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Abstract. Password-based key derivation functions are of particular
interest in cryptography because they (a) input a password/passphrase
(which usually is short and lacks enough entropy) and derive a crypto-
graphic key; (b) slow down brute force and dictionary attacks as much as
possible. In PKCS#5 [19], RSA Laboratories described a password based
key derivation function called PBKDF2 that has been widely adopted in
many security related applications [7], [I3], [6]. In order to slow down
brute force attacks, PBKDF2 introduce CPU-intensive operations based
on an iterated pseudorandom function. Such a pseudorandom function is
HMAC-SHA-1 by default. In this paper we show that, if HMAC-SHA-1
is computed in a standard mode without following the performance im-
provements described in the implementation note of RFC 2104 [15] and
FIPS 198-1 [16], an attacker is able to avoid 50% of PBKDF2’s CPU in-
tensive operations, by replacing them with precomputed values. We note
that a number of well-known and widely-used crypto libraries are sub-
ject to this vulnerability. In addition to such a vulnerability, we describe
some other minor optimizations that an attacker can exploit to reduce
even more the key derivation time.

Keywords: Key derivation function (KDF), HMAC-SHA1, PKCS#5,
optimizations, CPU-intensive operations

1 Introduction

Passwords are widely used to protect secret data or to gain access to
specific resources. For sake of security, they should be strong enough
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to prevent well-know attacks such as dictionary and brute force at-
tacks. Unfortunately, user-chosen passwords are generally short and
lack enough entropy [11], [21], [18]. For these reasons, they cannot
be directly used as a key to implement secure cryptographic sys-
tems. A possible solution to this issue is to adopt a key derivation
function (KDF), that is a function which takes a source of initial
keying material and derives from it one or more pseudorandom keys.
Such a key material can be the output of a pseudo-random number
generator, a bit sequence obtained by a statistical sampler, a shared
Diffie-Hellman value, a user-chosen password, or any bit sequence
from a source of more or less entropy [I4]. KDF that input user
passwords are known as password-based KDF. Such functions are
of particular interest in cryptography because they introduce CPU-
intensive operations on the attacker side, increasing the cost of an
exhaustive search. By applying a KDF to a user password, we allow
legitimate users to spend a moderate amount of time on key deriva-
tion, while increase the time an attacker takes to test each possible
password. The approach based on KDF not only slows down a brute
force attack as much as possible but also allows to increase the size
of a cryptographic key.

In PKCS#5 [19], RSA Laboratories provides a number of recom-
mendations for the implementation of password-based cryptography.
In particular, they described Password-Based Key Derivation Func-
tion version 2 (PBKDF2), a function widely used to derive keys
and implemented in many security-related systems. For example,
PBKDF2 is involved in Android’s full disk encryption (since version
3.0 Honeycomb to 4.3 Jelly Bean) [] in WPA/WPA2 encryption
process [13], in LUKS[12][7], EncFS [2], FileVault Mac OS X [6], [8],
GRUB2 [3], Winrar [5], and many others.

In order to slow down the attackers, PBKDFE2 uses a salt to pre-
vent building universal dictionaries, and an iteration count which
specifies the number of times the underlying pseudorandom function
is called to generate a block of keying material. The number of it-
erations is a crucial point of the KDF. The choice of a reasonable
value for the iteration count depends on the environment and can
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vary from an application to another. In SP 800-132 [17|, Turan et
al. suggests that it is a good practice to select the iteration count
as large as possible, as long the time required to generate the key is
acceptable for the user. Moreover, they specify that for very critical
keys on very powerful system an iteration count of 10,000,000 may
be appropriate, while a minimum of 1,000 iterations is recommended
for general purpose.

PBKDF2 introduce CPU-intensive operations based on an it-
erated pseudorandom function. Such a pseudorandom function is
HMAC-SHA-1 by default.

In this paper we show that, if HMAC-SHA-1 is computed in
a standard mode without following the performance improvements
described in the implementation note of RFC 2104 [I5] and FIPS
198-1 [16], an attacker is able avoid 50% of PBKDF2’s CPU inten-
sive operations, by replacing them with precomputed values. Readers
note that a number of well-known and widely-used crypto libraries
e.g.,[4I], are subject to this vulnerability, therefore an attacker is
able to derive keys significantly faster than a regular user can do.
Moreover, we present some other minor optimizations (based on the
hash function used) that can be exploited by an attacker to reduce
even more the key derivation time.

The remainder of the paper is organized as follows. In Section
2, we present Password Based Key Derivation Function version 2
(PBKDF2). In Section 3 we briefly describe HMAC, that is the pseu-
dorandom function adopted in PBKDF2. In Section 4 we present
the weaknesses of PBKDF?2. Finally, discussion and conclusions are
drawn in Section 5.

2 PBKDF 2

Password Based Key Derivation Function version 2, PBKDF2 for
short, is a key derivation function published by RSA Laboratories in
PKCS #5 [19]. In order to face brute force attacks based on weak
user passwords, PBKDF?2 introduce CPU-intensive operations. Such
operations are based on an iterated pseudorandom function (PRF)
— e.g. a hash function, cipher, or HMAC — which maps input values
to a derived key. One of the most important properties to assure is
that PBKDF?2 is cycle free. If this is not so, a malicious user can avoid



the CPU-intensive operations and get the derived key by executing
a set of equivalent, but less onerous, instructions. Unlike its prede-
cessor (PBKDF version 1) in which the length of the derived key is
bounded by the length of the underlying PRF output, PBKDF2 can
derive keys of arbitrary length. More precisely, PBKDF2 generates
as many blocks T; as needed to cover the desired key length. Each
block T; is computed iterating the PRF many times as specified by
an iteration count. The length of such blocks is bounded by hLen,
which is the length of the underlying PRF output. In the sequel by
PRF we will refer to HMAC with the SHA-1 hash function, that is
the default as per [19]. Note that HMAC can be used with any other
iterated hash functions such as RIPEMD, SHA-256 or SHA-512.

PBKDF2 inputs a user password /passphrase p, a random salt s,
an iteration counter ¢, and derived key length dkLen. It outputs a
derived key DK.

DK = PBKDF2(p, s, c,dkLen) (1)

The derived key is defined as the concatenation of [dkLen/hLen]-
blocks:
DK ="T\||T5|| .. . ||TtakLen/nLen] (2)

where
Ty, = Function(p, s,c, 1)

Ty = Function(p, s, c,2)

TrakLen/hren) = Function(p, s, c, [dkLen/hLen]).

Each single block T; — i.e., T; = Function(p, s, c,i) — is computed
as
Ti=U0U:&..0U, (3)

where

Uy = PRF(p, sli)
Uy = PRF(p, Ul)

U.= PRF<p7 Uc—l)



3 HMAC

Hash-based Message Authentication Code (HMAC) is an algorithm
for computing a message authentication code based on a crypto-
graphic hash function. The definition of HMAC [15] requires

— H : any cryptographic hash function;
— K : the secret key;
— text : the message to be authenticated.

In this paper, we will focus on HMAC-SHAT1 that is the default PRF
for PBKDF2 [19].
As described in RFC 2104 [15], HMAC can be defined as follows:

HMAC = H(K @ opad, H(K @ ipad, text)) (4)

where H is the chosen hash function, K is the secret key, and
ipad, opad are the constant values (respectively, the byte 0x36 and
0x5C repeated 64 times) XORed with the password. Equation 4] can
be expanded in the form:

h = H(K @ipad || text) (5)
HMAC = H(K & opad || h)

Using SHA1 as cryptographic hash function, equation [p|can be graph-
ically represented as in Figure

SHA1 (M) SHA1 (M")
] 512 512
K® 0x36 || 0x36 || .. || 0x36 K® 0X5¢ || OX5¢ || ... || OX5¢
512 512
0 288 289 448 512 0 160 161 448 512
text 1| 00.000 | L SHAIM) |1 00..000 L
64 160 1 287 64

Fig. 1. HMAC-SHA-1



4 Weaknesses

In this section we present some weaknesses of PBKDF2. The major
one concerns the precomputation of specific values that can be reused
during the key derivation process. The others aim to avoid useless
operations during the computation of the hash function.

We will describe these weaknesses using as an example the pa-
rameters defined by LUKS format [II|[12] — i.e., a salt length of
256 bits, and HMAC-SHA-1 as PRF.

4.1 Precomputing a message block

Looking closely at Figure 2] note the following:

— first message block of a keyed hash function is repeated ¢ times
(the green rectangles in Figure [2));

— first message block of a second keyed hash function is repeated c
times (the orange rectangles in Figure ;

— all green rectangles have the same content and they can assume
only the values SHA1(P @ ipad);

— all orange rectangles rectangles have the same content and they
can assume only the values SHA1(P & opad);

Thus, it is possible to compute these two blocks in advance —
i.e., SHA1(P & ipad) and SHA-1(P & opad) | — and then use such
values for ¢ times. In so doing, an attacker is able to avoid 50%
of the operations involved in the key derivation process (although
the user can benefit from this optimization as well). Moreover, in
real applications the counter ¢ can be computed by benchmarking
the user’s system [7] [11]. If this optimization is not implemented in
crypto libraries, the benchmark fails to deliver the appropriate value
for the counter, reducing the security level of the application.

2 Readers note that the weakness is independent of the hash functions used and
remains valid with any others.



PBKDF2 SCHEMA

DK = T1” Tz Il ... I Ti=|'dkLen/hLen'|
Ti= F(PS,c,i)
F(PS,ci=U® U,®..0U

U, = HMAC-SHA1 (P, S [[ i)

U, =HMAC-SHA1 (P, S || )

U, = HMAC-SHA1 (P, U,)

U, = HMAC-SHA1 (P, U_)

SHA1 (M) SHA1 (M)
0 512 ] 512
P ® 0x36 || 0x36 || ... || 0x36 P ® 0x5c || 0x5c¢ || ... || Ox5¢
512 512
0 288 289 448 512 0 160 161 448 512
S|l 1| 00..000 L SHA1 (M) 1 00...000 L
288 1 159 64 160 1 287 64
U,= HMAC-SHA1 (P, U,)
SHA1 (M) SHA1 (M")
0 512 0 512
P @ 0x36 || 0x36 || ... || 0x36 P @ Ox5c || 0x5¢ || ... || Ox5¢
512 512
0 160 161 448 512 0 160 161 448 512
U, 1 00..000 L SHAL(M) |1 00..000 L
160 1 287 64 160 1 287 64
U_= HMAC-SHA1 (P, U_)
SHA1 (M) SHA1 (M)
0 512 0 512
P ® 0x36 || 0x36 || ... || Ox36 P ® Ox5c || Ox5¢ || ... || Ox5¢
512 512
0 160 161 448 512 [0] 160 161 448 512
Uc_1 1 00...000 L SHA1 (M) 1 00...000 L
160 1 287 64 160 1 287 64

Fig. 2. PBKDF2 schema (HMAC computed in a standard mode)




4.2 Useless XOR operations

It is easy to observe that each SHA1 message block, performed on a
512-bits string and formatted as shown in Figure [3] has a run of sev-
eral consecutive zeros (green rectangles). More precisely, in the sec-
ond SHA1 message block there are 287 zeros in the padding scheme
and other 54 zeros in L (i.e., 64-bits message length). Readers note
that each SHA1 message block is split in sixteen 32-bits words, called
Wy ... Wis, and then expanded into eighty words, called W ... Wy,
using the following equation:

W, = ROTL((Wt_g BW,_ s W14 Wt_lﬁ), 1) te [16 ce 79]
(6)

Because we have a run of several consecutive zeros, a number of
W are set to zero. More precisely, in Equation [6] are carried out 192
XOR, but 27 of them are involved in zero based operations. Following
the idea suggested in [22], these W, do not provide any contribution
and can be easily omitted by an attacker.

U_= HMAC-SHA1 (P, U_,)

SHA1 (M) SHA1 (M)

0 512 512

P ® 0x36 || 0x36 || ... || 0x36 P ® Ox5c || Ox5c || ... || Ox5¢

512 512
0 160 161 448 512! 0 160 161 448 512

UO1 1 00...000 L SHA1 (M) 1 00...000 L

160 1 287 64 160 1 287 64

Fig. 3. Zero-padding scheme



U_= HMAC-SHA1 (P, U_)

SHA1 (M)

SHA1 (M)

0

512

P ® Ox36 || 0x36 || ... || 0x36

P ® 0x5c || Ox5¢ || ... || Ox5¢

512
0 160 161

512
160 161

) 1

00...000
c-1

SHA1 (M) 1

00...000

160 1

160

1 287

Fig. 4. Constant-padding scheme

In addition, an attacker is able to avoid some other useless op-
erations in the word-expansion. As shown in Figure [d] the constant
0x36 and 0x5C are used to pad the first message block up to the
hash block size (green and orange rectangles). Since passwords are
generally short, a number of W; in equation [f] are set to the same
value. If we XOR the same value twice, we get back the initial value.
Again, these operations do not provide any additional contribution
and can be omitted.

4.3 Precomputing a word-expansion

U, =HMAC-SHA1 (P, S || i)

SHA1 (M)

SHA1 (M")

0

512

P ® 0x36 || 0x36 | ... || 0x36

P ® 0x5c || Ox5¢ || ... || Ox5¢

2
288 289

512
160 161

S|li 1

00...000

SHA1 (M) 1

00...000

288 1 159

1 287

Fig. 5. Precomputing a specific word-expansion




The last weakness described is a minor weakness. This provides
the possibility to precompute the word-expansion part of the second
message block of a keyed hash function (green rectangle in Figure
. Indeed, such a block is password-independent, and given a salt s
(recall that s is a public information) an attacker is able to compute
the expansion Wy ... Wsg in advance. A malicious user can reused
the values precomputed with a dictionary of potential passwords to
speed up a brute force attack.

5 Discussion and conclusions

Passwords are generally short and lack enough entropy, therefore
they cannot be directly used as a key to implement secure crypto-
graphic systems. A possible solution to this issue is to adopt password-
based key derivation functions.

One of the strengths of such functions is the ability to slow down
brute force attacks as much as possible, by allowing a legitimate
user to spend a moderate amount of time on key derivation, and
increasing the time an attacker takes to test each possible password.
On the contrary, the possibility to parallelize password hashes on
dedicated hardware [9], [23], [10], [20] is the key point of successful
attacks.

This paper addressed the security of PBKDF2, one of the most
commonly used function to derive cryptographic keys. We provided a
detailed analysis of PBKDF2 schema and described some weaknesses
that affect a number of well-known and widely-used crypto libraries
such as [4] [1].

The first one concerns the possibility to precompute the first mes-
sage block of a keyed hash function and reuse such a value in all the
subsequent HMAC invocations. This weakness allows an attacker to
avoid 50% of PBKDF2’s CPU intensive operations, replacing them
with constant values. Crypto libreries are subjected to this vulner-
ability if they do not implement the performance improvements de-
scribed in RFC 2104 [15] and FIPS 198-1 [16].

The second one concerns the possibility to avoid useless XOR
operations. Indeed, introducing zero-based operations and XORing
the same value twice do not provide any additional contribution to



the word expansion of SHA-1. Note that the same approach can be
also applied to the word expansion of SHA-2 family hash functions.

The third one concerns the possibility to precompute the word-
expansion of a specific 512-bits message block.

Readers note that the weaknesses of PBKDF2 described in this
paper can be easily mitigated by selecting an iteration count c as
large as possible and implementing the performance improvements
that save the computation of several message blocks of a keyed hash
function.
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