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Abstract—Residue Number System (RNS) is a method for 

representing an integer as an n-tuple of its residues with respect 

to a given base. Since RNS has inherent parallelism, it is actively 

researched to implement fast public-key cryptography using RNS. 

This paper derives the exact error bound of approximation on 

the Cox-Rower architecture which was proposed for RNS 

modular multiplication. This is the tightest bound ever found and 

enables us to find new parameter sets for the Cox-Rower 

architecture, which cannot be found with old bounds.  

 

Keywords— Residue Number System; error bound; base 

extension; cryptography 

 

I.  INTRODUCTION  

Residue Number System (RNS) is one of the methods for 

representing an integer, where a given integer x is represented 

as an n-tuple of its residues divided by the base integers. The 

base is a set of integers which are pairwise co-prime to each 

other. If we denote the base as ℬ = {𝑚1,  𝑚2, ⋯ ,  𝑚𝑛}  and 

RNS representation of x as (𝑥1, 𝑥2, ⋯ , 𝑥𝑛), it holds that 𝑥𝑖 =

𝑥 mod 𝑚𝑖. 

   In RNS, addition, subtraction and multiplication are carried 

out by independent addition, subtraction and multiplication 

with respect to each base element. Therefore, n-folds speeding-

up can be achieved by implementing the n parallel processing 

units compared to the case with a single processing unit. This 

parallelism seems suitable to efficiently implement public-key 

cryptography which is constructed by several hundred or 

several thousand bits of integer operations with modular 

reduction. But a modular reduction in RNS had not been easy 

to carry out before it was replaced with Montgomery reduction 

in [1]. After the proposal of RNS Montgomery reduction, 

promising results have been obtained for RSA scheme [2]-[6], 

Elliptic Curve Cryptosystem [7]-[13], Pairing-based 

Cryptosystem [14]-[15], modular inversion [16], Lattice-based 

Cryptosystem [17], and an architectural study [18]. 

    The Chinese remainder theorem (CRT) plays a crucial role 

in the implementation of RNS Montgomery reduction. The 

CRT describes the relationship between RNS representation 

and radix representation. In [3], an approximation method for 

computing CRT was proposed and a hardware design suitable 

to the computation was also proposed as the Cox-Rower 

architecture, which was investigated or used in many RNS 

works [4], [6], [9]-[18]. This paper, as well, investigates the 

same approximation and the Cox-Rower architecture.  

    At first, Cox-Rower architecture was implemented on ASIC 

in [4]. After [9], FPGA implementation become popular 

because recent FPGA has an ability to implement many DSP 

(Digital Signal Processor) modules on a single FPGA chip and 

thus, RNS implementation becomes cost-effective especially 

for small number production. Although error bound used for 

the design has an acceptable accuracy for most practical 

implementations, all Cox-Rower implementations so far use 

inexact error bound. Therefore, it seems hard, not to say 

impossible, to totally optimize the performance, to eliminate 

unnecessary margin, to describe comprehensive error property 

and to facilitate further discovery of new RNS algorithms. 

In this paper, we will derive an exact upper bound of 

approximation error.  

This paper organized as follows. In Sect. II, basic 

notations for RNS and the CRT are introduced. In Sect. III, the 

exact error bound is derived. Sect. IV concludes this paper. 

 

II. RNS AND CRT 

First, we define the following notation 

〈𝑥〉𝑚 = 𝑥 mod 𝑚. 

The right hand side is usually defined for integers x and m (m > 

1). We will extend the definition to a real number x, for 𝑚 = 1 

as 

〈𝑥〉1 = 𝑥 −  ⌊𝑥⌋. 
Since the symbol ⌊𝑥⌋ means the minimum integer that does not 

exceed x, 〈𝑥〉1 represents an operation to extract fractional part 

of x. Since 〈𝑥〉𝑚 = 𝑥 mod 𝑚 = 𝑥 − 𝑚⌊𝑥/𝑚⌋ for m > 1, we can 

regard 〈𝑥〉1 as a natural extension for 𝑚 = 1. 

As an RNS base, we prepare pairwise co-prime 𝑛 integers to 

obtain a set ℬ = {𝑚1,  𝑚2, ⋯ ,  𝑚𝑛}, where, for any 𝑖,  𝑗 (𝑖 ≠ 𝑗), 

gcd(𝑚𝑖 ,  𝑚𝑗) = 1 holds. Then, we define RNS representation 

of x as 

(𝑥1, 𝑥2, ⋯ , 𝑥𝑛) = (〈𝑥〉𝑚1
, 〈𝑥〉𝑚2

, ⋯ , 〈𝑥〉𝑚𝑛
). 

In order to introduce the CRT, we define a few constants by 

𝑀 = ∑ 𝑚𝑖

𝑛

𝑖=1

, 



𝑀𝑖 =
𝑀

𝑚𝑖

. 

Finally, when gcd(𝑥,  𝑚𝑖) = 1  holds, a multiplicative 

inverse of x exists with respect to a base element 𝑚𝑖 . We 

denote it as 〈𝑥−1〉𝑚𝑖
. By the definition of a multiplicative 

inverse, it follows that 〈𝑥 ∙ 〈𝑥−1〉𝑚𝑖
〉𝑚𝑖

= 〈1〉𝑚𝑖
. 

The CRT is a theorem which specifies the relationship 

between a radix representation of an integer x and its RNS 

representation (𝑥1, 𝑥2, ⋯ , 𝑥𝑛) . Equation (1) is a way to 

describe the relationship. Here, we call it as an integer formula. 

                                     𝑥 = ⟨∑〈𝑥𝑖𝑀𝑖
−1〉𝑚𝑖

𝑀𝑖

𝑛

𝑖=1

⟩

𝑀

                        (1) 

where, 0 ≤ 𝑥 < 𝑀. 

By dividing both sides of (1) by M, we obtain another 

form of CRT. Notice that suffix of a large bracket changes 

from M to 1.  We call it as a rational formula in contrast to an 

integer formula (1). 

                                         
𝑥

𝑀
=  ⟨∑

〈𝑥𝑖𝑀𝑖
−1〉𝑚𝑖

𝑚𝑖

𝑛

𝑖=1

⟩

1

.                      (2) 

We will here denote the main part of right hand side of 

(2) as 𝑓(𝑥). 

𝑓(𝑥) =  ∑
〈𝑥𝑖𝑀𝑖

−1〉𝑚𝑖

𝑚𝑖

𝑛

𝑖=1

 

                                             =  ∑
𝜉𝑖

𝑚𝑖

𝑛

𝑖=1

                                            (3) 

The numerators of (3) were substituted by 𝜉𝑖 defined by 

𝜉𝑖 =  〈𝑥𝑖𝑀𝑖
−1〉𝑚𝑖

. 

 

Note: 

In [3], in order to construct an efficient base extension 

algorithm, it was studied to approximate the integer part of 

function 𝑓(𝑥)  based on the equation 𝑘 =  ⌊𝑓(𝑥)⌋ (Refer to 

Appendix A). Once k is obtained, x can be computed from 

RNS representation by  

𝑥 = ∑ 𝜉𝑖𝑀𝑖

𝑛

𝑖=1

− 𝑘𝑀. 

 

III. APPROXIMATION OF 𝑓(𝑥) 

𝑓(𝑥)  is defined as a summation of 𝜉𝑖 𝑚𝑖⁄ . We introduce 

approximations for both denominators and numerators.  

We first take r, a bit length of a base 𝑚𝑖, equal to a bit 
length of a given ALU (Arithmetic Logic Unit)’s word, and 

take base elements having a form of a pseudo-Mersenne prime. 

𝑚𝑖 = 2𝑟 − 𝜇𝑖 

By choosing 𝜇𝑖  as a relatively small integer, 𝑚𝑖  can be 

approximated by 2𝑟. 

Next, we approximate numerator 𝜉𝑖  with the most 

significant q-bit of 𝜉𝑖  which is defined by the function 

𝑡𝑟𝑢(𝑞, 𝜉𝑖): 

                         𝑡𝑟𝑢(𝑞, 𝜉𝑖) = ⌊𝜉𝑖2
−(𝑟−𝑞)⌋ ∙ 2(𝑟−𝑞)                        (4) 

where, tru stands for truncation. 

Finally, we define approximate function 𝑓(𝑥) of 𝑓(𝑥) by 

                                  𝑓(𝑥) = ∑
𝑡𝑟𝑢(𝑞, 𝜉𝑖)

2𝑟

𝑛

𝑖=1

.                                (5) 

 

Proposition 1 Function 𝑓(𝑥), its approximate function 𝑓(𝑥), 

and upper bound of error e satisfy the following equation:  

                                  𝑓(𝑥) ≤ 𝑓(𝑥) ≤ 𝑓(𝑥) + 𝑒                           (6) 

where,  

                       𝑒 = 𝑛(2−𝑞 − 2−𝑟) +
1

2𝑟
∑ (1 −

1

𝑚𝑖

) 𝜇𝑖.

𝑛

𝑖=1

         (7) 
∎ 

 

Refer to Appendix B for the proof of the Proposition 1. The 

first term of (7) originates from the approximation of 

numerators and the remaining terms from that of denominators. 

Equation (6) may be rewritten as 𝑓(𝑥) − 𝑒 ≤ 𝑓(𝑥) ≤ 𝑓(𝑥). 

    From proposition 1, we can derive new proposition below 

regarding base extension, which is an improvement of 

Theorem 1 of [3] and Theorem 2 of [12]. This provides a 

condition that the base-extension function extends the base 

without error (See Appendix A and C).  

 

Proposition 2 Let e be an error bound defined by (7), 

𝑘 =  ⌊𝑓(𝑥)⌋ , and 𝑘̃ = ⌊𝑓(𝑥) + 𝛼⌋ , where α  is an offset 

satisfying 𝑒 ≤ α < 1. If x is in the range of 0 ≤ 𝑥 < (1 − α)𝑀, 

then 𝑘̃ = 𝑘.     ∎ 

 

Table 1. RNS Base design for 512 bit modulus 

r  

(bit) 

n logM = r*n 

 > 512 bit 
𝑞𝑚𝑖𝑛  

(bit) 

e Note 

17 31 527 7 0.281 Same as [12] 

16 33 528 7 0.357 New 

15 35 525 7 0.497 New 

14 37 518 11 0.482 New 

13 - - - - Not applicable 

 

Table 2. RNS Base design for 𝑟 = 32 and α = 0.5 

Modulus size 

(bit) 

n 𝑞𝑚𝑖𝑛   
(bit) 

Residual 

error 𝑒0 

160 6 4 2.1 × 10−8 

256 9 5 6.0 × 10−8 

512 17 6 2.8 × 10−7 

1024 33 6 1.3 × 10−6 

2048 65 7 6.6 × 10−6 

4096 129 9 3.0 × 10−5 

 

 



 

    Even before (7), we have already known some error bounds 

which include Max(𝜇𝑖)  instead of 𝜇𝑖  as a part of their 

representation, such as the one in [3]. Although not exact, it 

provides sufficient accuracy for the design of original Cox-

Rower architecture. Recently, refinement of parameter design 

for a new type of Cox-Rower architecture has been proposed 

based on the closer evaluation of error bound [12]. New 

algorithm, named double level Montgomery, is different from 

the original in that it employs Montgomery reduction within a 

Rower unit instead of the ordinary modular reduction. This 

shows that refinement of error bound leads to improvement of 

a scheme. This motivates the derivation of exact upper bound 

in the Proposition 1, which makes it possible to find much finer 

parameter design. Indeed, this is the tightest bound ever found. 

In Table 1, we show some parameters for Elliptic Curve 

Cryptosystem computed based on Proposition 1 assuming the 

double level Montgomery [12] for 512 bit modulus. Table 1 

also shows e’s value computed by (7). Although no parameter 

was known so far for 𝑟 < 17, we found new parameters for r = 

14-16. Even with (7), no parameter exists for 𝑟 ≤ 13.  

Table 2 shows the case for the original Cox-Rower 

architecture. In this case r is fixed to 32 and the offset value α 

is assumed to be 0.5. Compared to the result for 1024 bit RSA 

in [3], q is improved from 7 to 6. This means Cox unit can be 

constructed with 6 bit adder rather than 7 bit adder. The last 

column of Table 2 shows the residual error 𝑒0 defined by the 

second term of (7), i.e., 𝑒0 = 2−𝑟 ∑ (1 − 1 𝑚𝑖)𝜇𝑖⁄𝑛
𝑖=1 . This is 

the error that remains even if 𝑞 = 𝑟 is selected. For a given 

offset α , effective range of 𝑞  can be represented by the 

following equation. 

⌈log2

1

(𝛼 − 𝑒0)𝑛−1 + 2−𝑟
⌉ ≤ 𝑞 ≤ 𝑟 

The lower bound can be derived by substituting (7) to the 

condition of 𝑒 ≤ α. 

In both tables, two sets of base are generated for each case, 

since two sets of base are required for RNS Montgomery 

reduction. For instance, in the first case of Table 1, we generate 

two bases with n = 31. In searching the base, we took a simple 

strategy to increment 𝜇𝑖  stating from an initial value and add 

𝑚𝑖  to the base if it is co-prime with every already selected 

modulus. Since (7) can be computed once the base is fixed, we 

can estimate error bound with (7) regardless of strategy for 

base choice. 

Relationship between 𝑞 and 𝑒 with 𝑟 = 32 is shown in Fig. 

1 for the cases that target key size are 160-bit and 4096-bit. 

Other cases in Table 2 fall between these two cases. Potential 

range of 𝑞 is from 1 to 𝑟. Since no feasible parameter exits for 

𝑒 ≥ 1, we assume a condition 𝑒 ≤ α = 0.5 in Table 2. In this 

case, 4 is the minimum value of 𝑞 for 160-bit case and 𝑞 = 9 is 

for 4096-bit case. Both values appear in Table 2. Around 𝑞 =
28, the graph of 160-bit  approaches to the floor determined by 

the residual error 𝑒0 , and the graph of 4096-bit case floored 

around 𝑞 = 22 . The graphs have a slope of  −1  between 

minimum 𝑞 and these floors. Graph for bigger key size always 

locates above that of smaller key size because the first term of 

(7) is proportional to base size 𝑛 . Similarly, the bigger the 

target key size, the higher the floor becomes. This is due to the 

second term of (7) is larger for bigger key size. If a bigger (resp. 

smaller) 𝑟  is chosen under a fixed key size, location of the 

graph becomes lower (resp. higher). Figure 2 shows residual 

error 𝑒0 for various sizes of 𝑟 and 𝑛, though the latter does not 

explicitly appear on the graph. 

 

IV. CONCLUSION 

This paper has derived the exact error bound of approximation 

in the CRT process implemented on the Cox-Rower 

architecture. Although first error bound was proposed in [3] 

and much closer bound was proposed in [12], this paper has 

provided the tightest bound ever found. Such a bound will 

work effectively in the optimization of the Cox-Rower 

architecture design, like the one discussed in [12]. Actually, 

we have shown new optimum parameters both for double level 

Montgomery Cox-Rower architecture and the original one.  

    Finally, fast computation using RNS is realized by trading 

off computation time against number of processing units 

operating in parallel. Therefore, this approach is significantly 

 
Fig. 1 Error bound 𝑒 versus 𝑞 for 𝑟 = 32 
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Fig. 2 Residual error versus expressible bit length 
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advantageous in such cases where coefficient of hardware cost 

is smaller or expensive hardware is acceptable. Recently, such 

a case is becoming more realistic since many DSP modules 

can be implemented on a single FPGA, and in addition, 

multicore CPU and GPU become commodities. It seems, 

however, that current multicore CPU and GPU are not 

designed taking account of RNS. If they are intended for RNS, 

they will affect software implementation of pub-lick key 

cryptography enormously. Moreover, the modularity and the 

regularity of RNS architecture seem to have a great affinity for 

leading-edge VLSI technologies such as 3D (three dimension) 

circuit. It can be expected that the exact error bound proposed 

here will contribute to the development of such RNS oriented 

computation platforms. 
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APPENDIX 

A. A base extension algorithm 

Definition 

Let (𝑥1, 𝑥2, … , 𝑥𝑛) be an RNS representation of 𝑥 ∈ [0, 𝑀 − 1] 
with respect to a base ℬ = {𝑚1, 𝑚2, ⋯ , 𝑚𝑛} . Given a new 

integer 𝑚𝑛+1 satisfying gcd(𝑀, 𝑚𝑛+1) = 1. Base extension is 

a procedure to compute 𝑥𝑛+1 = 〈𝑥〉𝑚𝑛+1
 from ℬ  and 

(𝑥1, 𝑥2, … , 𝑥𝑛). 

Base extension 1 (No approximation) 

First, compute 𝑘 =  ⌊𝑓(𝑥)⌋ , where 𝑓(𝑥)  is defined by (3).  

Then, compute 

𝑥𝑛+1 = ⟨∑〈𝑥𝑖𝑀𝑖
−1〉𝑚𝑖

𝑀𝑖

𝑛

𝑖=1

− 𝑘𝑀⟩

𝑚𝑛+1

. 

Computing k without approximation is inefficient. 

Base extension 2 (With approximation) 

First, compute 𝑘̃ = ⌊𝑓(𝑥) + 𝛼⌋, where 𝑓(𝑥) is defined by (5). 

Then, compute 

𝑥̃𝑛+1 = ⟨∑〈𝑥𝑖𝑀𝑖
−1〉𝑚𝑖

𝑀𝑖

𝑛

𝑖=1

− 𝑘̃𝑀⟩

𝑚𝑛+1

. 

𝑘̃ can be computed by n times of q-bit addition. 

Theorem 1 of [3] claimed that for the error bound 𝑒′ 

defined in [3]: 

If x is in the range of 0 ≤ 𝑥 < (1 − α)𝑀 for a given offset α 

satisfying 𝑒′ ≤ α < 1 , then 𝑘̃ = 𝑘 . Thus, 𝑥̃𝑛+1 = 𝑥𝑛+1 is 

obtained.  

Namely, a base extension is correctly carried out under such 

conditions. 

B. Proof of the Proposition 1 

First, we expand the denominator of 1 𝑚𝑖⁄  as follows: 
1

𝑚𝑖

=
1

2𝑟
∙

1

1 − 𝜇𝑖 2𝑟⁄
=

1

2𝑟
∙

1

1 − 𝛾𝑖

. 

We introduce a new variable here. 

γ𝑖 = 𝜇𝑖 2𝑟⁄  

By the definition of truncation function, it follows 



𝑡𝑟𝑢(𝑞, 𝜉𝑖) ≤ 𝜉𝑖 ≤ 𝑡𝑟𝑢(𝑞, 𝜉𝑖) + 2𝑟−𝑞 − 1. 
By dividing each side by 𝑚𝑖, we obtain 

𝑡𝑟𝑢(𝑞, 𝜉𝑖)

2𝑟(1 − 𝛾𝑖)
≤

𝜉𝑖

𝑚𝑖

≤
𝑡𝑟𝑢(𝑞, 𝜉𝑖) + 2𝑟−𝑞 − 1

2𝑟(1 − 𝛾𝑖)
 

𝑡𝑟𝑢(𝑞, 𝜉𝑖)

2𝑟
≤

𝜉𝑖

𝑚𝑖

∙ (1 − 𝛾𝑖) ≤
𝑡𝑟𝑢(𝑞, 𝜉𝑖) + 2𝑟−𝑞 − 1

2𝑟
 

𝑡𝑟𝑢(𝑞,𝜉𝑖)

2𝑟 +
𝜉𝑖

𝑚𝑖
∙ 𝛾𝑖 ≤

𝜉𝑖

𝑚𝑖
≤

𝑡𝑟𝑢(𝑞,𝜉𝑖)+2𝑟−𝑞−1

2𝑟 +
𝜉𝑖

𝑚𝑖
∙ 𝛾𝑖. (A1) 

Equation (A2) is derived since the range of  𝜉𝑖 is [0, 𝑚𝑖 − 1]. 

0 ≤
𝜉𝑖

𝑚𝑖
∙ 𝛾𝑖 ≤ (1 −

1

𝑚𝑖
) 𝛾𝑖                          (A2) 

Equation（A1）can be modified by taking account of (A2), 

𝑡𝑟𝑢(𝑞, 𝜉𝑖)

2𝑟
≤

𝜉𝑖

𝑚𝑖

≤
𝑡𝑟𝑢(𝑞, 𝜉𝑖)

2𝑟
+ (2−𝑞 − 2−𝑟) + (1 −

1

𝑚𝑖

) 𝛾𝑖 . 

Taking summation of each side, we obtain 

∑
𝑡𝑟𝑢(𝑞, 𝜉𝑖)

2𝑟

𝑛

𝑖=1

≤ 𝑓(𝑥)

≤ ∑
𝑡𝑟𝑢(𝑞, 𝜉𝑖)

2𝑟

𝑛

𝑖=1

+ 𝑛(2−𝑞 − 2−𝑟)

+ ∑ (1 −
1

𝑚𝑖

) 𝛾𝑖 .

𝑛

𝑖=1

 

Thus, the final result is obtained as 

𝑓(𝑥) ≤ 𝑓(𝑥) ≤ 𝑓(𝑥) + 𝑛(2−𝑞 − 2−𝑟) +  
1

2𝑟
∑ (1 −

1

𝑚𝑖

) 𝜇𝑖.

𝑛

𝑖=1

  

C. Proof of the Proposition 2 

What to prove is 𝑘 ≤ 𝑓(𝑥) + 𝛼 < 𝑘 + 1, because this leads to 

⌊𝑓(𝑥) + 𝛼⌋ = 𝑘 . 

From the Proposition 1, it holds 𝑓(𝑥) − 𝑒 ≤ 𝑓(𝑥) ≤
𝑓(𝑥). By adding α to each side, we obtain 

 𝑓(𝑥) + α − 𝑒 ≤ 𝑓(𝑥) + 𝛼 ≤ 𝑓(𝑥) + 𝛼.  

Since 𝑒 ≤ α, the leftmost side follows 

𝑓(𝑥) + α − 𝑒 ≥ 𝑓(𝑥) = ⌊𝑓(𝑥)⌋ + 〈𝑓(𝑥)〉1 = 𝑘 +
𝑥

𝑀
≥ 𝑘. 

Similarly, the rightmost side follows 

𝑓(𝑥) + 𝛼 = (𝑘 +
𝑥

𝑀
) + 𝛼 < 𝑘 + (1 − 𝛼) + 𝛼 = 𝑘 + 1. 

Inequality is due to the condition 𝑥 < (1 − α)𝑀. 


