḡ

r′) in R3, using ūyj obtained from R3 and cĝ, dĝ
computed in Step 2;
– outputs {yj ∈ Y |ŷj ∈ {ḡr′ ĝrxrr′1 , ..., ḡr

′
ĝrxrr

′
v }} as the final output of B.

� if C aborts in dispute resolution protocol then S3 outputs ⊥ as the final output of
B.

By the simulation soundness property of the proof π5, Z’s views in Game2 and Game3

are indistinguishable. Hence,

|Prob[Game2]− Prob[Game1]| ≤ ε2(κ), where ε2(κ) is a negligible function.

Game3: Game3 is same as Game2 except that S3 does the following after extracting
X = {x1, ..., xv}:

(a) computes X ∩ Y ,

(b) constructs a set Y = {ȳ1, ..., ȳw} by including all the elements of X ∩ Y together
with w − |X ∩ Y | many random elements chosen from G,

(c) chooses r, α � Zq,
(d) computes ĝ = gα and

〈
{dEpk(ȳj), dEpk((ȳj)r)}wj=1, {dEpk((xi)r)}vi=1, dEpk(ĝ

r)
〉
,

(e) sends the tuple
〈
{dEpk(ȳj), dEpk((ȳj)r)}wj=1, {(dEpk((xi)r)}vi=1, dEpk(ĝ

r), ĝ
〉

as〈
{dEpk(yj), dEpk((yj)r)}wj=1, {dEpk((xi)r)}vi=1, dEpk(ĝ

r), ĝ
〉

to C and simulates π2.
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As the encryption schemeDEL is semantically secure the tuple
〈
{dEpk(yj), dEpk((yj)r)}wj=1,

{dEpk((xi)r)}vi=1, dEpk(ĝ
r), ĝ

〉
is identically distributed inGame3 andGame2. The zero-

knowledge (simulatability) of π2 and indistinguishability of the tuple
〈
{dEpk(yj), dEpk((yj)r)}wj=1,

{dEpk((xi)r)}vi=1, dEpk(ĝ
r), ĝ

〉
make the views of Z’s in Game2 and Game3 indistin-

guishable. Therefore, there exists a negligible function ε3(κ) such that

|Prob[Game3]− Prob[Game2]| ≤ ε3(κ).

Game4: This game is same as Game3 except that during the setup phase S4 chooses
a2 � Zq and in Step 4 simulates π4, instead of proving it. By the zero-knowledge
(simulatability) of π4 the views of Z’s in Game3 and Game4 are indistinguishable. Con-
sequently,

|Prob[Game4]− Prob[Game3]| ≤ ε4(κ), where ε4(κ) is a negligible function.

Let us construct the ideal world adversary SIM that uses C as subroutine, simulates the
honest party B and controls Ā, Ār and incorporates all steps from Game4.

(i) First SIM plays the role of trusted party by generating the global parameter gpar =
(par, ĝ,H), where par = (p, q, g). SIM then plays the role of honest party B by
choosing ā2 � Zq and publishing gā2 as the public key epkB = yB. SIM also
acts as certifying authority to obtain respective public keys epkA, vpkAr of A,Ar.
SIM then invokes C.

(ii) On receiving R1 =
〈
{dEpk(xi)}vi=1, π1

〉
from C, SIM verifies the proof π1. If the

verification does not succeed, then SIM instructs Ā to send ⊥ to T and termi-
nates the execution. Otherwise, SIM runs the extractor algorithm for π1 with
C to extract {rx1 , ..., rxv}. Utilizing {rx1 , ..., rxv}, SIM extracts the input set
X = {x1, ..., xv} by extracting {dxi = xih

rxi}vi=1 from {dEpk(xi)}vi=1 in R1 and
h from pk = epkA · epkB. SIM then instructs Ā to send X to T , Ār to send
bA = ◦ to T and receives X ∩ Y from T .

(iii) SIM constructs a set Y = {ȳ1, ..., ȳw} by including all the elements of X ∩ Y to-
gether withw−|X∩Y |many random elements chosen from G. SIM then chooses
r, α � Zq, computes ĝ = gα and

〈
{dEpk(ȳj), dEpk((ȳj)r)}wj=1, {dEpk((xi)r)}vi=1,

dEpk(ĝ
r)
〉
, sends the tuple

〈
{dEpk(ȳj), dEpk((ȳj)r)}wj=1, {(dEpk((xi)r)}vi=1, dEpk(ĝ

r),

ĝ
〉

as
〈
{dEpk(yj), dEpk((yj)r)}wj=1, {dEpk((xi)r)}vi=1, dEpk(ĝ

r), ĝ
〉

to C and simu-
lates π2.

(iv) On receivingR3 =
〈
{dEpk((xi)rr′), eEepkB((Cxi)

a1)}vi=1, {dEpk((ȳj)rr
′
), vEvpkAr(g

rj),

ūȳj}wj=1, dEpk(ḡ
r′), ḡ, π3

〉
from C, SIM verifies the validity of the proof π3. If the

verification fails then SIM instructs Ā to send ⊥ to T and terminates the execu-
tion. Otherwise, SIM computes {sxi = (Cxi)

ā2}vi=1, {syj = (Cȳj)
ā2}wj=1, sends it

to C and simulates the proof π4. SIM then executes following steps according to
C’s reply.

(v) If C instructs A to send {g1, ..., gw} ⊂ G, then SIM verifies the validity of the
proof π5. If the verification succeeds then SIM instructs Ār to send bB = ◦. If
verification fails or C instructs A to abort in mPSI protocol then the following cases
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arise:
� if C instructs Ar to send {g1, ..., gw} ⊂ G in dispute resolution protocol, then
SIM does the following:
– for each i = 1, ..., v, decrypts eEepkB((Cxi)

a1) using eskB = a2 to get (Cxi)
a1 ←

EL.Dec(eEepkB((Cxi)
a1), eskB), extracts d̄xi , c̄xi from dEpk((xi)

rr′) and cḡ, dḡ from
dEpk(ḡ

r′) in R3 and uses cĝ, dĝ computed in Step 2 to compute d̄xidḡdĝ
(Cxi )

a1 (c̄xicḡcĝ)ā2
=

ḡr
′
ĝrxrr

′
i ;

– for each j = 1, ..., w,, computes
d̄ȳj dḡdĝ

ūȳj
gj

(c̄ȳj cḡcĝ)ā2
= ỹj by extracting d̄ȳj , c̄ȳj from

dEpk((ȳj)
rr′) and cḡ, dḡ from dEpk(ḡ

r′) inR3, using ūȳj obtained fromR3 and cĝ, dĝ
computed in Step 2;
– instructs Ār to send bB = {ȳj ∈ Y |ỹj ∈ {ḡr′ ĝrxrr′1 , ..., ḡr

′
ĝrxrr

′
v }} to T , outputs

whatever C outputs and terminates.
� if C instructsAr to abort in dispute resolution protocol SIM instructs Ār to send
bB =⊥ to T . Then SIM outputs whatever C outputs and terminates.

(vi) If C instructs both A and Ar to abort, then SIM instructs Ār to send bB =⊥ to T ,
outputs whatever C outputs and terminates.

Thus the ideal world adversary SIM provides C the same simulation as the simulator
S4 in Game4. Hence Prob[IDEALFmPSI,SIM(X, Y )] = Prob[Game4] and

|Prob[IDEALFmPSI,SIM(X, Y )]− Prob[REALmPSI,C(X, Y )]|
= |Prob[Game4]− Prob[Game0]| ≤ Σ4

i=1|Prob[Gamei]− Prob[Gamei−1]|
≤ Σ4

i=1εi(κ) = ρ(κ), where ρ(κ) is a negligible function.

Therefore we have

IDEALFmPSI,SIM(X, Y ) ≡c REALmPSI,C(X, Y ).

2. B and Ar are corrupted. Let us consider Z as a distinguisher who controls C, feeds
the input of the honest party A, and also sees the output of B. Now we argue that Z’s
view in the real world (C’s view +A’s output) and its view in the ideal world (C’s view +
Ā’s output) are indistinguishable. To prove that a series of games Game0, ..., Game5 is
presented, where each Gamei+1 modifies Gamei slightly such that Z’s views in Gamei
and Gamei+1 remain indistinguishable, for i = 0, .., 4. Let us denote the probability that
Z distinguishes the view of Gamei from the view of real protocol by Pr[Gamei]. We
consider Si as simulator in Gamei.
Game0: This game is same as real world protocol, where the simulator S0 has full knowl-
edge of A and interacts with C. Hence,

Prob[REALmPSI,C(X, Y )] = Prob[Game0].

Game1: This game is same as Game0 except that S1 simulates π1, instead of proving
it. Z’s views in Game0 and Game1 are indistinguishable because of zero-knowledge
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(simulatability) of the proof π1. Therefore, there exists a negligible function ε1(κ) such
that

|Prob[Game1]− Prob[Game0]| ≤ ε1(κ).

Game2: Game1 is same asGame2 except that if the verification of the proof π2 succeeds
then the simulator S2 runs the extractor algorithm for π2 with C to extract the exponents
r and {ry1 , ..., ryw}. The simulator S2 then extracts yj =

dyj

h
ryj

by extracting dyj = yjh
ryj

from dEpk(yj) inR2, h from pk = epkA ·epkB and using the exponent ryj for 1 ≤ j ≤ w.
In this way S2 extracts the private input set Y = {y1, ..., yw} of B. The simulation
soundness of the proof π2 makes Z’s views in Game1 and Game2 indistinguishable.
Consequently,

|Prob[Game2]− Prob[Game1]| ≤ ε2(κ), where ε2(κ) is a negligible function.

Game3: Note that in this game the simulator S3 has the knowledge of input set X =
{x1, ..., xv}, secret key eskA = a1 of A and extracted set Y = {y1, ..., yw} of B. This
game is same as Game2 except that

(a) if the verification of the proof π4 succeeds then S3 outputs X ∩ Y as the final output
of A making use of the extracted set Y ,

(b) if the verification of the proof π4 does not succeed or C aborts in mPSI protocol then
the following cases arise:
� if C sends

〈
{sxi}vi=1, {syj}wj=1

〉
to S3 in dispute resolution protocol then S3 does

the following:
– for each i = 1, ..., v, computes d̄xidḡdĝ

(Cxi )
a1sxi

= x̂i using eskA = a1;

– for each j = 1, ..., w, computes
d̄yj dḡdĝ

(Cyj )a1syj
= ŷj using eskA = a1;

– outputs {xi ∈ X|x̂i ∈ {ŷ1, ..., ŷw}} as the final output of A.
� if C aborts in dispute resolution protocol then S3 outputs⊥ as the final output of A.

By the simulation soundness property of the proof π4, Z’s views in Game2 and Game3

are indistinguishable. Therefore, there exists a negligible function ε3(κ) such that

|Prob[Game3]− Prob[Game2]| ≤ ε3(κ).

Game4: Game4 is same as Game3 except that S4 does the following after extracting
Y = {y1, ...yw}, r:

(a) computes X ∩ Y ,

(b) constructs a set X = {x̄1, ..., x̄v} by including all the elements of X ∩ Y together
with v − |X ∩ Y | many random elements chosen from G.

(c) chooses r′, r1, ..., rw, β � Zq,
(d) computes ḡ = gβ,

〈
{dEpk((x̄i)rr′) = (c̄x̄i , d̄x̄i)}vi=1, {dEpk((yj)rr′) = (c̄yj , d̄yj)}wj=1,

dEpk((ḡ)r
′
) = (cḡ, dḡ), {eEepkB((Cx̄i)

a1)}vi=1

〉
, where Cx̄i = c̄x̄icḡcĝ,

(e) computes
〈
{ūyj = (Cyj)

a1 · grj}wj=1, {vEvpkAr(grj)}wj=1

〉
, where Cyj = c̄yjcḡcĝ,
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(f) sends
〈
{dEpk((x̄i)rr′), eEepkB((Cx̄i)

a1)}vi=1, {dEpk((yj)rr
′
), vEvpkAr(g

rj), ūyj}wj=1,

dEpk((ḡ)r
′
), ḡ
〉

as
〈
{dEpk((xi)rr′), eEepkB((Cxi)

a1)}vi=1, {dEpk((yj)rr
′
), vEvpkAr(g

rj),

ūyj}wj=1, dEpk((ḡ)r
′
), ḡ
〉

to C and simulates the proofs π3.

As the associated encryption schemes DEL and EL are semantically secure the tuple〈
{dEpk(xi)rr′), eEepkB((Cxi)

a1)}vi=1, dEpk((ḡ)r
′
)
〉

is identically distributed inGame4 and
Game3. Indistinguishability of

〈
{dEpk((xi)rr′), eEepkB((Cxi)

a1)}vi=1, dEpk((ḡ)r
′
)
〉

and
the zero-knowledge (simulatability) of π3 makes the views of Z’s in Game3 and Game4

indistinguishable. Hence,

|Prob[Game4]− Prob[Game3]| ≤ ε4(κ), where ε4(κ) is a negligible function.

Game5: This game is same as Game4 except that during the setup phase S5 chooses
a1 � Zq and in Step 5 simulates π5, instead of proving it. By the zero-knowledge
(simulatability) of π5 the views of Z’s in Game4 and Game5 are indistinguishable. Con-
sequently, there exists a negligible function ε5(κ) such that

|Prob[Game5]− Prob[Game4]| ≤ ε5(κ).

Let us construct the ideal world adversary SIM that uses C as subroutine, simulates the
honest party A and controls B̄, Ār and incorporates all steps from Game5.

(i) SIM first plays the role of trusted party by generating the global parameter gpar =
(par, ĝ,H), where par = (p, q, g). SIM then plays the role of honest party A by
choosing ā1 � Zq and publishing gā1 as the public key epkA = yA. SIM also
acts as certifying authority to obtain public keys epkB, vpkAr of B,Ar. SIM then
invokes C.

(ii) SIM chooses x̆1, ..., x̆v randomly from G and sends {dEpk(x̆i)}vi=1 as {dEpk(xi)}vi=1

to C and simulates the proof π1.

(iii) On receiving R2 =
〈
{dEpk(yj), dEpk((yj)r)}wj=1, {dEpk((xi)r)}vi=1, dEpk((ĝ)r), ĝ,

π2

〉
from C, SIM verifies the proof π2. If the verification does not succeed,

then SIM instructs B̄ to send ⊥ to T and terminates the execution. Otherwise,
SIM runs the extractor algorithm for π2 with C to extract the exponents r and
{ry1 , ..., ryw}. Utilizing {ry1 , ..., ryw}, SIM extracts Y = {y1, ..., yw} by extract-
ing {dyj = yjh

ryj }wj=1 from {dEpk(yj)}wj=1 in R2, h from pk = epkA · epkB. SIM
then instructs B̄ to send Y to T , Ār to send bB = ◦ to T and receives X ∩ Y from
T .

(iv) SIM constructs a set X = {x̄1, ..., x̄v} by including all the elements of X ∩ Y
together with v−|X ∩Y |many random elements chosen from G. SIM then does
the following:
– chooses r′, r1, ..., rw, β � Zq;
– computes ḡ = gβ,

〈
{dEpk((x̄i)rr′) = (c̄x̄i , d̄x̄i)}vi=1, {dEpk((yj)rr′) = (c̄yj , d̄yj)}wj=1,

dEpk((ḡ)r
′
) = (cḡ, dḡ), {eEepkB((Cx̄i)

a1)}vi=1

〉
;

– computes
〈
{ūyj = (Cyj)

a1 · grj}wj=1, {vEvpkAr(grj)}wj=1

〉
;

– sends
〈
{dEpk((x̄i)rr′), eEepkB((Cx̄i)

a1)}vi=1, {dEpk((yj)rr
′
), vEvpkAr(g

rj), ūyj}wj=1,
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dEpk((ḡ)r
′
), ḡ
〉

as
〈
{dEpk((xi)rr′), eEepkB((Cxi)

a1)}vi=1, {dEpk((yj)rr
′
), vEvpkAr(g

rj),

ūyj}wj=1, dEpk((ḡ)r
′
), ḡ
〉

to C and simulates the proofs π3.
SIM executes following steps according to C’s reply.

(v) If C instructs both B and Ar to abort, then SIM instructs Ār to send bA =⊥ to T .
Then outputs whatever C outputs and terminates.

(vi) If C instructs B to send
〈
{sxi}vi=1, {syj}wj=1

〉
, then SIM checks the validity of the

proof π4. If the verification succeeds then SIM instructs Ār to send bA = ◦ to
T and sends {grj}wj=1 to C and simulates the proof π5. If verification fails or C
instructs B to abort in mPSI protocol then the following cases arise:
� if C instructs Ar to send

〈
{sxi}vi=1, {syj}wj=1

〉
in dispute resolution protocol then

SIM does the following:
– for each i = 1, ..., v, computes d̄x̄idḡdĝ

(Cx̄i )
ā1sxi

= x̃i;

– for each j = 1, ..., w, computes
d̄yj dḡdĝ

(Cyj )ā1syj
= ỹj;

– instructs Ār to send bA = {x̄i ∈ X|x̃i ∈ {ỹ1, ..., ỹw}} to T . SIM then outputs
whatever C outputs and terminates.
� if C instructs Ar to abort in dispute resolution protocol then SIM instructs Ār
to send bA =⊥ to T . SIM then outputs whatever C outputs and terminates.

Therefore, the ideal world adversary SIM provides C the same simulation as the simu-
lator S5 as in Game5. Hence Prob[IDEALFmPSI,SIM(X, Y )] = Prob[Game5] and

|Prob[IDEALFmPSI,SIM(X, Y )]− Prob[REALmPSI,C(X, Y )]|
= |Prob[Game5]− Prob[Game0]| ≤ Σ5

i=1|Prob[Gamei]− Prob[Gamei−1]|
≤ Σ5

i=1εi(κ) = ρ(κ), where ρ(κ) is a negligible function.

Thus we have
IDEALFmPSI,SIM(X, Y ) ≡c REALmPSI,C(X, Y ).

3. A and B are corrupted. This case is trivial as C has full knowledge of X and Y and the
encryption scheme used by Ar is semantically secure. Therefore a simulator can always
be constructed.

• Case II ( When the adversary C corrupts only one party ).
If only Ar is corrupted then Ar is not involved in the protocol as A and B are honest. Thus it
is trivial to construct a simulator in this case. If only A or B is corrupted then the simulator can
be constructed as steps (i)-(iv) of the case when A and Ar are corrupted or steps (i)-(iv) of the
case when B and Ar are corrupted. The only change is that Ār is honest and always sends ◦ to
T in these cases.
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4 The mPSI-CA

4.1 Construction

Similar to the mPSI, our mPSI-CA also consists of a Setup algorithm, an mPSI-CA Protocol
and a Dispute Resolution Protocol.
Setup(1κ) : Similar to the Setup algorithm of the mPSI.
mPSI-CA Protocol: Our mPSI-CA protocol is also an interactive protocol between parties A
and B consisting 5 rounds. In each round, a proof is generated and sent by one party, which
is then verified in the subsequent round by the other party using a similar way described in
section 2.4. Two random permutations φ and ψ are to be used by B and A respectively. Let
the parties A,B have private input sets X = {x1, ..., xv}, Y = {y1, ..., yw} respectively and
(gpar, epkA, epkB, pk = epkA · epkB = h) be their common input. Then the parties A and B
interacts to get the cardinality |X ∩ Y | of X ∩ Y and a high level intuitive explanation of the
interaction is represented by Figure 4. The interaction between A and B is as follows:

Step 1. Party A proceeds as follows:
(i) chooses rx1 , ..., rxv � Zq and encrypts each member xi ∈ X with the public key
pk = h = ga1+a2 to get

dEpk(xi) = (cxi = grxi , dxi = xih
rxi )← DEL.Enc(xi, pk, par, rxi);

(ii) generates the proof

π1 = PoK
{

(rx1 , ..., rxv)| ∧vi=1 (cxi = grxi )
}

;

(iii) sends R1 =
〈
{dEpk(xi)}vi=1, π1

〉
to B.

Step 2. Party B, on receiving R1 =
〈
{dEpk(xi)}vi=1, π1

〉
from A, verifies the validity of the

proof π1. If verification fails, then B aborts. Otherwise, B does the following:
(i) chooses ry1 , ..., ryw � Zq and encrypts each yj ∈ Y with the public key
pk = h = ga1+a2 to get

dEpk(yj) = (cyj = gryj , dyj = yjh
ryj )← DEL.Enc(yj, pk, par, ryj);

(ii) selects a random permutation φ ∈ Σv, α1, ..., αv � Zq and computes for each i =
1, ..., v,

dEpk(x̄i) = dEpk(xφ−1(i))DEL.Enc(1, pk, par, αi)
= (c′xi = cxφ−1(i)

gαi , d′xi = dxφ−1(i)
hαi)

(iii) chooses r � Zq and computes

dEpk((gyj)
r) = (c′yj = (cyj)

r, d′yj = gr(dyj)
r) for 1 ≤ j ≤ w,

dEpk((gx̄i)
r) = (ĉxi = (c′xi)

r, d̂xi = gr(d′xi)
r) for 1 ≤ i ≤ v;
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(iv) constructs proof

π2 = PoK
{

(ry1 , ..., ryw , r)| ∧vi=1 (ĉxi = (c′xi)
r)(d̂xi = gr(d′xi)

r)

∧wj=1 (cyj = gryj )(c′yj = (cyj)
r)(d′yj = (dyj)

r)
}
,

π̂2 = PoK
{

(φ ∈ Σv, α1, ...., αv)|
{dEpk(x̄i) = dEpk(xφ−1(i))DEL.Enc(1, pk, par, αi)}vi=1

}
;

(v) sends R2 =
〈
{dEpk(yj), dEpk((gyj)r)}wj=1, {dEpk(x̄i), dEpk((gx̄i)r)}vi=1, π2, π̂2

〉
to A.

Step 3. On receiving R2 =
〈
{dEpk(yj), dEpk((gyj)r)}wj=1, {dEpk(x̄i), dEpk((gx̄i)r)}vi=1, π2,

π̂2

〉
from B, party A verifies the validity of the proofs π2, π̂2. If at least one of the

verification fails then A aborts. Otherwise, proceeds as follows:
(i) selects a random permutation ψ ∈ Σw, β1, ..., βw � Zq and computes for each j =
1, ..., w,

dEpk((gȳj)
r) = dEpk((gyψ−1(j))

r)DEL.Enc(1, pk, par, βj)
= (ĉyj = c′yψ−1(j)

gβj , d̂yj = d′yψ−1(j)
hβj)

(ii) selects r′ � Zq and computes

dEpk((gx̄i)
rr′) = (c̄xi , d̄xi) for i = 1, ..., v, where

c̄xi = (ĉxi)
r′ = (c′xi)

rr′ = (cxφ−1(i)
gαi)rr

′
,

d̄xi = (d̂xi)
r′ = (gd′xi)

rr′ = (gdxφ−1(i)
hαi)rr

′
,

and dEpk((gȳj)
rr′) = (c̄yj , d̄yj) for j = 1, ..., w, where

c̄yj = (ĉyj)
r′ = (c′yψ−1(j)

gβj)r
′
= (cyψ−1(j)

gβj)rr
′
,

d̄yj = (d̂yj)
r′ = (d′yψ−1(j)

hβj)r
′
= (gdyψ−1(j)

hβj)rr
′
;

(iii) chooses σ1, ..., σv � Zq and for each i = 1, ..., v, computes (c̄xi)
a1 using his secret

key eskA = a1 and encrypts (c̄xi)
a1 using B’s public key epkB to generate

eEepkB((c̄xi)
a1) = (uxi = gσi , ūxi = (c̄xi)

a1(yB)σi)

← EL.Enc((c̄xi)a1 , epkB = yB, par, σi);

(iv) generates a label L ∈ {0, 1}∗ using a session ID which has been agreed by all parities
beforehand and the hash of past communication;
(v) chooses r1, ..., rw, z1, ..., zw � Zq and computes {ūyj = (c̄yj)

a1 · grj}wj=1, and for
each j = 1, ..., w, generates

vEvpkAr(g
rj) = (t1j = gzj , t2j = ĝzj , t3j = czjgrj , t4j = azjbzjρj)

← VE .Enc(grj , vpkAr, gpar, zj, L,H),

where vpkAr = (a, b, c), ρj = H(t1j, t2j, t3j, L);
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Common input: gpar, epkA, epkB, pk = epkA · epkB, vpkAr
A’s private input: B’s private input:
X = {x1, ..., xv}, eskA = a1 Y = {y1, ..., yw}, eskB = a2

rx1 , ..., rxv � Zq
for 1 ≤ i ≤ v,
dEpk(xi) = (cxi = grxi , dxi = xih

rxi )
R1−−−→

← DEL.Enc(xi, pk, rxi) r, ry1 , ..., ryw , α1, ..., αv � Zq, φ� Σv

R1 = 〈{dEpk(xi)}vi=1, π1〉 for 1 ≤ j ≤ w,
dEpk(yj) = (cyj = gryj , dyj = yjh

ryj )
← DEL.Enc(yj, pk, ryj),

R2←−−− dEpk((gyj)
r) = (ĉyj = (cyj)

r, d̂yj = (gdyj)
r)

r′, σ1, ..., σv, r1, ..., rw, z1, ..., zw � Zq, for 1 ≤ i ≤ v,
β1, ..., βw � Zq, ψ � Σw dEpk(x̄i) = dEpk(xφ−1(i))DEL.Enc(1, pk, par, αi)
for 1 ≤ i ≤ v, = (c′xi = cxφ−1(i)

gαi , d′xi = dxφ−1(i)
hαi)

dEpk((gx̄i)
rr′) = (c̄xi = (ĉxi)

r′ , d̄xi = (d̂xi)
r′), dEpk((gx̄i)

r) = (ĉxi = (c′xi)
r, d̂xi = gr(d′xi)

r)
eEepkB((c̄xi)

a1)← EL.Enc((c̄xi)a1 , epkB, αi) R2 =
〈
{dEpk(yj), dEpk((gyj)r)}wj=1,

for 1 ≤ j ≤ w, {dEpk(x̄i), dEpk((gx̄i)r)}vi=1, π2, π̂2

〉

dEpk((gȳj)
r) = (ĉyj , d̂yj)

= dEpk((gyψ−1(j)))
rDEL.Enc(1, pk, par, βj)

dEpk((gȳj)
rr′) = (c̄yj = (ĉyj)

r′ , d̄yj = (d̂yj)
r′)

ūyj = (c̄yj)
a1 · grj ,

vEvpkAr(g
rj)← VE .Enc(grj , vpkAr, zj, L,H)

R3−−−→
R3 =

〈
{dEpk((gx̄i)rr′), eEepkB((c̄xi)

a1)}vi=1, for 1 ≤ i ≤ v, extract c̄xi from R3,
{dEpk((gȳj)r), dEpk((gȳj)rr′), sxi = (c̄xi)

a2

vEvpkAr(g
rj), ūyj}wj=1, π3, π̂3

〉
for 1 ≤ j ≤ w, extract c̄yj from R3,
syj = (c̄yj)

a2

R4←−−− R4 =
〈
{sxi}vi=1, {syj}wj=1, π4

〉

for 1 ≤ i ≤ v, d̄xi
(c̄xi )

a1sxi
= (gxφ−1(i))

rr′

for 1 ≤ j ≤ w,
d̄yj

(c̄yj )a1syj
= (gyψ−1(j))

rr′

|X ∩ Y | = |{(gxφ−1(1))
rr′ , ..., (gxφ−1(v))

rr′} R5−−−→
∩{(gyψ−1(1))

rr′ , ..., (gyψ−1(w))
rr′}| for 1 ≤ i ≤ v, extract d̄xi from R3,

R5 =
〈
{(grj)}wj=1, π5

〉
(c̄xi)

a1 ← EL.Dec(eEepkB((c̄xi)
a1), eskB)

d̄xi
(c̄xi )

a1sxi
= (gxφ−1(i))

rr′

for 1 ≤ j ≤ w, extract d̄ȳj , ūȳj from R3,
ūyj
grj

= (c̄yj)
a1 ,

d̄yj
(c̄yj )a1syj

= (gyψ−1(j))
rr′

|X ∩ Y | = |{(gxφ−1(1))
rr′ , ..., (gxφ−1(v))

rr′}
∩{(gyψ−1(1))

rr′ , ..., (gyψ−1(w))
rr′}|

1

Figure 4 : Communication flow of our mPSI-CA
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(vi) constructs proof

π3 = PoK
{

(a1, r
′, r1, ..., rw, z1, ..., zw, σ1, ..., σv)|(yA = ga1)

∧wj=1 (c̄yj = (ĉyj)
r′) ∧wj=1 (d̄yj = (d̂yj)

r′)

∧vi=1 (c̄xi = (ĉxi)
r′)(d̄xi = (d̂xi)

r′)(uxi = gσi)(ūxi = (c̄xi)
a1(yB)σi)

∧wj=1 (ūyj = (c̄yj)
a1 · grj)(t1j = gzj)(t2j = ĝzj)(t3j = czjgrj)(t4j = azjbzjρj)

}
,

π̂3 = PoK
{

(ψ ∈ Σw, β1, ...., βv)|
{dEpk((gȳj)r) = dEpk((gyψ−1(j))

r)DEL.Enc(1, pk, par, βj)}wj=1

}
;

(vii) sends R3 =
〈
{dEpk((gx̄i)rr′), eEepkB((c̄xi)

a1)}vi=1, {dEpk((gȳj)rr
′
), dEpk((gȳj)

r),
vEvpkAr(g

rj), ūyj}wj=1, π3, π̂3

〉
to B.

Step 4. On receivingR3 =
〈
{(dEpk(gx̄i))rr′ , eEepkB((c̄xi)

a1)}vi=1, {(dEpk(gȳj))rr
′
, (dEpk(gȳj))

r,
vEvpkAr(g

rj), ūyj}wj=1, π3, π̂3

〉
from A, party B checks the proofs π3, π̂3. If the verifica-

tion of at least one of the proof fails then B aborts, else dose the following:
(i) extracts {c̄xi}vi=1, {c̄yj}wj=1 from {dEpk((gx̄i)rr′)}vi=1, {dEpk((gȳj)rr

′
)}wj=1 respectively

in R3 and computes {sxi = (c̄xi)
a2}vi=1, {syj = (c̄yj)

a2}wj=1 using his secret key eskB =
a2;
(ii) constructs the proof

π4 = PoK
{

(a2)|(yB = ga2) ∧vi=1 (sxi = (c̄xi)
a2)(syj = (c̄yj)

a2)
}

;

(iii) sends R4 =
〈
{sxi}vi=1, {syj}wj=1, π4

〉
to A.

Step 5. Party A, on receiving R4 =
〈
{sxi = (c̄xi)

a2}vi=1, {syj = (c̄yj)
a2}wj=1, π4

〉
from B,

verifies the validity of the proof π4. Party A aborts if the verification does not succeed,
else does the following using his secret key eskA = a1 and {c̄xi , d̄xi}vi=1, {c̄yj , d̄yj}wj=1

computed in Step 3:
(i) computes for i = 1, ..., v,

d̄xi
(c̄xi)

a1sxi
=

d̄xi
(c̄xi)

a1+a2
=

(gdxφ−1(i)
hαi)rr

′

(cxφ−1(i)
gαi)(a1+a2)rr′

=
(gxφ−1(i))

rr′g
(rx

φ−1(i)
+αi)(a1+a2)rr′

g
(rx

φ−1(i)
+αi )(a1+a2)rr′ = (gxφ−1(i))

rr′ ,

and for j = 1, ..., w,

d̄yj
(c̄yj)

a1syj
=

d̄yj
(c̄yj)

a1+a2
=

(gdyψ−1(j)
hβj)rr

′

(cyψ−1(j)
gβj)(a1+a2)rr′

=
(gyψ−1(j))

rr′g
(βj+ry

ψ−1(j)
)(a1+a2)rr′

g
(βj+ry

ψ−1(j)
)(a1+a2)rr′ = (gyψ−1(j))

rr′ ;

(ii) sets the cardinality of X ∩ Y as

|X ∩ Y | = |{(gxφ−1(1))
rr′ , ..., (gxφ−1(v))

rr′} ∩ {(gyψ−1(1))
rr′ , ..., (gyψ−1(w))

rr′}|;
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(iii) constructs the proof

π5 = PoK
{

(z1, ..., zw)| ∧wj=1 (t1j = gzj)(t2j = ĝzj)(t3j = czjgrj)(t4j = azjbzjρj)
}

;

(iv) sends R5 =
〈
{(grj)}wj=1, π5

〉
to B.

Step 6. On receiving R5 =
〈
{(grj)}wj=1, π5

〉
from A, party B verifies the validity of the proof

π5. If the verification of the proof succeeds, then B
(i) for each i = 1, ..., v, decrypts eEpkB(c̄a1

xi
) received in Step 3 using his secret key skB =

a2 to get (c̄xi)
a1 ← EL.Dec(eEepkB((c̄xi)

a1), eskB), extracts d̄xi from dEpk((gx̄i)
rr′) in

R3, uses sxi computed in Step 4 to generate

d̄xi
(c̄xi)

a1sxi
=

d̄xi
(c̄xi)

a1+a2
=

(gdxφ−1(i)
hαi)rr

′

(cxφ−1(i)
gαi)(a1+a2)rr′

=
(gxφ−1(i))

rr′g
(rx

φ−1(i)
+αi)(a1+a2)rr′

g
(rx

φ−1(i)
+αi )(a1+a2)rr′ = (gxφ−1(i))

rr′ ;

(ii) for each j = 1, ..., w, extracts d̄yj from dEpk((gȳj)
rr′) in R3 and uses ūyj obtained

from R3, syj computed in Step 4 to generate

ūyj
grj

=
(c̄yj)

a1 · grj
grj

= (c̄yj)
a1 and

d̄yj
(c̄yj)

a1syj
=

d̄yj
(c̄yj)

a1+a2
=

(gdyψ−1(j)
hβj)rr

′

(cyψ−1(j)
gβj)(a1+a2)rr′

=
(gyψ−1(j))

rr′g
(βj+ry

ψ−1(j)
)(a1+a2)rr′

g
(βj+ry

ψ−1(j)
)(a1+a2)rr′ = (gyψ−1(j))

rr′ ;

(iii) sets |X ∩ Y | = |{(gxφ−1(1))
rr′ , ..., (gxφ−1(v))

rr′} ∩ {(gyψ−1(1))
rr′ , ..., (gyψ−1(w))

rr′}|.

If the verification of π5 does not succeed or A does not send R5 =
〈
{(grj)}wj=1, π5

〉
i.e.,

if A prematurely aborts, then B sends a dispute resolution request to the arbiter Ar.

Dispute Resolution Protocol: This is analogous to the Dispute Resolution Protocol of the
mPSI except that each X ∩ Y will be replaced by |X ∩ Y |.

4.2 Security

We consider two cases: (case I) when the adversary corrupts two parties among the three parties
and (case II) when the adversary corrupts only one party among the three parties.
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Theorem 4.1. If the encryption schemes EL, DEL and VE are semantically secure, the asso-
ciated proof protocols are zero knowledge proof and the associated permutations are random,
then our mPSI-CA presented in section 4 is a secure computation protocol for the functionality
FmPSI-CA : (X, Y )→ (|X ∩ Y |, |X ∩ Y |) in the security model described in section 2.1.

Proof. Let us consider C as the real world adversary that breaks the security of our mPSI-
CA protocol among three parties A with private input set X , B with private input set Y and
Ar. Also let there be an incorruptible trusted party T , parties Ā, B̄, Ār and simulator SIM
in the ideal process. In real world, the global parameter gpar = (par, ĝ,H), where par =
(p, q, g) is generated by a trusted party who certifies the public key pkA, pkB, pkAr of A,B,Ar
respectively. In contrast, in ideal process simulator SIM does those things. We denote the
joint output of A,B,Ar, C in the real world as REAL

mPSI-CA,C(X, Y ) and the joint output of
Ā, B̄, Ār,SIM in the ideal process as IDEALF

mPSI-CA,SIM(X, Y ).

• Case I ( When the adversary C corrupts two parties ).

1. A and Ar are corrupted. Let Z be a distinguisher who controls C, feeds the input
of the honest party B, and also sees the output of B. Now we will present a series of
games Game0, ..., Game4 to prove that Z’s view in the real world (C’s view +B’s out-
put) and its view in the ideal world (C’s view + B̄’s output) are indistinguishable. For
each i = 0, ..., 3, Gamei+1 modifies Gamei slightly such that Z’s views in Gamei and
Gamei+1 remain indistinguishable. The probability that Z distinguishes the view of
Gamei from the view of real protocol, is denoted by Pr[Gamei] and Si is considered as
simulator in Gamei.
Game0: This game is same as real world protocol, where the simulator S0 has full knowl-
edge of B and interacts with C. Hence,

Prob[REAL
mPSI-CA,C(X, Y )] = Prob[Game0].

Game1: Game1 is same as Game0 except that if the proof π1 is valid then the simulator
S1 runs the extractor algorithm for π1 with C to extract the exponents {rx1 , ..., rxv}. The
simulator S1 then extracts xi =

dxi
hrxi

by extracting dxi = xih
rxi from dEpk(xi) in R1,

h from pk = epkA · epkB and using the exponent rxi for 1 ≤ i ≤ v. In this way S1

extracts the private input set X = {x1, ..., xv} of A. Z’s views in Game0 and Game1 are
indistinguishable because of simulation soundness of the proof π1. Therefore,

|Prob[Game1]− Prob[Game0]| ≤ ε1(κ), where ε1(κ) is a negligible function.

Game2: Note that in this game the simulator S2 has the knowledge of extracted set
X = {x1, ..., xv}, input set Y = {y1, ..., yw} and secret key eskB = a2 of B. Game2 is
same as Game1 except that

(a) if the verification of the proof π5 succeeds then S3 outputs |X ∩Y | as the final output
of B making use of the extracted X ,

(b) if the verification of the proof π5 does not succeed or C aborts prematurely in mPSI-
CA protocol then the following cases arise:
� if C sends {g1, ..., gw} ⊂ G to S3 in dispute resolution protocol then S3 does the
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following:
– for each i = 1, ..., v, decrypts eEepkB((c̄xi)

a1) using eskB = a2 to get (c̄xi)
a1 ←

EL.Dec(eEepkB((c̄xi)
a1), eskB), extracts d̄xi , c̄xi from dEpk((gx̄i)

rr′) inR3, computes
d̄xi

(c̄xi )
a1 (c̄xi )

a2
= (gxφ−1(i))

rr′;

– for each j = 1, ..., w, computes
d̄yj

ūyj
gj

(c̄yj )a2
= ŷj by extracting d̄yj , c̄yj from dEpk((gȳj)

rr′)

in R3 and using ūyj obtained from R3;
– outputs |{(gxφ−1(1))

rr′ , ..., (gxφ−1(v))
rr′} ∩ {ŷ1, ..., ŷw}| as the final output of B.

� if C aborts in dispute resolution protocol then S3 outputs ⊥ as the final output of
B.

By the simulation soundness property of the proof π5, Z’s views in Game2 and Game3

are indistinguishable. Hence,

|Prob[Game2]− Prob[Game1]| ≤ ε2(κ), where ε2(κ) is a negligible function.

Game3: Game3 is same as Game2 except that S3 does the following after extracting
X = {x1, ..., xv}:

(a) computes |X ∩ Y |,
(b) constructs a set Y = {¯̄y1, ..., ¯̄yw} by including |X ∩ Y | many random elements of X

together with w − |X ∩ Y | many random elements chosen from G,

(c) selects a random permutation φ̂ ∈ Σv, α1, ..., αv � Zq and computes for each
i = 1, ..., v,

dEpk(x̄i) = dEpk(xφ̂−1(i))DEL.Enc(1, pk, par, αi)
(d) chooses r � Zq,
(e) computes

〈
{dEpk(¯̄yj), dEpk((g ¯̄yj)

r)}wj=1, {dEpk((gx̄i)r)}vi=1

〉
,

(f) sends the tuple
〈
{dEpk(¯̄yj), dEpk((g ¯̄yj)

r)}wj=1, {dEpk(x̄i), dEpk((gx̄i)r)}vi=1

〉
as〈

{dEpk(yj), dEpk((gyj)r)}wj=1, {dEpk(x̄i), dEpk((gx̄i)r)}vi=1

〉
to C and simulates π2, π̂2.

As the encryption schemeDEL is semantically secure, the tuple
〈
{dEpk(yj), dEpk((gyj)r)}wj=1,

{dEpk(x̄i), dEpk((gx̄i)r)}vi=1

〉
is identically distributed in Game3 and Game2. The zero-

knowledge (simulatability) of π2, π̂2 and indistinguishability of the tuple make the views
of Z’s inGame2 andGame3 indistinguishable. Therefore, there exists a negligible func-
tion ε3(κ) such that

|Prob[Game3]− Prob[Game2]| ≤ ε3(κ).

Game4: This game is same as Game3 except that during the setup phase S4 chooses
a2 � Zq and in Step 4 simulates π4, instead of proving it. By the zero-knowledge
(simulatability) of π4 the views of Z’s in Game3 and Game4 are indistinguishable. Con-
sequently,

|Prob[Game4]− Prob[Game3]| ≤ ε4(κ), where ε4(κ) is a negligible function.

Let us construct the ideal world adversary SIM that uses C as subroutine, simulates the
honest party B and controls Ā, Ār and incorporates all steps from Game4.
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(i) First SIM plays the role of trusted party by generating the global parameter gpar =
(par, ĝ,H), where par = (p, q, g). SIM then plays the role of honest party B by
choosing ā2 � Zq and publishing gā2 as the public key epkB = yB. SIM also
acts as certifying authority to obtain respective public keys epkA, vpkAr of A,Ar.
SIM then invokes C.

(ii) On receiving R1 =
〈
{dEpk(xi)}vi=1, π1

〉
from C, SIM verifies the proof π1. If the

verification does not succeed, then SIM instructs Ā to send ⊥ to T and termi-
nates the execution. Otherwise, SIM runs the extractor algorithm for π1 with
C to extract {rx1 , ..., rxv}. Utilizing {rx1 , ..., rxv}, SIM extracts the input set
X = {x1, ..., xv} by extracting {dxi = xih

rxi}vi=1 from {dEpk(xi)}vi=1 in R1 and
h from pk = epkA · epkB. SIM then instructs Ā to send X to T , Ār to send
bA = ◦ to T and receives |X ∩ Y | from T .

(iii) SIM constructs a set Y = {¯̄y1, ..., ¯̄yw} by including |X ∩ Y | many random el-
ements of X together with w − |X ∩ Y | many random elements chosen from G.
SIM then
– selects a random permutation φ̂ ∈ Σv, α1, ..., αv � Zq and computes for each
i = 1, ..., v,

dEpk(x̄i) = dEpk(xφ̂−1(i))DEL.Enc(1, pk, par, αi)

– chooses r � Zq and computes
〈
{dEpk(¯̄yj), dEpk((g ¯̄yj)

r)}wj=1, {dEpk((gx̄i)r)}vi=1

〉
,

– finally, sends
〈
{dEpk(¯̄yj), dEpk((g ¯̄yj)

r)}wj=1, {dEpk(x̄i), dEpk((gx̄i)r)}vi=1

〉
as〈

{dEpk(yj), dEpk((gyj)r)}wj=1, {dEpk(x̄i), dEpk((gx̄i)r)}vi=1

〉
to C and simulates π2, π̂2.

(iv) On receivingR3 =
〈
{dEpk((gx̄i)rr′), eEepkB((c̄xi)

a1)}vi=1, {dEpk((gȳj)rr
′
), dEpk((gȳj)

r),
vEvpkAr(g

rj), ūyj}wj=1, π3, π̂3

〉
from C, SIM verifies the validity of the proofs π3, π̂3.

If the verification of at least one of the proof fails then SIM instructs Ā to send ⊥
to T and terminates the execution. Otherwise, SIM computes {sxi = (c̄xi)

ā2}vi=1,
{syj = (c̄yj)

ā2}wj=1, sends it to C and simulates the proof π4. SIM then executes
following steps according to C’s reply.

(v) If C instructs A to send {g1, ..., gw} ⊂ G, then SIM verifies the validity of the
proof π5. If the verification succeeds then SIM instructs Ār to send bB = ◦. If
verification fails or C instructs A to abort in mPSI-CA protocol then the following
cases arise:
� if C instructs Ar to send {g1, ..., gw} ⊂ G in dispute resolution protocol, then
SIM does the following:
– for each i = 1, ..., v, decrypts eEepkB((c̄xi)

a1) using eskB = ā2 to get (c̄xi)
a1 ←

EL.Dec(eEepkB((c̄xi)
a1), eskB), extracts d̄xi , c̄xi from dEpk((gx̄i)

rr′) in R3, com-
putes d̄xi

(c̄xi )
a1 (c̄xi )

ā2
= (gxφ̂−1(i))

rr′;

– for each j = 1, ..., w, computes
d̄yj

ūyj
gj

(c̄yj )ā2
= ỹj by extracting d̄yj , c̄yj from

dEpk((gȳj)
rr′) in R3 and using ūyj obtained from R3;

– instructs Ār to send bB = |{(gxφ̂−1(1))
rr′ , ..., (gxφ̂−1(v))

rr′} ∩ {ỹ1, ..., ỹw}| to T ,
outputs whatever C outputs and terminates.
� if C instructsAr to abort in dispute resolution protocol SIM instructs Ār to send

31



Efficient and Fair mPSI and mPSI-CA

bB =⊥ to T . Then SIM outputs whatever C outputs and terminates.

(vi) If C instructs both A and Ar to abort, then SIM instructs Ār to send bB =⊥ to T ,
outputs whatever C outputs and terminates.

Thus the ideal world adversary SIM provides C the same simulation as the simulator
S4 in Game4. Hence Prob[IDEALF

mPSI-CA,SIM(X, Y )] = Prob[Game4] and

|Prob[IDEALF
mPSI-CA,SIM(X, Y )]− Prob[REAL

mPSI-CA,C(X, Y )]|
= |Prob[Game4]− Prob[Game0]| ≤ Σ4

i=1|Prob[Gamei]− Prob[Gamei−1]|
≤ Σ4

i=1εi(κ) = ρ(κ), where ρ(κ) is a negligible function.

Therefore we have

IDEALF
mPSI-CA,SIM(X, Y ) ≡c REAL

mPSI-CA,C(X, Y ).

2. B and Ar are corrupted. Let us consider Z as a distinguisher who controls C, feeds
the input of the honest party A, and also sees the output of B. Now we argue that Z’s
view in the real world (C’s view +A’s output) and its view in the ideal world (C’s view +
Ā’s output) are indistinguishable. To prove that a series of games Game0, ..., Game5 is
presented, where each Gamei+1 modifies Gamei slightly such that Z’s views in Gamei
and Gamei+1 remain indistinguishable, for i = 0, .., 4. Let us denote the probability that
Z distinguishes the view of Gamei from the view of real protocol by Pr[Gamei]. We
consider Si as simulator in Gamei.
Game0: This game is same as real world protocol, where the simulator S0 has full knowl-
edge of A and interacts with C. Hence,

Prob[REAL
mPSI-CA,C(X, Y )] = Prob[Game0].

Game1: This game is same as Game0 except that S1 simulates π1, instead of proving
it. Z’s views in Game0 and Game1 are indistinguishable because of zero-knowledge
(simulatability) of the proof π1. Therefore, there exists a negligible function ε1(κ) such
that

|Prob[Game1]− Prob[Game0]| ≤ ε1(κ).

Game2: Game1 is same asGame2 except that if the verification of the proof π2 succeeds
then the simulator S2 runs the extractor algorithm for π2 with C to extract the exponents
r and {ry1 , ..., ryw}. The simulator S2 then extracts yj =

dyj

h
ryj

by extracting dyj = yjh
ryj

from dEpk(yj) inR2, h from pk = epkA ·epkB and using the exponent ryj for 1 ≤ j ≤ w.
In this way S2 extracts the private input set Y = {y1, ..., yw} of B. The simulation
soundness of the proof π2 makes Z’s views in Game1 and Game2 indistinguishable.
Consequently,

|Prob[Game2]− Prob[Game1]| ≤ ε2(κ), where ε2(κ) is a negligible function.

Game3: Note that in this game the simulator S3 has the knowledge of input set X =
{x1, ..., xv}, secret key eskA = a1 of A and extracted set Y = {y1, ..., yw} of B. This
game is same as Game2 except that
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(a) if the verification of the proof π4 succeeds then S3 outputs |X ∩Y | as the final output
of A making use of the extracted set Y ,

(b) if the verification of the proof π4 does not succeed or C aborts in mPSI-CA protocol
then the following cases arise:
� if C sends

〈
{sxi}vi=1, {syj}wj=1

〉
to S3 in dispute resolution protocol then S3 does

the following:
– for each i = 1, ..., v, computes d̄xi

(c̄xi )
a1sxi

= x̂i using eskA = a1;

– for each j = 1, ..., w, computes
d̄yj

(c̄yj )a1syj
= ŷj using eskA = a1;

– outputs |{x̂1, ..., x̂v} ∈ ∩{ŷ1, ..., ŷw}| as the final output of A.
� if C aborts in dispute resolution protocol then S3 outputs⊥ as the final output of A.

By the simulation soundness property of the proof π4, Z’s views in Game2 and Game3

are indistinguishable. Therefore, there exists a negligible function ε3(κ) such that

|Prob[Game3]− Prob[Game2]| ≤ ε3(κ).

Game4: Game4 is same as Game3 except that S4 does the following after extracting
Y = {y1, ...yw}, r:

(a) computes |X ∩ Y |,
(b) constructs a set X = {¯̄x1, ..., ¯̄xv} by including |X ∩ Y | many random elements of Y

together with v − |X ∩ Y | many random elements chosen from G.

(c) selects a random permutation ψ̂ ∈ Σw, β1, ..., βw, τ1, ..., τv � Zq and computes

dEpk((gȳj)
r) = dEpk((gyψ̂−1(j))

r)DEL.Enc(1, pk, par, βj), 1 ≤ j ≤ w

and (dEpk(g ¯̄xi))← DEL.Enc(g ¯̄xi, pk, par, τi), 1 ≤ i ≤ v,

(d) chooses r′, r1, ..., rw � Zq,
(e) computes

〈
{dEpk((g ¯̄xi)

rr′) = (c̄x̄i , d̄x̄i), eEepkB((c̄x̄i)
a1)}vi=1, {dEpk((gȳj)rr′) =

(c̄yj , d̄yj), vEvpkAr(g
rj)}wj=1,

〉
,

(f) computes {ūyj = (c̄yj)
a1 · grj}wj=1,

(g) sends
〈
{dEpk((g ¯̄xi)

rr′), eEepkB((c̄x̄i)
a1)}vi=1, {dEpk((gȳj)rr

′
), dEpk((gȳj)

r),

vEvpkAr(g
rj), ūyj}wj=1

〉
as
〈
{dEpk((gx̄i)rr′), eEepkB((c̄xi)

a1)}vi=1, {dEpk((gȳj)rr
′
),

dEpk((gȳj)
r), vEvpkAr(g

rj), ūyj}wj=1

〉
to C and simulates the proofs π3, π̂3.

As the associated encryption schemes DEL and EL are semantically secure the tuple〈
{dEpk((gx̄i)rr′), eEepkB((c̄xi)

a1)}vi=1, {dEpk((gȳj)rr
′
), dEpk((gȳj)

r), vEvpkAr(g
rj), ūyj}wj=1

〉

is identically distributed in Game4 and Game3. Indistinguishability of the tuple and the
zero-knowledge (simulatability) of π3, π̂3 makes the views of Z’s in Game3 and Game4

indistinguishable. Hence,

|Prob[Game4]− Prob[Game3]| ≤ ε4(κ), where ε4(κ) is a negligible function.
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Game5: This game is same as Game4 except that during the setup phase S5 chooses
a1 � Zq and in Step 5 simulates π5, instead of proving it. By the zero-knowledge
(simulatability) of π5 the views of Z’s in Game4 and Game5 are indistinguishable. Con-
sequently, there exists a negligible function ε5(κ) such that

|Prob[Game5]− Prob[Game4]| ≤ ε5(κ).

Let us construct the ideal world adversary SIM that uses C as subroutine, simulates the
honest party A and controls B̄, Ār and incorporates all steps from Game5.

(i) SIM first plays the role of trusted party by generating the global parameter gpar =
(par, ĝ,H), where par = (p, q, g). SIM then plays the role of honest party A by
choosing ā1 � Zq and publishing gā1 as the public key epkA = yA. SIM also
acts as certifying authority to obtain public keys epkB, vpkAr of B,Ar. SIM then
invokes C.

(ii) SIM chooses x̆1, ..., x̆v randomly from G and sends {dEpk(x̆i)}vi=1 as {dEpk(xi)}vi=1

to C and simulates the proof π1.

(iii) On receiving R2 =
〈
{dEpk(yj), dEpk((gyj)r)}wj=1, {dEpk(x̄i), dEpk((gx̄i)r)}vi=1, π2,

π̂3

〉
from C, SIM verifies the proof π2. If the verification does not succeed,

then SIM instructs B̄ to send ⊥ to T and terminates the execution. Otherwise,
SIM runs the extractor algorithm for π2 with C to extract the exponents r and
{ry1 , ..., ryw}. Utilizing {ry1 , ..., ryw}, SIM extracts Y = {y1, ..., yw} by extract-
ing {dyj = yjh

ryj }wj=1 from {dEpk(yj)}wj=1 in R2, h from pk = epkA · epkB. SIM
then instructs B̄ to send Y to T , Ār to send bB = ◦ to T and receives |X ∩ Y | from
T .

(iv) SIM constructs a set X = {¯̄x1, ..., ¯̄xv} by including |X ∩ Y | many random el-
ements of Y together with v − |X ∩ Y | many random elements chosen from G.
SIM then does the following:
– selects a random permutation ψ̂ ∈ Σw, β1, ..., βw, τ1, ..., τv � Zq and computes

dEpk((gȳj)
r) = dEpk((gyψ̂−1(j))

r)DEL.Enc(1, pk, par, βj), 1 ≤ j ≤ w

and (dEpk(g ¯̄xi))← DEL.Enc(g ¯̄xi, pk, par, τi), 1 ≤ i ≤ v

– chooses r′, r1, ..., rw � Zq,
– computes

〈
{dEpk((g ¯̄xi)

rr′) = (c̄x̄i , d̄x̄i), eEepkB((c̄x̄i)
a1)}vi=1, {dEpk((gȳj)rr′) =

(c̄yj , d̄yj), vEvpkAr(g
rj)}wj=1,

〉
,

– computes {ūyj = (c̄yj)
a1 · grj}wj=1,

– sends
〈
{dEpk((g ¯̄xi)

rr′), eEepkB((c̄x̄i)
a1)}vi=1, {dEpk((gȳj)rr

′
), dEpk((gȳj)

r),

vEvpkAr(g
rj), ūyj}wj=1

〉
as
〈
{dEpk((gx̄i)rr′), eEepkB((c̄xi)

a1)}vi=1, {dEpk((gȳj)rr
′
),

dEpk((gȳj)
r), vEvpkAr(g

rj), ūyj}wj=1

〉
to C and simulates the proofs π3, π̂3.

SIM executes following steps according to C’s reply.

(v) If C instructs both B and Ar to abort, then SIM instructs Ār to send bA =⊥ to T .
Then outputs whatever C outputs and terminates.
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(vi) If C instructs B to send
〈
{sxi}vi=1, {syj}wj=1

〉
, then SIM checks the validity of the

proof π4. If the verification succeeds then SIM instructs Ār to send bA = ◦ to
T and sends {grj}wj=1 to C and simulates the proof π5. If verification fails or C
instructs B to abort in mPSI-CA protocol then the following cases arise:
� if C instructs Ar to send

〈
{sxi}vi=1, {syj}wj=1

〉
in dispute resolution protocol then

SIM does the following:
– for each i = 1, ..., v, computes d̄x̄i

(c̄x̄i )
ā1sxi

= x̃i;

– for each j = 1, ..., w, computes
d̄yj

(c̄yj )ā1syj
= ỹj;

– instructs Ār to send bA = |{x̃1, ..., x̃v} ∩ {ỹ1, ..., ỹw}| to T . SIM then outputs
whatever C outputs and terminates.
� if C instructs Ar to abort in dispute resolution protocol then SIM instructs Ār
to send bA =⊥ to T . SIM then outputs whatever C outputs and terminates.

Therefore, the ideal world adversary SIM provides C the same simulation as the simu-
lator S5 as in Game5. Hence Prob[IDEALF

mPSI-CA,SIM(X, Y )] = Prob[Game5] and

|Prob[IDEALF
mPSI-CA,SIM(X, Y )]− Prob[REAL

mPSI-CA,C(X, Y )]|
= |Prob[Game5]− Prob[Game0]| ≤ Σ5

i=1|Prob[Gamei]− Prob[Gamei−1]|
≤ Σ5

i=1εi(κ) = ρ(κ), where ρ(κ) is a negligible function.

Thus we have

IDEALF
mPSI-CA,SIM(X, Y ) ≡c REAL

mPSI-CA,C(X, Y ).

3. A and B are corrupted. This case is trivial as C has full knowledge of X and Y and the
encryption scheme used by Ar is semantically secure. Therefore a simulator can always
be constructed.

• Case II ( When the adversary C corrupts only one party ).
If only Ar is corrupted then Ar is not involved in the protocol as A and B are honest. Thus it
is trivial to construct a simulator in this case. If only A or B is corrupted then the simulator can
be constructed as steps (i)-(iv) of the case when A and Ar are corrupted or steps (i)-(iv) of the
case when B and Ar are corrupted. The only change is that Ār is honest and always sends ◦ to
T in these cases.

Table 2 : Complexity of our mPSI protocol

Party A Party B Arbiter Ar Total
Exp 21v + 30w + 12 30v + 46w + 13 4v + 6w + 2 55v + 82w + 27
GE 13v + 22w + 8 9v + 9w + 11 1 22v + 31w + 20
Inv v + w 2v + 2w 3v + 3w
H w w 2w

GE=number of group elements, Exp=number of exponentiations,
Inv=number of inversions, H=number of hash query.
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5 Efficiency

The computation overhead of our mPSI and mPSI-CA is measured by modular exponentiation,
modular inversion and hash function evaluation. On the other hand, the number of group ele-
ments transmitted publicly by the users in our mPSI and mPSI-CA incurs the communication
cost. The complexities of our mPSI and mPSI-CA are exhibited in Table 2 and Table 3 respec-
tively, where π1, π2, π3, π4, π5, π̂2, π̂3 are associated interactive zero-knowledge proofs. As far

Table 3 : Complexity of our mPSI-CA protocol

Party A Party B Arbiter Ar Total
Exp 29v + 39w + 4 30v + 42w + 6 4v + 6w + 2 63v + 87w + 12
GE 14v + 26w + 5 24v + 24w + 8 v + 2w + 1 39v + 52w + 14
Inv v + w 2v + 2w w 3v + 4w
H w w 2w

GE=number of group elements, Exp=number of exponentiations,
Inv=number of inversions, H=number of hash query.

as we are aware of, till now the most efficient fair mPSI protocols are [14, 15]. We compare
our mPSI protocol with the construction of [14, 15] in Table 4.

Table 4 : Comparison summary in terms of GE, Exp, fairness, optimistic and order of underlying group

Protocol GE Exp Fairness Optimistic Group
order

[15] 7w + 53v + 2wv + 5 11w + 96v + 12wv yes yes prime
[14] 77(w + v) 156(w + v) yes yes composite
our mPSI 22v + 31w + 20 55v + 82w + 27 yes yes prime

6 Conclusion

We have designed a fair mPSI protocol with linear complexity over prime order group in stan-
dard model. The security of this protocol is achieved in presence of malicious parties under
DDH assumption. Our mPSI achieves fairness in the optimistic way i.e., by using an off-line
semi trusted third party (arbiter). Particularly, our mPSI is more efficient than existing mPSI
protocols. Further, we have proposed that utilizing two random permutations our mPSI can
be extended to mPSI-CA, where the security properties remain invariant. To the best of our
knowledge, our mPSI-CA is the first mPSI-CA achieving linear complexity. Note that the com-
munication cost of each of our constructions can be further reduced by transforming each of
the interactive zero-knowledge proofs into non-interactive using Fiat-Shamir technique [18].
But in that case the security model of our protocol will be changed to the random oracle model
(ROM).
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