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Abstract. In order to remember long passwords, it is not uncommon users are 

recommended to create a sentence which then is assembled to form a long pass-

word, a passphrase. However, theoretically a language is very limited and pre-

dictable, why a linguistically correct passphrase according to Shannon's defini-

tion of information theory should be relatively easy to crack compared to brute-

force.  

This work focuses on cracking linguistically correct passphrases, partly to de-

termine to what extent it is advisable to base a password policy on such phrases 

for protection of data, and partly because today, widely available effective meth-

ods to crack passwords based on phrases are missing.   

Within this work, phrases were generated for further processing by available 

cracking applications, and the language of the phrases were modeled using a Mar-

kov process. In this process, phrases were built up by using the number of ob-

served instances of subsequent characters or words in a source text, known as n-

grams, to determine the possible/probable next character/word in the phrases. 

The work shows that by creating models of language, linguistically correct 

passphrases can be broken in a practical way compared to an exhaustive search. 

In the tests, passphrases consisting of up to 20 characters were broken. 
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1 Introduction 

Since password cracking constantly becomes more effective as the computing power 

becomes cheaper, usually recommendations say that passwords should be long and ran-

dom. Humans, however, often have difficulties remembering such passwords, so one 

of these requirements are often ignored. It is usually argued that assembled sentences, 

passphrases, is a good solution and represents great security because these are long and 

still easy to remember. However, looking at it from an information theoretical point of 

view, a sentence of 20 characters should be as easy to crack as a random password of 

eight characters. 

We will in this work propose a solution on how to make the cracking of passphrases 

more efficient by only testing linguistically correct phrases and building a phrase gen-

erator for cracking such passphrases. 



The main objective has been to crack lowercase passphrases up to 16 characters of 

length, but tests has also been performed on lengths up to 20, using a normal work-

station. 

2 Related Work 

Most password crackers available are able to put together phrases by combining several 

words from dictionaries, but this is usually done in a more brute-force manner by testing 

all possible combinations of words from the different lists. It is also possible to use lists 

of known and manually assembled phrases, providing an often far from adequate search 

scope. Practically, passphrase cracking is a somewhat inadequately applied area. 

However, there is some research and theories regarding passphrases and their 

strength, or entropy. The most significant work done, and which this work to a large 

extent was based on, is Shannon's theories and definition of entropy in (Shannon CE, 

1948), and his estimate of the entropy of the English language (Shannon CE, 1951). 

Shannon's focus was not on password cracking, but more generally on information and 

communication. His theories have been applied in a lot of areas though. 

Although it has become common practice to measure password strength in entropy, 

it has been questioned as a suitable indicator. One example is (Ma, Campbell, 

Transgender, & Kleeman, 2010) who question the use of entropy in this context because 

it only gives a lower limit for how many guesses needed to crack a password. They also 

consider that it is not possible to determine the entropy of a password through a Markov 

Process according to Shannon's guessing experiment, because during a password attack 

there is no knowledge of any leading characters, as there is in Shannon's experiments. 

At password guessing you know only after the entire word is guessed if it was right or 

not. 

In the conference paper "Effect of Grammar on Security of Long Passwords" (Rao, 

Jha, & Kini, 2013) an attempt to use grammar to crack passphrases is presented. The 

papers results show a slight increase in the number of cracked passwords using gram-

matical rules compared to other methods. It also discusses additional topics related to 

this work, such as user behavior regarding the selection of number of words in a pass-

phrase and shortcomings of available cracking applications regarding passphrases. 

In the paper "Password cracking using probabilistic context-free grammars" (Weir, 

Aggarwal, de Medeiros, & Glodek, 2009), context-free grammar is used in a successful 

attempt to crack passwords. The passwords that are processed are not limited to pass-

phrases, the work is more focused on traditional passwords where grammar rather is 

used for word mutations. 

In (Bonneau & Shutova, Linguistic properties of multi-word passphrases, 2012) pat-

terns in human choice of passphrases are studied, based on Amazons now discontinued 

PayPhrase service. In that study, conclusions are drawn that a 4 words long passphrase 

probably has less than 30 bits of security because users tend to choose linguistically 

correct phrases. 



3 Theory 

A completely random password with 8 characters of length in lowercase letters from 

the English alphabet, according to Shannon's definition of entropy (Shannon C. E., 

1948), has a total entropy of about 38 bits (8 ∗ log2(26)). In case of a linguistically 

correct password, the probability of making a correct guess is affected since some let-

ters are more frequent than others in a human language, and thus the entropy is also 

affected. If the frequency of n-grams is taken into account, i.e. how often certain letters 

follow others, entropy is further reduced. 

There have been many attempts using different models to estimate the entropy of the 

English language, and according to NIST’s (National Institute of Standards and 

Technology (NIST), 2013) interpretation of Shannon and his experiments, it is possible 

to estimate the entropy of the first letter to 4 bits and then reduce it for subsequent 

characters. For characters 2-8, an entropy of 2 bits per character should be used, and 

for the characters 9-20 entropy is increased with 1.5 bits per character. Character 21 

and subsequent can be calculated with as low as 1 bit per letter. 

Based on these assumptions, a linguistically correct passphrase of length 20 (entropy 

36 bits) theoretically should be easier to crack than a randomly chosen password of 

length 8 (entropy 37.6 bits). 

3.1 Markov Chains  

To obtain a low entropy, or high linguistic correctness, in the modeling of a language, 

it must be based on a good language model, and the Markov model was one proposed 

by Shannon in his aforementioned work. 

A Markov chain process is by definition a random process with different states, where 

the probability distribution between transitions to a new state is dependent only on the 

current state. It is not taking into account any previous states thus the process has no 

"memory". If the process meet this requirement it satisfies the "Markov property". 

There is also a variant of Markov chain, called Markov chain of order m, which ironi-

cally takes m number of states into account. With a little determination it is possible to 

even get this Markov chain to satisfy the Markov property, by combining the m previ-

ous states and instead define these combinations as states. For example, if there are 

states A, B, and C, so instead of saying that A transitions to B which then transitions to 

C, new states AB and BC etc. are defined, and it is said that AB transitions to BC. 

3.2 N-grams  

In linguistics the term n-grams is frequently used. These are sequences of n number of 

elements, which may consist of characters or words. A unigram is an n-gram of the first 

order and is simply a character or a word, a bigram is an n-gram of the second order, 

that is: a sequence of two characters or words. Correspondingly trigram, four-grams (4-

grams), five-grams (5-grams) and so on are defined. 

Often these n-grams are extracted from larger texts, corpora, where the number of oc-

currences are counted, to be used as statistical data. One way of modeling a language 



is to use these statistical n-gram data in a process using Markov chains of (n-1):th order 

to predict subsequent characters/words. This model does not always produce perfect 

results, but with a good statistical basis, it can actually give surprisingly linguistically 

correct results. 

The formal definition for an n-gram model is provided by this probability formula: 

𝑃(𝑋𝑖 = 𝑥𝑖  | 𝑋𝑖−(𝑛−1) = 𝑥𝑖−(𝑛−1), … , 𝑋𝑖−1 = 𝑥𝑖−1) 

Where the stochastic variable 𝑋𝑖 is the character that is assessed, given the 𝑛 − 1 pre-

ceding characters, and 𝑛 is equivalent to the n in "n-gram".  

In the case of trigrams is thus the formula: 

𝑃(𝑋𝑖 = 𝑥𝑖|𝑋𝑖−2 = 𝑥𝑖−2, 𝑋𝑖−1 = 𝑥𝑖−1) 

If the n-grams are on character level, i.e. characters has been selected as unit, a bigram 

(2-gram) consists of two characters, a trigram of three and so on. 

It is also possible to use words as unit in the n-grams instead of characters. The big 

difference is that nonsense words are avoided, but the statistics need to be collected 

from a larger base source text. 

With higher order of n-grams more linguistically correct words/sentences are gener-

ated, but its similarity to the source text increases, which thus means less variation in 

the results.  

4 Implementation 

4.1 General Architecture 

This works implementation was based on two console applications, the first of which 

generated the n-gram statistics, and the other generated output in form of one phrase 

per line to a stdout stream. This was done in order for it to be possible to use the program 

either directly with a cracker application (which often accept stdin as input source), or 

to redirect the stream to a file for later use, reuse or use with a cracker who cannot read 

from stdin streams, which then makes it possible to make a dictionary attack with the 

generated file as wordlist. 

A disadvantage saving to file is that the generated files may take considerably large 

amount of disk space, but since the generation/cracking ratio is large, that is: the time 

to generate the phrases versus the time to run them through a cracker, the reuse of files 

can be more effective. 

4.2 Phase 1: N-gram Extraction 

To implement generation of phrases using a Markov process, first thing needed is sta-

tistics showing the n-grams that occur within a larger text, and its number of occur-

rences in this text. A text source should be selected that are linguistically relevant for 

the passwords to be cracked. For example should not an old Bible or the works of 

Shakespeare be chosen, because their language is very different from our modern lan-

guage which people usually use as their passwords basis. A corpus based on, for exam-

ple news, blogs or the like is probably preferable. 



With the text file as input, the file is now processed and scanned for n-grams, and 

the n-grams found are added to a sorted list that also shows their number of occurrences. 

When the file is read to the end, and the list is complete, it is sent as output to stdout. 

Depending on whether it is selected to generate n-grams on character level or word 

level, processing is somewhat different: 

Character Level 

In the case of character level, marking of sentence/phrase breaks, which usually mani-

fests themselves in the form of the punctuation symbols ".", "!", "?", and ":" (usually 

with subsequent whitespace) is done by replacing them with a single period character 

without whitespace. Thereafter, the remaining whitespace (spaces, tabs, etc.) are re-

placed with the underscore character "_". 

N-grams which consists of regular characters, and the "_" and "." are inserted as a 

new record with the occurrence value 1 in the list of observed n-grams, alternatively 1 

is added to the record if it is already in the list. 

Why sentence breaks are desired in the n-gram file is partly due to that the first 

character, according to NIST and Shannon, has the largest entropy, so it is important 

that the beginning of the phrase is guessed as well as possible. Choosing the start of the 

generated phrases by taking into account which n-grams that are specifically common 

at the start of sentences, increases the quality of the phrases. For example, the 7-gram 

"name_is" occurs relatively frequent in a text, but rarely at a sentence start. 

Knowing common sentence breaks also makes it possible to make an adaptation of the 

Markov process, in order to end the generated phrases in a more intelligent way. 

A similar reasoning applies to the whitespaces. Despite the generated phrases are not 

intended to contain spaces, they should nevertheless be taken into account in the process 

because, for example, it is far more unusual that a word starts with the letter "x" than 

that it occurs later in the word. 

Word Level  

If instead generation of n-grams on the word level is chosen, the procedure is similar, 

but some details are different of course. In this case, no consideration is given to 

whitespace since it is understood that the words are surrounded by them. However, 

punctuation characters are still considered in order to mark sentence breaks, and are 

replaced with the general self-defined marker, a single period character ".". 

Because this work is limited to not to include special characters in its generated 

phrases, and thus neither in the n-grams, the extraction of words needs to take into 

account words like "we're" or "don't" that should finally be saved to "were" and "dont" 

instead of "we" and "re" and "don" and "t".  

Corresponding to character level, every n-gram with its number of occurrences are 

saved in the list. 



4.3 Phase 2: Phrase Generation  

At this stage, lists of the n-gram statistics that are of interest can be created and saved. 

These lists are in phase 2 used to generate the actual phrases. 

Loading the n-gram List  

The n-gram list is loaded from the selected text file and stored in memory as a list of 

states, which are defined as the n-1 first characters/words of the n-grams, along with 

their sub-lists/children in form of a list of the next possible subsequent characters/words 

sorted in order of occurrence. 

Starting States  

At initiation, the phrase is empty and there is no previous state to evaluate, so it must 

be determined how the first n-1 characters should be chosen in order to continue the 

Markov chain. For this, the aforementioned marking of punctuation/sentence breaks are 

used. The possible startup states are derived from all the n-grams beginning with ".", 

and for each startup state, in order of occurrence, the function below is executed. 

The Main Function  

Once the phrase start is determined, one character or word is added at a time, according 

to the Markov model. Normally when Markov chains are used, they are used to find the 

most likely chain or a random chain, but here all possible chains are searched for. 

Therefore the function was made recursive, so the current state call the function with 

all possible next steps, which calls all its possible next steps and so on. The depth of 

the recursion ends when the end condition is met, which is when the phrase consists of 

the number of letters and/or words that have been specified at startup. 

The recursive function takes both current phrase and the state as the input, because the 

state can include spaces and points, while the phrase cannot. 

The general pseudo code for this function is as follows: 

If phrase length is within the desired range → output phrase 

If maximum length is reached → return  

Else: 

    For each possible next step (char/word sorted desc. by no. of occurrences): 

        If next step is "_" or "." → change state, let phrase remain the same. 

        Else → add the step (the char/word) to the phrase, and update the state. 

        Call recursively using new phrase and state 

Threshold  

If the probability for the next step to be a particular character is small, it follows from 

the multiplication principle that the probability for this combination of characters to 

appear anywhere in a phrase also is small. By directly ignoring these steps, instead of 

implementing a threshold for the phrases cumulative probabilities which filter out 

phrases only when the phrase is complete, the rest of its recursive chain is avoided in 



order to obtain higher performance. This implementation of a threshold was tested in 

this work, but a proposal for future work is to investigate other methods. 

The threshold is very dependent on the quality and especially the size of the source text 

used to produce n-gram statistics as well as the n-gram level. So in this work, finding a 

reasonable value to use for each source text and n-gram level used have been achieved 

by testing. 

At phrase generation with n-grams on the character level, this value should in general 

be set higher than on the word level. 

Lower Boundary for Phrase Length 

In our implementation, because the exact length of a sought password is not always 

known, there can also be specified a lower boundary for the length of the phrases in 

addition to the maximum boundary. In this way, it is possible to specify a range of 

desired characters in the phrases. 

Number of Words as Stop Condition  

It is also possible to specify the desired number of words in the phrase, and thus provide 

an additional stop condition for the recursive function in the main algorithm. The mo-

tivation for this is that e.g. a company may have a policy that the passphrase must be 

created from at least four words. If the cracking attempt is intended to be directed to-

ward a passphrase of such a company, and this information about the policy is known, 

it should be possible to use this information and thereby reduce the overall search scope. 

Phrase Termination Using Sentence Breaks  

Once the stop condition is met for a phrase, one additional step in the Markov chain is 

considered whether the phrase can end with a sentence break, and only accept it as a 

phrase if it can. Without this control, there may be many unnecessary phrases generated 

that are only linguistically correct up until the stop condition hit, but feels cut off, and 

are really "meant" to continue. For example, the word 'the', which is the most common 

word in the English language is not as widely used as the last word of a phrase, but a 

continuation of the phrase is generally expected after it. 

5 Results 

5.1 N-gram Statistics 

The first part consists, as previously described, in analyzing the source text and create 

n-gram statistics to be saved to file. To create these statistics, three types of text sources 

were used. These are available on the website "The Leipzig Corpora Collection" (Uni-

versität Leipzig, 1998 - 2015).  

The first is text taken from the English Wikipedia in 2010, containing 1 million sen-

tences. The second is text taken from English news sites in 2013, containing 3 million 



sentences. The third is text taken from general websites, blogs, etc. 2002, containing 1 

million sentences. 

Phrases in our tests has been generated based on these three sources, independent of 

each other, in order to determine what influence the source type has on the results. 

Initial visual tests showed that on the word level, 3-grams provided a well-balanced 

mix of randomness and predictability. Using 2-grams, the number of nonsense phrases 

were many, and use of 4-grams generated a too small number of phrases, which also 

were more predictable and similar to the source text. On the word level, only 3-grams 

has been used in the tests below. 

On the character level, corresponding tests were made which showed that 5-gram 

was the lowest order where reasonably understandable phrases were generated. Since 

many nonsense phrases after all was generated even in that case, 5-grams has been 

chosen to be used only when generating shorter phrases, and 8-grams when generating 

longer. 

Because the source text with the text taken from news sites was the one that con-

tained the greatest amount of text, it has been used as a primary source and was used 

both on the word level and on both character levels to fairly compare the differences 

between all methods. 

In addition, some other n-grams files were created from the other source texts to com-

pare the differences in the use of different source texts. 

5.2 Testing Samples 

To examine the effectiveness of the implementation, an independent test sample basis 

was needed. Therefore, a survey was sent out to different persons, where they were 

asked to create some lowercase phrases with english words (2 or more)  assembled 

without spaces, and deliver them hashed with unsalted NTLM hash. 

The distribution of the requested categories of the testing basis became as follows: 

Table 1. Number of hashes in testing basis 

Phrase length Number of hashes 

10 15 

14 15 

16 (4-6 words) 24 

20 (6 words) 12 

Total 66 

5.3 Measurements / Calculations 

Mainly, the stream of the generated phrases was directed to file for further processing 

by HashCat (hashcat.net, n.d.), since the comparisons of the results becomes clearer. 

For comparison and an estimate of linguistically correctness of the phrases in the cre-

ated lists, some calculations were made on each list: 



The total number of phrases that should cover the English language according to 

NIST's interpretation of Shannon’s theories of entropy, i.e. the number of possible out-

comes, is given by 2𝐻𝑡, where 𝐻𝑡  is the entropy of each phrase length calculated ac-

cording to NIST's formula. This is the "target entropy". 

For each created phrase list, we also define a "potential entropy," which is the en-

tropy that could apply to the phrases in the list, based solely on the total number of 

generated phrases in the list. This is calculated by  

𝐻𝑝 = 𝑙𝑜𝑔2 (𝑋) 

𝐻𝑝 is the potential entropy of the list, and 𝑋 is the size of the set of generated phrases.  

If this value is less than the target entropy, this means that the phrase list is too small, 

and it does not cover all possible outcomes. If instead it is larger, it means that there are 

redundant phrases in the list, that it has more possible outcomes than the English lan-

guage, and the list is thereby unnecessarily large. 

In cases when a cracking attempt using a phrase list is successful, that is: it contains 

one or more of the searched for phrases, an approximation is made of the linguistic 

correctness of the list by first calculating the efficiency by:  

𝑒 =
ℎ𝑐

ℎ𝑡𝑜𝑡

 

ℎ𝑐 is the number of cracked hashes, and ℎ𝑡𝑜𝑡 is the total number of hashes/sought pass-

phrases. 

To make an estimate of how large the search scope would have to be to crack all of 

the sought phrases, provided this efficiency, we calculate:  

𝑋𝑒 =
𝑋

𝑒
 

To finally get a comparable value to the target entropy, we calculate the 2-logarithm of 

that search scope: 

𝐻𝑒𝑠𝑡 =  𝑙𝑜𝑔2(𝑋𝑒) 

𝐻𝑒𝑠𝑡 is referred to hereinafter as the "estimated entropy". 

This can be summarized with the formula: 

𝐻𝑒𝑠𝑡 = 𝑙𝑜𝑔2 (
𝑋

𝑒
) 

This value thus gives an approximation of, and a comparable value, how linguistically 

correct the phrase list is. 

If for example all hashes are broken by a phrase list, then 𝑒 = 1, and thus 𝐻𝑒𝑠𝑡 = 𝐻𝑝.  

If as well the list contains the same amount of phrases as the total possible, 𝐻𝑝 = 𝐻𝑡  

the phrase list is perfect because the target entropy is reached. 

If instead half of the hashes are cracked, we obtain 𝑒 =
1

2
= 0.5, and the phrase list 

could thus been twice as effective. This would give: 

𝐻𝑒𝑠𝑡 = 𝑙𝑜𝑔2 (
𝑋

0.5
) = 𝑙𝑜𝑔2(𝑋) − 𝑙𝑜𝑔2(0.5) =  𝐻𝑝 + 1 

If the phrase list would also contain double the number of phrases compared with the 

English language, thus 𝐻𝑝 = 𝐻𝑡 + 1 , and we get 𝐻𝑒𝑠𝑡 = 𝐻𝑡 + 2 , meaning that the 

phrase list could have been 22 = 4 times more linguistically correct. 



5.4 Cracking using Phraselists 

For the tests in this work different files with phrase lists were created, so the files can 

then be reused for any additional cracking attempts, and the analysis of the overall ef-

fectiveness became simpler and clearer. The results from using these lists are shown in 

Table 2 below. 

The input data values used for each list can be derived from the selected file names. 

Example: The file name "L16W4T5N8CWiki" reveals that: 

  length of the phrases in the list/file is 16 (L16) 

  phrases consists of exactly 4 words (W4) 

  the threshold value is set to 5 (T5) 

  n-gram file used is 8CWiki, which in turn reveals that: 

─  n-grams of order 8 has been used 

─  n-grams on the character level has been used (C=char, W=words) 

─  text source is the one from Wikipedia (Wiki, Web or News) 

5.5 Observations 

Phrase Length 10  

Since 10 is a "short" length in context of this work, 5-grams was used at the character 

level. If 8-grams instead would be selected here, only the 3 last characters would change 

in the Markov process, and it would hardly be any Markov process worthy of the name. 

For this length of phrases, it may be interesting to note the difference between word 

level and character level. When using word level, there cannot with this source text 

basis be generated more than 15.2 million phrases, even if no filtering of the n-grams 

occurs (threshold = 0), on character level  with some filtering (T=100) there was 54 

times more phrases generated.  

Examples of how the entropy values in the table can be used for comparisons using 

calculations on the list on row 3: 

If the potential entropy is compared with the estimated entropy, a difference of 24.2 to 

21.3 = 2.9 is obtained. To get the efficiency, the calculation 22.9 = 7.5 can now be 

done. This means that the list would be able to contain 7.5 times more correct phrases. 

If instead the target entropy and the estimated entropy are compared, a difference of 

24.2 to 21 = 3.2 is obtained. This means that when taking into account that the number 

of phrases in the file is larger than the target amount, the list would totally be 23.2 =
9.2 times more efficient with regard to both file size and linguistic correctness. 

A further comparison between lists on the word level, is that they cracked the same 

amount of passphrases although the list with T = 0 contains about 6 times as many 

phrases. This makes the estimated entropy larger for this list, meaning that it is less 

effective. 

 



Table 2. The results, using different phrase lists 

 

  

Phrase List Time  
generation 

Time 
HashCat 

Cracked 
hashes 

Possible out-
comes  

(English) 

Phrases  
Generated 

Target en-
tropy 

Pot. en-
tropy 

Estimated 
entropy 

Phrase Length 10 

L10T100N5CNews 4.2 h 46 s 7/15 221 (2.1 milj.) 229.6 (825 
milj.) 

21 29.6 30.7 

L10T0N3WNews 1.5 h 1 s 2/15 221 (2.1 milj.) 223.9 (15.2 
milj.) 

21 23.9 26.8 

L10T1N3WNews 16 min 0 s 2/15 221 (2.1 milj.) 221.3 (2.6 
milj.) 

21 21.3 24.2 

Phrase Length 14 

L14T3000N5CNews 1.7 h 6 s 0/15 227 (134 milj.) 226.4 (90 
milj.) 

27 26.4 - 

L14T1N8CWiki 23.0 h 4 min 32s 2/15 227 (134 milj.) 230.8 (1865 
milj.) 

27 30.8 33.7 

L14T1N3WNews 20.2 h 31 s 2/15 227 (134 milj.) 228.9 (505 
milj.) 

27 28.9 31.8 

L14W-5T0N3WNews 24.0 h 45 s 2/15 227 (134 milj.) 228.2 (312 
milj.) 

27 28.2 31.1 

Phrase Length 16 

L16W4T5N8CWiki 7.3 h 31 s 1  228.8 (479 
milj.) 

   

L16W5-6T5N8CWiki 34.7 h 3 min 37 s 0  230.3 (1 355 
milj.) 

   

Total, group 1 42 h 4 min 8 s 1/24 <230 (<1 100 
milj.) 

230.8 (1 834 
milj.) 

<30 30.8 35.4 

L16W4T0N3WNews 9.2 h 6 s 4  226.0 (67.5 
milj.) 

   

L16W5T0N3WNews 79.5 h 10 min 16 s 1  229.7 (887 
milj.) 

   

L16W6T1N3WNews 58.7 h 1 min 32 s 0  229.7 (851 
milj.) 

   

Total, group 2 147.4 h 11 min 54 s 5/24 <230 (<1 100 
milj.) 

230.7 (1 806 
milj.) 

<30 30.7 33.0 

L16W5T0N3WWeb 16.6 h 13 s 1  227.6 (199 
milj.) 

   

Phrase Length 20 

L20W6T40N8CWiki 12.8 h 18 s 0/12 <236 (<69 000 
milj.)  

227.9 (244 
milj.) 

<36 27.9 - 

L20W6T1N3WWeb 52.2 h 2 min 14 s 0/12 <236 (<69 000 
milj.)  

229.4 (727 
milj.) 

<36 29.4 - 

L20W6T0N3WWeb 960 h 29 min 9 s 1/12 <236 (<69 000 
milj.) 

233.0 (8 500 
milj.) 

<36 33.0 36.6 

L20W6T1N3WNews 550.5 h 39 min 3 s 1/12 <236 (<69 000 
milj.)  

231.0 (2 131 
milj.) 

<36 31.0 34.6 



At the character level, a threshold was chosen that causes many nonsense phrases, 

hence the large number of phrases. On this list a difference is seen between the list's 

estimated and its potential entropy of 1.1, which means that it contains a large number 

of correct phrases, about one half as 21.1 = 2.1, but it also contains many nonsense 

phrases since the difference between the estimated and the target entropy is large. 

The two phrases cracked by the word level lists were included among the seven who 

were broken by the character level list. Number of unique cracked passphrases 

amounted to 7 at phrase length 10. 

Phrase Length 14  

For phrase length 14 it has been selected to compare the word level of order 3 with the 

character level of order 5 and 8. Number of words per phrase is also introduced here to 

filter out unwanted phrases. 

At this phrase length it is no longer efficient to use 5-grams since the threshold had to 

be raised significantly to obtain performance, and a lot of real phrases are missed be-

cause of this. No hashes were cracked with the 5-gram phrase list. 

The list of phrases based on 8-grams, however, was more successful, and two hashes 

were cracked. 

Similarly did the lists on word level crack two hashes each. These were not the same 

hashes which were cracked by the 8-gram list. However, they were not unique among 

themselves. 

So, a total number of 4 unique passphrases with the length of 14 was cracked. 

Phrase Length 16  

The criteria on the test basis was that the phrases with length 16 should consist of 4-

6 words, why the lists were limited to this. In some cases here, to reduce file sizes, these 

lists were split into groups of lists that contain phrases with different number of words 

per phrase. In these cases, the total row is what is most interesting, since the number of 

sought phrases with respective number of words per phrase is not known. 

Interestingly, however, is that in one group of lists, it was the 4 word per phrase list that 

cracked the largest number of phrases despite the smaller total number of generated 

phrases. This may suggest that the test group to a greater extent created phrases with 

only four words. 

That the phrases are limited to 4-6 word unfortunately leads to that the target entropy 

no longer is exactly correct, but it is actually slightly lower than 30. 

There was also a comparison with various text sources at the word level with phrases 

containing five words. The hashes that was cracked by these two lists were unique, 

which shows that the choice of the source text is clearly influencing. 

The phrase that was cracked by the list on character level, was also cracked by the 

one on word level. Totally there were 6 unique cracked phrases with the length of 16. 



Phrase Length 20  

At the phrase length of 20, three lists were generated based on word level 3-grams, and 

one list based on the character level of 8-grams, all with 6 words per phrase for addi-

tional filtration since this was one of the criteria on the hashes from the test group. 

Again, due to this criterion, the target entropy is actually lower than 36.  

The threshold values had at first to be increased compared to the generation at length 

16, to keep time and file sizes at a reasonable level.  

On the two first generated lists it is seen that the number of generated phrases are far 

below the total target search scope. This is also reflected by that the lists' potential en-

tropy is lower than the target entropy. 

When the phrase generation was allowed to work for a while there also were results on 

the 20-character phrases. The bottom two lines show the successful attempts, and that 

they took weeks to complete. That the potential entropy is lower than the target entropy 

indicates that, despite the successful cracks, there were too few phrases generated to 

even cover all of the 20-character phrases of the English language. 

A total of 2 phrases consisting of 20 characters were cracked.  

5.6 Efficiency 

 The different entropy values calculated in the above paragraph is shown in Appendix 

A, Fig. 1 in a bar graph for clarity. 

The aim is that the bar for the estimated entropy should be as low as possible, but no 

lower than the bar for the target entropy. All three bars should be as equal as possible. 

Remember that the entropy axis has a logarithmic scale, so one higher unit on the scale 

corresponds to a halving of efficiency since the logarithm base is 2. 

This chart and the numbers in the results table (Table 2) suggests that the most effi-

cient phrase list / file group tested in this work is the File Group 2 for the phrase length 

16, with its 2.3 bits difference between target entropy and estimated entropy. This sug-

gests that the best order and level of n-grams to successfully generate a so linguistically 

correct list of phrases as possible could be word level of order 3. More tests may be 

needed to verify this. 

5.7 Time Consumption 

The time consumption of each list generation is shown in a bar chart in Appendix A, 

Fig. 2. Only the time of the actual phrase generation is shown, because that is the dom-

inant part of the total time consumption. The n-gram extraction and the actual cracking 

times are negligible in comparison.  

According to this implementation the lists with n-grams on the word level generally 

took longer time to generate, but they seemed to also be more effective according to the 

previous graph. 



5.8 Brute-Force Comparison 

Since there is no other widely available effective cracking attack on these password 

lengths, what in this work is called the "estimated entropy" of each phrase list has in 

Appendix A, Fig. 3 been compared to the entropy of an exhaustive, or brute-force at-

tack. 

It can be seen that the method used in this work for cracking is, although it can be 

further developed and optimized, far more efficient than the brute-force attack. The 

scale is logarithmic. 

Time is not taken into consideration here, only the total search scope. With GPU 

support, the speed in guessed hashes per second can be far much higher for a brute-

force attack, but this works phrase cracking has a major advantage in intelligence. 

5.9 LinkedIn Results 

A test on the 2012 leaked LinkedIn hashdump was also made, to see how the method 

would stand up in the real world. Since this test was not the main objective of this work, 

basically the same generated phrase lists were used as in the tests above, which of 

course originally were customized for the test groups hashes (with specified number of 

words and length). Also, this works implementation only handles lowercase, which is 

not the case of real world hash dumps. 

However, using password statistics from www.adeptus-mechanicus.com on already 

cracked LinkedIn passwords, one can determine the password length distribution, as 

well as that about 20% of the passwords are only lowercase. With that information it is 

possible to estimate the target scope for each phrase length. 

So, when using non-customized phrase lists from earlier tests we got these results: 

Table 3. Crack results for LinkedIn 

Phrase length Cracked hashes Target scope  

(estimated total no. of  

lowercase passwords) 

10 18 269 (11%) 168 000 

14 1 878 (10%) 18 300 

16 378 (6%) 6 100 

20 6 (9%) 68 

Note that the estimated target scope above may include non-linguistically correct pass-

words and phrases not targeted by our previously created files or not at all even targeted 

by this work. 

http://www.adeptus-mechanicus.com/


6  Conclusions 

6.1  Conclusions and discussion 

It has in this work been investigated if the Markov process is a possible model to rep-

resent a language in regard to effectively crack long passphrases. 

There were successful attempts to some extent to break these long passphrases, which 

in itself can be seen as impressive and a good result. However, the goal to get close to 

Shannon and NIST's definition of entropy for these lengths of phrases was not quite 

achieved. 

Probably the results could be closer to the target entropy after some further experi-

menting with variables and inputs to the phrase generation. That the type and size of 

the source text as well as the selected threshold value can have significant effects is 

seen in many of the tests. 

Conclusion must be drawn that this seems to be an efficient way to crack pass-

phrases, since it after all worked to some degree as desired and there is also potential 

to improve the efficiency even more. Moreover, there is a great lack of available alter-

native methods to crack as long passphrases that this work covers. 

One can also infer that today it is practicable, with some optimization of the imple-

mentation as well as the input values, generating phrase lists of phrases up to approxi-

mately length 20. At higher lengths than that, file sizes would begin to grow to non-

manageable sizes for a standard computer, even if the phrase lists would be completely 

linguistically correct and without any nonsense phrases. 

Of course it is possible to avoid storing these files by either modifying the application 

and save the phrases with a more advanced and more efficient data structure in a data-

base or the like, or if it is possible to increase the speed of the phrase generation, it 

would be possible to more effectively direct input to the cracking application. 

The results further show that if a password policy would be based solely on pass-

phrases, there should also be a requirement that the phrases should be at least longer 

than 20 characters long, and as in many other password policies, a requirement to in-

clude both lowercase, uppercase, numbers and special characters. 

7  Future work 

7.1 Performance optimization 

Despite the great care taken to make the main program efficient, it is possible to further 

improve efficiency. Every little time saving that can be made in the main algorithm 

gives a big difference in the overall result, since the recursive main function is called a 

huge number of times per run. 

One example is that the present application uses much of the data type "string" to rep-

resent strings. Since many of these strings have a known expected size, "char arrays" 

could be used more extensively. This is a simpler data type, for which at initialization 

can be assigned only so much memory which is needed. 



Another interesting area of optimization is examination of the profit that can be made 

by adapting the program for utilizing GPU processors using OpenCL programming. 

Even the simple use of conventional threading in the application would improve per-

formance to some extent. 

7.2 The Delimitations 

This work was limited to working with the English language. The application that was 

developed is able to handle all languages which use the same alphabet as English, de-

pending solely on the source text file used. Some locality adjustments has to be made 

in order to include other languages, like including the special characters that are re-

quired for the language, eg å ä ö in Swedish.  

The work was also limited to only handle phrases composed of lowercase characters. 

One useful improvement would be to include at least uppercase, but preferably also 

numbers, and perhaps even special characters. For example, uppercase could be used 

in beginning of sentences or words. For the application to be useful in real-life contexts, 

including additional character sets is a necessary measure.  

 

7.3  Experimentation with input values 

Of course it is possible to change the input values to the application, such as orders of 

n-grams, number of words per phrase or phrase lengths, and set them differently to 

optimize each cracking attempt. The program was built for this, and it is up to the pro-

spective user to experiment to their preference, taste and requirements. To the extent 

possible, generation of phrases at word level without threshold, or creation of n-gram 

files from a larger text source, would probably increase efficiency.  

A deeper study on the optimal size and type of source text needed to get optimum n-

gram files would also be interesting. 

An additional area to examine is the implementation of the threshold value. Perhaps 

it would make a difference if a threshold was defined for a cumulative probability 

summed over the entire phrase instead of completely filtering out the n-gram that has 

few occurrences in the source text. 

Regardless of choice of implementation for the threshold, a way to calculate which 

value is optimal for each n-gram file used would be useful, in order to fine tune the 

threshold without having to test manually. 
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Appendix A – Result charts 

Fig. 1 Graph of phrase list efficiency  

Fig. 2. Chart of time consumption of each phrase list 
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Fig. 3. Chart of the phrase lists efficiency compared to an exhaustive search 
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