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Abstract FIDO, German e-ID, Idemix and U-Prove constitute privacy-
enhanced public-key infrastructures allowing users to authenticate in an
anonymous way. This however hampers timely revocation in a privacy
friendly way. From a legal perspective, revocation typically should be
effective within 24 hours after user reporting. It should also be backward
unlinkable, i.e. user anonymity cannot be removed after revocation. We
describe a new, generic revocation mechanism based on pairing based
encryption and apply it to supplement the systems mentioned. This al-
lows for both flexible and privacy friendly revocation. Protocol execution
takes less than a quarter of a second on modern smartcards. An addi-
tional property is that usage after revocation is linkable, allowing users
to identify fraudulent usage after revocation. Our technique is the first
Verifier Local Revocation scheme with backwards unlinkable revocation
for the systems mentioned. This also allows for a setup resembling the
well-known Online Certificate Status Protocol (OCSP). Here the ser-
vice provider sends a pseudonym to a revocation provider that returns
its status. As the information required for this is not secret the status
service can be distributed over many cloud services. In addition to the
status service our technique also supports the publication of a central
revocation list.

Keywords: ABCs, electronic authentication backward unlinkable
revocation, pairings, Verifier Local Revocation

1 Introduction

In an electronic identity (e-ID) scheme a user is issued a device to electronically
authenticate to on-line service providers. A first e-ID requirement is reliability:
only the user is able to authenticate itself to a service provider. Reliability also
relates to revocation. Regulations [17] and guidelines [13] stipulate that revoc-
ation should be effective within 24 hours after reporting. The first generation
of European e-ID infrastructures accomplish reliability by issuing user digital
certificates containing user personal data and storing the private key on an e-ID
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card. As these cards can also be used to authenticate to private service pro-
viders the latter always receive user personal data regardless of their necessity.
This contradicts the personal data minimisation principle, cf. [18]. We have iden-
tified a second e-ID requirement: privacy. Only minimal personal data should be
provided to service providers. Privacy risks also relate to providers being able to
indirectly identify users by combining attributes or using unique identifiers, e.g.
social security numbers. The FIDO [20,21], German e-ID [11], Idemix [14,23] and
U-Prove [9] systems allow for data minimisation. This however hampers timely
revocation in a user and privacy friendly way. In this paper we describe a generic
technique that can supplement these systems with such revocation. We briefly
explain these systems to identify the desired privacy properties.

With “Restricted Identification” [11, Section 3.6], the German e-ID card
provides persistent pseudonyms to service providers that cannot be cryptograph-
ically linked. Technically the pseudonyms take the form of hashed public keys,
cf. Appendix A. The pseudonyms can be supplemented with attributes stored on
the card by the user. The persistence of the pseudonyms is related to revocation
(cf. [6]). Through a revocation provider, each service provider is provided its
own list of revoked pseudonyms (Certificate Revocation List or CRL) allowing
him to verify the validity of the card. To revoke, a user sends a revocation key
to the revocation provider. This allows the latter to calculate all pseudonyms of
the user and to provide the service provider CRLs. Due to its setup, CRL man-
agement in the German e-ID is a big burden. CRLs also leak potentially privacy
sensitive data, indicating they should not be publicly readable, further complic-
ating CRL management. To illustrate, if only one user revokes its e-ID card,
then only one pseudonym is added to the various CRLs, enabling their linkage.
By incorporating card expiry dates, prior usage of a revoked card can actually
be linked in practice. This setup therefore does not cater for backward unlinkable
revocation. A more fundamental issue here is that the revocation provider can
link all pseudonyms of that user. So by collusion between the revocation provider
and the service providers, e-ID card usage before revocation can be linked.

The emerging internet authentication standard FIDO (Fast IDentity Online)
[20,21] has similarities with the German e-ID. For each service provider the FIDO
user device generates a persistent public/private key pair meant for signing.
The resulting public keys cannot be cryptographically linked. The public key is
provided to the service provider allowing the user to authenticate against it. It is
up to the service provider how to bind this to (personal data of) the user. FIDO
does not provide for revocation [21, Section 2.5] and the user needs to revoke its
public key at all service providers individually which is cumbersome.

Attributes are encrypted inside the Idemix [14] and U-Prove [9] certificates
and the user private key is inside a (secure) device. A service provider can verify
the authenticity of the certificate including the encrypted attributes. The user
can then selectively disclose the attributes in the certificate to a service provider.
To prevent linkability through the Idemix certificate itself, the user is able to
blind its certificate. That is, prior to sending it to the service provider, the user
can transform the given certificate in an equivalent one that cannot be linked to
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other certificate uses. U-Prove unlinkability is addressed by providing the user
with several certificates. A drawback of the non-linkability properties is that
they do not simply cater for user and privacy friendly revocation. Indicatively a
Dutch e-ID trial with Idemix technology did not include revocation. See [31].

Outline of the paper
In this paper we describe a generic revocation technique that is backward un-
linkable and apply it to the four systems outlined above. In Section 2 we describe
a common context for the systems in scope to form a basis for our revocation
technique. In Appendix A we describe how both the FIDO and the German e-ID
context can be be supplemented with the described revocation context without
changing core protocols. In Section 3 we describe a first, basic revocation mech-
anism. This also allows us to identify desirable revocation approaches, that the
basic mechanism can only support at the cost of privacy. Backwards unlinkabil-
ity support is possible but both inflexible and user-unfriendly. We then provide
a flexible variant of the basic mechanism in Section A based on pairing based
encryption. This variant supports all identified revocation approaches without
the loss of privacy or user friendliness. In Section 5 we make a comparison of
our scheme with existing literature. Section 6 contains further practical consid-
erations and further applications including German e-ID white listing. Section 7
contains conclusions.

2 Common ground in the systems identified

In this section we will define a common e-ID context for the four systems iden-
tified in Section 1 allowing us to describe our generic revocation techniques.
Throughout this paper we let G = ⟨g⟩ be a revocation group. This is a multiplic-
ative group of prime order q. By GF(q) we denote the Galois field of the integers
modulo q. The assumed cryptographic security of the revocation group G can be
formulated in four problems in the context of the Diffie-Hellman key agreement
protocol with respect to g. The first one is the Diffie-Hellman problem, which
consists of computing the values of the function DHg(g

x, gy) = gxy. The second
problem is the discrete logarithm (DL) problem in G with respect to g: given
α = gx ∈ G, with x ∈ GF(q) then find x = DLg(α). The third problem is the
Decision Diffie-Hellman (DDH) problem with respect to g: given α, β, δ ∈ G
decide whether δ = DHg(α, β) or not. The DDH problem can be alternatively
formulated as: given h, α, β ∈ G decide if DLg(α) = DLh(β). The DL problem
is at least as difficult as the DH problem, which is at least as difficult as the
DDH problem. One can easily show that if one can solve the discrete logarithms
with respect to one generator, one can solve it with respect to any generator of
G. That is, the hardness of the discrete logarithm problem is independent of the
generator of the group. In [42] a similar property is shown for the Diffie-Hellman
problem. Although not known, it is unlikely that the hardness of the Decision
Diffie-Hellman problem is dependent of the generator of the group. To this end,
we say that one can solve the general Decision Diffie-Hellman problem with re-
spect to G if one can solve it for all generators of G. We assume that all four
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introduced problems in G are intractable, i.e. no algorithm exists of complexity
polynomial in the size of q that solves them with non-negligible probability.

In our e-ID context the user is issued a credential by an issuer that is bound
to the user. The credential contains one or more hidden attributes that allow
the user to authenticate to a verifier using a proof of knowledge. In our context
we assume that one of the hidden attributes is a revocation handle mR ∈ GF(q),
that can be jointly generated by the user and the issuer (but without the issuer
learning the value). We further assume that the user is able to calculate P =
hmR for any h ∈ G and is able to prove that. That is, to use (statistical) zero
knowledge proofs of knowledge that DLh(P ) is equal to the revocation handle
mR hidden in the credential. Actually, for all systems in scope this is based
on Schnorr’s three pass protocol [38]. Compare [23, Appendix C]. We have also
illustrated this in Appendix A. In the case of Idemix, the revocation handle is
a hidden attribute. The revocation group G is used as the so-called pseudonym
group described in [23, Section 5.1]. A similar context holds for the DL based
U-Prove [9, Section 2.3.2]. In Appendix A we describe how both the FIDO and
the German e-ID context can be supplemented with the described revocation
handle. The hidden attribute mR is then the private key of the user and the
credential is the public key of the user relative to a verifier specific generator.
We note that these supplements do not require changes to the core protocols of
FIDO and the German e-ID.

3 A first, basic revocation mechanism

In this section we describe a first, basic revocation mechanism based on one
of the revocation mechanisms chosen by the ABC4Trust project [2]. As many
variants are possible we make it more concrete by choosing that user revocation
should be effective within 24 hours as required in [17,13]. We use the concept of
Idemix domain pseudonyms [23, Section 5.5] which are hashes into a group G
based on the name of the service provider and signed with a hidden secret mR ∈
GF(q) inside. To this end, we let H(.) : {0, 1}∗ → G be a secure hash function.
The pseudonyms take the form H(Str)mR for any string Str. As explained in
Section 2 the user device is able to prove the correct form of these pseudonyms.
The general revocation idea from ABC4Trust [2] is to force the user to prove
that his credential is not revoked. This is achieved by forcing him to provide
pseudonyms based on certain strings during the disclosure protocol and to let
him prove they are correctly formed. This requires a secret key called revocation
handle in [2], the term we also use. If the user wants to revoke its credential, he
sends the revocation handle to a revocation provider. This provider periodically
calculates all pseudonyms corresponding to revoked credentials and places them
on a Credential Revocation List (CRL) available for service providers.

Our first revocation idea is to diversify the pseudonyms using strings con-
sisting of a “date/serial number” combination. In more detail, as part of the
revocation setup all participants have a common understanding of a day num-
ber, e.g. the number of days since January 1, 2000. Moreover we assume that
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credentials have a validity period and that service providers can assess the valid-
ity of the credential. Let us denote the validity period of the credential in day
numbers, e.g. D1, D2, . . . , Dv where v is the validity period in days. That is,
v = 1460 for a four year validity period which in line with the practice. See [13]
and [41].

Finally, we let w be the maximum number the card can be used on a daily
basis. This should be a large number like w = 1.000 to avoid that the user cannot
use its card. The revocation supplemented disclosure protocol we suggest runs
as follows. A secured channel between the user and the service provider is setup
and the service provider sends the day number d. The user device assesses that d
(reasonably, see below) corresponds to the current date and that the day number
is inside the validate period of its credential. If this assessment is negative an
error will be returned. We note that in normal circumstances the service provider
will not send a day number outside the validity period. We also note that an
user device like a smartcard will typically not have a clock. In that situation we
assume that the device stores each day number and validates that new ones sent
are larger or equal to the stored ones. If the assessment was positive, the user
will generate a random serial number (integer) s inside the interval [0, w]. The
role of the serial number is to distinguish different sessions at the same day. So
if this serial number was used before on the same day number d the user will
generate a new serial number until the pair (d, s) is fresh. This implicitly assumes
that the device (e.g. card) stores all serial numbers used on one day. A practical
way of achieving this is to use an encryption function EK(.) : [0, w] → [0, w]
based on a secret key K only known to the user device. Instead of generating a
random serial number, the device then simply encrypts a daily sequence number
(that starts with zero every day) and storing that. The key K would need to
change daily, so it would be most practical to let K be diversified based on a
card specific master key and the day number.

Next, as part of the disclosure protocol to a service provider the user also
produces a “date/serial number” pseudonym which takes the form

P(d,s) = (d, s,H(d||s)mR).

Moreover, as part of the disclosure protocol the user provides the pseudonym and
also proves that the hidden attribute mR is also equal to the discrete logarithm
of the third component of P(d,s) with respect to H(d||s). We have included the
day number d in the pseudonym description only for clarity; the service provider
is aware of d already.

If this disclosure protocol was successful the service provider then checks if
the “date/serial number” pseudonym P(d,s) is on the CRL of day number d that
is available from the revocation provider. If it is, the credential was revoked and
the service provider will break off the protocol. If the user wants to revoke its
credential, the “date/serial number” pseudonym of the user will be placed on
each daily CRL as follows. The user sends its revocation handle mR and the
validity period of its credential to the revocation provider. During the remaining
days of the validity period, the revocation provider will then calculate all w
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“date/serial number” pseudonyms of that user and puts them on the daily CRL.
This means that if the number of revoked (but not expired) credentials is z, the
revocation provider will need to generate a CRL with w×z entries with an equal
amount of calculations. See Section 6 for more practicabilities.

We will now show that the CRL entries of non-revoked credentials cannot be
linked by introducing a game. With respect to the rules of this game, we observe
that if two different users provide pseudonyms based on the same date and serial
number, they can be distinguished as these pseudonyms will then be different.
However, as long as pseudonyms based on different date and serial number com-
binations cannot be linked this is not a concern because this information does
not accumulate. Theoretically this issue can be addressed by choosing w so large
that the probability of this occurring is negligible.

The game we introduce is between a party P and an adversary A consisting
of a learning phase and a final phase. In the learning phase the adversary can
request any “date/serial number” pseudonym for any day d for a number of
times polynomial in the size of q. P follows two possible scenarios. The first
scenario is that P will consequently give a “date/serial number” pseudonym
for one user, i.e. corresponding with one secret key mR. The second scenario is
that P will alternately give the “date/serial number” pseudonym for two users,
i.e. corresponding with two different secret keys mR,m

′
R. We assume that P

will never give a pseudonym based on the same date/serial number twice for the
reason explained above. In the final phase of the game, A needs to state which of
the two scenarios P chose. The next result states that the “date/serial number”
pseudonyms do not allow linking of users.

Proposition 3.1 We assume the random oracle model [5] and we assume that
the hash function H behaves like a random oracle. If there exists a polynomially
bounded algorithm that can win the above game with non-negligible probability of
success, then the general DDH problem in G can be broken.

Proof: We use the alternative formulation of the general DDH problem. That is,
we are given any h1, h2, α, β ∈ G and we need to decide if DLh1(α) = DLh2(β).
For each request i we generate a unique pair (si, di) and a unique xi ∈R GF(q).
For an even request we define the hash function to be equal to hxi

1 and let the
pseudonym be equal to (si, di, α

xi). For an odd request we let the hash function
be equal to hxi

2 and the pseudonym be equal to (si, di, β
xi). The scenario impli-

citly chosen by the simulation corresponds with the answer to the DDH problem
with respect to h1, h2, α, β ∈ G. This means that a polynomially bounded ad-
versary that can predict the scenario chosen with non-negligible probability of
success can break the general DDH problem in G. �

The basic setup discussed has a privacy drawback. Indeed, if service providers
store the “date/serial number” pseudonyms of the user they are able to link all
uses of the credential of the user in the past with the revocation handle mR of
the user. As this revocation handle is provided by the user to the revocation
provider this effectively means that collusion between the revocation provider
and the service providers would result in linkability issues. Of course, one might
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consider that this risk is acceptable, but it does seem to be in contrast with the
philosophy around the systems in scope.

Communication in the basic scheme and the variant described above, could
be reduced if we let the service providers simply send P(d,s), to the revocation
provider and request the status of the credential. The service provider would
then do a lookup on the CRL and respond accordingly. This resembles the setup
of the Online Certificate Status Protocol (OCSP) [26]. However, in this setup the
privacy role of the revocation provider becomes much larger. Indeed, if he would
store all requests of the service providers then he would be able to link all uses of
the credential in the past of a user that revoked his card. That is, the revocation
provider would become a single point of failure for user privacy. The most flexible
approach would be to simply give the service providers the revocation handles
mR instead of the CRL. Indeed, this approach would allow them to calculate all
pseudonyms corresponding to the given date and serial number and look for a
match with the one given by the user. That is, to have a Verifier Local Revocation
setup, cf. [32,33]. See also Section 5. The service provider would then also be able
to calculate the CRL itself. Although flexible, this setup is particularly privacy
unfriendly as this would allow the service providers to directly link all revoked
card usages in the past.

In the next section we develop an extension of the basic scheme based on
pairings. The extension then yields a flexible Verifier Local Revocation setup
similar to the last approach but without the privacy unfriendliness. This will
then also allow for all other approaches mentioned also.

4 The proposed revocation mechanism

We introduce three groups G1 = ⟨g1⟩, G2 = ⟨g2⟩ and GT = ⟨gT ⟩ that are all of
prime order q. It is assumed that the Diffie-Hellman Decision problem is hard
in all these groups. We also introduce a pairing map e : G1 × G2 → GT that
satisfies the following two properties:

Bilinearity: e(ga1 , g
b
2) = e(g1, g2)

a·b for all integers a, b
Non-Degenerate: gT = e(g1, g2) ̸= 1.

We further assume that the pairing is of Type 3 meaning that there are no
efficiently computable homomorphisms between G1 and G2. The group GT will
play the role of the revocation group from Section 2. In [22] a framework for
pairing friendly elliptic curves is developed. This allows a flexible selection of
groups G1, G2 and GT and to make a trade-off between security and efficiency
of computing the pairing.

A convenient choice is the Barreto-Naehrig curve BN254 from [4]. In this case
G1 is a group of points on an ordinary elliptic curve over GF(p), G2 is a group
of points on an ordinary elliptic curve over GF(p2) and GT is a multiplicative
subgroup of GF(p12). Here p is a 254 bit prime number that is 3 modulo 4
making square root calculation convenient. The order q is also 254 bits in size.
To prove a credential is not revoked, our techniques require the user (device) to
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calculate at most one pairing operation. See below and Section 6 for practical
considerations.

We also let H1(.) (respectively H2(.)) be a one-way function {0, 1}∗ → G1

(respectively {0, 1}∗ → G2). A straightforward construction for such functions
in the context of elliptic curves is probabilistic, cf. [28]. Here one uses a standard
secure hash function to map the string to an element in the field over which
the elliptic curve is defined and verifies if there exists a curve point with this
x-coordinate. If this is not the case one varies the string in a deterministic fash-
ion, e.g. by concatenating a string corresponding to an incrementing counter
that starts with 1 and one tries again. Each try has a fifty percent of success so
eventually one will find a point on the curve. A deterministic polynomial-time
algorithm to embed strings in elliptic curves can be found in [37]. A simplified
algorithm can be found in [8, Section 7.] which reduces the complexity of em-
bedding a string in a curve to one quadratic residue check and one square root
operation in GF(p). In the electronic passport specification [25, Appendix B] a
further speedup of this algorithm is provided. The algorithm [8, Section 7.] can
also be applied to elliptic curves over extension fields, e.g. over GF(p2), and spee-
dups similar to [25, Appendix B] can be devised. To summarize, the algorithm
in [8, Section 7.] provides us with effective embeddings in both G1 and G2 in the
context of Barreto-Naehrig curves.

We now use the same setup as in Section 3 but we let the “date/serial num-
ber” pseudonyms related to the pair (d, s) take the slightly alternative form

P(d,s) = (d, s, e(H1(d||s)mR ,H2(d))) = (d, s, e(H1(d||s),H2(d))
mR). (1)

As before, the user device calculates P(d,s) during the disclosure protocol and
proves that the hidden attribute mR is also equal to the discrete logarithm of
the third element in P(d,s) with respect to e(H1(d||s),H2(d)).

The essential difference with the scheme in Section 3 is how the user re-
vokes its credential. Instead of providing mR to the revocation provider, it only
provides a list of the remaining day keys, i.e. corresponding to the days Dx,
Dx+1, . . . , Dv. This list takes the form:

{(Dx,H2(Dx)
mR), (Dx+1,H2(Dx+1)

mR), . . . (Dv,H2(Dv)
mR)}. (2)

The revocation provider creates a list of all day keys and publishes them. This
provides a Verifier Local Revocation setup, cf. Section 5, allowing a service pro-
vider to validate if a pseudonym P(d,s) given by a user corresponds to a revoked
credential. Indeed, based on the pseudonym the service provider can calculate

e(H1(d||s), H),

for every day key H on the day key list and compare that with the third element
in P(d,s). As

e(H1(d||s), H) = e(H1(d||s),H2(Dd)
mR) = e(H1(d||s),H2(Dd))

mR

8



4. THE PROPOSED REVOCATION MECHANISM

the “date/serial number” pseudonym calculated by the user coincides with the
one calculated by the service provider. This validation requires the service pro-
vider to perform a number of pairings linear to the number of revoked credentials.

The Verifier Local Revocation setup allows any of the approaches mentioned
at the end of Section 3 in a privacy friendly fashion. For instance, the revoca-
tion provider (or in fact any party) can create the CRL of day d consisting of
all “date/serial number” pseudonyms for all revoked credentials by calculating
expressions of the form

P(d,s) = (d, s, e(H1(d||s),H)),

for every serial number s and key H on the list of the day. The revocation
provider can publish the list and make them available for the service providers. In
Section 6 we give estimations of the size of the list and show that it is manageable.
The revocation provider (or in fact any party) can base a revocation check service
on the CRL. Here a service provider would send a pseudonym to the revocation
provider that would check if this is on the list. This is reminiscent of the Online
Certificate Status Protocol (OCSP) [26]. As the day key list is not secret one
can distribute the OCSP service over many cloud services by dividing the set of
serial numbers.

From the first equality of Equation (1) it follows that the pseudonyms are
a composition of the pseudonyms in Section 3 related to H1. It follows from
Proposition 3.1 that these pseudonyms do not link users due to the presumed
hardness of the Diffie-Hellman Decision problem in G1. In the following proposi-
tion we show backward unlinkability: possession of the day keys does not enable
to link the “date/serial number” pseudonyms after revocation with those before
revocation. This property is due to the presumed hardness of the Diffie-Hellman
Decision problem in G2. So the hardness of both Diffie-Hellman Decision prob-
lems (in G1 and in G2) is essential in our scheme. As in Section 3 the result is
based on a game between a party P and an adversary A consisting of a learning
phase and a final phase. At the start of the game the adversary is given all day
keys of U after a certain day d. The adversary can then request “date/serial
number” pseudonyms before day d. P follows two possible scenarios. The first
scenario is that P will consequently give the “date/serial number” pseudonym
for user U , i.e. corresponding with revocation handle mR. The second scenario
is that P will give the “date/serial number” pseudonym for another user U ′, i.e.
corresponding with a different revocation handle m′

R. In the final phase of the
game, A needs to state which of the two scenarios P chose. The next result states
backward unlinkabilty of the scheme.

Proposition 4.1 We assume the random oracle model [5] and we assume that
the hash functions H1,H2 behave like random oracles. If there exists a poly-
nomially bounded algorithm that can win the above game with non-negligible
probability of success, then the general DDH problem in G2 can be broken.

Proof: We use the alternative formulation of the general DDH problem in G2.
That is, we are given any γ1, γ2, α, β ∈ G2 and we need to decide if DLγ1(α) =
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DLγ2
(β). We define the hash function H2 on day d after the revocation day

to be equal to γxd
1 where xd ∈ GF(q) is randomly chosen. We also provide the

adversary with the day keys formed as αxd for all remaining days after the
revocation. For each request i we generate a unique pair (si, di) and a unique
xi ∈R GF(q). In both scenarios we define the hash function H1 on d||s to be
equal to a random element gi in G1. In the first scenario we let H2(di) to be
equal to γxi

1 and in the second scenario we let it be equal to γxi
2 . The pseudonym

returned in the first scenario takes the form (si, di, e(gi, α
xi)) and in the second it

takes the form (si, di, e(gi, β
xi)). The scenario implicitly chosen by the simulation

corresponds with the answer to the DDH problem with respect to γ1, γ2, α, β ∈
G2. This means that a polynomially bounded adversary that can predict the
scenario chosen with non-negligible probability of success can break the general
DDH problem in G2. �

From the previous result it follows that one is not able to link the user
credential usages before revocation. However, with the day keys one is able to
link the credential usages after revocation. This could facilitate the user to see
what happened with his card after revocation. A revocation provider would be
the obvious position for such an inspection service. Moreover, if the user did
discover the loss of its card only after some time, it is possible to identify the
service providers that were visited with the card in the intermediary period
between card loss and reporting. Indeed, the user then provides the day keys
from the date the card was lost instead of from the date he found out.

5 Comparison with related work

In [31] another application of the ABC4Trust revocation mechanism is used
based on pseudonyms diversified to time periods (epochs) and service providers
identities. This is reminiscent to the German e-ID revocation setup and with
its functional drawback that each service provider needs to be provided with a
separate CRL. An additional drawback of [31] is that it needs to provide CRLs to
service providers every epoch and the user can use his credential only once in an
epoch as otherwise he will be linkable by his non-revoked-proving pseudonym.
Further improvements are suggested in [31]. Although the privacy properties
achieved are better than those of the German e-ID its practical usability seems
worse.

In [29,30] an overview of various (Idemix) revocation techniques is given.
Other than using credentials with short lifetimes it identifies three approaches
for backward unlinkable revocation: Accumulators [15], Signature Lists [34], and
Verifier Local Revocation [32,33]. The first two approaches require the user to
download and process an entire set of update information before a revocation
check can take place. As the size of this information is linear to the number of
revoked credentials this can be time consuming for the user. In the situation of
Signature Lists the main computational burden lies at the issuer and is linear
to the number of revoked credentials. The actual revocation check for the user
(on the updated Signature List) is in constant time. With Accumulators the

10



5. COMPARISON WITH RELATED WORK

main computational burden lies at the user and is linear to the number of newly
revoked credentials. This means that with Accumulators the user is burdened
with both a download and an update process.

From the user perspective, Verifier Local Revocation seems more practical as
it does not require the user to download or update its information to facilitate
the revocation check prior to authentication. Here the burden of download and
computation lies at the verifier, i.e. the service provider in our context. This
complexity is linear to the number of revoked credentials. As performing pre-
computation is not possible, the verifier needs to perform a computation linear
to the number of revoked credentials as part of the user authentication process.
This can result in a time consuming authentication process of the user. In ad-
dition to this drawback, it seems difficult to design Verifier Local Revocation
schemes that are backward unlinkable. For this [29] refers to the group signa-
ture scheme with backward unlinkable revocation from [32] and its improvement
in [33]. However [29] fails to explain how the user’s group signature secret key
would be bound to an Idemix credential or in fact any other privacy-enhanced
public-key infrastructure mentioned in this paper. The actual conducted Verifier
Local Revocation experiments in [29] are based on a variant of the VLR scheme
from [10] which does not provide for backward unlinkable revocation.

Our technique can also be considered as a VLR mechanism with backward
unlinkable revocation. Like the techniques from [32,33] our technique is based on
pairing based cryptography. However, our technique is based on a Type III pair-
ing whereas the technique of [32,33] is based on Type II pairings. Not taking into
account the (scheme dependent) effort to prove credential ownership, our tech-
nique only requires elliptic curve multiplication and one pairing to be calculated
by the user device. See Section 6, where we also show that the pairing calcula-
tion can in fact be avoided with the aid of a helping user computer. In contrast,
the generation of a group signature and the proof that it is not revoked requires
6 exponentiations, 3 pairings and two isomorphism computations (inherent to
a Type II pairing) with the technique of [33]. The verification of both schemes
is similar and consists of a number of pairing operations linear to the number
of revoked credentials. The verification of both schemes is similar and consists
of a number of pairing operations linear to the number of revoked credentials.
However, like Signature Lists our scheme also allows for pre-computation which
faciliates that the verification of the user proof is simply a table lookup.

We conclude that, regardless whether the technique from [33] can actually be
used as an convenient credential revocation mechanism, our technique is about
twenty times more efficient on the user side. As a more personal opinion we also
state we have more trust in the security of Type III pairings then in Type II
pairings. This due to our believe that the isomorphism in Type II pairings will
raise the risk of potential attacks. The security of our mechanism is based on the
well-known Decision Diffie-Hellman assumptions whereas that of [33] is based on
a weakening thereof (called q-SDH and DLDH).
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6 Practical considerations and further applications

In the proposed mechanism of Section A the group GT can be different from the
group in which the basic scheme takes place. This means that the basic scheme
does not need to become completely dependent on the security of paring friendly
curves but only for the revocation. It would however, be most practical in the
situation of U-Prove, FIDO and the German e-ID scheme to let the basic scheme
take place in the group G1.

As part of the proof that a credential is not revoked, the user device needs to
calculate the pseudonym P(d,s) from Equation (1) and to prove it is well-formed.
For this we have suggested Schnorr’s three pass protocol for the systems in
scope. Used in a straightforward way, this requires two pairings: one for formula
Equation (1) and one in the Schnorr commitment of type

e(H1(d||s),H2(d))
r, (3)

for a random r in GF(q). Compare Appendix A. However, the latter pairing one
can be avoided by providingH1(d||s)r to the verifier and letting him calculate the
pairing in Formula (3). For a less powerful device such as a smartcard, additional
work can be done by a helping computer. For instance, all secret keys (including
the revocation handle mR) could be inside a contactless smartcard that is driven
by an “APP” on a smartphone or a tablet. In this situation, the “APP” could
send the day number d to the smartcard that would send back a fresh serial
number after validation of the day number. The “APP” then calculates the
expression e(H1(d||s),H2(d)) for the smartcard an let that be raised to the power
mR in GT . In combination with the discussion above, we conclude that with the
aid of a helping user computer, the calculation of pairings on the user device
(smartcard) can be avoided. Not taking into account the (scheme dependent)
effort to prove credential ownership, the total computational effort for the device
is then limited to a 256 bit exponentiation in GT and G1. In the context of
BN254 curves the latter corresponds to an elliptic curve multiplication in a curve
over GF(p) which take about 50 milliseconds on a modern smartcard. Using [7]
multiplicative operations in GF(p12) can be estimated to be about 50 times
slower than in GF(p). An exponentiation in GF(p) of size 256 bits corresponds
to an RSA encryption of modulus size 256 bits and an exponent of 256 bits. This
corresponds to a factor (256/1.280)2 ·200/256 = 0, 03125 of an RSA encryption of
modulus size 1280 bits and a random exponent of 200 bits. This is reported [39]
in 2009 (!) to take 120 milliseconds on a Java smartcard. That is, we can estimate
that an exponentiation in GF(p) of size 256 bits takes less than 4 millisecond
and an exponentiation in GF(p12) takes less than 200 milliseconds on a modern
smartcard. With the aid of an helping computer it would thus take less than a
quarter of a second in total to prove that a credential is not revoked.

One could also let all operations take place in the user device, i.e. without
the help of an additional user computer. This would mean that the device would
also calculate the embeddings in G1 and G2 as the verifier can not be trused with
this. Based on the discussion above it follows that the device would only need

12
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to calculate the pairing from Equation (1) and leave the commitment pairing to
the verifier.

In [16], [36], [40] it is indicated that the calculation of pairings is within
the reach of modern smartcards and embedded systems. From [16] it follows
that already in 2007 it was possible to calculate BN254 pairing on a smart-
card in 5 seconds. As demonstrated in 2014 [40] a plain Cortex-M0+ without
any accelerators can compute a BN254 pairing in less than a second. It seems
a safe assumption that a smartcard with suitable accelerators for big-integer
arithmetic, such as the soon-to-be-released OpenCard [35] can compute such a
pairing in less than half a second.

The list in (2) could in practice be formed during credential issuance and
sent in encrypted form to the revocation provider as follows:

(Dx, E ′
Kx

(H2(Dx)
mR)), (Dx+1, E ′

Kx+1
(H2(Dx+1)

mR)), . . . , (DvE ′
Km

(H2(Dv)
mR)).

Here E ′
K(.) is a symmetric encryption under key K with the appropriate domain

and where key Ki+1 is the secure hash of its predecessor Ki. Ideally this list
is generated by the user device where the symmetric encryption can be done
outside the device. For a four year validity period this essentially corresponds
to 1.460 elliptic curve multiplications in the curve over GF(p2). Based on [7] we
estimate that on average GF(p2) arithmetic is about three times slower than
GF(p) arithmetic. As elliptic curve multiplications in a curve over GF(p) take
about 50 milliseconds on a modern smartcard, it takes about 4 minutes to cal-
culate the above list on a modern smartcard. This seems acceptable as this is a
one-time operation. If in this approach the user wants to revoke its credential on
day i ≥ x he would only need to provide Ki as all other required keys follow from
this. Moreover, the user would only need to store the first one, i.e. Kx (e.g. a 128
bit value, i.e. 32 HEX nibbles) as Ki can be calculated from this by repeated
hashing. Such a value could be placed inside a user PIN mailer. For a four year
validity period and using curve BN254, the encrypted list above would be of size
less than 100 Kilobytes. We note that one could also let the issuer generate the
list during card personalisation, although one then needs to trust the issuer not
to store the revocation handle.

We now give an indication of the practical complexity of our techniques
assuming credentials with a four year validity. About 13 million people of the
Dutch population is over 20 years of age. From [41, Figure 12] we estimate that
10 percent of all non-expired credentials is revoked at a given day. This means
that if all Dutch people over 20 would have a credential, about 1,3 million non-
expired credentials would have a revoked status at a given day. Based on [3],
[7] we estimate that we can calculate 4.800 BN254 pairings a second on the
four cores of an Intel i7 2.8GHz processor. This means it would take a service
provider about five minutes to validate a credential by running through the list
of day keys. If the list would contain the expiry date (available in the German
e-ID card) this would reduce the time with a factor of 1.460 and the check can
be done under half a second.

For a large serial number range of 1.000 the calculation of a daily CRL
would require 1,3 billion pairings. So the computational capacity of four Intel
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i7 computers would suffice to calculate the daily CRL for the Netherlands. As
the day keys are non-secret, this work can be robustly performed through cloud
services where it represents little effort. Here we have not taken into account
that the revocation provider can work in advance by calculating pseudonyms
for existing revoked credentials. Ballpark estimates show that this approach can
lower the daily computational effort by half. In the context of BN254 elements
in GT will be of size 12 x 254 = 3.048 bits. This size can be reduced by using
secure hash values of these elements instead. A 128 (16 bytes) bit hash output
will suffice to withstand birthday paradox based issues. The daily CRL will then
be about 20 Gigabytes in size which is manageable, especially as this work can be
placed in the cloud. Especially for pan European e-ID cards such as envisioned
in [17] this is an interesting add-on as it gives users an indication of the intended
fraud of the card taking place in another country through the national PEPS.

So far we have only considered revocation, i.e. blacklisting. The same tech-
niques can be used for suspension, e.g., automatically suspending a card for
business use during weekends, and white listing. The German e-ID [12, Section
2.8.4] introduces white lists in case the shared keys it uses get compromised.
These are similar to the black lists (CRLs) and German government already
possess these revocation keys and has the ability to link the pseudonyms further
hampering privacy of German citizens. To support white listing, we envision
an ‘existence provider’ next to the revocation provider. This provider assures a
service provider that a pseudonym (card) ‘exists’, i.e. is not forged. This only
needs to be done once, during user registration at each service provider. The
existence provider envisioned consists of two, strictly separated parts: a white
list producer and an on-line existence service. The list producer is provided with
the 1 January 2000 day keys of all (new) batches of produced cards. These day
keys are then used to produce and maintain a white list consisting of the hashed
pseudonyms for all serial numbers. This white list and updates (new cards) are
then provided to the on-line service. The white list also contains the expiry
date of the cards and the on-line service removes expired cards. To prove ex-
istence, the user card generates a fresh, random serial number s and provides
the “date/serial” pseudonym for 1 January 2000 with respect to s. This is then
sent to the on-line provider who will do a look up on the white list and respond
accordingly. For 13 million users registered the white list is about 4 Terabytes
in size for the serial number range of 10.000, which is manageable and can be
distributed over several cloud services.

7 Conclusion

We have described a revocation mechanism for the FIDO, German e-ID and
the Idemix and U-Prove systems that is flexible, efficient, timely and backward
unlinkable. This also allows for a central revocation provider and card white
listing in a privacy friendly fashion.
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A Supplementing FIDO and the German e-ID with a
revocation handle

In this appendix we describe the required supplements to the FIDO and German
e-ID contexts to allow for a revocation handle as described in Section 2. This
handle will in fact coincide with a private key already existing on the card in
these contexts. In current practice card private keys are often generated by the
issuer during card personalization for simplicity. However both the FIDO and
German e-ID setup allow generation of such keys by the user device itself, e.g.,
as part of first usage. This would reduce linkability risks resulting from issuer
compromise.

We start with the explanation for FIDO [20,21]. For each service provider
the FIDO user device is required to generate a unique persistent public/private
key pair meant for signing. The resulting public keys cannot be cryptograph-
ically linked. The FIDO specifications include the usage of the Elliptic Curve
Digital Signature Algorithm (ECDSA) [1] in an elliptic curve group Γ = ⟨γ⟩ of
prime order q. In a straightforward FIDO implementation one makes the pub-
lic/private key pair unique by using a fixed generator of Γ , e.g. the basepoint
γ, and randomly choosing the private key x ∈ GF(q). This results in a pub-
lic/private key of the form (x, γx). Another way to create a unique pair is to
let the user device randomly generate a private key x only once and then to
securely choose a unique generator for each service provider. This private key
will serve both as the authentication key as the revocation handle. To reflect
this we denote it by mR.

To further specify, let H(.) : {0, 1}∗ → Γ be a secure hash function. Compare
the discussion at the beginning of Section . We let the generator γSP ∈ G for
a service provider be formed as the hash value of a string Str identifying the
service provider, e.g., its domain name from its TLS server certificate. That
is, γSP = H(Str). We then let the public key be π = γmR

SP where mR is the
revocation handle. That is, the user uses the same private key for all service
providers but with different generators. Note that the FIDO token does not
need to store these generators as it calculate them on the fly. This means that
the FIDO token becomes stateless which is of independent value. Also note that
by letting the Decision Diffie-Hellman problem be intractable in Γ these public
keys are not linkable. This now fits in the context described in Section 2. Indeed,
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if G = ⟨g⟩ is a group of order q. Then for any group G of the same order and
h ∈ G the user can calculate p = hmR and can prove with Schnorr’s three pass
protocol [38] that DLh(p) is equal to the revocation handle mR hidden in the
public key. Indeed, the user device then generates r ∈R GF(q) and provides
A1 = γr

V and A2 = hr to the service provider as a commitment. The service
provider then generates a random w ∈ GF(q) and provides that to the user
device. The user device then returns z = w ·mR + r to the service provider that
then checks if γz

V = A1·πw and hz = A2·pw. We mention that in practice one
typically uses non-interactive variants of this protocol, cf. [19].

The “Restricted Identification” (RI) protocol in the German e-ID [11, Section
3.6] is quite similar to the FIDO setup described above. It is also based on
a Elliptic Curve group G = ⟨g⟩ of some prime order q called Brainpool [24].
The user e-ID card contains a private key known as SKICC1 ∈ GF(q), cf. [11,
Section 3.5]. It is not specified where this private key can be generated but it
can be generated by the e-ID card as part of first usage. The service provider
pseudonym takes the form of a hash of PSSP = PKSKICC1

SP ∈ G where PKSP ∈
G is the public key of the service provider. This is very close to the FIDO
setup we described. If a user wants to prove its RI pseudonym is not revoked
(in a backwards unlinkable fashion), it will reveal PSSP which places him in
the context of Section 2. We remark that revealing PSSP is already part of
the e-ID card as an extension of the “Restricted Identification” protocol called
“Pseudonymous Signatures”. This protocol allows an e-ID card to additionally
bind signatures to its pseudonym. See [11, Section 3.6].
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