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Abstract. Architectures relying on a single central authority often offer a
great efficiency, but suffer of resiliency problems and are quite vulnerable
to attacks. In our proposal, a Multiple-Authorities Key-Policy Attribute-
Based Encryption scheme is constructed including a collaboration phase
between the authorities, in order to achieve shorter keys and parameters,
thus enhancing the efficiency of encryption and decryption.
We prove our system secure under a variation of the bilinear Diffie-
Hellman assumption, providing a lower bound on its complexity.
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1 Introduction

The key feature that makes the cloud so attracting nowadays is the great ac-
cessibility it provides: users can access their data through the Internet from
anywhere. Unfortunately, at the moment the protection offered for sensitive
information is questionable and access control is one of the greatest concerns. Il-
legal access may come from external attackers, or even from insiders that abuse
their clearance. In fact sometimes legitimate users try to gain access to someone
else’s data, and they should not be allowed to do that. One possible approach
to this problem is to use Attribute-Based Encryption (ABE), a tool that provides
cryptographically enhanced access control functionality in encrypted data.

ABE developed from Identity Based Encryption, a scheme proposed by
Shamir [23] in 1985 with the first constructions obtained in 2001 by Boneh
and Franklin [6] and Cocks [9]. In 2005 Sahai and Waters [22] proposed the
first schemes of Attributed Based Encryption and in a consecutive work, Goyal,
Pandey, Sahai, and Waters [11] formulated the two complimentary forms of ABE
which are nowadays standard: ciphertext-policy ABE, where the keys are associ-
ated with sets of attributes and ciphertexts are associated with access policies,
and key-policy ABE, which is a scheme where the keys are associated with access
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policies and ciphertexts are associated with sets of attributes. Several develop-
ments and generalizations have been obtained for KP-ABE [20, 2, 1, 13]. These
schemes are constructed on bilinear groups (usually implemented through the
Tate [24, 25] and Weil [28] pairings on elliptic curves), and have a proof of
security based on the original Diffie-Hellman assumption on bilinear groups
or some slight variation. A first implementation of ciphertext-policy ABE has
been achieved by Bethencourt et al. [4] in 2007 but the proofs of security of
the ciphertext-policy ABE remained unsatisfactory since they were based on
an assumption independent of the algebraic structure of the group (the generic
group model). It is only with the work of Waters [27] that the first non-restricted
ciphertext-policy ABE scheme was built with a security dependent on variations
of the DH assumption on bilinear groups. Noteworthy are also the latest devel-
opments that aim to control dynamic users via revocation, e.g. [14, 10] which
exploit even more sophisticated assumptions on bilinear groups, including a
variant of the subgroup decision problem. Recently new methods to construct
ABE schemes have also been approached ([12]).

The first multi authority KP-ABE scheme with expressive policies (i.e. that
allow any monotone access structure as policy) was presented in [19]. In this
system the authorities may be set up in any moment and without any coordi-
nation. Any party can act as an ABE authority by creating a public parameters
and issuing private keys to different users. Moreover the encryptor can select
a set of trusted authorities that will have to authenticate the potential decryptors.

Related works on multiple authorities (but limited to ciphertext-policy ABE)
are [7, 8] and [16]. In [8], that is a improvement of [7], the authors construct
a simple-threshold schemes in the case where attributes are divided in dis-
joint sets, each controlled by a different authority. Comparing our scheme with
those proposed by Chase et al ([7, 8]), which are the first ABE schemes with
“multiple-authorities”, we note that it enjoys more general and expressive poli-
cies. Furthermore, it models a different setting, since we aim at adding a layer of
security rather than distributing the control of the attributes. Indeed, we request
redundant checks, therefore preventing unauthorized accesses more effectively,
and prevent the ability of authorities to intrude into users’ privacy. Whereas,
in [16] Lewko and Waters propose a scheme where there is no need for a cen-
tral authority or for coordination between the authorities, each one controlling
disjoint sets of attributes. Finally in [21] Rouselakis and Waters propose a multi
authority CP-ABE with a large universe of attributes, that is any string can be
used and they do not have to be enumerated beforehand. Their proof is under
the random oracle model (that provides weaker security) and guarantees only
static (compared to selective) security, however they achieve good efficiency.

Our construction The scheme that we propose in this paper evolves from the
scheme presented in [19] exploiting a collaboration between authorities to im-
prove the efficiency. It is a multi authority KP-ABE scheme in which the author-
ities collaborate to achieve shorter keys and parameters, thus enhancing the



efficiency of encryption and decryption.
Basically our scheme proceeds as follows: the first step is the creation of the
parameters. Namely, each authority sets up independently its master key and
then they collaborate together to create:

– a common public key used to encrypt,
– the authority parameters that will be used to generate secret keys (used to

decrypt).

Once the public key is published, a user, who we will call Alice, chooses a set
of attributes that describe her message and encrypts it using this key. Let Bob
be another user, so he has an access policy that describes his clearance. Suppose
that Bob wants to decrypt Alice’s message (note that he can do so if and only
if the message has the attributes prescribed by his policy). Bob requests a secret
key for his policy to every authority. Independently, each authority checks the
policy pertinence and generates a secret key. Once he has obtained every key,
he can merge them and obtain a single compact key. In this way Bob may store
and use a single key.

Note that, even if there are drawbacks in the overheads caused by the collab-
oration in the setup phase, we achieve much greater performances (with respect
to [19]) in encryption, decryption and key storage (the essential parts of a pro-
tocol) thanks to the drastic reduction of both public parameters and decryption
keys. In fact, where in [19] there are multiple sets of public parameters and mul-
tiple secret keys, here we compress them into only one set of public parameters
and one secret key, therefore the size of the ciphertext is greatly reduced and
the decryption becomes considerably faster.

Concerning the security of our scheme, unless every authority colludes,
the existence of just one non-cheating authority guarantees that no illegitimate
party (including authorities) has access to the encrypted data. More specifically,
our schemes give a solution to address the following two problems:

1. The authority is honest but curious, namely, they will provide correct keys to
users but will also try to access to data beyond their competence. Obviously,
if there is a single authority which is the unique responsible of issuing the
keys, there is no way to prevent this kind of key escrow. Using a multi-
authority schemes we bypass this problem.

2. The authority has been breached, this happens when a user’s keys embed
access structures that do not faithfully represent that user’s level of clear-
ance, and so someone has access to keys with a higher level of clearance
than the one they are due. This problem is more specific for KP-ABE. In fact,
the authority has to assign to each user an appropriate access structure that
represents what the user can and cannot decrypt. Therefore, the authority
has to be trusted also to perform correct checks of the users’ clearances and
to assign correct access structures accordingly (note however that CP-ABE is
equally sensitive in this passage because the authority has to assign correct



attributes to users). Adding multiple authorities to the scheme gives to the
encryptor the opportunity to request more guarantees about the legitimacy
of the decryptor’s clearance, since each authority checks the users indepen-
dently. The idea is to request that the decryption proceeds successfully only
when a key for each authority is used. Note that in our scheme, since these
authorities set up their parameters independently and during encryption
these parameters must be bound together irrevocably, then no authority can
single-handedly decrypt any ciphertext and thus key escrow is removed. In
our construction and security proof we never consider malicious authori-
ties, that is authorities might become compromised and therefore attackers
may gain access to master keys and distribute keys improperly but the set
up of the parameters is beyond the control of any attacker.

So our KP-ABE scheme guarantees protection against both breaches and curios-
ity.

The scheme is proved secure under a slightly stronger variation of the clas-
sical BDH assumption (Definition 3).

Organization This paper is organized as follows. In Section 2 we present bilinear
groups, alongside the original Decisional Bilinear Diffie Hellman assumption
and its variation that we will use in our security proof. In Section 3 we present the
main mathematical tools used in the construction of ABE schemes. In Section 4
we explain our scheme and also prove its security. In Section 5 a lower-bound on
the complexity of the security assumption in generic bilinear groups is shown.
Finally, conclusions are drawn in Section 6.

2 Complexity Assumptions on Bilinear Groups

This section covers background information necessary to understand KP-ABE
schemes and their security. In particular, we give some mathematical notions
about bilinear groups and our cryptographic assumption, that is, the decisional
bilinear Diffie-Hellman assumption and its variation that we will use to prove
our scheme secure.

Let G1,G2 be groups of the same prime order p.

Definition 1 (Pairing). A symmetric pairing is a bilinear map e such that
e : G1 ×G1 → G2 has the following properties:

– Bilinearity: ∀g, h ∈ G1,∀a, b ∈ Zp, e(ga, hb) = e(g, h)ab.
– Non-degeneracy: for g generator of G1, e(g, g) , 1G2 .

Definition 2 (Bilinear Group). G1 is a Bilinear group if the conditions above hold
and both the group operations in G1 and G2 as well as the bilinear map e are efficiently
computable.

In the remainder of this section G1 and G2 are understood.



2.1 Security assumption on prime order bilinear groups

Decisional Bilinear Diffie-Hellman Assumption The Decisional Bilinear Diffie-
Hellman (BDH) assumption is the basilar assumption used for proofs of indis-
tinguishability in pairing-based cryptography. It has been first introduced in [6]
by Boneh and Franklin and then widely used in a variety of proofs, including
the one of the first ABE in [11]. It is defined as follows.

Let a, b, s, z ∈ Zp be chosen at random and g be a generator of the bilinear
group G1. The decisional bilinear Diffie-Hellman (BDH) problem consists in
constructing an algorithm B(A = ga,B = gb,S = gs,T) → {0, 1} to efficiently
distinguish between the tuples (A,B,S, e(g, g)abs) and (A,B,S, e(g, g)z) outputting
respectively 1 and 0. The advantage of B in this case is clearly written as:

AdvB =
∣∣∣∣Pr

[
B(A,B,S, e(g, g)abs) = 1

]
− Pr

[
B(A,B,S, e(g, g)z) = 1

] ∣∣∣∣
where the probability is taken over the random choice of the generator g, of
a, b, s, z in Zp, and the random bits possibly consumed by B to compute the
response.

Definition 3 (BDH Assumption). The decisional BDH assumption holds if no prob-
abilistic polynomial-time algorithm B has a non-negligible advantage in solving the
decisional BDH problem.

Augment Decisional Bilinear Diffie-Hellman Assumption This assumption, intro-
duced by Liang et al. in [17], is a variant of the basic BDH in which the attacker
has an advantage due to one more element at their disposal. We formally define
it as follows.

Let a, b, s, z ∈ Zp be exponents chosen at random, let g be a generator of the
bilinear groupG1, and let b , 0. The augment decisional bilinear Diffie-Hellman
(ABDH) problem consists in constructing an efficient algorithm
B(A = ga,B = gb,C = g

1
b ,S = gs,Z)→ {0, 1} to efficiently distinguish between the

tuples (A,B,C,S, e(g, g)abs) and (A,B,C,S, e(g, g)z). The advantage ofB is defined,
following the standard convention, as:

AdvB =
∣∣∣∣Pr

[
B(A,B,C,S, e(g, g)abs) = 1

]
− Pr

[
B(A,B,C,S, e(g, g)z) = 1

] ∣∣∣∣
where the probability is taken over the random choice of the generator g, of
a, b, s, z in Zp, and the random bits possibly consumed by B to compute the
response.

Definition 4 (ABDH Assumption). The decisional ABDH assumption holds if no
probabilistic polynomial-time algorithm B has a non-negligible advantage in solving
the decisional ABDH problem.

In Section 5 we show an adaptation of these assumption to the generic group
model and we are able to prove a related security bound.



3 Access Structures and Linear Secret Sharing Schemes

We do not prove original results here, we only provide what we need for our
construction. See the cited references for more details on these arguments.

Access structures define who may and who may not access to encrypted
data, listing the sets of attributes that have clearance.

Definition 5 (Access Structure). An access structure A on a universe of attributes
U is the set of the subsets S ⊆ U that are authorized. That is, a set of attributes S satisfies
the policy described by the access structureA if and only if S ∈ A.

They are used to describe a policy of access, that is the rules that prescribe
who may access to the information. If these rules are constructed using onlyand,
or and threshold operators on the attributes (that is k attributes are requested
out of a set of n specific attributes), then the access structure is monotonic.

Definition 6 (Monotonic Access Structure). An access structure A is said mono-
tonic if given S0 ⊆ S1 ⊆ U it holds

S0 ∈ A =⇒ S1 ∈ A

An interesting property is that monotonic access structures may be associ-
ated to linear secret sharing schemes (LSSS). In this setting the parties of the
LSSS are the attributes of the access structure.

A LSSS may be defined as follows (adapted from [3]).

Definition 7 (Linear Secret-Sharing Schemes (LSSS)). A secret-sharing scheme
Π over a set of parties P is called linear (over Zp) if

1. The shares for each party form a vector over Zp.
2. There exists a matrix M with l rows and n columns called the share-generating

matrix forΠ. For all i ∈ {1, . . . , l}Mi (the i-th row of M) is labeled via a function ρ,
that associates it to the party ρ(i). Considering the vector v = (s, r2, . . . , rn) ∈ Zn

p ,
where s ∈ Zp is the secret to be shared, and ri ∈ Zp, with i ∈ {2, . . . ,n} are randomly
chosen, then Mv is the vector of l shares of the secret s according to Π. The share
(Mv)i = Miv belongs to party ρ(i).

It is shown in [3] that every linear secret sharing-scheme according to the
above definition also enjoys the linear reconstruction property, defined as fol-
lows: suppose that Π is an LSSS for the access structure A. Let S ∈ A be any
authorized set, and let I ⊆ {1, . . . , l} be defined as I = {i : ρ(i) ∈ S}. Then, there
exist constants wi ∈ Zp, with i ∈ I such that, if λi are valid shares of any secret s
according to Π, then ∑

i∈I

wiλi = s (1)

Furthermore, it is shown in [3] that these constants wi can be found in time
polynomial in the size of the share-generating matrix M.



Note that the vector (1, 0, . . . , 0) is the ”target” vector for the linear secret
sharing scheme. Then, for any set of rows I in M, the target vector is in the span
of I if and only if I is an authorized set. This means that if I is not authorized,
then for any choice of c ∈ Zp there will exist a vector u such that u1 = c and

Mi ·w = 0 ∀i ∈ I (2)

In the first ABE schemes the access formulas are typically described in terms
of access trees. The appendix of [16] is suggested for a discussion of how to
perform a conversion from access trees to LSSS.

See [11], [3] and [18] for more details about LSSS and access structures.

4 Our Construction

This section is divided in three parts. First Collaborative Multi-Authority Key-
Policy ABE and its CPA selective security are defined. In the second part the
scheme is presented in detail and, finally, a variant of the BDH assumption
(Definition 3) is used to prove the security of this scheme in the selective set
model.

4.1 Collaborative Multi Authority KP-ABE Structure and Security

In this scheme, the authorities set up independently their master keys and
they collaborate to create a common public key and some authority parameters
that will be used to generate secret keys. There is a minimum collaboration
during key generation, in the sense that authorities have to agree on the access
policy to assign to the user, or equivalently the user should ask for the same
policy to every authority. Note however that it is very reasonable that the same
access policy is assigned since it is strictly related to the specific user. Moreover
note that even if the policy of a user might contain sensitive data, it might be
safely shared between authorities since they are entitled to access this kind of
information anyway, and there is no randomness shared between authorities in
doing so.

To encrypt, a user chooses a set of attributes that describes the message
(and thus determines which access structures give access to it). The ciphertext
is computed using the public key generated by the authorities in concert. When
someone wants to decrypt, they need a key for every authority and once they
obtain all the pieces they can merge and use them as a single key.
The formal definition of the scheme follows.

LetG1 be a bilinear group (chosen accordingly to an implicit security param-
eter λ), g ∈ G1 a generator of the group, andA an access structure on a universe
of attributes U.

Definition 8 (Collaborative Multi-authority KP-ABE). A collaborative multi-
authority Key-Policy ABE system for a message space M, a universe of authorities
X, and an access structure space G is composed of the following four algorithms:



Setup(U, g,G1)→ (PKk,MKk,APk). The setup algorithm for the authority k ∈ X takes
as input the universe of attributes U and the bilinear group G1 alongside its
generator g. It outputs the public parameters PKk, the master key MKk, and the
authority parameters APk for that authority.

CollSetup(MKk,PKk,APk,PK(h),AP(h))→ (PK(h+1),AP(h+1)). The collaborative part
of setup asks the authority k ∈ X to add their part to the final public key and
authority parameters. It takes as input the master key MKk for that authority and
the h-th step of construction of the public key PK(h), and of the authority param-
eters AP(h). It outputs the next step of construction of the public key PK(h+1) and
authority parameters AP(h+1) (at the first step, i.e. h = 0, they are simply initialized
with the parameters of the first authority). When h = x = |X| then PK(x) = PK
and AP(x) = AP, i.e. the public and authority parameters are completed once every
authority has contributed. At this point PK is distributed among all users, while
AP is shared only between authorities.

KeyGenk(MKk,AP, (M, ρ))→ SKk. The key generation algorithm for the authority
k ∈ X takes as input the master key MKk of the authority, the commonly constructed
authority parameters AP, and an access structureA in the form of an LSSS (M, ρ).
It outputs a decryption key SKk for that access structure.

Encrypt(m,S,PK)→ CT. The encryption algorithm takes as input the public param-
eters PK, a message m ∈ M and a set of attributes S ⊆ U. It outputs the ciphertext
CT associated with the attribute set S.

Decrypt(CT, {SKk}k∈X)→ m′. The decryption algorithm takes as input a ciphertext
CT that was encrypted under a set S of attributes and a decryption key SKk for
every authority k ∈ X. LetA be the access structure of each key SKk. It outputs the
message m′ if and only if S ∈ A.

The security game is defined as follows.

Definition 9 (CMA-KP-ABE Security Game). Take a CMA-KP-ABE scheme
E = (Setup,Encrypt,KeyGen,Decrypt) for a message space M, a universe of au-
thorities X and an access structure space G and consider the following CMA-KP-ABE
experiment CMA-KP-ABE-ExpA,E(λ,U) for an adversary A, security parameter λ
and attribute universe U:

Init. The adversary declares the set of attributes S that they wish to be challenged upon.
Moreover they select the honest authority k0 ∈ X.

Setup. The challenger runs the Setup and Collaborative Setup algorithms initializing
the authorities, and gives to the adversary the individual public key and the authority
parameters of every authority, alongside all the master keys of the non-honest
authorities and every collaboration step.

Phase I. The adversary issues queries for private keys generated by k0, however the
access structures A relative to these keys can not authorize the target set, that is
S < A.

Challenge. The adversary submits two equal length messages m0 and m1. The chal-
lenger flips a random coin b ∈ {0, 1}, and encrypts mb with S. The ciphertext is
passed to the adversary.



Phase II. Phase I is repeated.
Guess. The adversary outputs a guess b′ of b.

The output of the experiment is 1 if b′ = b, 0 otherwise.

Definition 10 (CMA-KP-ABE Selective Security). The CMA-KP-ABE scheme E
is CPA selective secure (or secure against chosen-plaintext attacks) for attribute universe
U if for every probabilistic polynomial-time adversary A, there exists a negligible
function negl such that:

Pr[MA-KP-ABE-ExpA,E(λ,U) = 1] ≤
1
2

+ negl(λ).

4.2 The Scheme

This scheme plans a set X of authorities, each with their own parameters, that
collaborate to create a common public key and it sets up an encryption algorithm
that uses this public key so that an authorized key for each authority in X is
required to successfully decrypt.

The scheme consists of three randomized algorithms (Setup,KeyGen,Encrypt)
plus the collaborative step CollSetup and decryption Decrypt. The scheme works
in a bilinear group G1 of prime order p, and uses LSSS matrices to share secrets
according to the various access structures. Attributes are seen as elements ofZp.

The description of the algorithms follows.

Setup(U, g,G1)→ (PKk,MKk,APk). Given the universe of attributes U and a
generator g of G1 each authority sets up independently its parameters. For
k ∈ X the Authority k chooses uniformly at random αk ∈ Zp, and zk,i ∈ Zp
for each i ∈ U. Then the public parameters PKk, the master key MKk, and the
authority parameters APk are:

PKk =
(
Yk = e(g, g)αk ,

{
Tk,i = gzk,i

}
i∈U

)
(3)

MKk =
(
αk, {zk,i}i∈U}

)
(4)

APk =
({

Vk,i = g
1

zk,i

}
i∈U

)
(5)

CollSetup(MKk,PKk,APk,PK(h),AP(h))→ (PK(h+1),AP(h+1)). The collaborative con-
struction of the public key proceeds as follows:

– if h = 0 then the authority k is the first to participate, then it simply sets
PK(1) = PKk, AP(1) = APk

– if h > 0 then PK(h) =
(
Y(h),

{
T(h)

i

}
i∈U

)
, AP(h) =

({
V(h)

i

}
i∈U

)
, so it sets

Y(h+1) = Y(h)
· Yk, T(h+1)

i =
(
T(h)

i

)zk,i
, V(h+1)

i =
(
V(h)

i

) 1
zk,i ∀i ∈ U



Then it is easy to see that when the construction is complete (i.e. every
authority has contributed) the public key is:

PK(x) = PK =
(
Y = e(g, g)

∑
k∈X αk ,

{
Ti = g

∏
k∈X zk,i

}
i∈U

)
(6)

AP(x) = AP =
({

Vi = g
1∏

k∈X zk,i

}
i∈U

)
(7)

KeyGenk(MKk,AP, (M, ρ)) → SKk. The key generation algorithm for the au-
thority k takes as input the master key MKk, the authority parameters AP and
an LSSS access structure (M, ρ), where M is an l×n matrix onZp and ρ is a func-
tion which associates rows of M to attributes. It chooses uniformly at random
a vector vk ∈ Z

n
p such that vk,1 = αk. Then computes the shares λk,i = Mivk for

1 ≤ i ≤ l where Mi is the i-th row of M. Then the private key SKk is:

SKk =

{
Kk,i = Vλk,i

ρ(i) = g
λk,i∏

k∈X zk,ρ(i)

}
1≤i≤l

(8)

Encrypt(m,S,PK) → CT. The encryption algorithm takes as input the public
key PK, a set S of attributes and a message m to encrypt. It chooses s ∈ Zp
uniformly at random and then computes the ciphertext as:

CT =
(
S,C′ = m · (Y)s , {Ci = (Ti)s

}i∈S
)

(9)

Decrypt(CT, {SKk}k∈X) → m′. The input is a ciphertext for a set of attributes S
and an authorized key for every authority. Let (M, ρ) be the LSSS associated to
the keys, and suppose that S is authorized. The algorithm finds wi ∈ Zp, i ∈ I
such that ∑

i∈I

λk,iwi = αk ∀k ∈ X (10)

for an appropriate subset I ⊆ S. To simplify the notation let zi :=
∏

k∈X zk,i, the
algorithm then proceeds to reconstruct the original message computing:

m′ =
C′∏

i∈I e(
∏

k∈X Kk,i,Cρ(i))wi

=
m ·

(
e(g, g)(

∑
k∈X αk)

)s

∏
i∈I e

(∏
k∈X g

λk,i
zρ(i) , (gzρ(i) )s

)wi

=
m · e(g, g)s(

∑
k∈X αk)

e(g, g)s
∑

k∈X
∑

i∈I wiλk,i

∗
=

m · e(g, g)s(
∑

k∈X αk)

e(g, g)s(
∑

k∈X αk)
= m

Where ∗= follows from the property (10).



Note that once the user has obtained the keys from every authority they can
be multiplied all together, so that only SK =

{
Ki =

∏
k∈X Kk,i

}
1≤i≤l has to be stored,

since this is the only thing needed to perform the decryption. So actually only
a key of size l is needed, hence the scheme is very efficient in terms of key-size.

4.3 Security

The scheme is proved secure under the ABDH assumption in the selective set
security game described in Definition 9. Recall that every authority but one is
supposed curious (or corrupted or breached) and then the attacker has access to
their master keys and so is able to issue even keys that have enough clearance for
the target set of attributes, while the honest authority issues only unauthorized
keys. Thus if at least one authority remains trustworthy the scheme is secure.

The security is provided by the following theorem.

Theorem 1. If an adversary can break the scheme, then a simulator can be constructed
to play the Decisional ABDH game with a non-negligible advantage.

Proof. Suppose there exists a polynomial-time adversaryA, that can attack the
scheme in the Selective-Set model with advantage ε. Then we claim that a sim-
ulator B can be built that can play the Decisional ABDH game with advantage
ε/2. The simulation proceeds as follows.

Init The simulator takes in a ABDH challenge y = (g, ga, gb, g
1
b , gs),Z. The

adversary gives to the simulator the challenged set of attributes S, and chooses
the honest authority k0 ∈ X, where X is the set of authorities.

Setup The simulator chooses random rk ∈ Zp for k ∈ X \ {k0}, sets αk = −rk for
k ∈ X \ {k0} and implicitly sets αk0 = ab +

∑
k∈X\{k0}

rk by computing:

Yk0 = e(g, g)αk0 = e(ga, gb)e(g, g)
∑

k∈X\{k0}
rk (11)

Yk = e(g, g)αk = e(g, g)−rk ∀k ∈ X \ {k0} (12)

Then it chooses z′k,i ∈ Zp uniformly at random for each i ∈ U, k ∈ X and sets the
public parameters as:

Tk0,i =

gz′k0 ,i if i ∈ S
(gb)z′k0 ,i if i < S

(13)

Tk,i = gz′k,i for k , k0 (14)

And the authority parameters as:

Vk0,i =

g
1

z′k0 ,i if i ∈ S

(g
1
b )

1
z′k0 ,i if i < S

(15)

Vk,i = g
1

z′k,i for k , k0 (16)



The simulator can now pass the master keys of the non-honest authorities, and
every public and authority parameter to the adversary.

Then it proceeds to simulate the collaborative steps of the scheme. To for-
malize this let us introduce an ordering function ψ : X →

{
j : 1 ≤ j ≤ |X|

}
that

simply specifies in which order the authorities collaborate (that is if ψ(k0) = 1
then the honest authority begins the collaboration). Then the collaborative steps
of the public parameters (for i ∈ U) are computed as:

Y(h) =

e(ga, gb)e(g, g)
∏

k∈X:ψ(k)>h rk if ψ(k0) ≤ h
e(g, g)−

∏
k∈X:ψ(k)≤h rk otherwise

(17)

T(h)
i =

(gb)
∏

k∈X:ψ(k)≤h z′k,i if i < S ∧ ψ(k0) ≤ h
g
∏

k∈X:ψ(k)≤h z′k,i otherwise
(18)

V(h)
i =

(gb)
1∏

k∈X:ψ(k)≤h z′k,i if i < S ∧ ψ(k0) ≤ h

g
1∏

k∈X:ψ(k)≤h z′k,i otherwise
(19)

Using the previously introduced notation z′i :=
∏

k∈X z′k,i, for h = |X|we have the
complete public key and authority parameters:

Y = e(g, g)ab (20)

Ti =

gz′i if i ∈ S
gbz′i if i < S

(21)

Vi =

g
1
z′i if i ∈ S

g
1

bz′i if i < S
(22)

Phase I In this phase the simulator answers to private key queries made to the
honest authority k0. The simulator has to compute the Kk0,i values of a key for an
access structure (M, ρ) with dimension l × n that is not satisfied by S. Therefore
for the property (2) of an LSSS it can find a vector u ∈ Zn

p with u1 = 1 such that

Miu = 0 ∀i such that ρ(i) ∈ S (23)

Then it chooses uniformly at random a vector v ∈ Zn
p and implicitly sets the

shares of αk0 = ab +
∑

k∈X\{k0}
rk as

λk0,i =

n∑
j=1

Mi, j(bv j + (ab +
∑

k∈X\{k0}

rk − bv1)u j) (24)

Note that λk0,i =
∑n

j=1 Mi, jw j where w j = bv j + (ab +
∑

k∈X\{k0}
rk − bv1)u j thus

w1 = bv1 + (ab +
∑

k∈X\{k0}
rk − bv1)1 = ab +

∑
k∈X\{k0}

rk = αk0 so the shares are valid.



Note also that from (23) it follows that

λk0,i =

n∑
j=1

Mi, jbv j +

n∑
j=1

Mi, ju j(ab +
∑

k∈X\{k0}

rk − bv1)

= b
n∑

j=1

Mi, jv j ∀i such that ρ(i) ∈ S

Thus if i is such that ρ(i) ∈ S the simulator can compute

Kk0,i = (gb)

∑n
j=1 Mi, jvj

z′
ρ(i) = g

λk0 ,i
zρ(i)

Otherwise, if i is such that ρ(i) < S the simulator computes

Kk0,i = g

∑n
j=1 Mi, j (vj−v1uj )

z′
ρ(i) (ga)

∑n
j=1 Mi, juj

z′
ρ(i) (g

1
b )

∑n
j=1 Mi, juj

∑
k∈X\{k0 }

rk

z′
ρ(i)

= g
b
∑n

j=1 Mi, j (vj−v1uj )

bz′
ρ(i) g

ab
∑n

j=1 Mi, juj

bz′
ρ(i) g

∑n
j=1 Mi, juj

∑
k∈X\{k0 }

rk

bz′
ρ(i)

= g

∑n
j=1 Mi, j (bvj+(ab+

∑
k∈X\{k0 }

rk−bv1)uj )

bz′
ρ(i)

= g
λk0 ,i
zρ(i)

Where the last equality follows from zρ(i) = bz′ρ(i).
Note that the adversary has the master keys of the other authorities, so they

can create any other private key.

Challenge The adversary gives two messages m0,m1 to the simulator, that flips
a coin µ and creates:

C′ = mµ · Z
∗
= mµ · e(g, g)abs = mµYs

Ck,i = (gs)z′ρ(i) = gszρ(i) i ∈ S

Where the equality ∗
= holds if and only if the ABDH challenge was a valid tuple

(i.e. Z is non-random).

Phase II During this phase the simulator acts exactly as in Phase I.

Guess The adversary will eventually output a guess µ′ of µ. The simulator
then outputs 1 to guess that Z = e(g, g)abs if µ′ = µ; otherwise, they output 0 to
indicate that they believes Z is a random group element in G2. In fact when Z is
not random the simulator B gives a perfect simulation so it holds:

Pr
[
B

(
y,Z = e(g, g)abs

)
= 0

]
=

1
2

+ ε



On the contrary when Z is a random element R ∈ G2 the message mµ is com-
pletely hidden from the adversary point of view, so:

Pr
[
B

(
y,Z = R

)
= 0

]
=

1
2

Therefore, B can play the decisional BDH game with non-negligible advantage
ε
2 .

5 Generic Security of Diffie-Hellman Assumptions

In [5] Boneh et. al. stated and proved a theorem that gives a lower bound on
the advantage of a generic algorithm in solving a class of decisional Diffie-
Hellman problem. Despite a lower bound in generic groups does not imply a
lower bound in any specific group, it still provides evidence of soundness of the
assumptions. In this section: first the general Diffie-Hellman Exponent Problem
is defined, then the lower bound is stated and finally we will show our claim,
i.e., how the problems introduced in Section 2 may be seen as particular cases
of the general problem.

5.1 General Diffie-Hellman Exponent Problem

Let p be a prime and let s,n be positive integers. Let P,Q ∈ Fp[X1, . . . ,Xn]s be
two s-tuples of n-variate polynomials over Fp and let f ∈ Fp[X1, . . . ,Xn]. Let
P = (p1, p2, . . . , ps) and Q = (q1, q2, . . . , qs), we require that p1 = q1 = 1. Moreover
define:

P(x1, . . . , xn) =
(
p1(x1, . . . , xn), . . . , ps(x1, . . . , xn)

)
∈ (Fp)s.

And similarly for the s-tuple Q. Let G1,G2 be groups of order p and let e :
G1 × G1 → G2 be a non-degenerate bilinear map. Let g ∈ G1 be a generator of
G1 and set g2 = e(g, g) ∈ G2 . Let

H(x1, . . . , xn) =
(
gP(x1,...,xn), gQ(x1,...,xn)

2

)
∈ Gs

1 ×G
s
2,

we say that an algorithmB that outputs b ∈ {0, 1} has advantage ε in solving the
Decision (P,Q, f )-Diffie-Hellman problem in G1 if∣∣∣∣Pr

[
B

(
H(x1, . . . , xn), g f (x1,...,xn)

2

)
= 0

]
− Pr [B(H(x1, . . . , xn),T) = 0]

∣∣∣∣ > ε
where the probability is over the random choice of generator g ∈ G1 , the
random choice of x1, . . . , xn in Fp, the random choice of T ∈ G2, and the random
bits consumed by B.

Definition 11 (Dependence on (P,Q)). Let P,Q ∈ Fp[X1, . . . ,Xn]s be two s-tuples
of n-variate polynomials over Fp. We say that a polynomial f ∈ Fp[X1, . . . ,Xn] is
dependent on the sets (P,Q) if there exist s2 + s constants {ai, j}

s
i, j=1, {bk}

s
k=1 such that

f =

s∑
i, j=1

ai, jpip j +

s∑
k=1

bkqk



We say that f is independent of (P,Q) if f is not dependent on (P,Q).

For a polynomial f ∈ Fp[X1, . . . ,Xn]s , we let d f denote the total degree of f .
For a set P ⊆ Fp[X1, . . . ,Xn]s we let dP = max{d f : f ∈ P}.

5.2 Complexity Lower Bound in Generic Bilinear Groups

We state the following lower bound in the framework of the generic group
model. We consider two random encodings ξ0, ξ1 of the additive group Zp, i.e.
injective maps ξ0, ξ1 : Zp → {0, 1}m. For i = 0, 1 we write Gi = {ξi(x) : x ∈ Zp}.
We are given oracles to compute the induced group action on G1,G2 , and an
oracle to compute a non-degenerate bilinear map e : G1 ×G1 → G2. We refer to
G1 as a generic bilinear group. The following theorem gives a lower bound on the
advantage of a generic algorithm in solving the decision (P,Q, f )-Diffie-Hellman
problem. We emphasize, however, that a lower bound in generic groups does
not imply a lower bound in any specific group.

Theorem 2 (Theorem A.2 of [5]). Let P,Q ∈ Fp[X1, . . . ,Xn]s be two s-tuples of
n-variate polynomials over Fp and let f ∈ Fp[X1, . . . ,Xn]. Let d = max(2dP, dQ, d f ).
Let ξ0, ξ1 and G1,G2 be defined as above. If f is independent of (P,Q) then for anyA
that makes a total of at most q queries to the oracles computing the group operation in
G1,G2 and the bilinear pairing e : G1 ×G1 → G2 we have:

∣∣∣∣∣Pr
[
A

(
p, ξ0(P(x1, . . . , xn)), ξ1(Q(x1, . . . , xn)), ξ1(t0), ξ1(t1)

)
= b

]
−

1
2

∣∣∣∣∣ ≤ (q + 2s + 2)2d
2p

Where x1, . . . , xn, y are chosen uniformly at random from Fp, b is chosen uniformly at
random from {0, 1} and tb = f (x1, . . . , xn), t1−b = y.

Corollary 1 (Corollary A.3 of [5]). Let P,Q ∈ Fp[X1, . . . ,Xn]s be two s-tuples of
n-variate polynomials over Fp and let f ∈ Fp[X1, . . . ,Xn]. Let d = max(2dP, dQ, d f ).
If f is independent of (P,Q) then any A that has advantage 1

2 in solving the decision
(P,Q, f )-Diffie-Hellman Problem in a generic bilinear group G must take time at least
Ω( p

d − s).

5.3 Using Corollary 1

We claim that the assumptions presented in Section 2 follow from Corollary
1 giving the sets P,Q that reduces them to the general bilinear Diffie-Hellman
problem:

– BDH in G1 : set P = {1, y,w, z},Q = {1}, f = y w z.
– ABDH in G1 : set P = {1, y,w, 1

w , z},Q = {1}, f = y w z.

It is easy to see that each f is independent to the respective sets P and Q, in
fact multiplying any two polynomials in the sets P and then combining them
linearly does not give the polynomial f . To see this explicitly in the case of



ABDH, the complete list of terms that may be obtained combining any two
polynomials of P follows:

1,w,
1
w
, y, yw,

y
w
,wz,

z
w
, z, yz

Since there is no monomial in which y, w, and z appear together, it is apparent
that no linear combination of these terms may give ywz as result, thus f is
independent of P,Q.

Thus applying the Corollary 1 a lower bound on the computational com-
plexity of these problems in the generic bilinear group is obtained.

6 Final Comments

Our construction evolves from the scheme presented in [19] exploiting the col-
laboration between authorities to improve the efficiency. This scheme needs
fewer parameters, since the collaboration permits to collapse the various pub-
lic parameters in a single public key, significantly reducing the length of ci-
phertexts. Moreover, once all the single-keys have been obtained they may be
collapsed into one too:

SK =

Ki =
∏
k∈X

Kk,i = g

∑
k∈X λk̄,i∏

k∈X zk,ρ(i)


1≤i≤l

.

This scheme requires that each authority uses the same LSSS matrix to gen-
erate the single-key, but the assumption is not unreasonable since the matrix is
directly derived from the user’s clearance. So for the price of the collaboration
steps that weigh down the setup (a phase that has to be executed only once
when the scheme is used), and an additional parameter shared by authorities,
we obtain great improvement in encryption, decryption and key-storage.

Remark 1 (Security Definitions). This scheme has been proven IND-CPA selective
secure, that is after selecting the target parameters (in this case the attribute set
and the authorities) the attacker may not distinguish between chosen plaintexts
after the encryption. We observe that although the scheme of [16] is proven
fully secure (against selective security), the construction is made in composite
bilinear groups. It is in fact compulsory when using Dual System encryption
(introduced by Waters [26] with techniques developed with Lewko [15]), but this
has drawbacks in terms of group size (integer factorization has to be avoided)
and the computations of pairings and group operations are less efficient. This
fact leads to an alternative construction in prime order groups in the same paper,
that however is proven secure only in the generic group and random oracle
model. Therefore, we believe that our construction in prime groups retains
validity and interest, considering also that the proof is in the standard model.
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