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Abstract

The fresh re-keying scheme is a countermeasure designed to protect low-cost
devices against side-channel attacks. In this paper, we present a new birthday-
type attack based on a refined reduction to Ring-LPN with a reducible poly-
nomial. Compared with the previous research, our algorithm significantly re-
duces the time complexity in the 128-bit leakage model—with an SNR equal to
8 and at most 220 traces, for instance, the key can be recovered using 241.99

bit-operations.
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1. Introduction

The design of efficient countermeasures to prevent side-channel attacks is one
of the most attractive research problems in Lightweight cryptography, a realm of
developing efficient and secure low-cost cryptographic primitives for highly con-
strained environments (e.g., RFID tags, sensors, and other power-constrained
devices). This task is very challenging, since after devoting more than 15 years,
researchers can hardly find a satisfactory solution—many proposals (e.g., [1, 2])
are considered to be either inefficient or ineffective.

Among all the solutions, the fresh re-keying scheme, first proposed by Med-
wed et al. in [3], seems to be a promising one, due to a security guarantee
provided by never reusing the same key straight-forwardly but generating a
fresh session key upon each invocation of the encryption. A natural problem,
therefore, is to clarify this intuitive security guarantee, i.e., to determine the
concrete complexity to mount an attack on a protected implementation.

Following the Hamming weight leakage model [4], Belaïd et al. reduce this
problem to a celebrated hard learning problem, the Learning Parity with Noise
(LPN) problem, and resolve it using a BKW [5] variant. This reduction is
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further adopted by Pessl and Mangard [6] to form an ISD-style attack employing
the soft information of bit reliability. Both algorithms are efficient if 8-bit
leakage is measurable; in the worst-case model (e.g., a hardware implementation
using a 128-bit operator), however, much effort still needs to be paid to enhance
their performance.

In this correspondence, we propose a new algorithm for attacking the fresh
re-keying scheme along this line of research. We observe a new reduction to
one of the variants—Ring-LPN2, rather than LPN itself, which provides addi-
tional algebraic structures to be further exploited. Noticing that the underlying
polynomial is reducible3, we obtain a much better dimension-bias trade-off,
i.e., further diminishing the dimension at the same cost of decreasing the bias,
thereby resulting in the enhanced performance.

This attack compares favorably with the previous best algorithm. For ex-
ample, given an instance noticed in the abstract of [9], we improve the time
complexity with a factor of almost one thousand, rather significant in the secu-
rity level of around 240 bit-operations.

The remaining parts of the paper are organized as follows. We introduce
some basic theory in Section 2, and then the main algorithm in Section 3. This
is followed by a section stating the numerical results of the new algorithm. We
finally conclude the paper in Section 5.

2. Preliminary

We give some preliminaries in this section. Given a positive integer n, we
denote the finite field of 2n elements by F2n and the n-dimensional vector space
over F2 by Fn2 . For an irreducible polynomial P (X) with degree n over F2, we can
represent one element in F2n as a unique polynomial in F2[X]/(P (X)), whose
degree is less than n. This representation implies a bijection from F2n to Fn2 ;
we, therefore, use the notation a to denote both

∑n−1
i=0 aiX

i and (a0, . . . , an−1)
if there is no ambiguity.

2.1. The Matrix/Vector Representation
Consider two field elements a =

∑n−1
i=0 aiX

i and k =
∑n−1
i=0 kiX

i. For the
multiplication a · k in the field F2n , we can write it as a matrix/vector product
A(a)kT, where the i-th column of the matrix A(a) is the transposed coefficient
vector of a ·Xi mod P (X) and kT is the transpose of k. Note that we also have
this representation if the polynomial P (X) is reducible.

In the later sections, we consider a more general case, i.e., operations over
polynomial ring R, where R := F2m [X]/P (X) and P (X) is a polynomial with
degree n over F2m . We can represent an element in R as a vector in Fmn2 by
using a two-level transformation, i.e., first rewriting it as a length-n vector in
Fn2m and then representing each of its entries as a length-m vector in Fm2 . Using

2We use a slightly generalized definition compared with the original one in [7].
3In this sense the new attack is related to the one [8] for reducible Lapin.
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this concatenation, therefore, the ring multiplication can be represented in the
matrix/vector product manner similarly.

2.2. Fresh Re-keying
This scheme is first proposed in [3] to protect low-cost devices against side-

channel attacks, by using a re-keying function g that generates a fresh session
key k∗ for every encryption from a fixed master k. Here g is suggested to be
the following modular polynomial multiplication over F28 :

g : (F28 [X]/P (X))2 → F28 [X]/P (X)

(a,k)→ k∗ = a · k,
(1)

where a is generated uniformly at random. They suggest that P (X) should
have the form of Xd+1, where d ∈ {4, 8, 16}. Throughout the rest of the paper,
we assume that d = 16, which is the most secure parameter as suggested, and
we focus on the worst case, i.e. the 128-bit leakage model.

2.3. Leakage Model
Following previous research (see e.g. [4]), we assume that a noisy observation

of the Hamming weight of the processed values is leaked, and extract a problem
which is a slightly more general version of the problem stated in [9].

Let wH(x) denote the Hamming weight of a fixed length vector x. If x ∈
Fn2 , then wH(x) is just a textbook definition. Otherwise, the value wH(x)
equates

∑n
i=1 wH(xi), where wH(xi) represents the Hamming weight of the

binary representation of xi in Fm2 , if x ∈ Fn2m , i.e., x is an n-dimensional vector
(x1, . . . , xn) over an extension field F2m . We define the problem based on these
definitions.

Definition 1 (Hidden Multiplier (HM) problem). Let k ∈ Fn2m . A se-
quence of samples (ai,Li), 1 ≤ i ≤ l, where ai ∈ Fn2m and Li = wH(ai · k) + εi,
where the multiplication is in the ring F2m [X]/P (X), is given. Here P (X) is a
polynomial in F2m [X] of degree n and εi is Gaussian distributed with standard
deviation σ. Recover the hidden value k.

We see from this definition that the side-channel attack on the fresh re-keying
scheme corresponds to solving a HM problem with m = 8 and P (X) = X16 +1.
Later we denote the dimension mn by N , which is set to be 128 for the fresh
re-keying scheme by default.

2.4. Reduction to Ring-LPN
We show that HM can be reduced to Ring-LPN.
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2.4.1. Ring-LPN
The Ring-LPN problem is first proposed in [7]. Let UR denote the uniform

distribution over R and BerRη denote a distribution over R that each bit of
the output element represented in FN2 is distributed according to a Bernoulli
distribution with parameter η. Here we describe a generalized version.

Definition 2 (Ring-LPN oracle). A Ring-LPN oracle ΠRing-LPN for an un-
known polynomial k ∈ R with η ∈ (0, 12 ) returns pairs of the form

(a, a · k + e) ,

where a
$← UR and e

$← BerRη .

There are two versions of the Ring-LPN problem, i.e., the decision one and
the search one. Aiming to give a key-recovery attack, we focus on the search
Ring-LPN problem to recover the unknown value k after a number q of queries
to the oracle.

2.4.2. Transformation By Using Filtering
Only samples with leakage values outside the range [N/2−λs,N/2 +λs] are

kept, where s =
√
N/2 the standard deviation of the Hamming weight. We then

rewrite the problem in a form close to the Ring-LPN problem: if Li < N/2 set
zi = 0; otherwise set zi = 1. For sample i we can now write

ai · k = zi + ei,

where ei is a length N binary noise vector. It has a distribution determined
from the known Li value.

We see that this is a Ring-LPN problem, with the difference that in the
usual description of Ring-LPN, the noise consists of N independent noise
variables with Bernoulli distribution, whereas here the distribution is differ-
ent. However, we may consider the marginal distribution of single variables and
this will give us exactly the Ring-LPN case. The noise variable p of this Ring-
LPN sample, given the leakage Li < N/2, is formulated by Li/N , if Li < N/2,
and by 1− Li/N otherwise.

2.5. Computing the Error Probability in a Folded Setting
Similar to the formulation in [9], we assume that the multiplication a · k is

uniformly distributed in FN2 . Thus, the pdf h of L(z) can be computed by

h(x) = 2−N
N∑
y=0

(
N

y

)
φy,σ(x). (2)

The proportion of filtered acquisition F (λ) is then

F (λ) = 1− 2−N
N∑
y=0

(
N

y

)∫ N
2 +λs

N
2 −λs

φy,σ(t)dt, (3)
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for any λ ∈ R, and the error probability averaged over all filtered samples is

p(λ) =
1

F (λ)

N∑
y=0

(
N
y

)
2N

(
y

N

∫ N
2 −λs

−∞
φy,σ(t)dt+

(
1− y

N

)∫ +∞

N
2 +λs

φy,σ(t)dt

)
.

(4)
Notice that the noise parameter σ is a function of the signal-to-noise ratio

(SNR for short), i.e., σ =
√

n
4·SNR . Given the number Q of the obtained traces

and the value of SNR, therefore, we can theoretically compute the number q of
the filtered samples and the error probability p according to Eq. (3) and Eq.
(4) by choosing a filter parameter λ.

3. The Main Result

We now proceed with a formulation of an attack on the fresh re-keying
scheme that uses F28 [X]/P (X), where P (X) ∈ F28 [X] and P (X) = X16 + 1.

The key observation is that if the element in F28 is represented as a poly-
nomial (or a vector), then the addition is component-wise. We formulate the
problem as follows. A trail kept after the filtering gives an instance which can
be represented by a ring equation

(

15∑
i=0

ai(Y )Xi) · (
15∑
i=0

ki(Y )Xi) ≡
15∑
i=0

(δ1(Y ) + ei(Y ))Xi mod (X16 + 1),

where ei(Y ) =
∑7
j=0 eijY

j , eij ∈ F2, eij is biased and δ is 0 or 1. Since the
polynomial P (X) in this case is reducible, the problem instance can be reduced
using the Chinese Remainder Theorem (CRT). The above equation then yields,

(

7∑
i=0

(ai(Y )+ai+8(Y ))Xi)·(
7∑
i=0

(ki(Y )+ki+8(Y ))Xi) ≡
7∑
i=0

e′i(Y )Xi mod (X8+1),

(5)
where e′i(Y ) = ei(Y ) + ei+8(Y ) =

∑7
j=0(eij + ei+8,j)Y

j . Denoting eij + ei+8,j

by e′ij , we see the bias of the noise variable decreased.
We may perform this process iteratively to reduce the dimension of the

problem further. This process, however, also increases the noise level, and
thus should be performed only once for an optimized attack on this fresh re-
keying countermeasure. Then we can solve it much faster than the previous
best algorithm by using birthday-type procedures.

After recovering the partial secret ki(Y ) + ki+8(Y ), we determine each of
them by solving an LPN problem with dimension halved and noise unchanged.
This process requires negligible cost compared with that of solving the original
problem.

3.1. Detailed Algorithm Description
Here we describe this new algorithm in steps.
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Algorithm 1 A New Attack on Fresh Re-keying

Reduce the dimension of the transformed Ring-LPN problems1

and represent each of them as 64 LPN samples.
Perform two birthday steps.2

Hypothesis testing using FWHT.3

3.1.1. Dimension Reduction
The following elaborates the method described in Eq. (5). Given a filtered

sample ai with bias ε = 1 − 2p, where p is the expected error probability, we
denote it by a concatenation (a1

i ,a
2
i ), where a1

i (a2
i ) is the first (last) length-

64 sub-vector of the sample ai. Bit-wise adding a1
i and a2

i , we obtain a new
Ring-LPN sample (âi,0) with dimension 64 and bias ε2. We then rewrite the
multiplication inside the Ring-LPN sample in the matrix/vector manner as
described in Sec. 2.1, thereby obtaining 64 LPN samples. For the fresh re-
keying scheme, in particular, the cost for transforming one Ring-LPN sample
is at most 4 · 7 · 8 = 224 bit-operations and several shifts, since the underlying
AES polynomial is x8 + x4 + x3 + x+ 1.

Suppose that q samples are filtered. Then the complexity of this step is
about

C1 = 64 · q + 224 · q = 288q (6)

bit-operations, which is negligible compared with the complexity of the remain-
ing steps. After this step, we obtain 64q LPN samples (āi, 0) with length 64
and bias ε2.

Note: Compared with the algorithm in [9], the improvement of Alg. 1 mainly
comes from this step as we reduce the dimension by 64, much larger than the
dimension reduced by one birthday-type step in [9], while they both decrease
the bias from ε to ε2.

3.1.2. Birthday Steps
After the previous dimension reduction step, the traces are transformed to a

series of LPN samples. We can then use some standard techniques (like BKW
or Information Set Decoding (ISD)) for solving this problem. Since the bias
is small and the number of traces is limited, we prefer to use a birthday-type
variant, which can also be viewed as one heuristic version of the BKW algorithm
similar to those in [10][9].

The BKW algorithm, proposed in [5], is the first sub-exponential algorithm
for solving the LPN problem with a constant error-rate. The key idea is sorting
the received samples by the last l1 bits and adding two collided samples, i.e.,
one find two samples (āi0 , 0) and (āi1 , 0) such that

āi0 + āi1 = (∗ ∗ · · · ∗ 0 0 · · · 0︸ ︷︷ ︸
l1 symbols

), (7)
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where ∗ means any value. We call such a sort-and-merge process one BKW step
and will iteratively perform more until the bias is too small to distinguish4.

Due to the sample limit, we will keep every pair with the same sorted bits
and use them to generate a new sample for the future steps. When attacking
the fresh re-keying scheme, in particular, only two BKW steps will be performed
to remove the last l = l1 + l2 bits for an optimized attack. Finally, we obtain
221−2l1−l2 · q4 LPN samples (āi, 0) with length l3 = 64 − l and bias ε8 as the
input to the future hypothesis testing step. The time complexity of this step is

C2 = 211−l1 · q2 · (64− l1) + 221−2l1−l2 · q4 · l3 (8)

bit-operations.

3.1.3. Hypothesis Testing
The remaining is a hypothesis testing problem, which can be accelerated by

making use of Fast Walsh-Hadamard Transform (FWHT). The procedure is as
follows. We define fā as the number of samples (āi, 0) with āi = ā. Then the
Walsh transform of fā is defined as

F (k̄) =
∑

ā∈Fl3
2

(−1)ā·k̄ · fā. (9)

If enough samples are tested, then the right key is

arg max
k̄∈Fl3

2

|F (k̄)| (10)

with high probability, where |F (k̄)| denotes the absolute value of F (k̄).
The complexity of this step is about

C3 = l3 · 2l3 + 221−2l1−l2 · q4 (11)

bit-operations.

3.2. Complexity Analysis
In this section, we present the complexity formula of the new algorithm. Let

Q be the number of obtained traces. Given SNR and a filtering parameter λ,
we compute the number q of the filtered samples and the error probability p as
stated in Sec. 2.5. Thus, we can view q and p as inputs to the new algorithm
(Alg. 1).

Theorem 1 (The complexity of Alg. 1). Let q be the number of the filtered
Ring-LPN samples with length 128 and expected error probability p. Then the
number of required bit-operations for a successful run of Alg. 1 is

C∗ = 288 · q + 211−l1 · q2 · (64− l1) + 221−2l1−l2 · q4 · (l3 + 1) + l3 · 2l3 , (12)

4The bias is squared after each BKW step.
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under the assumption that

221−2l1−l2 · q4 ≥ 4 ln 2 · l3
ε16

, (13)

where l1 and l2 are algorithmic parameters, l3 = 64− l1 − l2 and ε = 1− 2p.

Proof. The overall complexity is just the summation of that of all the three
steps, i.e.,

C∗ = C1 + C2 + C3,

where C1, C2 and C3 are computed according to Eq. (6), (8) and (11). We add
the assumption, Eq. (13), to assure that the samples employed for hypothesis
testing are sufficient, thereby yielding a success probability close to 1. �

4. Results

In this section, in the 128-bit leakage model, we present the numerical results
for attacking the fresh re-keying countermeasure, assuming for 220, 222 and 224

traces, respectively. As shown in Tab. 1, with more traces and higher SNR
ratio, we provide a more efficient attack. In particular, if obtaining 224 traces
and SNR equals 128, we can solve this problem in 237.7 bit-operations; even if
SNR equals 2 and only 220 traces are measured, the attacking complexity is 245.5

bit-operations, still practical for recent computers.

Table 1: The theoretical complexity for attacking the fresh re-keying scheme.

SNR Parameters log2 C
∗

log2(Q) l1 l2 λ p log2(q)

20 0 30 3.11 0.35 10.93 40.92
128 22 2 30 3.39 0.34 11.49 39.29

24 4 29 3.70 0.33 11.76 37.73

20 0 29 3.27 0.36 11.02 41.99
8 22 2 29 3.57 0.35 11.57 40.22

24 2 30 4.00 0.33 11.28 38.83

20 0 26 3.73 0.38 11.22 45.54
2 22 0 29 4.17 0.37 11.39 43.12

24 1 29 4.61 0.36 11.38 41.34

Compared with the state-of-the-art work [9], the new algorithm improves
substantially. Specifically, if SNR equals 8, they claim5 a theoretical attack
with time complexity 251.68 bit-operations and memory complexity 236 bytes

5Their analysis is optimistic.
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using 220 traces; on the other hand, with the same sample-limit, Alg. 1 recovers
the key using solely 241.99 bit-operations. Thus, we obtain an improvement
with a significant factor of almost 210, while keeping the memory cost since
the vector length of FWHT testing here is only 35 bits. We improve more
compared with the recent best attack [6] using an ISD-type algorithm, since
according to their estimation, though fewer traces are required, it costs more
then 275 bit-operations for the 128-bit leakage case.

5. Conclusion

In this correspondence we have presented a new algorithm for side-channel
attacking the fresh re-keying scheme designed to protect constraint devices. Us-
ing the reducibility of the transformed Ring-LPN problem, we improve signifi-
cantly compared with the previous best algorithm in the 128-bit leakage model.
One of the future directions is to design a new re-keying scheme to thwart this
type of attack.
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