
Exact Error Bound of Cox-Rower Architecture for

RNS Arithmetic

Shinichi Kawamura, Tomoko Yonemura, Yuichi Komano, and Hideo Shimizu

Corporate Research and Development Center

Toshiba Corporation

1, Komukai-Toshiba-cho, Saiwai-ku, Kawasaki, 212-8582 Japan

{shinichi2.kawamura, tomoko.yonemura}@toshiba.co.jp

Abstract—Residue Number System (RNS) is a method for

representing an integer as an n-tuple of its residues with respect

to a given base. Since RNS has inherent parallelism, it is actively

researched to implement fast public-key cryptography using RNS.

This paper derives the exact error bound of approximation on

the Cox-Rower architecture which was proposed for RNS

modular multiplication. This is the tightest bound ever found and

enables us to find new parameter sets for the Cox-Rower

architecture, which cannot be found with old bounds.

Keywords— Residue Number System; error bound; base

extension; cryptography

I. INTRODUCTION

Residue Number System (RNS) is one of the methods for

representing an integer, where a given integer x is represented

as an n-tuple of its residues divided by the base integers. The

base is a set of integers which are pairwise co-prime to each

other. If we denote the base as ℬ = {𝑚1, 𝑚2, ⋯ , 𝑚𝑛} and

RNS representation of x as (𝑥1, 𝑥2, ⋯ , 𝑥𝑛), it holds that 𝑥𝑖 =

𝑥 mod 𝑚𝑖.

 In RNS, addition, subtraction and multiplication are carried

out by independent addition, subtraction and multiplication

with respect to each base element. Therefore, n-folds speeding-

up can be achieved by implementing the n parallel processing

units compared to the case with a single processing unit. This

parallelism seems suitable to efficiently implement public-key

cryptography which is constructed by several hundred or

several thousand bits of integer operations with modular

reduction. But a modular reduction in RNS had not been easy

to carry out before it was replaced with Montgomery reduction

in [1]. After the proposal of RNS Montgomery reduction,

promising results have been obtained for RSA scheme [2]-[6],

Elliptic Curve Cryptosystem [7]-[13], Pairing-based

Cryptosystem [14]-[15], modular inversion [16], Lattice-based

Cryptosystem [17], and an architectural study [18].

 The Chinese remainder theorem (CRT) plays a crucial role

in the implementation of RNS Montgomery reduction. The

CRT describes the relationship between RNS representation

and radix representation. In [3], an approximation method for

computing CRT was proposed and a hardware design suitable

to the computation was also proposed as the Cox-Rower

architecture, which was investigated or used in many RNS

works [4], [6], [9]-[18]. This paper, as well, investigates the

same approximation and the Cox-Rower architecture.

 At first, Cox-Rower architecture was implemented on ASIC

in [4]. After [9], FPGA implementation become popular

because recent FPGA has an ability to implement many DSP

(Digital Signal Processor) modules on a single FPGA chip and

thus, RNS implementation becomes cost-effective especially

for small number production. Although error bound used for

the design has an acceptable accuracy for most practical

implementations, all Cox-Rower implementations so far use

inexact error bound. Therefore, it seems hard, not to say

impossible, to totally optimize the performance, to eliminate

unnecessary margin, to describe comprehensive error property

and to facilitate further discovery of new RNS algorithms.

In this paper, we will derive an exact upper bound of

approximation error.

This paper organized as follows. In Sect. II, basic

notations for RNS and the CRT are introduced. In Sect. III, the

exact error bound is derived. Sect. IV concludes this paper.

II. RNS AND CRT

First, we define the following notation

〈𝑥〉𝑚 = 𝑥 mod 𝑚.

The right hand side is usually defined for integers x and m (m >

1). We will extend the definition to a real number x, for 𝑚 = 1

as

〈𝑥〉1 = 𝑥 − ⌊𝑥⌋.
Since the symbol ⌊𝑥⌋ means the minimum integer that does not

exceed x, 〈𝑥〉1 represents an operation to extract fractional part

of x. Since 〈𝑥〉𝑚 = 𝑥 mod 𝑚 = 𝑥 − 𝑚⌊𝑥/𝑚⌋ for m > 1, we can

regard 〈𝑥〉1 as a natural extension for 𝑚 = 1.

As an RNS base, we prepare pairwise co-prime 𝑛 integers to

obtain a set ℬ = {𝑚1, 𝑚2, ⋯ , 𝑚𝑛}, where, for any 𝑖, 𝑗 (𝑖 ≠ 𝑗),

gcd(𝑚𝑖 , 𝑚𝑗) = 1 holds. Then, we define RNS representation

of x as

(𝑥1, 𝑥2, ⋯ , 𝑥𝑛) = (〈𝑥〉𝑚1
, 〈𝑥〉𝑚2

, ⋯ , 〈𝑥〉𝑚𝑛
).

In order to introduce the CRT, we define a few constants by

𝑀 = ∑ 𝑚𝑖

𝑛

𝑖=1

,

𝑀𝑖 =
𝑀

𝑚𝑖

.

Finally, when gcd(𝑥, 𝑚𝑖) = 1 holds, a multiplicative

inverse of x exists with respect to a base element 𝑚𝑖 . We

denote it as 〈𝑥−1〉𝑚𝑖
. By the definition of a multiplicative

inverse, it follows that 〈𝑥 ∙ 〈𝑥−1〉𝑚𝑖
〉𝑚𝑖

= 〈1〉𝑚𝑖
.

The CRT is a theorem which specifies the relationship

between a radix representation of an integer x and its RNS

representation (𝑥1, 𝑥2, ⋯ , 𝑥𝑛) . Equation (1) is a way to

describe the relationship. Here, we call it as an integer formula.

 𝑥 = ⟨∑〈𝑥𝑖𝑀𝑖
−1〉𝑚𝑖

𝑀𝑖

𝑛

𝑖=1

⟩

𝑀

 (1)

where, 0 ≤ 𝑥 < 𝑀.

By dividing both sides of (1) by M, we obtain another

form of CRT. Notice that suffix of a large bracket changes

from M to 1. We call it as a rational formula in contrast to an

integer formula (1).

𝑥

𝑀
= ⟨∑

〈𝑥𝑖𝑀𝑖
−1〉𝑚𝑖

𝑚𝑖

𝑛

𝑖=1

⟩

1

. (2)

We will here denote the main part of right hand side of

(2) as 𝑓(𝑥).

𝑓(𝑥) = ∑
〈𝑥𝑖𝑀𝑖

−1〉𝑚𝑖

𝑚𝑖

𝑛

𝑖=1

 = ∑
𝜉𝑖

𝑚𝑖

𝑛

𝑖=1

 (3)

The numerators of (3) were substituted by 𝜉𝑖 defined by

𝜉𝑖 = 〈𝑥𝑖𝑀𝑖
−1〉𝑚𝑖

.

Note:

In [3], in order to construct an efficient base extension

algorithm, it was studied to approximate the integer part of

function 𝑓(𝑥) based on the equation 𝑘 = ⌊𝑓(𝑥)⌋ (Refer to

Appendix A). Once k is obtained, x can be computed from

RNS representation by

𝑥 = ∑ 𝜉𝑖𝑀𝑖

𝑛

𝑖=1

− 𝑘𝑀.

III. APPROXIMATION OF 𝑓(𝑥)

𝑓(𝑥) is defined as a summation of 𝜉𝑖 𝑚𝑖⁄ . We introduce

approximations for both denominators and numerators.

We first take r, a bit length of a base 𝑚𝑖, equal to a bit
length of a given ALU (Arithmetic Logic Unit)’s word, and

take base elements having a form of a pseudo-Mersenne prime.

𝑚𝑖 = 2𝑟 − 𝜇𝑖

By choosing 𝜇𝑖 as a relatively small integer, 𝑚𝑖 can be

approximated by 2𝑟.

Next, we approximate numerator 𝜉𝑖 with the most

significant q-bit of 𝜉𝑖 which is defined by the function

𝑡𝑟𝑢(𝑞, 𝜉𝑖):

 𝑡𝑟𝑢(𝑞, 𝜉𝑖) = ⌊𝜉𝑖2
−(𝑟−𝑞)⌋ ∙ 2(𝑟−𝑞) (4)

where, tru stands for truncation.

Finally, we define approximate function 𝑓(𝑥) of 𝑓(𝑥) by

 𝑓(𝑥) = ∑
𝑡𝑟𝑢(𝑞, 𝜉𝑖)

2𝑟

𝑛

𝑖=1

. (5)

Proposition 1 Function 𝑓(𝑥), its approximate function 𝑓(𝑥),

and upper bound of error e satisfy the following equation:

 𝑓(𝑥) ≤ 𝑓(𝑥) ≤ 𝑓(𝑥) + 𝑒 (6)

where,

 𝑒 = 𝑛(2−𝑞 − 2−𝑟) +
1

2𝑟
∑ (1 −

1

𝑚𝑖

) 𝜇𝑖.

𝑛

𝑖=1

 (7)
∎

Refer to Appendix B for the proof of the Proposition 1. The

first term of (7) originates from the approximation of

numerators and the remaining terms from that of denominators.

Equation (6) may be rewritten as 𝑓(𝑥) − 𝑒 ≤ 𝑓(𝑥) ≤ 𝑓(𝑥).

 From proposition 1, we can derive new proposition below

regarding base extension, which is an improvement of

Theorem 1 of [3] and Theorem 2 of [12]. This provides a

condition that the base-extension function extends the base

without error (See Appendix A and C).

Proposition 2 Let e be an error bound defined by (7),

𝑘 = ⌊𝑓(𝑥)⌋ , and 𝑘̃ = ⌊𝑓(𝑥) + 𝛼⌋ , where α is an offset

satisfying 𝑒 ≤ α < 1. If x is in the range of 0 ≤ 𝑥 < (1 − α)𝑀,

then 𝑘̃ = 𝑘. ∎

Table 1. RNS Base design for 512 bit modulus

r

(bit)

n logM = r*n

 > 512 bit
𝑞𝑚𝑖𝑛

(bit)

e Note

17 31 527 7 0.281 Same as [12]

16 33 528 7 0.357 New

15 35 525 7 0.497 New

14 37 518 11 0.482 New

13 - - - - Not applicable

Table 2. RNS Base design for 𝑟 = 32 and α = 0.5

Modulus size

(bit)

n 𝑞𝑚𝑖𝑛
(bit)

Residual

error 𝑒0

160 6 4 2.1 × 10−8

256 9 5 6.0 × 10−8

512 17 6 2.8 × 10−7

1024 33 6 1.3 × 10−6

2048 65 7 6.6 × 10−6

4096 129 9 3.0 × 10−5

 Even before (7), we have already known some error bounds

which include Max(𝜇𝑖) instead of 𝜇𝑖 as a part of their

representation, such as the one in [3]. Although not exact, it

provides sufficient accuracy for the design of original Cox-

Rower architecture. Recently, refinement of parameter design

for a new type of Cox-Rower architecture has been proposed

based on the closer evaluation of error bound [12]. New

algorithm, named double level Montgomery, is different from

the original in that it employs Montgomery reduction within a

Rower unit instead of the ordinary modular reduction. This

shows that refinement of error bound leads to improvement of

a scheme. This motivates the derivation of exact upper bound

in the Proposition 1, which makes it possible to find much finer

parameter design. Indeed, this is the tightest bound ever found.

In Table 1, we show some parameters for Elliptic Curve

Cryptosystem computed based on Proposition 1 assuming the

double level Montgomery [12] for 512 bit modulus. Table 1

also shows e’s value computed by (7). Although no parameter

was known so far for 𝑟 < 17, we found new parameters for r =

14-16. Even with (7), no parameter exists for 𝑟 ≤ 13.

Table 2 shows the case for the original Cox-Rower

architecture. In this case r is fixed to 32 and the offset value α

is assumed to be 0.5. Compared to the result for 1024 bit RSA

in [3], q is improved from 7 to 6. This means Cox unit can be

constructed with 6 bit adder rather than 7 bit adder. The last

column of Table 2 shows the residual error 𝑒0 defined by the

second term of (7), i.e., 𝑒0 = 2−𝑟 ∑ (1 − 1 𝑚𝑖)𝜇𝑖⁄𝑛
𝑖=1 . This is

the error that remains even if 𝑞 = 𝑟 is selected. For a given

offset α , effective range of 𝑞 can be represented by the

following equation.

⌈log2

1

(𝛼 − 𝑒0)𝑛−1 + 2−𝑟
⌉ ≤ 𝑞 ≤ 𝑟

The lower bound can be derived by substituting (7) to the

condition of 𝑒 ≤ α.

In both tables, two sets of base are generated for each case,

since two sets of base are required for RNS Montgomery

reduction. For instance, in the first case of Table 1, we generate

two bases with n = 31. In searching the base, we took a simple

strategy to increment 𝜇𝑖 stating from an initial value and add

𝑚𝑖 to the base if it is co-prime with every already selected

modulus. Since (7) can be computed once the base is fixed, we

can estimate error bound with (7) regardless of strategy for

base choice.

Relationship between 𝑞 and 𝑒 with 𝑟 = 32 is shown in Fig.

1 for the cases that target key size are 160-bit and 4096-bit.

Other cases in Table 2 fall between these two cases. Potential

range of 𝑞 is from 1 to 𝑟. Since no feasible parameter exits for

𝑒 ≥ 1, we assume a condition 𝑒 ≤ α = 0.5 in Table 2. In this

case, 4 is the minimum value of 𝑞 for 160-bit case and 𝑞 = 9 is

for 4096-bit case. Both values appear in Table 2. Around 𝑞 =
28, the graph of 160-bit approaches to the floor determined by

the residual error 𝑒0 , and the graph of 4096-bit case floored

around 𝑞 = 22 . The graphs have a slope of −1 between

minimum 𝑞 and these floors. Graph for bigger key size always

locates above that of smaller key size because the first term of

(7) is proportional to base size 𝑛 . Similarly, the bigger the

target key size, the higher the floor becomes. This is due to the

second term of (7) is larger for bigger key size. If a bigger (resp.

smaller) 𝑟 is chosen under a fixed key size, location of the

graph becomes lower (resp. higher). Figure 2 shows residual

error 𝑒0 for various sizes of 𝑟 and 𝑛, though the latter does not

explicitly appear on the graph.

IV. CONCLUSION

This paper has derived the exact error bound of approximation

in the CRT process implemented on the Cox-Rower

architecture. Although first error bound was proposed in [3]

and much closer bound was proposed in [12], this paper has

provided the tightest bound ever found. Such a bound will

work effectively in the optimization of the Cox-Rower

architecture design, like the one discussed in [12]. Actually,

we have shown new optimum parameters both for double level

Montgomery Cox-Rower architecture and the original one.

 Finally, fast computation using RNS is realized by trading

off computation time against number of processing units

operating in parallel. Therefore, this approach is significantly

Fig. 1 Error bound 𝑒 versus 𝑞 for 𝑟 = 32

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Er
ro

r
e

q [bit]

160-bit key

4096-bit key

Fig. 2 Residual error versus expressible bit length

1.00E-40

1.00E-36

1.00E-32

1.00E-28

1.00E-24

1.00E-20

1.00E-16

1.00E-12

1.00E-08

1.00E-04

1.00E+00

0 1000 2000 3000 4000 5000

R
e

si
d

u
al

 e
rr

o
r

e
0

Expressible bit length

r=16

r=32

r=64

r=128

advantageous in such cases where coefficient of hardware cost

is smaller or expensive hardware is acceptable. Recently, such

a case is becoming more realistic since many DSP modules

can be implemented on a single FPGA, and in addition,

multicore CPU and GPU become commodities. It seems,

however, that current multicore CPU and GPU are not

designed taking account of RNS. If they are intended for RNS,

they will affect software implementation of pub-lick key

cryptography enormously. Moreover, the modularity and the

regularity of RNS architecture seem to have a great affinity for

leading-edge VLSI technologies such as 3D (three dimension)

circuit. It can be expected that the exact error bound proposed

here will contribute to the development of such RNS oriented

computation platforms.

REFERENCES

[1] K. C. Posch and R. Posch, “Modulo reduction in residue

number systems,” IEEE Trans. on Parallel and Distributed

System, Vol.6, No.5, pp.449-454, May 1995.

[2] J. Schwemmlein, K. C. Posch, R. Posch, “RNS-modulo

reduction upon a restricted base value set and its applicability to

RSA cryptography,” Computer & Security, Vol.17, No.7,

pp.637-650, 1998.

[3] S. Kawamura, M. Koike, F. Sano, and A. Shimbo, “Cox-rower

architecture for fast parallel Montgomery multiplication,”

EUROCRYPT2000, LNCS1807, pp.523-538, Springer 2000.

[4] H. Nozaki, M. Motoyama, A. Shimbo, and S. Kawamura,

“Implementation of RSA algorithm based on RNS Montgomery

multiplication,” CHES2001, LNCS2162, pp. 364-376, Springer

2001.

[5] J.-C Bajard and L. Imbert, “A full RNS implementation of

RSA,” IEEE Trans. on Computer, (Brief contributions) Vol. 53,

No.6, pp.769-774, June 2004.

[6] F. Gandino, F. Lamberti, G. Paravati, J.-C. Bajard, and P.

Montuschi, “An algorithmic and architectural study of

Montgomery exponentiation in RNS,” IEEE Trans. on

Computers, Vol. 61, No.8, pp.1071-1083, 2012.

[7] D. M. Schinianakis, A. P. Kakarountas, and T. Stouraitis, “A

new approach to elliptic curve cryptography: an RNS

architecture,” Proc. of IEEE MELECON 2006, pp.1241-1245,

May 16-19, Benalmadena (Malaga), Spain.

[8] D. M. Schinianakis, A. P. Fournaris, H. E. Michail, A. P.

Kakarountas, and T. Souraitis, “An RNS implementation of an

Fp elliptic curve point multiplier,” IEEE Trans on Circuits and

Systems, Vol.56, No.6, pp.1202-1213, June 2009.

[9] N. Guillermin, “A high speed coprocessor for elliptic curve

scalar multiplications over Fp,” CHES2010, LNCS6225, pp.

48-64, Springer 2010.

[10] S. Antao, J.-C. Bajard, and L. Sousa, “RNS-based elliptic curve

point multiplication for massive parallel architectures,” Compu.

J., 55(5): 629-647, May, 2012.

[11] D. M. Schinianakis and T. Souraitis, “Multifunction residue

architectures for cryptography,” IEEE Trans on Circuits and

Systems, Vol. 61, No.4, pp.1156-1169, April 2014.

[12] J.-C. Bajard and Nabil Merkiche, “Double level Montgomery

cox-rower architecture, new bounds,” Smart Card Research and

Advanced Applications (CARDIS), LNCS 8968, pp.139-153,

Springer 2015.

[13] K.Bigou and A. Tisserand, “Single base modular multiplication

for efficient hardware RNS implementations of ECC”,

CHES2015, LNCS9293, pp.123-140, Springer 2015.

[14] R. Cheung, S. Duquesne, J. Fan, N. Guillermin, I.

Verbauwhede, and G. Yao, “FPGA implementation of pairing

using residue number system and lazy reduction,” CHES2011,

LNCS6917, pp. 421-441, Springer 2011.

[15] G. X. Yao, J. Fan, R. C.C. Cheung, and I. Verbauwhede,

“Faster pairing coprocessor architecture,” Pairing 2012, LNCS

7708, pp.160-176, Springer 2012.

[16] K. Bigou and A. Tisserand, “Improving modular inversion in

RNS using the plus-minus methods,” CHES 2013, LNCS8086,

pp.233-249, Springer 2013.

[17] J.-C. Bajard, J. Eynard, N. Merkiche, and T. Plantard, “RNS

arithmetic approach in lattice-based cryptography,” 22nd IEEE

Symposium on Computer Arithmetic, 2015.

[18] B. Gérard, J.-G. Kammerer, and N. Merkiche, “Contribution to

the design of RNS architecture,” 22nd IEEE Symposium on

Computer Arithmetic, 2015.

APPENDIX

A. A base extension algorithm

Definition

Let (𝑥1, 𝑥2, … , 𝑥𝑛) be an RNS representation of 𝑥 ∈ [0, 𝑀 − 1]
with respect to a base ℬ = {𝑚1, 𝑚2, ⋯ , 𝑚𝑛} . Given a new

integer 𝑚𝑛+1 satisfying gcd(𝑀, 𝑚𝑛+1) = 1. Base extension is

a procedure to compute 𝑥𝑛+1 = 〈𝑥〉𝑚𝑛+1
 from ℬ and

(𝑥1, 𝑥2, … , 𝑥𝑛).

Base extension 1 (No approximation)

First, compute 𝑘 = ⌊𝑓(𝑥)⌋ , where 𝑓(𝑥) is defined by (3).

Then, compute

𝑥𝑛+1 = ⟨∑〈𝑥𝑖𝑀𝑖
−1〉𝑚𝑖

𝑀𝑖

𝑛

𝑖=1

− 𝑘𝑀⟩

𝑚𝑛+1

.

Computing k without approximation is inefficient.

Base extension 2 (With approximation)

First, compute 𝑘̃ = ⌊𝑓(𝑥) + 𝛼⌋, where 𝑓(𝑥) is defined by (5).

Then, compute

𝑥̃𝑛+1 = ⟨∑〈𝑥𝑖𝑀𝑖
−1〉𝑚𝑖

𝑀𝑖

𝑛

𝑖=1

− 𝑘̃𝑀⟩

𝑚𝑛+1

.

𝑘̃ can be computed by n times of q-bit addition.

Theorem 1 of [3] claimed that for the error bound 𝑒′

defined in [3]:

If x is in the range of 0 ≤ 𝑥 < (1 − α)𝑀 for a given offset α

satisfying 𝑒′ ≤ α < 1 , then 𝑘̃ = 𝑘 . Thus, 𝑥̃𝑛+1 = 𝑥𝑛+1 is

obtained.

Namely, a base extension is correctly carried out under such

conditions.

B. Proof of the Proposition 1

First, we expand the denominator of 1 𝑚𝑖⁄ as follows:
1

𝑚𝑖

=
1

2𝑟
∙

1

1 − 𝜇𝑖 2𝑟⁄
=

1

2𝑟
∙

1

1 − 𝛾𝑖

.

We introduce a new variable here.

γ𝑖 = 𝜇𝑖 2𝑟⁄

By the definition of truncation function, it follows

𝑡𝑟𝑢(𝑞, 𝜉𝑖) ≤ 𝜉𝑖 ≤ 𝑡𝑟𝑢(𝑞, 𝜉𝑖) + 2𝑟−𝑞 − 1.
By dividing each side by 𝑚𝑖, we obtain

𝑡𝑟𝑢(𝑞, 𝜉𝑖)

2𝑟(1 − 𝛾𝑖)
≤

𝜉𝑖

𝑚𝑖

≤
𝑡𝑟𝑢(𝑞, 𝜉𝑖) + 2𝑟−𝑞 − 1

2𝑟(1 − 𝛾𝑖)

𝑡𝑟𝑢(𝑞, 𝜉𝑖)

2𝑟
≤

𝜉𝑖

𝑚𝑖

∙ (1 − 𝛾𝑖) ≤
𝑡𝑟𝑢(𝑞, 𝜉𝑖) + 2𝑟−𝑞 − 1

2𝑟

𝑡𝑟𝑢(𝑞,𝜉𝑖)

2𝑟 +
𝜉𝑖

𝑚𝑖
∙ 𝛾𝑖 ≤

𝜉𝑖

𝑚𝑖
≤

𝑡𝑟𝑢(𝑞,𝜉𝑖)+2𝑟−𝑞−1

2𝑟 +
𝜉𝑖

𝑚𝑖
∙ 𝛾𝑖. (A1)

Equation (A2) is derived since the range of 𝜉𝑖 is [0, 𝑚𝑖 − 1].

0 ≤
𝜉𝑖

𝑚𝑖
∙ 𝛾𝑖 ≤ (1 −

1

𝑚𝑖
) 𝛾𝑖 (A2)

Equation（A1）can be modified by taking account of (A2),

𝑡𝑟𝑢(𝑞, 𝜉𝑖)

2𝑟
≤

𝜉𝑖

𝑚𝑖

≤
𝑡𝑟𝑢(𝑞, 𝜉𝑖)

2𝑟
+ (2−𝑞 − 2−𝑟) + (1 −

1

𝑚𝑖

) 𝛾𝑖 .

Taking summation of each side, we obtain

∑
𝑡𝑟𝑢(𝑞, 𝜉𝑖)

2𝑟

𝑛

𝑖=1

≤ 𝑓(𝑥)

≤ ∑
𝑡𝑟𝑢(𝑞, 𝜉𝑖)

2𝑟

𝑛

𝑖=1

+ 𝑛(2−𝑞 − 2−𝑟)

+ ∑ (1 −
1

𝑚𝑖

) 𝛾𝑖 .

𝑛

𝑖=1

Thus, the final result is obtained as

𝑓(𝑥) ≤ 𝑓(𝑥) ≤ 𝑓(𝑥) + 𝑛(2−𝑞 − 2−𝑟) +
1

2𝑟
∑ (1 −

1

𝑚𝑖

) 𝜇𝑖.

𝑛

𝑖=1

C. Proof of the Proposition 2

What to prove is 𝑘 ≤ 𝑓(𝑥) + 𝛼 < 𝑘 + 1, because this leads to

⌊𝑓(𝑥) + 𝛼⌋ = 𝑘 .

From the Proposition 1, it holds 𝑓(𝑥) − 𝑒 ≤ 𝑓(𝑥) ≤
𝑓(𝑥). By adding α to each side, we obtain

 𝑓(𝑥) + α − 𝑒 ≤ 𝑓(𝑥) + 𝛼 ≤ 𝑓(𝑥) + 𝛼.

Since 𝑒 ≤ α, the leftmost side follows

𝑓(𝑥) + α − 𝑒 ≥ 𝑓(𝑥) = ⌊𝑓(𝑥)⌋ + 〈𝑓(𝑥)〉1 = 𝑘 +
𝑥

𝑀
≥ 𝑘.

Similarly, the rightmost side follows

𝑓(𝑥) + 𝛼 = (𝑘 +
𝑥

𝑀
) + 𝛼 < 𝑘 + (1 − 𝛼) + 𝛼 = 𝑘 + 1.

Inequality is due to the condition 𝑥 < (1 − α)𝑀.

