
Constrained PRFs for Unbounded Inputs

with Short Keys

Hamza Abusalah 1,∗ Georg Fuchsbauer 2

1 IST Austria
habusalah@ist.ac.at

2 ENS, CNRS, INRIA and PSL Research University, Paris, France

georg.fuchsbauer@ens.fr

Abstract

A constrained pseudorandom function (CPRF) F : K×X → Y for a family T of subsets of X is
a function where for any key k ∈ K and set S ∈ T one can efficiently compute a short constrained
key kS , which allows to evaluate F (k, ·) on all inputs x ∈ S; while the outputs on all inputs x /∈ S
look random even given kS .

Abusalah et al. recently constructed the first constrained PRF for inputs of arbitrary length
whose sets S are decided by Turing machines. They use their CPRF to build broadcast encryption
and the first ID-based non-interactive key exchange for an unbounded number of users. Their
constrained keys are obfuscated circuits and are therefore large.

In this work we drastically reduce the key size and define a constrained key for a Turing machine
M as a short signature on M . For this, we introduce a new signature primitive with constrained
signing keys that let one only sign certain messages, while forging a signature on others is hard
even when knowing the coins for key generation.

Keywords: Constrained PRFs, unbounded inputs

1 Introduction

Constrained PRFs. A pseudorandom function (PRF) [GGM86] is a keyed function F : K×X → Y
for which no efficient adversary, given access to an oracle O(·), can decide whether O(·) is F(k, ·)
with a random key k ∈ K, or whether O(·) is a uniformly random function X → Y. A PRF F is
called constrained [BW13, KPTZ13, BGI14] for a predicate family P if additionally there exists a
PPT constraining algorithm kp ← F.Constr(k, p) that, on input a key k and a predicate p : X → {0, 1}
specifying a subset Sp = {x ∈ X | p(x) = 1} of potentially exponential size, derives a constrained
key kp. The latter allows computing F(k, x) on all x ∈ Sp, while even given keys for p1, . . . , p`, values
F(k, x) for x /∈

⋃
i Spi still look random. Note that if all sets Sp are polynomial-size, a simple solution

would be to set kp := {F(k, x) |x ∈ Sp}, which would achieve the desired security. The challenge is to
have short keys for potentially big sets.

The simplest type of constrained PRFs (CPRF) are puncturable PRFs [SW14], where for any
input x ∈ {0, 1}∗ one can derive a key kx∗ that allows evaluation everywhere except on x∗, whose
image is pseudorandom even given kx∗ . The most general CPRF is one that is constrained w.r.t.
a Turing-machine (TM) predicate family M, where M ∈ M defines a subset of inputs of arbitrary

∗Supported by the European Research Council, ERC Starting Grant (259668-PSPC)

length SM = {x ∈ {0, 1}∗ |M(x) = 1}. In a TM-constrained PRF a constrained key kM can be derived
for any set SM defined by a TM M .

Abusalah et al. (AFP) [AFP16] construct a (selectively secure) TM-constrained PRF and show
how to use it to construct broadcast encryption (BE) [FN94, BWZ14] where there is no a priori bound
on the number of possible recipients and the first identity-based non-interactive key-exchange scheme
[SOK00, FHPS13, BW13] with no a priori bound on the number of parties that agree on a key.

The main shortcoming of their construction is that a constrained key kM for a TM M is an
obfuscated circuit and is therefore not short, but typically huge. This translates to huge user keys in
the BE and ID-NIKE schemes built from their CPRF. In this paper we overcome this and reduce the
key size drastically defining a constrained key kM for M as simply a signature on M .

TM-constrained PRFs with short keys. The AFP TM-constrained PRF in [AFP16] is built from
puncturable PRFs, succinct non-interactive arguments of knowledge (SNARKs), which let one prove
knowledge of an NP witness via a short proof, collision-resistant hashing and public-coin differing-input
obfuscation (diO) [IPS15]. The latter lets one obfuscate programs, so that one can only distinguish
obfuscations of two equal-size programs if one knows an input on which those programs’ outputs differ.
Moreover, if for two programs it is hard to find such a differing input, even when knowing the coins
used to construct the programs, then their obfuscations are indistinguishable.

Relying on essentially the same assumptions, we enhance the AFP construction, making the the
constrained keys short. Let us look at their CPRF F first, which is defined as F(k, x) := PF(k,H(x)),
where PF is a puncturable PRF, and H is a hash function (this way they map unbounded inputs to
constant-size inputs for a puncturable PRF). A constrained key for a TM M is a diO obfuscation
of the circuit PM that on input (h, π) outputs PF(k, h) iff π is a valid SNARK proving the following
statement: (∗) ∃x : h = H(x)∧M(x) = 1. So PM only outputs the PRF value if the evaluator knows
an input x which satisfies the constraint defined by M .

We also define our TM-CPRF as F(k, x) := PF(k,H(x)). However at setup, we publish as a public
parameter once and for all a diO-obfuscated circuit P that on input (h, π,M, σ) outputs PF(k, h) iff
π is a valid SNARK for (∗) and additionally σ is a valid signature on M . A constrained key kM for
a TM M is a signature on M and a party holding kM := σ can generate a SNARK π, as in the AFP
construction, and additionally use M,σ to run P to evaluate F.

The intuition behind the construction is simple: in order to evaluate F on x, one needs a signature
on a machine M with M(x) = 1. And unforgeability of such signatures should guarantee that without
a key for such an M the PRF value of x should be pseudorandom. However, actually proving this
turns out quite tricky.

In the selective security game for CPRFs, the adversary first announces an input x∗ and can then
query keys for any sets that do not contain x∗, that is, sets described by TMs M with M(x∗) = 0.
The adversary then needs to distinguish the PRF image of x∗ from random. To argue that F(k, x∗)
is pseudorandom, we replace the circuit P by P ∗ for which F looks random on x∗, because it uses a
key that is punctured at H(x∗). Intuitively, since P is obfuscated, an adversary should not notice the
difference. However, to formally prove this we need to construct a sampler that constructs P and P ∗

and argue that it is hard to find a differing input (h, π,M, σ) even when given the coins to construct
the circuits.

One such differing input would be one containing a signature σ̂ on a machine M̂ with M̂(x∗) = 1.
Since σ̂ is a key for a set containing x∗, P outputs the PRF value, while P ∗ does not, as its key
is punctured. As the adversary only obtains signatures for M ’s with M(x∗) = 0, σ̂ intuitively is a
forgery. But the sampler that computes P and P ∗ also computed the signature verification key. So
how can it be hard to construct a differing input containing σ̂ for someone knowing the coins that
also define the secret key?

2

We overcome this seeming contradiction by introducing a new primitive called functional signatures
with obliviously samplable keys (FSwOSK). To produce the circuits P, P ∗, the sampler needs to answer
the adversary’s key queries, that is, compute signatures on M ’s with M(x∗) = 0. FSwOSK lets the
sampler create a verification and signing key, of which the latter only allows to sign such machines M ;
and security for FSwOSK guarantees that even when knowing the coins used to set up the keys, it is
hard to create a signature on a message M̂ with M̂(x∗) = 1.

2 Preliminaries

2.1 Notations and Conventions

Let {Fλ}λ∈N = {F : Kλ ×Xλ → Yλ}λ∈N be a family of keyed functions with key space Kλ, domain Xλ
and range Yλ. (We will drop the security parameter when it is clear from the context.) A family of
circuits Cλ is of polynomial size if for every C ∈ Cλ the description size of C is polynomial in λ, i.e.,
|C| = poly(λ). The same holds for Turing Machine (TM) families.

Let X be a finite set, then x ← X denotes the process of sampling x uniformly at random
from X . Let A be a probabilistic polynomial-time (PPT) algorithm, then Pr[y ← A(x)] denotes the
probability that A(x) outputs y when run on uniformly sampled coins and Pr

[
x1 ← X1;x2 ← X2; . . . :

ϕ(x1, x2, . . .) = 1
]

denotes the probability that the predicate ϕ evaluated on (x1, x2, . . .) is true after
the ordered execution of x1 ← X1, x2 ← X2, etc.

A function ν : N → R is called negligible, if for every positive polynomial p(·), and all sufficiently
large n ∈ N, it holds that ν(n) ≤ 1

p(n) . We use negl(·) to denote that there exists a negligible function.

2.2 Constrained and Puncturable PRFs

Definition 1 (Constrained Functions). A family of keyed functions Fλ = {F : K × X → Y} over
a key space K, a domain X and a range Y is efficiently computable if there exist a probabilistic
polynomial-time (PPT) sampler F.Smp and a deterministic PT evaluator F.Eval as follows:

• k ← F.Smp(1λ): On input a security parameter λ, F.Smp outputs a key k ∈ K.

• y := F.Eval(k, x): On input a key k ∈ K and x ∈ X , F.Eval outputs y = F(k, x).

The family Fλ is constrained w.r.t. a family Sλ of subsets of X , with constrained key space KS such
that KS ∩ K = ∅, if F.Eval accepts inputs from (K ∪ KS) × X and there exists the following PPT
algorithm:

kS ← F.Constr(k, S): On input a key k ∈ K and a (short) description of a set S ∈ Sλ, F.Constr
outputs a constrained key kS ∈ KS such that

F.Eval(kS , x) =

{
F(k, x) if x ∈ S
⊥ otherwise .

Definition 2 (Security of Constrained PRFs). A family of (efficiently computable) constrained func-
tions Fλ = {F : K × X → Y} is selectively pseudorandom, if for every PPT adversary A = (A1,A2)

in ExpO,bF,A, defined in Fig. 1, with O1 = ∅ and O2 = {Constr(·),Eval(·)}, it holds that

AdvOF,A(λ) :=
∣∣Pr

[
ExpO,0F,A(λ) = 1

]
− Pr

[
ExpO,1F,A(λ) = 1

]∣∣ = negl(λ) . (1)

Furthermore, Fλ is adaptively pseudorandom if the same holds for O1 = O2 = {Constr(·),Eval(·)}.

3

ExpO,bF,A(λ) :

k ← F.Smp(1λ); C,E := ∅
(x∗, st)← AO1

1 (1λ)
If x∗ ∈ E, then abort
If b = 1 then y := F.Eval(k, x∗);
else y ← Y
C := C ∪ {x∗}
Return b′ ← AO2

2 (st, y)

Oracle Constr(S) :

If S /∈ Sλ ∨ S ∩ C 6= ∅
Return ⊥

E := E ∪ S
kS ← F.Constr(k, S)
Return kS

Oracle Eval(x) :

If x /∈ X ∨ x ∈ C
Return ⊥

E := E ∪ {x}
y = F.Eval(k, x)
Return y

Figure 1: The security game for constrained PRFs

Remark 1. We require ExpO,bF,A of Fig. 1 to be efficient. Thus when sets are described by Turing
machines then every machine M queried to Constr must terminate on x∗ within a polynomial number
of steps T (as the oracle must check whether S ∩ {x∗} 6= ∅, that is, M(x∗) = 1).

Puncturable PRFs [SW14] are simple constrained PRFs whose domain is {0, 1}n for some n and
whose constrained keys are for sets {{0, 1}n \ {x1, . . . , xm} | x1, . . . , xm ∈ {0, 1}n,m = poly(λ)}, i.e.,
a punctured key can evaluate the PRF on all except polynomially many inputs.

Definition 3 (Puncturable PRFs [SW14]). A family Fλ = {F : K × {0, 1}n → Y} of PRFs is called
puncturable if it is constrainable for sets {0, 1}n \ T , where T is of polynomial size. Fλ is selectively
pseudorandom if for every PPT adversary A = (A1,A2) in Exppct-b

F,A (λ), defined in Fig. 2, we have

AdvpctF,A(λ) :=
∣∣Pr

[
Exppct-0

F,A (λ) = 1
]
− Pr

[
Exppct-1

F,A (λ) = 1
]∣∣ = negl(λ) .

Selectively secure puncturable PRFs are easily obtained from selectively secure prefix-constrained
PRFs, which were constructed from the GGM PRF [GGM86] in [BW13, BGI14, KPTZ13]. In this
work we only require selectively secure puncturable PRFs.

2.3 Public-Coin Differing-Input Obfuscation

Public-coin differing-input (di) obfuscation guarantees that if for pairs of publicly sampled programs
it is hard to find an input on which they differ then their obfuscations are computationally indistin-
guishable. We follow [IPS15] by first defining public-coin di samplers that output programs whose
obfuscations are indistinguishable.

Definition 4 (Public-Coin DI Sampler [IPS15]). A non-uniform PPT sampler Samp is a public-coin
differing-input sampler for a family of polynomial-size circuits Cλ if the output of Samp is in Cλ × Cλ
and for every non-uniform PPT extractor E it holds that

Pr
[
r ← {0, 1}poly(λ); (C0, C1) := Samp(1λ, r); x← E(1λ, r) : C0(x) 6= C1(x)

]
= negl(λ) . (2)

Exppct-b
F,A (λ) :

(x∗, T, st)← A1(1λ); if x∗ /∈ T , then abort
k ← F.Smp(1λ); kT ← F.Constr(k, {0, 1}n \ T)
If b = 1, y := F.Eval(k, x∗), else y ← Y
Return b′ ← AEval(·)

2 (st, kT , y)

Oracle Eval(x) :

If x = x∗, return ⊥
Return F.Eval(k, x)

Figure 2: The selective-security game for puncturable PRFs

4

Definition 5 (Public-Coin diO [IPS15]). A uniform PPT algorithm diO is a public-coin differing-input
obfuscator for a family of polynomial-size circuits Cλ if the following hold:

• For all λ ∈ N, C ∈ Cλ and x: Pr
[
C̃ ← diO(1λ, C) : C(x) = C̃(x)

]
= 1 .

• For every public-coin di sampler Samp for a family of poly-size circuits Cλ, every non-uniform
PPT distinguisher D and every λ ∈ N:∣∣Pr

[
r ← {0, 1}poly(λ); (C0, C1) := Samp(1λ, r); C̃ ← diO(1λ, C0) : 1← D(r, C̃)

]
− (3)

Pr
[
r ← {0, 1}poly(λ); (C0, C1) := Samp(1λ, r); C̃ ← diO(1λ, C1) : 1← D(r, C̃)

]∣∣ = negl(λ) .

Ishai et al. [IPS15] conjecture that Garg et al.’s [GGH+13] iO construction satisfies their notion
of public-coin diO.

2.4 Non-interactive Proof Systems

An efficient non-interactive proof system in the common-random-string (CRS) model for a language
L ∈ NP consists of PPT prover P and verifier V sharing a uniformly random string crs. On input a
statement and a witness, P outputs a proof; V, on input a statement and a proof outputs 0 or 1. We
require proof systems to be complete (honestly generated proofs verify) and sound (no adversary can
produce a a valid proof of a false statement).

A non-interactive proof system is zero-knowledge if proofs of true statements reveal nothing beyond
their validity. This is formalized by requiring the existence of a PPT simulator S = (S1,S2) that on
input a true statement produces a CRS and a proof that are computationally indistinguishable from
real ones.

Definition 6 (NIZK). A tuple of PPT algorithms NIZK = (G,P,V, S) is a statistically sound non-
interactive zero-knowledge (NIZK) proof system in the common-random-string model for L ∈ NP with
witness relation R if we have:

1. Perfect completeness: For every (η, w) such that R(η, w) = 1, it holds that

Pr
[
crs← {0, 1}poly(λ) ; π ← P(crs, η, w) : V(crs, η, π) = 1

]
= 1 .

2. Statistical soundness:

Pr
[
crs← {0, 1}poly(λ) : ∃ (η, π) s.t. η /∈ L ∧ V(crs, η, π) = 1

]
= negl(λ) . (4)

3. Computational zero-knowledge: For every (η, w) such that R(η, w) = 1, and non-uniform PPT
adversary A, it holds that∣∣Pr

[
crs← {0, 1}poly(λ); π ← P(crs, η, w) : A(crs, η, π) = 1

]
−

Pr
[
(crs, τ)←S1(1

λ, η); π←S2(crs, τ, η) : A(crs, η, π) = 1
]∣∣ = negl(λ) . (5)

A succinct non-interactive argument of knowledge (SNARK) is a computationally sound NI proof-
of-knowledge system with universally succinct proofs. A proof for a statement η is succinct if its length
and verification time are bounded by a fixed polynomial in the statement length |η|. We define SNARK
systems in the common-random-string model following Bitansky et al. [BCCT13, BCC+14, IPS15].

Definition 7 (The Universal Relation RU [BG08]). The universal relation RU is the set of instance-
witness pairs of the form ((M,m, t), w) where M is a TM accepting an input-witness pair (m,w)
within t steps. In particular |w| ≤ t.

5

Definition 8 (SNARK). A pair of PPT algorithms (P,V), where V is deterministic, is a succinct
non-interactive argument of knowledge (SNARK) in the common-random-string model for a language
L with witness relation R ⊆ RU if there exist polynomials p, `, q independent of R such that the
following hold:

1. Completeness: For every (η = (M,m, t), w) ∈ R, it holds that

Pr
[
crs← {0, 1}poly(λ); π ← P(crs, η, w) : V(crs, η, π) = 1

]
= 1 .

Moreover, P runs in time q(λ, |η|, t).

2. (Adaptive) Soundness: For every PPT adversary A:

Pr
[
crs← {0, 1}poly(λ); (η, π)← A(crs) : η /∈ L ∧ V(crs, η, π) = 1

]
= negl(λ) .

3. (Adaptive) Argument of knowledge: For every PPT adversary A there exists a PPT extractor
EA such that

Pr

[
crs← {0, 1}poly(λ); r ← {0, 1}poly(λ)
(η, π) := A(crs; r); w ← EA(1λ, crs, r)

: V(crs, η, π) = 1 ∧ (η, w) /∈ R
]

= negl(λ) .

4. Succinctness: For all (crs, η, w) ∈ {0, 1}poly(λ) × R, the length of an honestly generated proof
π ← P(crs, η, w) is bounded by `(λ, log t) and the running time of V(crs, η, π) is bounded by
p(λ+ |η|) = p(λ+ |M |+ |m|+ log t).

Bitansky et al. [BCC+14] provide a construction of SNARKs for Rc ⊂ RU where t = |m|c and c is a
constant, based on knowledge-of-exponent assumptions [BCCT13] and extractable collision-resistant
hash functions (ECRHF) [BCC+14]. These are both non-falsifiable assumptions, but Gentry and
Wichs [GW11] prove that SNARKs cannot be built from falsifiable assumptions via black-box reduc-
tions. Relying on exponentially hard one-way functions and ECRHF, [BCC+14] provide a SNARK
construction for RU .

2.5 Commitment Schemes

A commitment scheme CS for a message space M 63 ⊥ consists of the following PPT algorithms: On
input 1λ, Setup outputs a commitment key ck; on input ck and a message m ∈ M, Com outputs a
commitment c and an opening d; on input ck, c and d, Open opens c to a message m or ⊥. Besides
correctness (commitments open to the committed message), we require computational hiding (no
PPT adversary can distinguish commitments to messages of his choice) and statistical binding (no
unbounded adversary can find some c and two openings d, d′, which open c to two different messages,
except with negligible probability over the choice of ck).

Definition 9 (Commitment Schemes). A commitment scheme for a message space M 63 ⊥ is a tuple
of PPT algorithms CS = (Setup,Com,Open) where:

• ck← Setup(1λ): On input a security parameter 1λ, Setup outputs a commitment key ck.

• (c, d)← Com(ck,m): On input ck and m ∈M, Com outputs commitment c and opening d.

• {m ∪ ⊥} ← Open(ck, c, d): On input ck, c and opening d, Open opens c to m ∈M or ⊥.

We require correctness and security:

6

1. Correctness: CS is correct if for all m ∈M:

Pr
[
ck← Setup(1λ); (c, d)← Com(ck,m); m′ ← Open(ck, c, d) : m = m′

]
= 1− negl(λ). (6)

2. Computational hiding: CS is computationally hiding if for any PPT algorithm A = (A1,A2):∣∣Pr
[
ck← Setup(1λ); (st,m0,m1)← A1(ck); (c0, d0)← Com(ck,m0) : A2(st, c0) = 1

]
− (7)

Pr
[
ck← Setup(1λ); (st,m0,m1)← A1(ck); (c1, d1)← Com(ck,m1) : A2(st, c1) = 1

]∣∣ = negl(λ).

3. Perfect binding: CS is perfectly binding if for all any (unbounded) A:

Pr

[
ck← Setup(1λ); (c, d, d′)← A(ck);
m← Open(ck, c, d); m′ ← Open(ck, c, d′)

: m 6= m′ ∧m,m′ 6= ⊥
]

= negl(λ) . (8)

2.6 Collision-Resistant Hash Functions

A family of hash functions is collision-resistant (CR) if for a uniformly sampled function H it is hard
to find two values that map to the same image under H. It is public-coin CR if this is hard even when
given the coins used to sample H.

Definition 10 (Public-Coin CR Hash Functions [HR04]). A family of (efficiently computable) func-
tions Hλ = {H : {0, 1}∗ → {0, 1}n} with a sampler Smp, is public-coin collision-resistant if for every
PPT adversary A, it holds that

Pr
[
r ← {0, 1}poly(λ);H := Smp(1λ, r); (x1, x2)← A(1λ, r) : x1 6= x2 ∧ H(x1) = H(x2)

]
= negl(λ) .

2.7 Functional Signatures

Functional signatures were introduced by Boyle et al. [BGI14]. They generalize the concept of digital
signatures by letting the holder of a secret key sk derive keys skf for functions f .1 Such a key skf
enables signing (only) messages in the range of f : running Sign(f, skf , w) produces a signature on f(w).

Definition 11 (Functional Signatures [BGI14]). A functional signature scheme for a message space
M 63 ⊥ and a function family Fλ = {f : Df → Rf}λ with Rf ⊆ M is a tuple of PPT algorithms
FS = (Setup,KeyGen, Sign,Verify) where:

• (msk,mvk)← Setup(1λ): On input a security parameter 1λ, Setup outputs a master signing and
verification key.

• skf ← KeyGen(msk, f): On input msk and a function f ∈ Fλ, KeyGen outputs a signing key skf .

• (f(w), σ)← Sign(f, skf , w): On input f ∈ Fλ, a signing key skf for f , and w ∈ Df , Sign outputs
a signature on f(w) ∈M.

• b = Verify(mvk,m, σ): On input a master verification key mvk, a message m ∈M, and signature
σ, Verify outputs b ∈ {0, 1}.

We start with an informal definition of security. A functional signature is correct if correctly gener-
ated signatures verify; it should additionally satisfy unforgeability, function privacy, and succinctness.
Unforgeability is formalized via a game in which an adversary is given the verification key and can
make queries to a key-generation oracle, Key(f, i), and a signing oracle, Sign(f, i,m), which work as
follows:

1In [BGI14], f is given as a circuit, but in their construction of functional encryption, Boyle et al. [BCP14] allow f
to be a Turing machine. In this work we adopt the latter definition.

7

Expunforg
FS,A (λ) :

` := 0; K := ∅
//K[j][1] holds (f, i)

//K[j][2] holds skif
//K[j][3] holds signed m’s

//K[j][4] = 1 if A obtained skif
(msk,mvk)← Setup(1λ)
(m∗, σ∗)← AKey(·,·),Sign(·,·,·)(1λ,mvk)
If Verify(mvk,m∗, σ∗) = 0

Return 0
For j = 1, . . . , ` do

If m∗ ∈ K[j][3], return 0
(f, i) := K[v][1]
If K[v][4] = 1 and m∗ ∈ Rf

return 0
Return 1

Oracle Key(f, i) :

For j = 1, . . . , ` do
If K[j][1] = (f, i)

K[j][4] := 1
Return K[j][2]

skif ←KeyGen(msk, f)
` := `+ 1
K[`][1] := (f, i)

K[`][2] := skif
K[`][4] := 1

Return skif

Oracle Sign(f, i, w) :

found := 0; j := 0
While found=0 ∧ j<` do
j := j + 1
If K[j][1] = (f, i)

skif := K[j][2]
found := 1

If found = 0

skif ← KeyGen(msk, f)
` := `+ 1; j := `
K[j][1] := (f, i)

K[j][2] := skif
K[j][3] :=K[j][3]∪{f(w)}
Return Sign(f, skif , w)

Figure 3: The unforgeability game for functional signatures

• Key(f, i): if a signing key for (f, i) has already been generated, return the recorded key; other-
wise generate and return a fresh signing key skf ← FS.KeyGen(msk, f) and record ((f, i), skf).

• Sign(f, i, w): check if there is a record ((f, i), skif) for some skif ; if not, generate skif for (f, i)

and record it. In both cases, return a signature on f(w) as (f(w), σ)← Sign(f, skif , w).

The adversary wins the unforgeability game if it returns a signature on some m∗ that was not returned
by Sign and for all f queried to Key we have m∗ /∈ Rf .

Function privacy states that signatures neither reveal the function associated to the secret key nor
the preimage w used. It is formalized via a game in which an adversary A is given the master signing
key as well as signing keys for two functions f0, f1 (of equal description size) of its choice; A outputs
(w0, w1) (with |w0| = |w1| and f0(w0) = f1(w1)) and receives Sign(fb, skfb , wb) for b ← {0, 1}, which
it has to guess. Succinctness requires that the size of a signature is independent of |w| and |f |.

Definition 12 (Security of Functional Signatures). A functional signature scheme FS, as defined in
Def. 11, is secure if it satisfies the following:

1. Correctness: For all λ ∈ N, f ∈ Fλ, w ∈ Df , (msk,mvk) ← Setup(1λ), skf ← KeyGen(msk, f),
and (f(w), σ)← Sign(f, skf , w): Verify(mvk, f(w), σ) = 1.

2. Unforgeability: For every PPT adversary A in Expunforg
A (λ) defined in Fig. 3, it holds that

Pr
[
Expunforg

A (λ) = 1
]

= negl(λ) .

3. Function privacy: For every PPT adversary A in Exppriv-b
A (λ) defined in Fig. 4, it holds that∣∣Pr

[
Exppriv-0

A (λ) = 1
]
− Pr

[
Exppriv-1

A (λ) = 1
]∣∣ = negl(λ) .

4. Succinctness: There exists a polynomial s(·) such that for all λ ∈ N, f ∈ Fλ, w ∈ Df , (msk,mvk)
← Setup(1λ), skf ← KeyGen(msk, f), (f(w), σ) ← Sign(f, skf , w), we have |σ| ≤ s(λ, |f(w)|).
(Thus the signature size is independent of |w| and |f |).

Boyle et al. [BGI14] construct functional signatures based on zero-knowledge SNARKs.

8

Exppriv-b
FS,A (λ)

(msk,mvk)← Setup(1λ); (f0, st1)← A1(1λ,msk,mvk)
skf0 ← KeyGen(msk, f0); (f1, st2)← A2(st1, skf0)
If |f0| 6= |f1|, return 0
skf1 ← KeyGen(msk, f1); (w0, w1, st3)← A3(st2, skf1)
If |w0| 6= |w1| ∨ f0(w0) 6= f1(w1), return 0
(fb(wb), σb)← Sign(fb, skfb , wb)
Return b′ ← A4(st3, σb)

Figure 4: The function-privacy game for functional signatures

3 Functional Signatures with Obliviously Samplable Keys

We now introduce and construct a new primitive we call functional signatures with obliviously sam-
plable keys (FSwOSK), which will be our central tool in order to achieve short keys for CPRF with
unbounded inputs. We first extend a (standard) signature scheme by an extra functionality that given
a message m allows one to sample a verification key together with a signature on m in an oblivious
way. This means that, while the key and the signature look like regularly generated ones, no one can
forge a signature on a different message under this key, even when given the coins used to sample the
key/signature pair. We call this primitive signatures with obliviously samplable signatures (SwOSS)
and construct it from one-way functions and NIZK by adapting a signature scheme due to Bellare and
Goldwasser [BG90]. We then combine this scheme with SNARKs in order to construct our FSwOSK
following the construction of a (standard) functional signature scheme of Boyle et al. [BGI14].

3.1 Signature Schemes with Obliviously Samplable Signatures

Definition 13 (SwOSS). Let S = (KeyGen,Sign,Verify) be a (standard) signature scheme that is
existentially unforgeable under chosen-message attacks (EUF-CMA) with message space M 63 ⊥. We
say S has obliviously samplable signatures if there exists a PPT algorithm OSmp such that:

• (vk, σ)← OSmp(1λ,m): On input security parameter 1λ and a message m ∈M, OSmp outputs
a verification key vk and a signature σ on m.

SwOSS S is secure if it satisfies:

1. Indistinguishability: For every PPT algorithm A = (A1,A2) in Expind-b
S,A (λ) defined in Fig. 5, it

holds that ∣∣Pr
[
Expind-0

S,A (λ) = 1
]
− Pr

[
Expind-1

S,A (λ) = 1
]∣∣ = negl(λ) . (9)

2. Oblivious unforgeability: For every PPT algorithm A = (A1,A2) in Expobl-uf
S,A (λ) defined in

Fig. 6, it holds that
Pr
[
Expobl-uf

S,A (λ) = 1
]

= negl(λ) . (10)

We now construct a standard signature scheme with obliviously samplable signatures.

Construction 1 (Signatures with Obliviously Samplable Signatures). Let Fλ = {F : K×{0, 1}n → Y}
be a family of PRFs, CS=(Setup,Com,Open) a perfectly binding computationally hiding commitment
scheme for message space M, and NIZK = (G,P,V,S = (S1, S2)) a statistically sound NIZK scheme
for

Lη :=

{
(ck, c0, c1, y,m)

∣∣∣∣ ∃ (k, r) :
(
c0 = CS.Com1(ck, k; r) ∧ y = F(k,m)

)
∨ c1 = CS.Com1(ck,m; r)

}
(11)

9

Expind-b
S,A (λ)

(st,m)← A1(1λ)
If b = 0

(vk, sk)←KeyGen(1λ); σ←Sign(sk,m)
Else (vk, σ)← OSmp(1λ,m)
Return b′ ← A2(st, vk, σ)

Figure 5: The oblivious-indistinguishability game

Expobl-uf
S,A (λ)

(st,m)← A1(1λ)
r ← {0, 1}poly(λ); (vk, σ)← OSmp(1λ,m; r)
(m∗, σ∗)← A2(st, r)
Return 1 iff m∗ 6= m

∧ Verify(vk,m∗, σ∗) = 1

Figure 6: The oblivious-unforgeability game

(where Com1 denotes the first output of Com). Let > ∈M be such that > /∈ K and > /∈ {0, 1}n. Our
signatures-with-obliviously-samplable-signatures scheme OS = (KeyGen,Sign,Verify,OSmp) is defined
as follows:

(sk, vk)← KeyGen(1λ): On input a security parameter 1λ, compute

• k ← F.Smp(1λ); crs← {0, 1}poly(λ); ck← CS.Setup(1λ);

• r0, r1 ← {0, 1}poly(λ);
• (c0, d0) := CS.Com(ck, k; r0); (c1, d1) := CS.Com(ck,>; r1);

return sk := (k, r0), vk := (crs, ck, c0, c1)

σ ← Sign(sk,m): On input sk = (k, r0) and m ∈M compute

• y := F(k,m);

• π ← NIZK.P(crs, η := (ck, c0, c1, y,m), (k, r0)), where η ∈ Lη from (11);

return σ := (y, π).

b := Verify(vk,m, σ): On input vk = (crs, ck, c0, c1), m and σ = (y, π),

return b := NIZK.V(crs, η = (ck, c0, c1, y,m), π).

(vk, σ)← OSmp(1λ,m): On input 1λ and m ∈M, compute

• r := r0‖r1‖ry‖rSetup‖crs‖rP ← {0, 1}poly(λ),
• y ←ry Y // ry is used to sample y from Y,

• ck := CS.Setup(1λ; rSetup),

• (c0, d0) := CS.Com(ck,>; r0); (c1, d1) := CS.Com(ck,m; r1),

• π := NIZK.P(crs, η := (ck, c0, c1, y,m), w := (m, r1); rP);

return vk := (crs, ck, c0, c1) and σ := (y, π).

Theorem 1. Scheme OS in Construction 1 is an EUF-CMA-secure signature scheme with obliviously
samplable signatures.

Proof. We need to show that (KeyGen,Sign,Verify) is (standard) EUF-CMA-secure and prove indis-
tinguishability (9) and oblivious unforgeability (10). The proof of EUF-CMA is analogous to that of
Bellare and Goldwasser’s [BG90] (noting that the second clause in (11) is always false) and is therefore
omitted.

Indistinguishability: Let A = (A1,A2) be a PPT adversary that non-negligibly distinguishes honestly
generated (Expind-0

OS,A(λ)) and obliviously sampled verification key-signature pairs (Expind-1
OS,A(λ)). Our

10

Exp
(0)
OS,A(λ)

(st,m)← A1(1λ)
k ← F.Smp(1λ)
y := F(k,m)
ck← CS.Setup(1λ)
r0, r1 ← {0, 1}poly(λ)
c0 := CS.Com1(ck, k; r0)
c1 := CS.Com1(ck,>; r1)
η := (ck, c0, c1, y,m)
w := (k, r0)

crs← {0, 1}poly(λ)
π ← NIZK.P(crs, η, w)

vk := (crs, ck, c0, c1)
σ := (m, y, π)
Return b′ ← A2(st, vk, σ)

Exp
(1)
OS,A(λ)

(st,m)← A1(1λ)
k ← F.Smp(1λ)
y := F(k,m)
ck← CS.Setup(1λ)
r0, r1 ← {0, 1}poly(λ)

c0 := CS.Com1(ck, k; r0)

c1 := CS.Com1(ck,>; r1)
η := (ck, c0, c1, y,m)

(crs, τ)← NIZK.S1(1
λ, η)

π ← NIZK.S2(crs, τ, η)
vk := (crs, ck, c0, c1)
σ := (y, π)
Return b′ ← A2(st, vk, σ)

Exp
(2)
OS,A(λ)

(st,m)← A1(1λ)
k ← F.Smp(1λ)
y := F(k,m)
ck← CS.Setup(1λ)
r0, r1 ← {0, 1}poly(λ)
c0 := CS.Com1(ck,>; r0)

c1 := CS.Com1(ck,>; r1)

η := (ck, c0, c1, y,m)

(crs, τ)← NIZK.S1(1
λ, η)

π ← NIZK.S2(crs, τ, η)
vk := (crs, ck, c0, c1)
σ := (y, π)
Return b′ ← A2(st, vk, σ)

Exp
(3)
OS,A(λ)

(st,m)← A1(1λ)

k ← F.Smp(1λ)
y := F(k,m)

ck← CS.Setup(1λ)
r0, r1 ← {0, 1}poly(λ)
c0 := CS.Com1(ck,>; r0)
c1 := CS.Com1(ck,m; r1)
η := (ck, c0, c1, y,m)
(crs, τ)← NIZK.S1(1

λ, η)
π ← NIZK.S2(crs, τ, η)
vk := (crs, ck, c0, c1)
σ := (y, π)
Return b′ ← A2(st, vk, σ)

Exp
(4)
OS,A(λ)

(st,m)← A1(1λ)
y ← Y

ck← CS.Setup(1λ)
r0, r1 ← {0, 1}poly(λ)
c0 := CS.Com1(ck,>; r0)
c1 := CS.Com1(ck,m; r1)
η := (ck, c0, c1, y,m)

(crs, τ)← NIZK.S1(1
λ, η)

π ← NIZK.S2(crs, τ, η)

vk := (crs, ck, c0, c1)
σ := (y, π)
Return b′ ← A2(st, vk, σ)

Exp
(5)
OS,A(λ)

(st,m)← A1(1λ)
y ← Y

ck← CS.Setup(1λ)
r0, r1 ← {0, 1}poly(λ)
c0 := CS.Com1(ck,>; r0)
c1 := CS.Com1(ck,m; r1)
η := (ck, c0, c1, y,m)
w := (m, r1)
crs← {0, 1}poly(λ)
π ← NIZK.P(crs, η, w)
vk := (crs, ck, c0, c1)
σ := (y, π)
Return b′ ← A2(st, vk, σ)

Figure 7: The hybrids used in the proof of Theorem 1

proof will be by game hopping and we define a series of games Exp(0) := Expind-0
OS,A(λ), Exp(1), . . . ,

Exp(5) := Expind-1
OS,A(λ) and show that for c = 0, . . . , 4, Exp(c) and Exp(c+1) are computationally

indistinguishable. All games are given in Fig. 7. In Exp(0) the adversary obtains vk output by
KeyGen and σ output by Sign as defined in Construction 1.
Exp(1) differs from Exp(0) in that the CRS for the NIZK and the proof π are simulated. By zero
knowledge of NIZK the game is indistinguishable from Exp(0).
Exp(2) differs from Exp(1) in that c0 commits to > rather than a PRF key k. By computational
hiding of CS, this is indistinguishable for PPT adversaries (note that r0 is not used elsewhere in the
game).
Exp(3) differs from Exp(2) in that c1 commits to m rather than >. Again, by hiding of CS (and since
r1 is not used anywhere), this is indistinguishable.
Exp(4) differs from Exp(3) in that y ← Y is random rather than y := F(k,m). Pseudorandomness of
F guarantees this change is indistinguishable to PPT adversaries (note that k is not used anywhere
else in the game).
Exp(5) differs from Exp(4) in that the CRS crs for the NIZK is chosen at random (rather than
simulated) and π is computed by NIZK.P. Again, this is indistinguishable by zero knowledge of NIZK.

11

Expind-b
FS,A(λ)

(st, f)← A1(1λ)
If b = 0

(msk,mvk)← KeyGen(1λ)
skf ← KeyGen(msk, f)

Else (mvk, skf)← OSmp(1λ, f)
Return b′ ← A2(st,mvk, skf)

Figure 8: The oblivious-indist. game

Expobl-uf
FS,A (λ)

(st, f)← A1(1λ)
r ← {0, 1}poly(λ)
(mvk, skf)← OSmp(1λ, f ; r)
(m∗, σ∗)← A2(st, r)
Return 1 iff m∗ /∈ Rf

∧ Verify(mvk,m∗, σ∗) = 1

Figure 9: The oblivious-unforgeability game

Oblivious unforgeability. This follows from soundness of NIZK and the binding property of CS. OSmp
sets c0 to a commitment of > and c1 to a commitment of m. IfAmanages to output a signature (y∗, π∗)
that is valid on message m∗ 6= m, i.e., NIZK.V(crs, (ck, c0, c1, y

∗,m∗), π∗) = 1, then by soundness of
NIZK, (ck, c0, c1, y

∗,m∗) ∈ Lη (11), meaning that either c0 is a commitment to a valid PRF key or c1 is
a commitment to m∗. Either case would contradict the binding property of the commitment scheme.

This proves Theorem 1. A formal proof can be found in Appendix A.1.

3.2 Functional Signature Schemes with Obliviously Samplable Keys

Definition 14 (FSwOSK). Let FS = (Setup,KeyGen, Sign,Verify) be a functional signature scheme
(Def. 11). We say FS has obliviously samplable keys if there exists a PPT algorithm OSmp such that:

(mvk, skf)← OSmp(1λ, f): On input a security parameter 1λ and a function f ∈ Fλ, OSmp outputs
a master verification key mvk and a functional signing key skf for f .

FSwOSK FS is secure if in addition to Def. 12 the following hold:

1. Indistinguishability: For every PPT algorithm A = (A1,A2) in Expind-b
FS,A(λ) defined in Fig. 8, it

holds that
|Pr

[
Expind-0

FS,A(λ) = 1
]
− Pr

[
Expind-1

FS,A(λ) = 1
]
| = negl(λ) . (12)

2. Oblivious unforgeability: For every PPT algorithm A = (A1,A2) in Expobl-uf
FS,A (λ) defined in

Fig. 9, it holds that
Pr
[
Expobl-uf

FS,A (λ) = 1
]

= negl(λ) . (13)

We next show that if in the construction of functional signatures of Boyle et al. [BGI14] we
replace the signature scheme by a SwOSS (Def. 13) then we obtain a FSwOSK. As a first step Boyle
et al. [BGI14, Theorem 3.3] construct FS′ = (Setup′,KeyGen′, Sign′,Verify′), which does not satisfy
function privacy nor succinctness, but which is unforgeable if the underlying signature scheme is
EUF-CMA. Relying on adaptive zero-knowledge SNARKs for NP, they then transform FS′ into a
scheme FS satisfying all notions from Def. 12 [BGI14, Theorem 3.4].

We first enhance their scheme FS′ by an oblivious sampler OSmp′ so it also satisfies indistin-
guishability and oblivious unforgeability, as defined in Def. 14. Then we show that the transformation
of [BGI14] also applies to our FS′, yielding a secure FSwOSK.

Construction 2. Let OS = (KeyGen,Sign,Verify,OSmp) be a secure SwOSS and SS an EUF-CMA-
secure signature scheme. For a message space M 63 ⊥ and a function family Fλ = {f : Df →
Rf ⊆M}λ, we construct FS′ = (FS′.Setup,FS′.KeyGen,FS′.Sign,FS′.Verify,FS′.OSmp), a scheme with
obliviously samplable keys that is correct, UF, indistinguishable and obl. UF but neither function-
private nor succinct.

12

(msk,mvk)← FS′.Setup(1λ): Return (msk,mvk)← OS.KeyGen(1λ).

skf ← FS′.KeyGen(msk, f): On input msk and f ∈ Fλ, compute

• (sk, vk)← SS.KeyGen(1λ),

• σf‖vk ← OS.Sign(msk, f‖vk),

and return skf := (f‖vk, σf‖vk, sk).

(f(w), σ)← FS′.Sign(f, skf , w): On input f ∈ Fλ, key skf = (f‖vk, σf‖vk, sk) for f and w ∈ Df ,

compute σw ← SS.Sign(sk, w); return σ := (f‖vk, σf‖vk, w, σw).

FS′.Verify(mvk,m, σ) ∈ {0, 1}: On input mvk, m ∈ {0, 1}∗ and σ = (f‖vk, σf‖vk, w, σw), return 1 if

OS.Verify(mvk, f‖vk, σf‖vk) = SS.Verify(vk, w, σw) = 1 and m = f(w); else return 0.

(mvk, skf)← FS′.OSmp(1λ, f): On input 1λ and f ∈ Fλ, compute

• rG, rO ← {0, 1}poly(λ),
• (sk, vk) := SS.KeyGen(1λ; rG),

• (mvk, σf‖vk) := OS.OSmp(1λ, f‖vk; rO),

and return mvk and skf := (f‖vk, σf‖vk, sk).

Theorem 2. FS′ of Construction 2 is a FSwOSK that satisfies correctness, unforgeability, indistin-
guishability and oblivious unforgeability (but neither function privacy nor succinctness).

Theorem 2 is formally proved in Appendix A.2 and we give some proof intuition here. Theo-
rem 3.3 in [BGI14] proves that (FS′.Setup,FS′.KeyGen,FS′.Sign,FS′.Verify) is a functional signature
scheme that is correct and unforgeable. What remains then is to show that FS′.OSmp satisfies both
indistinguishability (12) and oblivious unforgeability (13).

Note that a FSwOSK master verification key is a SwOSS verification key, and a FswOSK functional
signing key is a SwOSS signature; thus an obliviously samplable pair for FSwOSK translates to a pair
for SwOSS; indistinguishability for FSwOSK reduces thus to indistinguishability for SwOSS. Similarly,
oblivious unforgeability for FSwOSK reduces to oblivious unforgeability of SwOSS (note that in this
game the adversary cannot ask for functional signatures, so EUF-CMA of the regular signature scheme
is not needed).

Next we show that the transformation of [BGI14] applies to our scheme FS′, and therefore the
transformed FS is a FSwOSK satisfying Def. 14.

Theorem 3. Assuming an adaptive zero-knowledge SNARK system for NP, FS′ from Construction 2
can be transformed into a secure FSwOSK scheme FS.

Proof sketch. The construction and proof of the theorem are exactly the same as those of Theorem 3.4
of [BGI14], and therefore we only give an intuitive argument and refer the reader to [BGI14] for more
details.

First observe that in FS′ a signature σ := (f‖vk, σf‖vk, w, σw) on f(w) contains both f and w in
the clear and is therefore neither function-private nor succinct. In the new scheme FS a signature on
m is instead a zero-knowledge SNARK proof π of knowledge of the following: f , vk, a signature σf‖vk
on f‖vk that verifies under mvk, an element w such that f(w) = m, and a signature σ on w, valid
under vk. Now function privacy reduces to zero knowledge and succinctness of signatures reduces to
succinctness of the underlying SNARK.

13

4 Constrained PRFs for Unbounded Inputs

In this section we construct a family of constrained PRFs for unbounded inputs such that a constrained
key is simply a (functional) signature on the constraining TM M . As a warm-up, we review the
construction of [AFP16] where a constrained key is a diO obfuscation of a circuit that depends on the
size of the constraining TM M . In particular, the circuit verifies a SNARK for the following relation.

Definition 15 (Rlegit). We define the relation Rlegit ⊂ RU (with RU from Def. 7) to be the set of
instance-witness pairs (((H,M), h, t), x) such that M and H are descriptions of a TM and a hash
function, M(x) = 1 and H(x) = h within t steps. We let Llegit be the language corresponding
to Rlegit. For notational convenience, abusing notation, we write ((H,M, h), x) ∈ Rlegit to mean
(((H,M), h, t), x) ∈ Rlegit while implicitly setting t = 2λ.

Remark 2. Let t = 2λ in the definition of Rlegit; then by succinctness of SNARKs (Def. 8), the length
of a SNARK proof is bounded by `(λ) and its verification time is bounded by p(λ+ |M |+ |H|+ |h|),
where p, ` are a priori fixed polynomials that do not depend on Rlegit.

Construction 3. [AFP16] Let PFλ = {PF : K × {0, 1}n → Y} be a selectively secure puncturable
PRF, Hλ = {H : {0, 1}∗ → {0, 1}n}λ a family of public-coin CR hash functions, diO a public-coin
diO obfuscator for a family of polynomial-size circuits Pλ, and SNARK a SNARK system for Rlegit

(Def. 15). A family of selectively secure PRFs Fλ = {F : K × {0, 1}∗ → Y} constrained w.r.t. to any
polynomial-size family of TMs Mλ is defined as follows:

K ← F.Smp(1λ): Sample k ← PF.Smp(1λ), H← H.Smp(1λ), crs← {0, 1}poly(λ); return K :=(k,H, crs).

kM ← F.Constr(K,M): On input K = (k,H, crs) and M ∈Mλ, define

PM,H,crs,k(h, π) :=

{
PF.Eval(k, h) if SNARK.V(crs, (H,M, h), π) = 1
⊥ otherwise

(14)

compute P̃ ← diO(1λ, PM,H,crs,k) and output kM := (M, P̃ ,H, crs).

y := F.Eval(κ, x): On input κ ∈ K ∪ KM and x ∈ {0, 1}∗, do the following:

• If κ ∈ K, κ = (k,H, crs): return PF.Eval(k,H(x)).

• If κ = (M, P̃ ,H, crs) ∈ KM: if M(x) = 1, let h := H(x) (thus (H,M, h) ∈ Llegit),

π ← SNARK.P(crs, (H,M, h), x) and return y := P̃ (h, π).

The drawback of Construction 3 is that a constrained key for a set decided by a TM M is a
diO-obfuscated circuit and is therefore large. In our construction below we use FSwOSK to define a
constrained key simply as a functional signature kM on M . As in Construction 3, our constrained PRF
F is defined as as F(k, x) = PF(k,H(x)), where PF is a puncturable PRF and H is a collision-resistant
hash function. To enable evaluating F given a constrained key kM , in the setup we output as a public
parameter a diO-obfuscation of a circuit P (defined in (15) below) that on input (M,h, π, σ) outputs
PF(k,H(x)) if π is a valid SNARK proving knowledge of some x such that M(x) = 1 and H(x) = h,
and moreover σ is a valid functional signature on M ; and outputs ⊥ otherwise.

To evaluate F on x with a constrained key kM , first set h := H(x) and produce a SNARK π proving
knowledge of x with M(x) = 1 and h = H(x). Then run the public circuit P on (M,h, π, kM), which
will return PF(k, h) = F(k,H(x)).

14

Construction 4 (TM-constrained PRF with short keys). Let PFλ = {PF : K × {0, 1}n → Y} be a
selectively secure puncturable PRF, Hλ = {H : {0, 1}∗ → {0, 1}n}λ a family of public-coin collision-
resistant hash functions, FS = (Setup,KeyGen,Sign,Verify,OSmp) a FSwOSK scheme, diO a public-
coin differing-input obfuscator for a family of poly-size circuits Pλ, and SNARK a SNARK system in
the common-random-string model for Rlegit (cf. Def. 15).

We construct a family of PRFs Fλ = {F : K×{0, 1}∗ → Y} constrained w.r.t. to a polynomial-size
family of Turing machines Mλ. Following is a description of F = (F.Smp,F.Constr,F.Eval).

K ← F.Smp(1λ):

• H ← H.Smp(1λ).

• crs← {0, 1}poly(λ).
• (msk,mvk)← FS.Setup(1λ).

• skfI ← FS.KeyGen(msk, fI) where fI is the identity function, i.e., fI : M 7→M .

• k ← PF.Smp(1λ).

• P̃ ← diO(1λ, P) where P = PH,crs,mvk,k ∈ Pλ is defined as:

P (M,h, π, σ) :=

PF.Eval(k, h) if SNARK.V

(
crs, (H,M, h), π

)
= 1

∧ FS.Verify(mvk,M, σ) = 1
⊥ otherwise

(15)

• Set pp = (H, crs,mvk, P̃) and return K := (k, skfI ,pp).

kM ← F.Constr(K,M): On input K = (k, skfI , pp) and M ∈Mλ, compute (M,σ)← FS.Sign(I, skfI ,M)

and return kM := (M,σ, pp).

y := F.Eval(κ, x): On input κ ∈ K ∪ KM and x ∈ {0, 1}∗:

• If κ ∈ K, κ = (k, skfI , pp = (H, crs,mvk, P̃)): set y := PF.Eval(k,H(x)).

• If κ ∈ KM, κ = (M,σ, (H, crs,mvk, P̃)): if M(x) = 1, set h := H(x) (thus (H,M, h) ∈
Llegit), compute π ← SNARK.P(crs, (H,M, h), x), and return y := P̃ (M,h, π, σ).

Remark 3. The values in pp, including P̃ , are computed once and for all. As in the model for
constrained PRFs there are no public parameters, we formally include them in the constrained key
kM . Note that Pλ is in fact a family of circuits with an input length |M |+ n+ |π|+ |σ| where |π| is
upper bounded by `(λ) even for an exponentially long x (cf. Remark 2).

Let us now argue why we need functional signatures with obliviously samplable keys in order to
prove our construction secure.

If we could replace the PRF key k by a punctured one k∗ := kH(x∗) then F(k, x∗) would look
random, as required for selective security of F. The obfuscated circuit P would thus use k∗ instead of
k. But obfuscations of Pk and Pk∗ are only indistinguishable if it is hard to find an input on which
they differ. And, since we use public-coin diO, this should be even hard when given all coins used to
produce Pk and Pk∗ .

In the security experiment the adversary can query keys for machines M with M(x∗) = 0 and
when fed to Pk and Pk∗ , both output the same. However, if the adversary manages to forge a signature
on some M̂ with M̂(x∗) = 1 then Pk outputs F(k, x∗), but Pk∗ , using a punctured key, outputs ⊥.

15

The tricky part is to break some unforgeability notion when this happens. The differing-input
sampler that computes Pk and Pk∗ must simulate the experiment for A and thus create signatures
to answer key queries. This is why we need functional signatures, as then the sampler can use a
signing key skf∗ , which only allows signing of machines with M(x∗) = 0, to answer key queries. FS

unforgeability guarantees that even given such a key it is hard to compute a signature on some M̂
with M̂(x∗) = 1.

The next problem is that finding a differing input (and thus a forgery on M̂) should be hard even
when given all coins, so in particular the coins to create the signature verification key mvk contained
in Pk and Pk∗ ; thus it would be easy to “forge a signature”. This is why we need FSwOSK, as they
allow to sample a verification key together with skf∗ and even when given the coins, forgeries should
be hard.

Theorem 4. Fλ of Construction 4 is a selectively secure family of constrained PRFs with input space
{0, 1}∗ for which constrained keys can be derived for any set that can be decided by a polynomial-size
Turing machine.

Proof. Let A be a PPT adversary for the game Exp
(∅,{Constr,Eval}),b
F,A (λ), as defined in Fig. 10, which

we abbreviate as Expb. We need to show that Exp0 and Exp1 are indistinguishable. Our proof
will be by game hopping and we define a series of hybrid games Expb,(0) := Expb, Expb,(1),Expb,(2),
Expb,(3), Expb,(4) and show that for b = 0, 1 and c = 0, 1, 2, 3 the games Expb,(c) and Expb,(c+1)

are indistinguishable. Finally we show that Exp0,(4) and Exp1,(4) are also indistinguishable, which
concludes the proof. All games are defined in Fig. 10, using the following definitions:

fI : M 7→M, fx∗ : M 7→
{
M if M(x∗) = 0
⊥ otherwise

(16)

Expb,(0) is the original game Exp
b,(∅,{Constr,Eval})
F,A (λ) for Construction 4. (Note that we padded fI

but, by succinctness, functional signatures (returned by Constr) are independent of the length
of f .)

Expb,(1) differs from Expb,(0) by replacing the signing key skfI with skfx∗ , which only allows to sign
machines M with M(x∗) = 0.

Expb,(2) differs from Expb,(1) by replacing the verification/signing key pair (mvk, skfx∗) with an
obliviously sampled one.

Expb,(3) differs from Expb,(2) by replacing the full key of the puncturable PRF PF with one that is
punctured at H(x∗) in the definition of P .

Expb,(4) differs from Expb,(3) by answering Eval queries using the punctured key kh∗ and aborting
whenever the adversary queries Eval on a value that collides with x∗ under H.

Intuitively, Expb,(0)(λ) and Expb,(1)(λ) are computationally indistinguishable as the only difference
between them is the use of the signing key skfI and skfx∗ , respectively, in answering constraining
queries. The Constr oracle only computes signatures on TMs M with M(x∗) = 0. Therefore,
fx∗ coincides with fI on all such legitimate queries. By function privacy of FS (Def. 12), signatures
generated with fx∗ and fI are computationally indistinguishable.

Proposition 1. Expb,(0) and Expb,(1) are computationally indistinguishable for b = 0, 1 if FS is a
functional signature scheme satisfying function privacy and succinctness.

16

Exp
(∅,{Constr,Eval}),b
F,A (λ)

(x∗, st)← A1(1λ)
K ← F.Smp(1λ)
If b = 1
y∗ := F.Eval(K,x∗)

Else
y∗ ← Y

b′ ← AConstr(·),Eval(·)
2 (st, y∗)

Return b′

Oracle Constr(M)

If M /∈Mλ ∨M(x∗) = 1
Return ⊥

kM ← F.Constr(K,M)
Return kM

Oracle Eval(x)

If x = x∗

Return ⊥
y = F.Eval(K,x)
Return y

Exp
b,(c)
F,A(λ) // c ∈ {0, 1, 2, 3, 4}

(x∗, st)← A1(1λ)
H ← H.Smp(1λ)
crs← {0, 1}poly(λ)

If c ≤ 1
(msk,mvk)← FS.Setup(1λ)
Define fI and fx∗ as in (16) and pad them to the same length.

skfI ← FS.KeyGen(msk, fI)
skfx∗ ← FS.KeyGen(msk, fx∗)

Else
(mvk, skfx∗)← FS.OSmp(1λ, fx∗)

k ← PF.Smp(1λ)
kh∗ ← PF.Constr(k, {0, 1}n \ {H(x∗)})

If c ≤ 2 then

P := PH,crs,mvk,k as defined in (15)
Else
P := PH,crs,mvk,kh∗ as defined in (15)

P̃ ← diO(1λ, P)

pp := (H, crs,mvk, P̃)

If b = 1, y∗ := PF.Eval(k,H(x∗)), else y∗ ← Y
b′ ← AConstr(·),Eval(·)

2 (st, y∗)
Return b′

Oracle Constr(M)

If M /∈Mλ ∨M(x∗) = 1
Return ⊥

If c = 0

(M,σ)← FS.Sign(fI , skfI ,M)
Else

(M,σ)← FS.Sign(fx∗ , skfx∗ ,M)
Return kM := (M,σ,pp)

Oracle Eval(x)

If x = x∗

Return ⊥
If c ≤ 3

y := PF.Eval(k,H(x))
Else

If H(x) = H(x∗), abort
Else y := PF.Eval(kh∗ , H(x))

Return y

Figure 10: The original security game and hybrids used in the proof of Theorem 4

The only difference between Expb,(1) and Expb,(2) is in how mvk and skfx∗ are computed. In

Expb,(1) the keys mvk (used to define P) and skfx∗ (used to answer Constr queries) are generated

by FS.Setup and FS.KeyGen, resp., whereas in Expb,(2) they are obliviously sampled together. Indis-
tinguishability of honestly generated and obliviously sampled pairs (Def. 14) of verification/signing
key pairs guarantees that this change is indistinguishable to PPT adversaries.

Proposition 2. Expb,(1) and Expb,(2) are computationally indistinguishable for b = 0, 1 if FS is a
functional signature scheme with obliviously samplable keys.

It is in the next step that we use the full power of our new primitive FSwOSK. The only difference
between Expb,(2) and Expb,(3) is in the definition of the circuit P that is obfuscated. In Expb,(2)

the circuit P =: P (2) is defined as in (15), with k ← PF.Smp(1λ). In Expb,(3), the key k in circuit

17

P =: P (3) is replaced by a punctured key kh∗ ← PF.Constr(k, {0, 1}n \ {H(x∗)}).
The two games differ thus in whether P̃ is an obfuscation of P (2) or P (3). By public-coin diO,

these are indistinguishable, if for a sampler Samp that outputs P (2) and P (3), no extractor, even when
given the coins used by Samp, can find a differing input (M̂, ĥ, π̂, σ̂).

Suppose there exists an extractor E outputs such a tuple. By correctness of PF, P (2) and P (3) only
differ on inputs (M̂, ĥ, π̂, σ̂), where

ĥ = H(x∗) , (17)

as that is where the punctured key behaves differently. Moreover, the signature σ̂ must be valid on
M̂ , as otherwise both circuits output ⊥. Intuitively, unforgeability of functional signatures should
guarantee that

M̂(x∗) = 0 , (18)

as the adversary only obtains a signature from its Constr oracle when it submits machines satisfy-
ing (18), so a valid σ̂ on M̂ with M̂(x∗) = 1 would be a forgery.

To construct P (2) and P (3), Samp must simulate the experiment for A, during which it needs to
answer A’s Constr queries and thus create signatures. This shows the need for a functional signature
scheme: we need to enable Samp to create signatures on M ’s with M(x∗) = 0 (by giving it skfx∗)

while still arguing that it is hard to find a signature on M̂ with M̂(x∗) = 1.
Finally, if we used standard functional signatures then we would need to embed a master verification

key (under which the forgery will be) into Samp, but this would require diO with auxiliary inputs. We
avoid this using FSwOSK, which let Samp create mvk (together with skf∗) itself, and which ensure
that for E , even given Samp’s coins, it is hard to find a forgery σ̂. It follows that (18) must hold with
overwhelming probability.

Finally the proof π̂ must be valid for (H, M̂, ĥ), as otherwise both circuits output ⊥. By SNARK
extractability, we can therefore extract a witness x̂ for (H, M̂, ĥ) ∈ Llegit, that is, (i) M̂(x̂) = 1 and

(ii) H(x̂) = ĥ. Now (i) and (18) imply x̂ 6= x∗ and (ii) and (17) imply H(x̂) = H(x∗). Together, this
means (x̂, x∗) is a collision for H.

Overall, we showed that an extractor can only find a differing input for P (2) and P (3) with neg-
ligible probability. By security of diO (Def. 5), we thus have that obfuscations of P (2) and P (3) are
indistinguishable.

Proposition 3. Expb,(2) and Expb,(3) are computationally indistinguishable for b = 0, 1, if diO is
a public-coin differing-input obfuscator, FS a FSwOSK satisfying oblivious unforgeability and H is
public-coin collision-resistant.

For the game hop from games Expb,(3) to Expb,(4), indistinguishability follows directly from col-
lision resistance of H, as the only difference is that Expb,(4) aborts when A finds a collision.

Proposition 4. Expb,(3) and Expb,(4) are computationally indistinguishable for b = 0, 1, if H is CR.

We have now reached a game, Expb,(4), in which the key k is only used to create a punctured key
kh∗ . The experiment can thus be simulated by an adversary B against selective security of PF , who
first asks for a key for the set {0, 1}n \{H(x∗)} and then uses A to distinguish y∗ = PF.Eval(k,H(x∗))
from random.

Proposition 5. Exp0,(4) and Exp1,(4) are indistinguishable if PF is a selectively secure family of
puncturable PRFs.

Theorem 4 now follows from Propositions 1, 2, 3, 4 and 5, which we prove in Appendix A.3.

18

References

[AFP16] Hamza Abusalah, Georg Fuchsbauer, and Krzysztof Pietrzak. Constrained PRFs for un-
bounded inputs. In Kazue Sako, editor, CT-RSA 2016, volume 9610 of LNCS, pages
413–428. Springer, 2016. Available at http://eprint.iacr.org/2014/840.

[BCC+14] Nir Bitansky, Ran Canetti, Alessandro Chiesa, Shafi Goldwasser, Huijia Lin, Aviad Ru-
binstein, and Eran Tromer. The hunting of the SNARK. IACR Cryptology ePrint Archive,
2014:580, 2014.

[BCCT13] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive composition
and bootstrapping for SNARKS and proof-carrying data. In Dan Boneh, Tim Roughgar-
den, and Joan Feigenbaum, editors, 45th ACM STOC, pages 111–120. ACM Press, June
2013.

[BCP14] Elette Boyle, Kai-Min Chung, and Rafael Pass. On extractability obfuscation. In Yehuda
Lindell, editor, TCC 2014, volume 8349 of LNCS, pages 52–73. Springer, Heidelberg,
February 2014.

[BG90] Mihir Bellare and Shafi Goldwasser. New paradigms for digital signatures and message
authentication based on non-interative zero knowledge proofs. In Gilles Brassard, editor,
CRYPTO’89, volume 435 of LNCS, pages 194–211. Springer, Heidelberg, August 1990.

[BG08] Boaz Barak and Oded Goldreich. Universal arguments and their applications. SIAM J.
Comput., 38(5):1661–1694, 2008.

[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudorandom
functions. In Hugo Krawczyk, editor, PKC 2014, volume 8383 of LNCS, pages 501–519.
Springer, Heidelberg, March 2014.

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their applications.
In Kazue Sako and Palash Sarkar, editors, ASIACRYPT 2013, Part II, volume 8270 of
LNCS, pages 280–300. Springer, Heidelberg, December 2013.

[BWZ14] Dan Boneh, Brent Waters, and Mark Zhandry. Low overhead broadcast encryption from
multilinear maps. In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part
I, volume 8616 of LNCS, pages 206–223. Springer, Heidelberg, August 2014.

[FHPS13] Eduarda S. V. Freire, Dennis Hofheinz, Kenneth G. Paterson, and Christoph Striecks.
Programmable hash functions in the multilinear setting. In Ran Canetti and Juan A.
Garay, editors, CRYPTO 2013, Part I, volume 8042 of LNCS, pages 513–530. Springer,
Heidelberg, August 2013.

[FN94] Amos Fiat and Moni Naor. Broadcast encryption. In Douglas R. Stinson, editor,
CRYPTO’93, volume 773 of LNCS, pages 480–491. Springer, Heidelberg, August 1994.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters.
Candidate indistinguishability obfuscation and functional encryption for all circuits. In
54th FOCS, pages 40–49. IEEE Computer Society Press, October 2013.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions.
Journal of the ACM, 33(4):792–807, October 1986.

19

http://eprint.iacr.org/2014/840

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from all
falsifiable assumptions. In Lance Fortnow and Salil P. Vadhan, editors, 43rd ACM STOC,
pages 99–108. ACM Press, June 2011.

[HR04] Chun-Yuan Hsiao and Leonid Reyzin. Finding collisions on a public road, or do secure
hash functions need secret coins? In Matthew Franklin, editor, CRYPTO 2004, volume
3152 of LNCS, pages 92–105. Springer, Heidelberg, August 2004.

[IPS15] Yuval Ishai, Omkant Pandey, and Amit Sahai. Public-coin differing-inputs obfuscation
and its applications. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015, Part
II, volume 9015 of LNCS, pages 668–697. Springer, Heidelberg, March 2015.

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias. Del-
egatable pseudorandom functions and applications. In Ahmad-Reza Sadeghi, Virgil D.
Gligor, and Moti Yung, editors, ACM CCS 13, pages 669–684. ACM Press, November
2013.

[SOK00] Ryuichi Sakai, Kiyoshi Ohgishi, and Masao Kasahara. Cryptosystems based on pairing.
In SCIS 2000, Okinawa, Japan, January 2000.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable
encryption, and more. In David B. Shmoys, editor, 46th ACM STOC, pages 475–484.
ACM Press, May / June 2014.

A Proofs

A.1 Proof of Theorem 1

In the sequel, Exp(i) in Proposition 6–10 abbreviates Exp
(i)
S,A in Fig. 7.

Proposition 6. Exp(0)(λ) and Exp(1)(λ) are computationally indistinguishable if NIZK is zero-
knowledge.

Proof. Assume there exists a polynomial p(·) such that for infinitely many λ, it holds that

ε(λ) := |Pr[Exp(0)(λ) = 1]− Pr[Exp(1)(λ) = 1]| ≥ 1
p(λ) .

We use A to construct a PPT adversary B against the zero-knowledge security of NIZK (cf. (5)):

B(1λ):

– (st,m)← A1(1λ).

– k ← F.Smp(1λ).

– y := F(k,m).

– ck← CS.Setup(1λ).

– r0, r1 ← {0, 1}poly(λ).
– c0 := CS.Com1(ck, k; r0); c1 := CS.Com1(ck,>; r1).

– η := (ck, c0, c1, y,m) and w := (k, r0) and note that Rη(η, w) = 1.

– Submit (η, w) to the zero-knowledge game of (5) to obtain either

– An honest (crs, π): crs← {0, 1}poly(λ) and π ← NIZK.P(crs, η, w), or

– A simulated (crs, π): (crs, τ)← NIZK.S1(1
λ, η), π ← NIZK.S2(crs, τ, η).

– vk := (crs, ck, c0, c1) and σ := (y, π).

– Output b′ ← A2(st, vk, σ).

20

By construction, if (crs, π) is generated honestly then B simulates Exp(0), and if (crs, π) is simulated
then B simulates Exp(0). Therefore, for infinitely many λ:

1
p(λ) ≤

∣∣Pr
[
Exp(0)(λ) = 1

]
− Pr

[
Exp(1)(λ) = 1

]∣∣
=
∣∣Pr

[
crs← {0, 1}poly(λ); π ← NIZK.P(crs, η, w) : B(crs, η, π) = 1

]
−

Pr
[
(crs, τ)← NIZK.S1(1

λ, η); π ← NIZK.S2(crs, τ, η) : B(crs, η, π) = 1
]∣∣ .

A contradiction to the zero-knowledge security, and therefore ε(λ) = negl(λ).

Proposition 7. Exp(1)(λ) and Exp(2)(λ) are computationally indistinguishable if CS is computation-
ally hiding.

Proof. Assume towards contradiction that there exists a polynomial p(·) such that for infinitely many
λ it holds that

ε(λ) :=
∣∣Pr

[
Exp(1)(λ) = 1

]
− Pr

[
Exp(2)(λ) = 1

]∣∣ ≥ 1
p(λ) .

We use A to construct a PPT adversary B = (B1,B2) against (7) the computational hiding of the
commitment scheme CS as follows:

B1(ck):

– (stA,m)← A1(1λ).

– k ← F.Smp(1λ).

– y := F(k,m).

– c1 ← CS.Com1(ck,>).

– st := (stA, c1, y,m).

– Return (st,m∗0 := k,m∗1 := >).

B2(st, c∗b): // with c∗b ← CS.Com1(ck,m∗b).

– c0 := c∗b .

– η := (ck, c0, c1, y,m).

– (crs, τ)← NIZK.S1(1
λ, η).

– π ← NIZK.S2(crs, τ, η).

– vk := (crs, ck, c0, c1) and σ := (y, π).

– Output b′ ← A2(stA, vk, σ).

By construction, if c∗b commits to k then B simulates Exp(1), and if c∗b commits to > then B
simulates Exp(2). Therefore for infinitely many λ:

1

p(λ)
≤
∣∣Pr[Exp(1)(λ) = 1]− Pr[Exp(2)(λ) = 1]

∣∣ =∣∣∣Pr
[
ck← CS.Setup(1λ); (st,m∗0,m

∗
1)← B1(ck); c∗0 ← CS.Com1(ck,m

∗
0) : B2(st, c∗0) = 1

]
−

Pr
[
ck← CS.Setup(1λ); (st,m∗0,m

∗
1)← B1(ck); c∗1 ← CS.Com1(ck,m

∗
1) : B2(st, c∗1) = 1

] ∣∣∣ .
We therefore reach a contradiction to the computational-hiding security of CS, (7), and conclude

that ε(λ) = negl(λ).

Proposition 8. Exp(2)(λ) and Exp(3)(λ) are computationally indistinguishable if CS is computation-
ally hiding.

The proof of Proposition 8 is similar to that of Proposition 7, and is omitted.

Proposition 9. Exp(3)(λ) and Exp(4)(λ) are computationally indistinguishable if F is a selectively
secure PRF.

21

Proof. Assume towards contradiction that there exists a polynomial p(·) such that for infinitely many
λ it holds that

ε(λ) :=
∣∣Pr

[
Exp(3)(λ) = 1

]
− Pr

[
Exp(4)(λ) = 1

]∣∣ ≥ 1
p(λ) .

We use A to construct a PPT distinguisher B = (B1,B2) against pseudorandomness of F as follows:

B1(1λ):

– (stA,m)← A1(1λ).

– Return (m, st := stA).

B2(st, y): // y is either F(k,m), or y ← Y.

– ck← CS.Setup(1λ).

– r0, r1 ← {0, 1}poly(λ).
– c0 := CS.Com1(ck,>; r0).

– c1 := CS.Com1(ck,m; r1).

– η := (ck, c0, c1, y,m).

– (crs, τ)← NIZK.S1(1
λ, η).

– π ← NIZK.S2(crs, τ, η).

– vk := (crs, ck, c0, c1) and σ := (y, π).

– Output b′ ← A2(stA, vk, σ).

By construction, if y = F(k,m) then B simulates Exp(3), and if y ← Y then B simulates Exp(4).
Therefore for infinitely many λ it holds that

1
p(λ) ≤

∣∣Pr
[
Exp(3)(λ) = 1

]
− Pr

[
Exp(4)(λ) = 1

]∣∣ = Adv∅F,B(λ) ,

where AdvOF,B(λ) is defined in (1). (Note that F is a selectively secure, respectively an adaptively
secure, PRF if (1) holds with O1 = ∅,O2 = Eval(·), respectively with O1 = O2 = Eval(·). Here we
use even restricted selective security with O1 = O2 = ∅.) We reach a contradiction to F’s security,
and therefore ε(λ) = negl(λ).

Proposition 10. Exp(4)(λ) and Exp(5)(λ) are computationally indistinguishable if NIZK is zero-
knowledge.

The proof of Proposition 10 is similar to that of Proposition 6, and is omitted.

Proposition 11. For every PPT adversary A: Pr
[
Expobl-uf

S,A (λ) = 1
]

= negl(λ) .

Proof. Assume towards contradiction that there exist a PPT adversaryA = (A1,A2) and a polynomial
p(·) such that for infinitely many λ, it holds that

Pr
[
Expobl-uf

S,A (λ) = 1
]
≥ 1

p(λ) ,

where Expobl-uf
S,A (λ) is defined in Fig. 6 and instantiated by OSmp from Construction 1, that is:

Expobl-uf
S,A (λ)

(st,m)← A1(1λ).
r := r0‖r1‖ry‖rSetup‖rG‖rP ← {0, 1}poly(λ).
y ←ry Y.
ck := CS.Setup(1λ; rSetup).
(c0, d0) := CS.Com(ck,>; r0).
(c1, d1) := CS.Com(ck,m; r1)
crs← {0, 1}poly(λ).
π ← NIZK.P(crs, (ck, c0, c1, y,m), (m, r1); rP).
(m∗, (y∗, π∗))← A2(st, r).
Return 1 iff m∗ 6= m ∧ NIZK.V(crs, (ck, c0, c1, y

∗,m∗), π∗) = 1

22

We have that η∗ := (ck, c0, c1, y
∗,m∗) must satisfy one of the following:

Case 1: η∗ /∈ Lη. Since NIZK.V(crs, η∗, π∗) = 1, this implies that A broke statistical soundness (4)
of NIZK, which only happens with negligible probability (Note that A having access to rP does
not give it any advantage as, with overwhelming probability over the choice of crs, there simply
exists no wrong statement with a proof that verifies.)

Case 2: η∗ ∈ Lη with a witness w = (k̂, r̂) satisfying the first clause in (11); that is, for some d̂ we

have (c0, d̂) = CS.Com(ck, k̂; r̂)∧ y∗ = F(k̂,m∗). Since > /∈ K, but F(k̂,m∗) ∈ R, we have k̂ 6= >.
On the other hand we have (c0, d0) = CS.Com(ck,>; r0). By correctness of CS (6), we have with
overwhelming probability:

k̂ ← Open(ck, c0, d̂) > ← Open(ck, c0, d0) and k̂ 6= > ,

meaning that A broke the binding property of CS (8).

Case 3: η∗ ∈ Lη with a witness w = (k̂, r̂) satisfying the second clause in (11); that is, for some d̂ we

have (c1, d̂) = CS.Com(ck,m∗; r̂). Since we also have (c1, d1) = CS.Com(ck,m; r1) and moreover
m∗ 6= m, this again means that A broke the binding property of CS.

We therefore conclude that Pr
[
Expobl-uf

S,A (λ) = 1
]

= negl(λ) .

A.2 Proof of Theorem 2

Boyle et al. [BGI14, Thm 3.3] prove that (FS.Setup′,FS.KeyGen′,FS.Sign′,FS.Verify′) is a functional
signature scheme that is both correct and unforgeable but neither function private nor succinct.
We now prove that FS.OSmp′ satisfies both indistinguishability (Fig. 8) and oblivious unforgeability
(Fig. 9) of Def. 14, and therefore conclude that FS′ has furthermore obliviously samplable keys.

Informally, as a master verification key is simply a verification key for a signature scheme with
obliviously samplable signatures, and a functional signing key is simply a standard signature, an obliv-
iously samplable pair of a (standard) verification key and a signature, translates to a pair of a master
verification key and a functional signing key. Therefore indistinguishability of honestly generated and
obliviously sampled pairs of master verification keys and functional signing keys, reduces to the indis-
tinguishability of honestly generated and obliviously sampled pairs of standard verification keys and
signatures. Similarly, functional oblivious unforgeability reduces to standard oblivious unforgeability.
Formal details follow.

We first prove oblivious indistinguishability of honestly generated and obliviously sampled pairs of
verification keys and functionals keys. Assume towards contradiction that there exists a polynomial
p(·) such that for infinitely many λ, it holds that

ε(λ) :=
∣∣Pr

[
Expind-0

FS′,A(λ) = 1
]
− Pr

[
Expind-1

FS′,A(λ) = 1
]∣∣ ≥ 1

p(λ) ,

where Expind-b
FS′,A(λ) defined in Fig. 8 is instantiated by FS′ of Construction 2.

We use A to construct a PPT distinguisher B = (B1,B2) that breaks the oblivious indistinguisha-
bility Expind-b

OS,B(λ) (Fig. 5) of OS and breaks (9):

23

B1(1λ):

– (stA, f)← A1(1λ).

– (sk, vk)← SS.KeyGen(1λ).

– st := (stA, f, sk, vk).

– Return (st, f‖vk).

– st := (stA, f,mvk, skf).

B2(st,mvk, skf): // (mvk, σf‖vk) is either honestly generated
or obliviously sampled

– skf := (f‖vk, σf‖vk, sk).

– Output b′ ← A2(stA,mvk, skf).

By construction, if (mvk, σf‖vk) is honestly generated then B simulates Expind-0
OS,A, and if it is obliviously

sampled then B simulates Expind-1
OS,A. Therefore, for infinitely many λ it holds that

1
p(λ) ≤

∣∣Pr
[
Expind-0

FS′,A(λ) = 1
]
− Pr

[
Expind-1

FS′,A(λ) = 1
]∣∣

=
∣∣Pr

[
Expind-0

OS,B(λ) = 1
]
− Pr

[
Expind-1

OS,B(λ) = 1
]∣∣ .

Therefore we reach a contradiction to (9) the oblivious indistinguishability of OS, and hence
conclude that ε(λ) = negl(λ).

We now prove oblivious unforgeability. Assume towards contradiction that there exist a PPT
adversary A = (A1,A2) and a polynomial p(·) such that for infinitely many λ, it holds that

Pr
[
Expobl-uf

FS′,A(λ) = 1
]
≥ 1

p(λ) ,

where Expobl-uf
FS′,A(λ) defined in Fig. 9 is instantiated by OSmp of Construction 2.

We use A to construct a PPT adversary B = (B1,B2) to the oblivious-unforgeability game
Expobl-uf

OS,A (λ) (Fig. 6) of OS and breaks (10) as follows.

B1(1λ):

– (stA, f)← A1(1λ).

– rG ← {0, 1}poly(λ).
– (sk, vk) := SS.KeyGen(1λ; rG).

– st := (stA, f, sk, vk).

– Return (st, f‖vk).

B2(st, rO): //rO is s.t. (mvk, σf‖vk) := OS.OSmp(1λ, f‖vk; rO).

– (m∗, (f∗‖vk∗, σ∗fv, w∗, σ∗w))← A2(st, rG‖rO).

– Output (f∗‖vk∗, σ∗fv).

By assumption (m∗, σ∗ := (f∗‖vk∗, σ∗fv, w∗, σ∗w)) is a valid forgery and thus satisfies

m∗ /∈ Rf ∧ FS.Verify′(mvk,m∗, σ∗) = 1, i.e.,

OS.Verify(mvk, f∗‖vk∗, σ∗fv) = 1 = SSVerify(vk∗, w∗, σ∗w) ∧ m∗ = f∗(w∗) . (19)

From (19), together with m∗ /∈ Rf , we have f∗ 6= f , thus f∗‖vk∗ 6= f‖vk and thus (f∗‖vk∗, σ∗fv) is
a forgery to OS and therefore

1
p(λ) ≤ Pr

[
Expobl-uf

FS′,A(λ) = 1
]

= Pr
[
Expobl-uf

OS,B (λ) = 1
]
.

A contradiction to the oblivious unforgeability (10) of OS, and hence Pr
[
Expobl-uf

FS′,A(λ) = 1
]

= negl(λ),
which concludes the proof of Theorem 2.

24

A.3 Proof of Theorem 4

Proof of Proposition 1. Assume towards contradiction that there exists a PPT adversary A =
(A1,A2) and a polynomial p(·) such that for infinitely many λ, it holds that

ε(λ) :=
∣∣Pr[Exp

b,(0)
A (λ) = 1]− Pr[Exp

b,(1)
A (λ) = 1]

∣∣ ≥ 1
p(λ) .

Then we use A to construct a series of PPT adversaries D(i) =
(
D(i)

1 ,D(i)
2 ,D(i)

3 ,D(i)
4

)
, i = 1, . . . , q, one

of which breaks function privacy of FS.
We construct a series of hybrids between Expb,(0) and Expb,(1) as follows. Let q = q(λ) be a

polynomial upper bound on the total number of constraining queries A makes. Define the i-th hybrid
Expb,(0,i) like Expb,(0), except that the first i constraining queries are answered by using the signing
key skfx∗ , and all remaining queries are answered by using the signing key skfI . By construction, we

have Expb,(0,0) = Expb,(0) and Expb,(0,q) = Expb,(1).
We use A to construct a PPT adversary D(i) which runs in the function-privacy game Exppriv-d

FS,D(i)(λ)

of FS (cf. Fig. 4) and simulates Expb,(0,i−1) if D(i)’s challenger bit d = 0 and Expb,(0,i) if d = 1.

D(i)
1 (λ,msk,mvk)

– (x∗, stA)← A1(1λ).

– H ← H.Smp(1λ).

– crs← {0, 1}poly(λ).
– k ← PF.Smp(1λ).

– P̃ ← diO(1λ, PH,crs,mvk,k) with PH,crs,mvk,k defined in (15).

– Let fI and fx∗ be defined as in (16).

– pp := (H, crs,mvk, P̃).

– st1 := (x∗, stA,pp, k, fI , fx∗).

– Return (f0 := fI , st1), where fI is padded to be of length |fx∗ |.
D(i)

2 (st1, skfI)

– Return (f1 := fx∗ , st2 := (st1, skfI)).

D(i)
3 (st2, skfx∗)

– If b = 1 then y∗ := PF.Eval(k,H(x∗)); otherwise y∗ ← Y.

– b′ ← AConstr(·),Eval(·)
2 (stA, y

∗);

– simulate Eval(x):
if x = x∗, reply ⊥; else reply y := PF.Eval(k,H(x));

– simulate Constr(M):
if M /∈Mλ ∨M(x∗) = 1, reply ⊥; else do the following:

– first i− 1 queries: compute (M,σ)← FS.Sign(fx∗ , skfx∗ ,M); reply kM := (M,σ, pp).
– i-th query M : set st3 := (st2, skfx∗) and return (m0,m1) := (M,M) to own challenger.

D(i)
4 (st3, (M,σc)) // σc is either a signature on M under skfI or under skfx∗ .

– Finish the Constr query reply for A2 with kM := (M,σc,pp).

– Simulate Eval queries like D(i)
3 .

– Simulate further Constr queries:
if M /∈Mλ ∨M(x∗) = 1, reply ⊥;
else (M,σ)← FS.Sign(I, skfI ,M); reply kM := (M,σ,pp).

– Output b′.

25

If σc was generated using skfI then D(i) simulates Expb,(0,i−1) and if skfx∗ was used then D(i) simulates

Expb,(0,i). The only difference between D(i)’s simulation and the actual game is that D(i) pads the
function fI to match the length of fx∗ . This is however oblivious to A, since all A gets to see are
signatures computed using fI , which, by succinctness of FS, are independent of |fI |. We therefore
have

Pr[Exppriv-d

FS,D(i)(λ) = 1] = Pr[Exp
b,(0,i−1+d)
A = 1] . (20)

We assumed that

1
p(λ) ≤

∣∣Pr[Exp
b,(0)
A (λ) = 1]− Pr[Exp

b,(1)
A (λ) = 1]

∣∣
≤
∑q

i=1

∣∣Pr[Exp
b,(0,i−1)
A (λ) = 1]− [Exp

b,(0,i)
A (λ) = 1]

∣∣ .
There must thus exist an i ∈ {1, . . . q} such that for infinitely many λ’s:

1
q(λ)·p(λ) ≤

∣∣Pr[Exp
b,(0,i−1)
A (λ) = 1]− [Exp

b,(0,i)
A (λ) = 1]

∣∣
(20)
=
∣∣Pr[Exppriv-0

D(i) (λ) = 1]− Pr[Exppriv-1

D(i) (λ) = 1]
∣∣ .

A contradiction to the function privacy of FS, and therefore ε(λ) = negl(λ).

Proof of Proposition 2. Assume towards contradiction that there exists a PPT adversary A =
(A1,A2) and a polynomial p(·) such that for infinitely many λ it holds that

ε(λ) :=
∣∣Pr[Exp

b,(1)
A (λ) = 1]− Pr[Exp

b,(2)
A (λ) = 1]

∣∣ ≥ 1
p(λ) .

Then we useA to construct a PPT adversary B = (B1,B2) which breaks the oblivious-indistinguishability
Expind-b

FS,B(λ) of FS (cf. Fig. 8) as follows.

B1(1λ)

– (x∗, stA)← A1(1λ).

– H ← H.Smp(1λ).

– crs← {0, 1}poly(λ).
– k ← PF.Smp(1λ).

– st := (x∗, stA, H, crs, k).

– Return (st1, fx∗).

B2(st1,mvk, skfx∗) //(mvk, skfx∗) is either honestly generated
or obliviously sampled.

– P̃ ← diO(1λ, PH,crs,mvk,k).

– pp := (H, crs,mvk, P̃).

– If b = 1, y∗ := PF.Eval(k,H(x∗)); else y∗ ← Y.

– b′ ← AConstr(·),Eval(·)
2 (stA, y

∗);

– simulate Eval(x):
if x = x∗, reply ⊥; else reply y := PF.Eval(k,H(x));

– simulate Constr(M):
if M /∈Mλ ∨M(x∗) = 1, reply ⊥; else (M,σ)
← FS.Sign(fx∗ , skfx∗ ,M) and reply kM := (M,σ, pp).

– Output b′.

By construction if (mvk, skfx∗) is honestly generated, then B simulates Expb,(1) and if (mvk, skfx∗)

is obliviously sampled, then B simulates Expb,(2). Therefore for infinitely many λ, it holds that

1
p(λ) ≤

∣∣Pr[Exp
b,(1)
A (λ) = 1]− Pr[Exp

b,(2)
A (λ) = 1]

∣∣ =
∣∣Expind-0

FS,B (λ)−Expind-1
FS,B (λ)

∣∣ .
We therefore reach a contradiction to the oblivious indistinguishability of FS (cf. Fig. 8) and hence

conclude that ε(λ) = negl(λ).

26

Proof of Proposition 3. Assume towards contradiction that there exists a PPT adversary A =
(A1,A2) and a polynomial p(·) such that for infinitely many λ, it holds that

ε(λ) :=
∣∣Pr[Exp

b,(2)
A (λ) = 1]− Pr[Exp

b,(3)
A (λ) = 1]

∣∣ ≥ 1
p(λ) .

We use A to construct a PPT adversary which distinguishes public-coin diO obfuscations. We
first define a public-coin sampler Samp:

Samp(1λ, r := rA‖rH‖rS‖rk‖rFS‖rc‖ry) //r ← {0, 1}poly(λ).
– (x∗, stA) := A1(1λ; rA).

– H := H.Smp(1λ; rH); h∗ := H(x∗).

– crs := rS .

– (mvk, skfx∗) := FS.OSmp(1λ, fx∗ ; rFS) with fx∗ as defined in (16).

– k := PF.Smp(1λ; rk); kh∗ := PF.Constr(k, {0, 1}n \ {h∗}; rc).
– Construct P0 := PH,crs,mvk,k and P1 := PH,crs,mvk,kh∗ as defined in (15).

– Return (P0, P1).

Then we define a public-coin diO distinguisher D as follows:

D(r, P̃u) //P̃u is either P̃0 ← diO(1λ, P0) or P̃1 ← diO(1λ, P1).

– Use r to generate pp := (H, crs,mvk, P̃u), x∗, stA, skfx∗ as Samp does.

– y∗ := PF.Eval(k,H(x∗)) if b = 1; otherwise y∗ ← Y using randomness ry.

– b′ ← AConstr(·),Eval(·)
2 (stA, y

∗);

– simulate Constr(M):
if M /∈Mλ ∨M(x∗) = 1, reply ⊥;
else (M,σ)← FS.Sign(fx∗ , skfx∗ ,M) and reply kM := (M,σ,pp);

– simulate Eval(x):
if x = x∗, reply ⊥; else reply y := PF.Eval(k,H(x)).

– Output b′.

By construction, if P̃u is an obfuscation of P0 then Samp and D together simulate Expb,(2) for A, if
it is an obfuscation of P1 then they simulate Expb,(3) for A. Thus for infinitely many λ, it holds that

1

p(λ)
≤
∣∣Pr[Exp

b,(2)
A (λ) = 1]− Pr[Exp

b,(3)
A (λ) = 1]

∣∣ =

=
∣∣Pr

[
r ← {0, 1}poly(λ); (P0, P1)← Samp(1λ, r); P̃0 ← diO(1λ, P0) : 1← D(r, P̃0)

]
−

Pr
[
r ← {0, 1}poly(λ); (P0, P1)← Samp(1λ, r); P̃1 ← diO(1λ, P1) : 1← D(r, P̃1)

]∣∣ .
By security of diO (Def. 5), this means that Samp cannot satisfy Def. 4. Thus, there exists a

non-uniform PPT extractor E that on input r finds an input χ := (M,h, π, σ) on which P0 and P1

differ. That is, for some polynomial `(·) and for infinitely many λ, it holds that

Pr
[
r ← {0, 1}poly(λ); (P0, P1)← Samp(1λ, r);χ← E(1λ, r) : P0(χ) 6= P1(χ)

]
≥ 1

`(λ)
. (21)

Let χ̂ := (M̂, ĥ, π̂, σ̂) be a differing input output by E . Recall that σ̂ is a signature on the description
of a TM M̂ , and π̂ is a short proof of η̂ = (H, M̂, ĥ) ∈ Llegit, i.e., a short proof of knowledge of

a witness x such that M̂(x) = 1 and H(x) = ĥ. Since χ̂ is a differing input, by the definitions of
P0 := PH,crs,mvk,k and P1 := PH,crs,mvk,kh∗ (cf. (15)), the following two conditions must hold.

27

condition(1): Both SNARK.V(crs, (H, M̂, ĥ), π̂) = 1 and FS.Verify(mvk, M̂ , σ̂) = 1 hold, for otherwise
both P0 and P1 output ⊥, and

condition(2): ĥ = h∗ = H(x∗), for otherwise P0 outputs PF.Eval(k, ĥ) and P1 outputs PF.Eval(kh∗ , ĥ),
which are equal by the correctness of puncturing.

Next we will show that moreover any such output must satisfy M̂(x∗) = 0. Intuitively, this is the case
because E gets a signing key skfx∗ , with which it can only sign machines M with M(x∗) = 0. So if it

outputs M̂ with M̂(x∗) = 1 then (M̂, σ̂) is a valid signature by condition(1) and hence a forgery.

Claim 1. Let Samp be as defined above and E be the diO extractor guaranteed by (21) and (M̂, ĥ, π̂, σ̂)
its output. If FS is an unforgeable with obliviously samplable keys, then M̂(x∗) = 0 with overwhelming
probability.

Proof. Assume towards contradiction that M̂(x∗) = 1, then we construct a PPT adversary Aforg

against the oblivious unforgeability of FS Expobl-uf(λ) (Fig. 9) such that Pr[Expobl-uf
FS,Aforg(λ) = 1] ≥ 1

`(λ) .

Aforg, defined below, behaves exactly like Samp and obtains its forgery by running E . Here we make an
essential use of the obliviously samplable signing keys functionality guaranteed by the PPT algorithm
FS.OSmp as defined in Def. 14.

Aforg
1 (1λ)

– rA ← {0, 1}poly(λ).
– (x∗, stA) := A1(1λ; rA).

– st := (x∗, stA, rA).

– Return (st, fx∗)
with fx∗ defined in (16).

Aforg
2 (st, rFS)

– rH , rS , rk, rc, ry ← {0, 1}poly(λ).
– r := rA‖rH‖rS‖rk‖rFS‖rc‖ry.

– H := H.Smp(1λ; rH) and h∗ := H(x∗).

– crs := rS .

– (mvk, skfx∗) := FS.OSmp(1λ, fx∗ ; rFS)

– k := PF.Smp(1λ; rk).

– kh∗ := PF.Constr(k, {0, 1}n \ {h∗}; rc).
– P0 := PH,crs,mvk,k and P1 := PH,crs,mvk,kh∗ defined in (15).

– (M̂, ĥ, π̂, σ̂)← E(1λ, r).

– Output (M̂, σ̂).

By condition(1), (M̂, σ̂) satisfies FS.Verify(mvk, M̂ , σ̂) = 1. If M̂(x∗) = 1, then by definition of fx∗ ,
M̂ /∈ Rfx∗ , i.e., not in the range of fx∗ , and hence Expobl-uf

FS,Aforg(λ) = 1.

Consequently, Pr[Expobl-uf
FS,Aforg(λ) = 1] ≥ 1

`(λ) , a contradiction to the unforgeability of functional

signatures with respect to obliviously samplable signing keys, and therefore M̂(x∗) = 0.

Since the SNARK π̂ extracted by E is a proof of knowledge, we can extract a witness x̂ for it. In
order to formally apply item 3 of Def. 8, we first construct a PPT algorithm Asnrk that outputs π̂
together with the statement. Asnrk simply runs Samp and E as defined above, except that it embeds
the crs from its input into the randomness.

Asnrk(crs; r) // r is Asnrk’s randomness.

– Parse rA‖rH‖rk‖rFS‖rc‖ry := r.

– Simulate Samp(1λ; rA‖rH‖crs‖rk‖rFS‖rc‖ry);

let H be the sampled hash function.

– (M̂, ĥ, π̂, σ̂)← E(1λ, rA‖rH‖crs‖rk‖rFS‖rc‖ry).

– Output (η := (H, M̂, ĥ), π̂).

28

By the construction of Asnrk, (21) and condition(1) we have that

Pr
[
crs← {0, 1}poly(λ); ((H, M̂, ĥ), π̂)← Asnrk(crs) : V(crs, (H, M̂, ĥ), π) = 1

]
≥ 1

`(λ)
. (22)

Further, since SNARK is an adaptive argument of knowledge, there exists EAsnrk
which extracts a

witness, that is

Pr

 crs← {0, 1}poly(λ); r ← {0, 1}poly(λ);
((H, M̂, ĥ), π̂) := Asnrk(crs; r);
x̂← EAsnrk

(crs, r)

:
V(crs, (H, M̂, ĥ), π̂) = 1

∧ ((H, M̂, ĥ), x̂) /∈ Rlegit

 = negl(λ),

which together with (22) yields:

Pr

 crs← {0, 1}poly(λ); r ← {0, 1}poly(λ);
((H, M̂, ĥ), π̂) := Asnrk(crs; r);
x̂← EAsnrk

(crs, r)

: ((H, M̂, ĥ), x̂) ∈ Rlegit

 ≥ 1

`(λ)
− negl(λ) . (23)

We now construct an adversary Acll-fnd against H that on input λ, and coins rH used to sample a
function H outputs a collision for H: Given rH , Acll-fnd generates a CRS for SNARKs, then runs
Asnrk(crs), but using the randomness rH from its input, and then runs EAsnrk

to extract a collision:

Acll-fnd(1
λ, rH)

– Sample rA, crs, rk, rFS, rc, ry ← {0, 1}poly(λ).
– Simulate Samp(1λ; rA‖rH‖crs‖rk‖rFS‖rc‖ry);

let x∗ be the challenge of A.

let H be the sampled hash function.

– (M̂, ĥ, π̂, σ̂)← E(1λ, rA‖rH‖crs‖rk‖rFS‖rc‖ry).

– x̂← EAsnrk
(crs, rA‖rH‖rk‖rFS‖rc‖ry).

– Output (x̂, x∗) as a collision pair for H.

By (23), with non-negligible probability, the values M̂, ĥ, π̂ computed during the execution of Acll-fnd

satisfy ((H, M̂, ĥ), x̂) ∈ Rlegit, that is, M̂(x̂) = 1 and ĥ = H(x̂). By Claim 1, M̂(x∗) = 0, and hence

x̂ 6= x∗. By condition(2), ĥ = H(x∗), and hence (x, x∗) is a collision. In particular, the following is
non-negligible:

Pr

[
rH ← {0, 1}poly(λ);H := H.Smp(1λ, rH);
(x̂, x∗)←Acll-fnd(1λ, rH)

: x̂ 6= x∗ ∧H(x̂) = H(x∗) = ĥ

]
.

Therefore we reach a contradiction to collision resistance of H, and it must be that ε(λ) = negl(λ).

Proof of Proposition 4. The only difference between games Expb,(3) and Expb,(4) is when A
queries Eval on x with H(x) = H(x∗). Then Expb,(4) aborts, while on any other query the or-
acle Eval behaves equivalently in both games, since H(x) 6= H(x∗) implies PF.Eval(kh∗ , H(x)) =
PF.Eval(k,H(x)).

We can therefore build an adversary Acll-fnd against the hash function family H that on input
(1λ, rH) simulates Expb,(4) (except that it uses H := H.Smp(1λ; rH) instead of sampling H) until
in an oracle query Eval(x) the game would abort. Acll-fnd then outputs (x∗, x), which is a collision
precisely when the game would have aborted.

29

Proof of Proposition 5. Assume towards contradiction that there exists a PPT adversary A =
(A1,A2) and a polynomial p(·) such that for infinitely many λ it holds that

ε(λ) :=
∣∣Pr[Exp

0,(4)
A (λ) = 1]− Pr[Exp

1,(4)
A (λ) = 1]

∣∣ ≥ 1
p(λ) .

Then we construct a PPT adversary B = (B1,B2) playing Exppct-b
B (λ), the selective-security game

of PF (cf. Fig. 2) as follows. (Note B2 does not use Eval(·))

B1(1λ)

– (x∗, stA)← A1(1λ).

– H ← H.Smp(1λ).

– st := (H,x∗, stA).

– h∗ := H(x∗).

– T := {h∗}.
– Return (h∗, T, st).

B Eval(·)
2 (st, kh∗ , y∗) // y∗ is PF.Eval(k,H(x∗)) or random.

– crs← {0, 1}poly(λ).
– (mvk, skfx∗)← FS.OSmp(1λ, fx∗).

– P̃ ← diO(1λ, PH,crs,mvk,kh∗).

– pp := (H, crs,mvk, P̃).

– b′ ← AConstr(·),Eval(·)
2 (stA, y

∗).

– simulate Constr(M):
if M /∈Mλ ∨M(x∗) = 1, reply ⊥;
else (M,σ)← FS.Sign(fx∗ , skfx∗ ,M) and reply

kM := (M,σ, pp);

– simulate Eval(x):
if x = x∗, reply ⊥; if H(x) = H(x∗) abort;
else reply y := PF.Eval(kh∗ , H(x)).

– Output b′.

By construction Pr[Exppct-b
B (λ) = 1] = Pr[Exp

b,(4)
A (λ) = 1], and therefore for infinitely many λ it

holds
∣∣Pr[Exppct-0

B (λ) = 1] − Pr[Exppct-1
B (λ) = 1]

∣∣ ≥ 1
p(λ) . This contradicts the selective security of

PF, and we conclude that ε(λ) = negl(λ).

30

	Introduction
	Preliminaries
	Notations and Conventions
	Constrained and Puncturable PRFs
	Public-Coin Differing-Input Obfuscation
	Non-interactive Proof Systems
	Commitment Schemes
	Collision-Resistant Hash Functions
	Functional Signatures

	Functional Signatures with Obliviously Samplable Keys
	Signature Schemes with Obliviously Samplable Signatures
	Functional Signature Schemes with Obliviously Samplable Keys

	Constrained PRFs for Unbounded Inputs
	Proofs
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 4

