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Abstract. In this article we focus on constructing an algorithm thabenatizes

the generation df PN solving algorithms from the considered parameters. When
searching for an algorithm to solve BRN instance, we make use of the existing
techniques and optimize their use. We formaliz&.8MN algorithm as a path in a
graphG and our algorithm is searching for the optimal paths in thépd. The
results bring improvements over the existing work by a fafitim 28 to 219, i.e.

we improve the results of the covering code from ASIACRY R 'Burthermore,

we propose concrete practical codes and a method to find guates c

1 Introduction

The Learning Parity with NoiseLPN) problem can be seen as a noisy system
of linear equations in the binary domain. More specificallg, have a secret
and an adversary that has access tbRN oracle which provides him tuples of
uniformly distributed binary vectong and the inner product betwesmandy; to
which some noise was added. The noise is represented by alllexariable
with a probabilityt to be 1. The goal of the adversary is to recover the secret
TheLPN problem is a particular case of the well-known Learning vitinors
(LWE) [34] problem where instead of working i, we extend the work to a
rng Zg.

The LPN problem is attractive as it is believed to be resistant tantua
computers. Thus, it can be a good candidate for replacinguheber-theoretic
problems such as factorization and discrete logarithmdwban be easily bro-
ken by a quantum algorithm). Also, given its structure it barimplemented in
lightweight devices. Th&PN problem is used in the design of thEB-family
of authentication protocol$ [1.0,20)24/25.27,31] and sevaryptosystems base
their security on its hardness|[1/15/16/,17,21,26].

Previous Work. LPN is believed to be hard. So far, there is no reduction from
hard lattice problems to certify the hardness (like in theecafLWE). Thus, the
best way to assess its hardness is by trying to design andwepfgorithms that
solve it. Over the years, tHePN problem was analyzed and there exist several
solving algorithms. The first algorithm to tarde®RN is theBKW algorithm [6].
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This algorithm can be described as a Gaussian eliminatioblagks of bits
(instead on single bits) where the secret is recovered bititbbymprovements
of it were presented in [19,29]. One idea that improves tgerithm is the use
of the fast Walsh-Hadamard transform as we can recover advies of the se-
cret at once. In their work [29], Levieil and Fouque provigesaalysis with the
level of security achieved by differebPN instances and propose secure param-
eters. Using3KW as a black-box, LyubashevsKy [30] presentd Bh solving
algorithm useful for the case when the number of queriessisicéed to an ad-
versary. The best algorithm to soluBN was presented at ASIACRYPT 14 [23]
and it introduces the use of the covering codes to improveéhn®rmance. An
analysis on the existingPN solving algorithms is presented in([7,8].

For the case when the secret is sparse, i.e. its Hamming tsigmall, the
classical Gaussian elimination proves to give better te$ul8.9,11].

TheLPN algorithms consist of two parts: one in which the size of et
is reduced and one in which part of the secret is recoverede @rpart of the
secret is recovered, the queries are updated and the higaesstarts to recover
the rest of the secret. When trying to recover a sexoftk bits, it is assumed
thatk can be written aa- b, for a,b € N (i.e. secret can be seen asblocks of
b bits). Usually all the reduction steps reduce the sizé bjts and the solving
algorithm recover®d bits. While the use of the same parameter, b,efor all
the operations may be convenient for the implementationseaech for an al-
gorithm that may use different values for each reductiop.dtée discover that
small variations from the fixed can bring important improvements in the time
complexity of the whole algorithm.

Our Contribution. In this work we firstanalyze the existingPN algorithms
and study the operations that are used in order to reduce iteecf the secret.
We adjust the expressions of the complexities of each(atejm some works
they were underestimated in the literature). For instatieeresults from[[23]
are displayed on the second column of Table 1. As discussgi8hand in the
ASIACRYPT presentation, the authors [of [23] used a too ojgtimapproxima-
tion for the bias introduced by their new reduction methbd,¢overing codes.
Some complexity terms are further missing (as discusse@atid®[2.2) or are
not in bit operations. Adjusting the computation with a ectrbias for a con-
crete code and the data complexity to make their algorithmkwesults in a
worse time complexity, illustrated on the third column obleld (details for
this computation are provided as an additional materialHigrpaper).

Second, weémprove the theory behind the covering code reduction, show
the link with perfect and quasi-perfect codes and proposalgarithm to find
good codegin [23], only a hypothetical code was assumed to be close to a
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(k,T) [23] [23] corrected our results
279.9 (article) 289.04

5120.12 27937
(512 & 2797 (presentation} 28227

(5320.125) 28182 29043 28164
(5920.125) 28807 297.87 28825

Table 1: Time complexity to solvePN (in bit operations)

perfect code; the second column of Table 1 is based on thisghile code but
other columns use real codes that we built).

Third, we optimize the order and the parameters used by the operations
that reduce the size of the secret such that we minimizertteedomplexity re-
quired Wedesign an algorithm that combines the reduction steps awuig fime
optimal strategy to solveEPN. We automize the process of findihgN solving
algorithms, i.e. given a randoriPN instance, our algorithm provides the de-
scription of the steps that optimize the time complekityur formalization we
call such algorithms "optimal chains”. We perform a seguahalysis ofLPN
based on the results obtained by our algorithm and companesuits with the
existing ones. We discover that we improve the complexitpgared with the
results from [[1,8,29] and [23]. Applying our algorithm tHatproves the bias
from the covering code and optimizes the reduction stepesgh much better
performance, illustrated on the fourth column of Tdble 1.

Preliminaries & Notations. Given a domainD, we denote by <E D the fact
thatx is drawn uniformly at random fronD. By Ber; we denote the Bernoulli
distribution with parameter. By BerX we denote the binomial distribution with
parameter& andt. Let(-,-) denote the inner produdt,; = {0,1} and® denote

the bitwise XOR. The Hamming weight of a vectois denoted byHW(v).
Organization. In Sectior 2 we formally define thePN problem and describe

the main tools used to solve it. We carefully analyze the derily of each step
and show in footnote where it differs from the existing kteerre. Sectionl3 in-
troduces the bias computation for perfect and quasi-pecfeses. We provide

an algorithm to find good codes. The algorithm that seardiegptimal strat-
egy to solvel PN is presented in Section$ 4 5. We illustrate and compare
our results in Sectidn 6 and conclude in Secfibn 7. We putditiadal material
details of our results: the complete list of the chains weiobffor Tabld B and
Table[4), an example of complete solving algorithm, the ocamd@odes that we
use for the covering code reduction, and an analysis of thdtssfrom [23] to
obtain Tablé 1.

Lhttp: /7 des. cse. nsysu. edu. t w asi acr ypt 2014/ doc/ 1- 1_Sol vi ngLPNUsi ngCover i ngCodes. pdf
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2 LPN

2.1 LPN Definition

TheLPN problem can be seen as a noisy system of equatiafiswhere one is
asked to recover the unknown variables. Below, we preseriotmal definition.

Definition 1 (LPN oracle).Let s 75, lett €]0, %[ be a constant noise param-
eter and leBer; be the Bernoulli distribution with parameter Denote by [,
the distribution defined as

{(v,c) | v ZK c= (v,s) B d,d + Ber} € /3

AnLPN oracle O5fN is an oracle which outputs independent random samples
according to Q.

Definition 2 (Search LPN problem). Given access to ahPN oracle O5FV,
find the vector s. We denote b N the LPN instance where the secret has
size k and the noise parametertisLet K < k. We say that an algorithri/
(n,t,m,8,k’)-solvesthe searcH.PNy ; problem if

PHMOS (14) = (s1...5¢) | s ZK] > 6,

and M runs in time t, uses memory m and asks at most n queries frohPtie
oracle.

Remark that we consider here the problem of recovering oplgraof the
secret. Throughout the literature this is how k&N problem is formulated. The
reason for doing so is that the recovery of the fitfdtits dominates the overall
complexity. Once we recover part of the secret, the new prolif recovering
a shorter secret &f— k' bits is easier.

The LPN problem has a decisional form where one has to distinguish be
tween random vectors of sike- 1 and the samples from théN oracle. In this
paper we are interested only in finding algorithms for thedesersion.

We defined = 1 — 2t. We call d the bias of the error bid. We haved =
E((—1)%), with E(-) the expected value. We denote the bias of the secret bits
by &s. As sis a uniformly distributed random vector, at the beginning vave
0s = 0.

2.2 Reduction and Solving Techniques

Depending on how many queries are given from LN oracle, theLPN
solving algorithms are split in 3 categories. WitHigear number of queries
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the best algorithms are exponential, i.e. with= ©(k) the secret is recov-
ered in 2K time [32/36]. Given gpolynomial number of queries - k1,

with n > 0, one can solvd. PN with a sub-exponential time complexity of
k

20 foglogk) [30]. Whent = %( we can improve the result of [30] and have a com-

plexity of ezVkInk?*+0(vVkink) [9] The complexity improves but remains in the

sub-exponential range withsub-exponential number of querid=or this cat-

egory, we have th8KW [6], LF1, LF2 [29], FMICM [19] and the covering

code algorithm[[23]. All these algorithms soliz€N with a time complexity of

20(@) and require Q(@) gueries. In the special case when the noise is sparse,
a simple Gaussian elimination can be used for the recovettyeasecret [7,11].
LF2, covering code or the Gaussian elimination prove to be tis¢ dree, de-
pending on the noise levell[7].

All these algorithms have a common structure: givenL&Ny; instance
with a secrets, they reduce the origindlPN problem to a new.PN problem
where the secret is of sizek’ < k by applying severateduction techniques
Then, they recoves using asolving methodThe queries are updated and the
process is repeated until the whole sea@t recovered. We present here the
list of reduction and solving techniques used in the exjstiAN solving algo-
rithms. In the next section, we combine the reduction tegqies such that we
find the optimal reduction phases for solving differeRNN instances.

We assume for all the reduction steps that we start witjueries, that the
size of the secret i, the bias of the secret bitsds and the bias of the noise bits
is 8. After applying a reduction step, we will end up withqueries, sizd' and
biasesd’ and . Note thatds averages over all secrets although the algorithm
runs with one target secret. In our analysis we make thewallp heuristic
assumption:

Stochastic equivalence approximationThe average probability of suc-
cess of the solving algorithm over the distribution of thg kenot af-
fected by considering the average bias.

We will see that complexities only depend knn, and the parameters of the
steps. Actually, only the probability of success is conedrwith this heuristic.
We have the following reduction steps:

— sparse-secret changes the secret distribution. In the formal definitioh R,
we take the secretto be a random row vector of side When other re-
duction steps or the solving phase depends on the distibuti s, one
can transform arLPN instance with a randorns to a new one whers
has the same distribution as the initial noise, se- BerlT(. The reduc-
tion performs the following steps: from the queries seleck of them:
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(Vig;Gip), - - -5 (i, G, ) Where the row vectorg, with 1 < j <k, are linearly
independent. Construct the matiix asM = [v] ---v] ] and rewrite thek
queries asM+d’ = c, whered’ = (di,,...,d; ). With the rest ofn—k
gueries we do the following:

¢j= (M) L) e = (vy(MT) L d) o dj = (v,d) @ d|
We haven—k new queriegvj, cj) where the secret is now. In [23], the au-
thors use an algorithm which is unappropriately called fthe Russians al-
gorithm” [2]. This way, the complexity should be 0f<minX6N (krf K]+ + kxzx)) ]
Instead, we use the Bernstein algorithm [4]. Thus, we have:
sparse-secret * K =k;n' =n—k; & =0; 8,=0
Complexity: O (”7"2k - kZ)

log, k—log,log,

— partition-reduce(b) is used by theBKW algorithm. Recall that the queries
received from the oracle are of the fofw (v,s) @ d). In this reduction, the
v vectors are sorted in equivalence classes according tovalkies on a
block of b bits. Theséb positions are chosen randomly. Two queries in the
same equivalence class have the same values oh plusitions. In each
equivalence class, we choose a representative vector antdnth the rest
of the queries. This will give vectors with only 0 on this wowd of b bits.
Afterwards the representative vector is dropped. Thisatfmar reduces the
secret tdk — b effective bits (sincd bits of the secret are always xored with
zero). The new bias i& as the new queries are xor of two initial ones and
the number of queries is reduced By(as there arePequivalence classes).
partition-reduce(b) : K =k—b; n’ =n— b § = &% 0, = O
Complexity: O(kn)

The next reductiongor-reduce(b), is always better thapartition-reduce(b).

Nevertheless, we keep this operation in our analysis fokward compat-

ibility with existing algorithms (e.g. to fill our Tablel 1 witthe algorithms
from [23]).

— xor-reduce(b) was first used by theF2 algorithm. Similar topartition-reduce,
the queries are grouped in equivalence classes accordthg t@lues orb

random positions. In each equivalence class, we performatieg of every

pair of queries. The size of the secret is reduced bigs and the new bias is

&°. The expected new number of querie (g 1, matches; on theb-bit block) =

”(2'2,:11) B. Whenn ~ 1+ 2°1 the number of queries are maintained. For

n> 1+ 2°1 the number of queries will increase.

1 but thek® + kx2X terms is missing in[23].

n n_1
2 In [8], the number of queries was approximate ?25 ) which is less favourable.



xor-reduce(b) 1 K =k—b;nf = 20D & — &2, 5 = &

Complexity: O(k-max(n,n’))

— drop-reduce(b) is a reduction used only by tHBKW algorithm. It consists in
dropping all the queries that are not 0 on a windovb bits. Again, thes®
positions are chosen randomly. In average, we expect tHaifithe queries
are 0 on a given position. Farbits, we expect to havg} queries that are 0
on this window. The bias is unaffected and the secret is etibgb bits.

drop-reduce(b) : K =k—b; i = Z—T,; & =0; 0= 0

Complexity: O(N(1+3 + ...+ 527))

The complexity on(1+ 3+ ...+ =) = O(n) comes from the fact that we
don't need to check all thiebits: once we find a 1 we don’t need to continue
and just drop the corresponding query.

— code-reduce(k, K, params) is a method used by the covering code algorithm
presented in ASIACRYPT'14. In order to reduce the size ofsheret, one
uses a linear cod, k'] (which is defined byarams) and approximates the
v; vectors to the nearest codeward We assume that decoding is done in

linear time for the code considered. (For the considere@godecoding is

indeed based on table look-ups.) The noisy inner produairbes:

(Vi,s) B di = (giG,9) d (Vi — 7,5
= (0f,sG") & (v — Gi,S) @ 0
= <gl’sl>@d|,a

whereG is the generator matrix of the codp=g/G, s =sG' € {0,1}¥ and
d = (vi — @i, @ di. We denotebc = E((—1)i~9-9) the bias of(vi —g;,s).
We will see in Sectionl3 how to construcflak’] linear code makingc as
large as possible.
Here,bc averages the bias over the secret althosigHixed by sparse-secret.
It gives the correct average bi@sover the distribution of the key. The
Stochastic equivalence approximation justifies this agigly
By this transform, no query is lost.
code-reduce(K,K',params) : K'; n = n; & = 8- bc; &, depends ods andG
Complexity: O(kn)
The wayd; is computed is a bit more complicated than for the other types
of reductions. Howeveds only plays a role in theode-reduce reduction, and
we will not consider algorithms that use more than am@-reduce reduction.

It is easy to notice that with each reduction operation thalmer of queries
decreases or the bias is getting smaller. In general, foimgpLPN, one tries to
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lose as few queries as possible while maintaining a large @ will study in
the next section what is a good combination of using thesectamhs.

After applying the reduction steps, we assume we are left antLPNy, 5
instance where we havé queries. The two main solving techniques encoun-
tered in theLPN algorithms are:

— majority iS used by thé8KW algorithm. For this solving algorithm we have
queries of the forn{1,s @ d;), wheres is theit" bit of the secret and; «+
Ber(1_g)/2. For this, from then' queries, we chose only those that have
Hamming weight 1. Given that the probability for a noise bitbe set on
1 is smaller thar%, most of the queries will bél,s). The majority of the
zlkl’ gueries decide what is the valuesf The number of queries needed to
make the correct guess is given by the Chernoff bounds. Aowpto [7],
the majority needsy = 2In ( ) .8'~22X queries in order to bound the failure
probability of guessing wrong any & bits by 6, with 0 < 8 < 1. The
complexity ofmajority is O(n'). As the next solving method is always better
than majority, we do not detail this further.

— Walsh Hadamard TransforriMHT) is used by most of thePN algorithms.
This method recovers a block of the secret by computing the\féalsh
Hadamard transform on the functiéx) = ; 1y —x(—1)9%% . The Walsh-
Hadamard transform is

_ Z(_l)< z v,,SJrV Yd;

Forv =s, we havef (s) = 5i(—1)%. We know that most of the noise bits are
set to 0. Sof (s) is large and we suppose it is the largest value in the table of

f. Using again the Chernoff bounds, we need to have 8In( )5’ 271
gueries in order to bound the probability of guessing Wryjrnt;é K'-bit se-
cret by 6. We can improve further by applying directly the Central ktim

1
Theorem and obtain a heuristic bouthd— 5 n l) <1-(1-8)-1,

whered(x) = 35 141 erf(f) anderf is the Gauss error function. We obtain
that

N> -\/252-1.¢ < (1-0)% 1 > (1)



We can derive the approximation of Selclk![35] that 4In(%k/)6’*2. We
give the details of our results in Appendix A. Complexity beWHT (k')
is O(K'2¥ +K'n') as we use the fast Walsh Hadamard Transfifm

WHT (K');

1
Requiresy'n’ > —v25-2—-1-¢1 (1_ (1-9) 2k’1>
Complexity: O(k'2¥ % +Kn)

Given the reduction and solving techniques, ld&Ny ; solving algorithm
runs like this: we start with &-bit secret and witm queries from theLPN
oracle. We reduce the size of the secret by applying sevedattion steps and
we end up withn' queries where the secret has skkeWe use one solving
method, e.g. th8VHT, and recover th& -bit secret with a probability of failure
bounded byB. We choseb = % We have recovered a part of the secret. To
fully recover the whole secret, we update the queries amtlastather chain to
recover more bits, and so on until the remainkg k' bits are found. For the
second part of the secret we will require for the failure aitaiity to be8? and
for thei" part it will be . Thus, if we recover the whole secretiiiterations,
the total failure probability will be bounded B+ 62+ - - - + 6. Given that we
take® = % we recover the whole secret with a success probabilityefattgan
50%. Experience shows that the time complexity for the fiesation dominates
the total complexity.

As we can see in the formulas of each possible step, the catigmg of
K', ', and of the complexity do not depend on the secret weighthEtmore,
the computation of biases is always linear. So, the correstage bias (over
the distribution of the key made by th@arse-secret transform) is computed.
Only the computation of the success probability is nondirigut the Stochastic
equivalence approximation is invoked to solve this issugisfonly matters in
WHT, we will see in AppendiX_A that the approximation is justified

3 Bias of the Code Reduction

In this section we present how to compute the bias introdbyeal code- reduce.
Recall that the reductiorvde-reduce(k, k') introduces a new noise:

<Vias>@di = <gi/’sl>@<vi —gi,5>@di,

3 The second terrin' illustrates the cost of constructing the functibrin cases wherg' > Pl
this is the dominant term and it should not be ignored. This missing in[[23.8]. For the
instanceLPNsg0.125 from [23] this makes a big difference &= 64 andn’ = 259; the
complexity of WHT with the second term is’2 vs 2/0 from [23]. Given that is must be
repeated ¥ (as 35 bits of the secret are guessed), the codtidf is 288,

4 Normally, the valued (v) have an order of magnitude of’ so we hav% log, ' bits.
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whereg; = g/G is the nearest codeword @f ands = sG'. Then the noiséc
can be computed by the following formula:

be=E((-)" %)= T Prv—gi=¢E((-))
ec{0,1}k
k
=5 5 Pilvi-g=¢d=E <6SHW(V‘_9‘))
W=0 ec{0,1}k,
HW (e)=w
for ads-sparse secret. (We recall that #perse-secret reduction step randomizes
the secret and that we make the Stochastic equivalencexamaitin.)
From this formula, we can see that the decoding algorithm g; making

HW (v; — gi) minimal makes$c maximal. In this case, we obtain

bc=E <5§(V“C>) : )

whereC is the code and(v;,C) denotes the Hamming distancewfrom C.
For a codeC, thecovering radiugs p = max,d(v,C). Thepacking radiuss
the largest radiuR such that the balls of this radius centered on all codewords

are non-overlapping. So, the packing radiuRis | 25t| whereD is the min-
imal distance. We further haye > L%J A perfect codds characterized by

p=|251]. A quasi-perfect codis characterized bp = | 25| + 1.

Theorem 1. We consider dk, k', D] linear code C, where k is the lengtH, ik
the dimension, and D is the minimal distance. For any integard any positive
biasds, we have

r
be < 2KK S (;) (8% — &Ly -85

w=0

wherebc is a function ofds defined by[(R). Equality for anys €]0,1[ implies
that C is perfect or quasi-perfect. In that case, we do hauality when taking

the packing radius = R= |21 ].

By taking r as the largest integer such thp§, (V'f,) < 2K (which is the

packing radiuik = LDT‘lj for perfect and quasi-perfect codes), we can see that
if a perfect[k, k'] code exists, it makesc maximal. Otherwise, if a quasi-perfect
[k,K'] code exists, it makelsc maximal.

Proof. Letdecode be an optimal deterministic decoding algorithm. The foranul

gives us that
bc=2k EC z sHwv-9)
9cCvedecode1(g)
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We definedecode,,(g) = {v € decode ~*(g); HW (v—g) = w} anddecode=}(g)
the union of alldecode,*(g) for w > r. For allr, we have
6HW(V*9)
S

vedecode~1(g)

:Wio (\:/) oY + Z <#decodeW (;)) o + 5W#deC0dev_vl(g)
SAWLI

< (o) a5 ()

where we used? < &, for w >, #decode\,_\,l(g) < (VkV) anddY > &L+ for

w < r. We further have equality if and only if the ball centeredgaf radius
r is included indecode(g) and the ball of radius + 1 containsdecode ~*(g).
By summing over alfj € C, we obtain the result.

So, the equality case implies that the packing radius isa#tleand the
covering radius is at most+ 1. Hence, the code is perfect or quasi-perfect.
Conversely, if the code is perfect or quasi-perfect atglthe packing radius,
we do have equality. O

#decodey, (g (;)) od + 6r+l#decode>r (9)

So, for quasi-perfect codes, we can compute

R
be=2"*§ < k> (B¢ -3 ) +35+ (3)
wi=o \W
with R= | B3 |. For perfect codes, the formula simplifies to
K —k 2 [k W
o203 (w) @

3.1 Bias of a Repetition Code

Given alk, 1] repetition code, the optimal decoding algorithm is the migjo
decoding. We hav® =k, k' = 1, R= | ¥:1|. Fork odd, the code is perfect so
p = R. Fork even, the code is quasi- perfectp;e: R+ 1. Using [3) we obtain

Zw_o ()3 if kis odd
bc =

ZW—O 2k 1 ( )6W 2k (k/Z) 65 if kis even

We give below the biases obtained for sofkd] repetition codes.
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o
3524_:1—2 4_|_ 1
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[

‘O|o[N|o[d N w/N||=

=

=
=

3.2 Bias of a Perfect Code

In [23], the authors assume a perfect code. In this e, (£) = 2 and we
can usel(#) to computec. There are not so many binary linear codes which are
perfect. Except the repetition codes with odd length, tHg ones are the trivial
codeslk, k, 1] with R= p = 0 andbc = 1, the Hamming code’ — 1,2 — ¢ —
1,3] for £ > 2 withR=p =1, and the Golay cod@3,12,7] with R=p = 3.

For the Hamming codes, we have

be— ot L/2t—1 5W_1+(zf—1)5s
N wZo w )5 2!

For the Golay code, we obtain

be— o1t 3 (23) s 14235+ 2532 + 177153
- z s 211

w=0

Formulae[(R),[(4)[(3) fobc are new. In[[23,8]bc was approximated to

1 w .
et =1-2gy 5 5 (7)stc-wo-i.

i odd

wherew is the Hamming weight of thé&-bit secret andS(K’,p) is the num-
ber of k'-bit strings with weight at mosp. Intuitively the formula counts the
number ofv; — g; that produce an odd number of xor with the 1's of the secret.
(Seel[7,8,23].) Sol [23] assumes a fixed value for the weighttthe secret and
considers the probability that is not correct. Ifw is lower, the actual bias is
larger but ifw is larger, the computed bias is overestimated and the igori
fails. The advantage of our formula is that we average evand do not have a
probability of failure.
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For instance, with 3, 1] repetition code, the correct biaslis = 355+ 1
following our formula. With a fixedw, it is of bc(w) = 1— ¥ following [[7)23].
The probability ofw to be correct ig¥)1"(1—1)* ™. We take the example of
1= % so thatds = £ andd = 3.

w bc(w) Priw] Priw],1=3

0 1 (1-1® 02963
1 3 3t(1-1)2 04444
2 0 3%(1l-1) 02222
3 -1 © 0.0370

So, by takingw = 1, we haved = bc(w) but the probability of failure is about
%1. Our approach uses the same bias with no failure.

To solveLPNs120.125, [23] uses g124 64] perfect code witlp = 14 (note
that such a code does not exist) ame- 16. Our formula givedc ~ 27> but
bc(w) ~ 2779 and P{< w] ~ 0.6189. So, our analysis predicts better perfor-
mances (a larger bias on average instead of a smaller on@éro62ases and
a failure otherwise). In the presentation (of [[23] at the eoaifice, the authors
rather used &180,60] perfect coded = 33) with w such thatbc(w) > €t =
21478 We havebc(w) ~ 271356 and Pfsuccesps~ 0.17.

3.3 Using Quasi-Perfect Codes

If C'is alk—1,K, D] perfect code wittk’ > 1 and if there exists some codewords
of odd length, we can exter, i.e., add a parity bit and obtain[k k'] code

C. Clearly, the packing radius & is at IeastL%J and the covering radius is
at most[DT‘lJ +1. Fork' > 1, there is up to one possible length for making
a perfect code of dimensidki. So,C is a quasi-perfect, its packing radius is
| 252 | and its covering radius is%5? | + 1.

If C'is alk+ 1,k,D] perfect code withk’ > 1, we can puncture it i.e.,

remove one coordinate by removing one column from the géngranatrix.

If we chose to remove a column which does not modify the tdnkve obtain

a [k,K'] codeC. Clearly, the packing radius & is at IeastLDT‘lj —1 and the
covering radius is at mos*tt%J. Fork' > 1, there is up to one possible length
for making a perfect code of dimensiéh So,C is a quasi-perfect, its packing
radius is| 251 | — 1 and its covering radius iS22 |.

Hence, we can use extended Hamming cd@e®’ — ¢ — 1] with packing
radius 1 for¢ > 3, punctured Hamming codé®’ — 2,2 — ¢ — 1] with packing
radius 0O for/ > 3, the extended Golay cod24, 12] with packing radius 3, and
the punctured Golay codg2,12] with packing radius 2,

There actually exist many constructions for quasi-peifaetar binary codes.
We list a few in Tabl€2. We took codes listedin[14, Table 38,[p. 122],[22,
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p. 47], [18, Table 1],[I13, p. 313], andl[3, Table I]. In Tablek K, D, andR
denote the length, the dimension, the minimal distance tlemgacking radius,
respectively.

Table 2: Perfect and Quasi-Perfect Binary Linear Codes

name type k,K,D] R comment ref.
P [kk1,k>1 0 [#...,%
r P [k1,k, kodd k21 repetition code
H P [20-12—¢-13,¢>3, 1 Hamming code
G P [23127) 3  Golay code
QP [kk—11] 0 [#,...,%0]
r QP [k,1,k], keven K—1 repetition code
eG QP [24,12,8] 3  extended Golay code
pG QP [22,12,6] 2 punctured Golay code
eH QP 20,20 —¢—1,4,(>2 1  extended Hamming code
QP [20—1,26—¢,1],¢>2, 0  Hamming with an extra word

pH QP [26-22—¢-1,2,0>2 0  punctured Hamming
HxH QP [2x(20—1),2x(2' —¢—1)],£>2 1 Hammingx Hamming [14]
upack QP [2(—-22/—¢-23],(>3 1 uniformly packed [14]
2BCH QP [20—1,(2/—1)—(2%0),£>3 2 2-e.c.BCH [T4]
z QP [241,(2' +1)—(2%0)],£> 3 even 2 Zetterberg [14]
rGop QP [2(—2,(2—2)—(2x¢)],£> 3 even 2 red. Goppa [14]
iGop QP [2(,(2) —(2%¢)],¢>20dd 2 irred. Goppa [14]
Mclas QP [2f—1,(2 —1)—2x(],¢> 2 odd 2 Mclas [14]
S QP [5,2,[9,5], [10,5], [11,6] 1 Slepian [38]
S QP [11,4] 2 Slepian [38]
FP QP [15,9], [21,14], [22,15, [23,16] 1 Fontaine-Peterson B3]
w QP [1910], [20,11], [20,13), [23,14) 2 Wagner [33]
P QP [21,12 2  Prange [3B]
FP QP [25,12 3  Fontaine-Peterson [33]
w QP [25,15), [26,16), [27,17], [28,18, [29,19, 1 Wagner [38]

[30,20], [31,20]
GS QP [137],[19,12 1 GS85 [22]
BBD QP [7,3,3,[9,4,4],[106,3],[11,7,3,[127,3, 1 BBDO8 3]

[12,8,3, [138,3, [139,3, [149,3],

[15,10,3], [16,10,3], [17,11,4], [17,12,3],

(18,12 4], [18,13 3], [19,13 3], [19,14,3],

[20,14,4)
BBD QP [22135] 2 BBDO8 3]

3.4 Finding the Optimal Concatenated Code

The linear codek, K] is typically instantiated by a concatenation of elementary
codes for practical purposes. They are indeed easy to ingpieand to decode.
For [k, k'] we have the concatenation @i, K;], ..., [km,kf;] codes, wherdg +
-+ kn =k andk; +--- + kp, = K. Letvij,gjj, s} denote the!" part ofvi, g, s
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respectively, corresponding to the concatengkgd;] code. The bias ofvij —
gij,sj) in the codelk;,kj] is denoted bybcj. As (vi —g;,s) is the xor of all
(Vij — Gij,Sj), the total bias introduced by this operation is computed@s:
|‘|'f:1 bc; and the combinatioparams = ([kq,K],.. ., [km,Kf]) is chosen such
that it gives the highest bias.

The way thesg@arams are computed is the following: we start by computing
the biases for all elementary codes. l.e. we compute thedbits all codes
from Table2. We may add random codes that we found inteﬂu’rﬂext, for
eachli, j| code we check to see if there is a combinatioriefn, j — m],[n,m|
codes that give a better bias, whénem| is either a repetition code, a Golay
code or a Hamming code. We illustrate below the algorithmrtad fhe optimal
concatenated code.

Algorithm 1 Finding the optimaparams and bias
1: Input: k
: Output: table for the optimal bias for eadh j] code, 1< j <i <k

N

: initialize all bias(i,j) =0
: initialize bias(1,1) =1
: initialize the bias for all elementary codes
:forall j:2tokdo
foralli:j+1tokdo
for all elementary codén, m| do
if |bias(i —n, j —m) - bias(n,m)| > |bias(i, j)| then
bias(i, ) = bias(i —n, j —m) - bias(n,m)

params(i, j) = params(i —n, j — m) U params(n, m)

PSoo~ousw

Using O(k) elementary codes, this procedure tak¥k®) time and we can
store allparams for any combinatiorii, j], 1 < j < i < k with O(k?) memory.

4 The Graph of Reduction Steps

Having in mind the reduction methods described in Sedflome2formalize an
LPN solving algorithm in terms of finding the best chain in a graphe intu-
ition is the following: in anLPN solving algorithm we can see each reduction
step as an edge from(&,log, n) instance to a new instanc&,log, n') where

the secret is smallek’ < k, we have more or less number of queries and the
noise has a different bias. For examplesa#ition-reduce(b) reduction turns an
(k,log,n) instance with bia® into (K',log,n’) with biasd wherek’' = k—b,

5 The random codes that we used are provided as an additionatiah4o this paper.
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n =n—2° andd = &2 By this representation, the reduction phase represents
a chain in which each edge is a reduction type moving ftéN with parame-
ters(k,n) to LPN with parametergk’,n’) and that ends with an instange, n;)
used to recover thig-bit length secret by a solving method. We choose the fast
Walsh-Hadamard transform as the solving method as it waseprtm be more
efficient than the majority phase used by Bi€W algorithm.

As described before, we formalize the reduction phase asam df re-
duction steps in a grapt® = (V,E). The set of verticed/ is composed of
V ={1,...,k} x L whereL is a set of real numbers. For instance, we could
takeL = R or L = N. For efficiency reasons, we could even téke {O,...,n}
for some bound). Every vertex saves the size of the secret and the logarith-
mic number of queries; i.e. a verték log, n) means that we are in an instance
where the size of the secretkiand the number of queries availabl@i#\n edge
from one vertex to another is given by a reduction step. Areddgn (k,log, n)
to a(k',log,n’) has a label indicating the type of reduction and its pararsete
(e.9. partition-reduce(K— k') Or code-reduce(k, K, params)). This reduction defines
somea andp coefficients such that the bi@safter reduction is obtained from
the biasd before the reduction by

log, 82 = alog, 5 + B

whereaq, 3 € R.

We denote by[A|_ the smallest element &f which is at least equal t&
and by |A|_ the largest element df which is not larger thar. In general,
we could use a rounding functidRound, (A) such thatRound, (A) is in L and
approximatesg.

The reduction steps described in Subsedtioh 2.2 can be liaatas fol-
lows:

— sparse-secret: (K,log,n) — (k,Round| (log, (n—K))) anda =0, =0
— partition-reduce(b): (K,log,n) — (k—b, Roundy (log,(n— 2°)) anda = 2,3 =

0
— xor-reduce(b): (k,logyn) — (k—b, Round, (log, (%) ) anda =2,p=0

— drop-reduce(b): (k;10gyn) — (k—b,Roundy (log, (35))) anda = 1, =0

— code-reduce(k, K ,params): (k,log,n) — (K,log,n) anda = 1, = log, bc?,
wherebc is the bias introduced by the covering code reduction usikgkd
linear code defined byarams.

Below, we give the formal definition of a reduction chain.

Definition 3 (Reduction chain).LetR = {sparse-secret, partition-reduce(b), xor-reduce(b),
drop-reduce(Db), code-reduce(k,K',params)} for k. k',b € N . Areduction chain is
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a sequence
(k07|092 nO) E> (k17|092 nl) 2) te E} (k57|092 ni)7

where the changgk;_1,109,nj_1) — (kj,log, n;) is performed by one reduction
from®R,foral 0< j <i.
A chain issmpleif it is accepted by the automaton from Figlde 1.

drop-reduce par (Ztribrrff{#ec uce
tition-redi
initial stat lea%rl%f;wm Qz WHT, accepting state
O,
sparse-secret accepting state

- WHT _
Paﬁ%}zréé{g: duce <:<3>—racceptmg state

code-reduce
gr-reduc WHT .
paﬁl{;&;ﬁrﬁe rutfgce <:(4D—acceptlng state

Fig. 1. Automaton accepting simple chains

Definition 4 (Exact chain). An exact chain is a simple reduction chain for
L =R. l.e.Round_ is the identity function.

A chain which is not exact is calledunded.

Remark:Restrictions for simple chains are modelled by the automato
Figure[1. We restrict to simple chains as they are easier alyze Indeed,
sparse-secret 1S only used to raisés to makecode-reduce more effective. And, so
far, it is hard to analyze sequencescefe-reduce steps as the first one may de-
stroy the uniform and highs for the next ones. This is why we exclude multiple
code-reduce reductions in a simple chain. So, we use up to gase-secret reduc-
tion, always one beforevde-reduce. ANd sparse-secret 0Occurs beforé decreases.
For convenience, we will add a state of the automaton to thexeV.

For solvingLPN we are interested in those chains that end with a vertex
(ki,log, n;) which allows to call aVHT solving algorithm to recover thig-bit
secret. We call these chains valid chains and we define thiaw.be
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Definition 5 (Valid reduction chain). Let
(ko,10g,n0) = (ka,log,ny) 2 ... 2 (ki,log, M)

be a reduction chain. Led; = 1 — 2t; be the bias corresponding to the edge
(ki,log, ;). We say the chain is @valid reduction chain if n; satisfies[(lL) for
solving anLPNy y, instance.

Thetime complexityf a chain(ey, ..., &) is simply the sum of the complex-
ity of each reduction stepy,ey,..., andWHT. We further define thenax-
complexity of a chain which is the maximum of the complexity of each reduc
tion step andVHT. The max-complexity is a good approximation of the com-
plexity. Our goal is to find a chain with optimal complexity.HAt we achieve is
that,given a set [.we find aroundedchain with optimalmax-complexityp to
some given precision.

4.1 Towards Finding the BestLPN Reduction Chain

In this section we present the algorithm that helps findiregy dptimal valid
chains for solving_PN. As aforementioned, we try to find the valid chain with
optimal max-complexity for solving abPN ; instance in our grapfs.

The first step of the algorithm is to construct the directeabbG = (V,E).
We take the set of vertice$ = {1,... .k} x L x {1,2,3,4} which indicate the
size of the secret, the logarithmic number of queries andttite in the automa-
ton in Figurd_1. Each edgee E represents a reduction step and is labelled with

the following information:(ky, log, Ny, st) a’—Bﬁt (k2,log, o, st') wheret is one of
the reduction steps ardandf3 save information about how the bias is affected
by this reduction step.

The graph ha®(k-|L|) vertices and each vertex hagk) edges. So, the
size of the graph i®(k?- |L|).

Thus, we construct the graph with all possible reduction steps and from
it we try to see what is the optimal simple rounded chain imt&iof max-
complexity. We present in Algorithil 2 the procedure to cargtthe graphG
that contains all possible reduction steps with a time cexifyl bounded by 2
(As explained below, Algorithr]2 is not really used).

The procedure of finding the optimal valid chain is illustctin Algo-
rithm[3. The procedure of finding a chain with upper bounded-o@mplexity
is illustrated in Algorithni 4.

Algorithm[4 receives as input the parametk@ndt for the LPN instance,
the parameteB which represents the bound on the failure probability in re-
covering the secret. Parametgrepresents an upper bound for the logarithmic
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Algorithm 2 Construction of grapl®
1: Input: k,T,L,n
2: Output: graphG = (V, E) containing all the reduction steps that have a complexitglemn
than 2!

3 Vv={1.. . kixLx{1,...,4}
4: E is the set of all((i,ng,st),(j,nz2,st')) labelled by(a,B,t) such that there is at L ost
transition in the automaton and for
5: t = sparse-secret:
6: for all n: 1 such thatcomp < n do set the edge
70 where i =k, (j,n2) = (i,Round (log,(2"* —i))), a = 1, B = 0, lcomp =
1092 rogerTogdiogs +12)
log,i—Togzlogsi
8: t = partition-reduce:
9: for all (i,n1,b) such thab > 1 andlcomp < n do set the edge
10:  where(j,n2) = (i —b,Round| (log, (N1 —2°))), a = 2,8 = 0, Icomp = log,i +n1
11: t = xor-reduce:
12: for all (i,n1,b) such thab > 1 andlcomp < n do set the edge
13:  where(j,n2) = (i—b,Roundi (N1 —1+logy (55 —1))), a =2, =0, lcomp = log,i +
max(n,N2)
14: t = drop-reduce:
15: for all (i,n1,b) such thab > 1 andicomp < n do set the edge
16: where(j,n2) = (i—b,Round| (N1 —b)), a =1, =0, lcomp =log,b+n1
17: t = code-reduce:
18: forall (i,n1,j) such thatj < i andlcomp < n do set the edge
19: wheren, = ny, a = 1, B = log, bc?, lcomp = log,i + N1, b is the bias from the optimal
[i,]] code

complexity of each reduction step. Givgnwe build the graptG which con-
tains all possible reductions with time complexity smatlemn 2! (Sted 4). Note
that we don't really call Algorithrhl2. Indeed, we don’t needstore the edges of
the graph. We rather keep a way to enumerate all edges goagit@n vertex
(in Sted11) by using the rules described in Algorithim 2.

For each vertex, we iteratively defidé! and Best™, the best reduction step
to reach a vertex and the value of the corresponding errsr Bitae best reduc-
tion step is the one that maximizes the bias. We define thdaesvderatively
until we reach a vertex from which th&HT solving algorithm succeeds with
complexity bounded by™ Once we have reached this vertex, we construct the
chain by going backwards, following thgest pointers.

We easily prove what follows by induction.

Lemma 1. At the end of the iteration of Algorithi 4 f¢§,n2,st'), A?fnz is the

maximum ofog, 82, whered is the bias obtained by aRoundy -rounded simple
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Algorithm 3 Search for a rounded chain with optimal max-complexity
1: Input: k,T,0, precision

2: Output: a valid simple rounded chain in which rounding uses a giveipion

3: setfound =brut ef orce > found is the best found algorithm
4: setincrement =Kk

5: setn =k > 21 is a bound on the max-complexity
6: repeat

7 setincrement <— %increment

8 defineL = {0, precision, 2 x precision, ...} N [0,n — increment]

9: run (out, success) = Search(k, 1,0, L,n — increment) with Algorithm[4
10: if success then
11: setfound = out
12: setn = n —increment
13: until increment < precision
14: outputfound

chain from a vertex of forrfk,n1,0) to (j, N2, st') with max-complexity bounded
by 21 (AS',, = —w if there is no such chain).

Lemma 2. If there exists a simpl®ound,_-rounded chain ¢ ending on state
(kj,nj,stj) and max-complexity bounded BY), there exists one’ such that
A7, = log, 8 at each step.

Proof. Letc” be a simple chain ending d#;,n;,stj) with A‘;‘Ej = Iogzéf. Let
(kj—1,nj-1,stj—1) be the preceding vertex id’. We apply Lemmal2 on this
vertex by induction to obtain a cha@{. Since the complexity of the last edge
does not depend on the bias and 0 in the last edge, we construct the chain
¢/, by concatenating” with the last edge of”. O

Theorem 2. Algorithm(4 finds @-valid simpleRoundy -rounded chain fot PNy ¢
with max-complexity bounded &Y if there exists one.

Proof. We use Lemma&]2 and the fact that increashigkeeps constrain{{1)
valid. 0

If we usedL = R, Algorithm[4 would always find a valid simple chain with
bounded max-complexity when it exists. Instead, we usededrchains and
hope that rounding still makes us find the optimal chain.

So, we build Algorithni_B. In this algorithm, we look for the miinal n for
which Algorithm[4 returns something by a divide and conqugo@hm. First,
we setn as being in the intervdD, k] where the solution fon = k corresponds
to a brute-force search. Then, we cut the interval in twogseand see if the
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Algorithm 4 Search for a bestPN reduction chain with max-complexity
bounded tm

1: Input: k,T,6,L,n
2: Output: a valid simple rounded chain with max-complexity boundeqd t

3:0=1-21

4: Construct the grap8 using Algorithn{2 with parameteist,L,n
5: forall np e Ldo

6 setA}  =log, & Bestd, = |

7 setAﬁFm = —0o, Bestﬁfnl = 1 > A stores the best bias for a vertgkn, st) in a chain,

andBest® is the edge ending to this vertex in this chain

8: for j : k downto 1do > Search for the optimal chain
9: for n» € L in decreasing ordeto
10: sel‘A?_‘n2 =0, BestSt = | for all st
11: foreach st' and each edgeto (j,n2,st’)
12: set(i,n1,st) to the origin ofe anda andp as defined by
. ; t v t _ qASt st_
13: if aAﬁnl +B> A?ﬁnz then setAJ?n2 = O(Aﬁn11 +B, Best® =¢e
14: ifnz>1-45% +2log, (—qu(l— (1—9)511)) andj +log, j < n then
15: Construct the chaioending byBest?fn2 and outpuf(c, true)

16: output(_L,false)

lower interval has a solution. If it does, we iterate in thigerval. Otherwise, we
iterate in the other interval. We stop once the amplitudénefinterval is lower

. . . . . k
than the requested precision. The complexity of Algoritfime 8f log, 5o
calls to Algorithmi4.

Theorem 3. Algorithm[3 finds @-valid simpleRoundy -rounded chain fot PNy
with parameteiprecision, with optimal rounded max-complexity, where the round-
ing function approximate®g, up to precision if there exists one.

Proof. Algorithm [3 is a divide-and-conquer algorithm to find the #ps n
such that Algorithni 4 finds a valid simpRound| -rounded chain of
max-complexity bounded by12 O

We can see that the complexity of Algoritith 4 is@f(k?- |L|) iterations
as vertices havk possible values for the secret length ahfipossible values
for the logarithmic number of equations. So, it is linearhia size of the graph.
Furthermore, each type of edge to a fixed vertex®@dg possible origins. The
memory complexity isO (k- [L|), mainly to store the\,, and Besty, tables.
We also use Algorithril1 which has a complexityk®) but we run it only once
during precomputation. Algorithil 3 sefts| ~ prec'i‘sion. So, the complexity of
Algorithm[3 is O <k3+ K log—X )

— (0] —
precision 9 precision

21



5 Chains with a Guessing Step

In order to further improve our valid chain we introduce twennreduction
steps to our algorithm. As it is done in_[23,5], we guess pathe bits of the
secret. More precisely, we assume thabtits of the secret have a Hamming
weight smaller or equal tov. The influence on the whole algorithm is more
complicated: it requires to iterate thHT step 31", (%) times. The overall

- o 15\ (15 \V"
complexity must further be divided by;" (%) ( > S) (%) . Note that
this generalizeguess-secret Step was used in [23].

We formalize this step as following:

— guess-secret(b,w) guesses that bits of the secret have a Hamming weight
smaller or equal tev. Theb positions are chosen randomly. The number of
gueries remains the same, the noise is the same and the simesacret is
reduced byb bits. Thus, for this step we have
guess-secret(byw) : K =k—b; ' =n; & =5; 8, =&
Complexity: O(nb) (included insparse-secret) and
the Walsh transform has to be iteratgfi, (%) times and
the complexity of the whole algorithm is divided by

sttt () ()"

This step may be useful for a sparse secretrigsmall, as when we reduce
the size of the secret with a very small cost. In order to acnodate this new
step we would have to add a transition from state 3 to statetfeimutomaton
that accepts the simple chains (See Figuire 1).

To find the optimal chain usinguess-secret(b,w), we have to make a loop
over all possibleb and all possiblev. We run the full searclo(k?) times. The

total complexity is thus ( —X— x log—X )

precision precision

The second reduction technique is denotedraye-reduce. Given the queries
(v,(v,s) @& d), one can just pick a random positiop,and reduce the secret by 1
bit if the j" bit of vis 0. If the ji" bit is 1, then we can still reduce the size by
1 by addings; to the error term; i.e. the updated query(¥§ (V,s) & d @ s;),
wheres (V) is s( respectivelyv) vector without thej'" bit. When the bit ofv
is 0 this change does not affect the original query. When 1, ifen the new
bias introduced i$s, the bias ofs;. We can takés = 1 — 2t. Thus, the expected
bias isl+755. We can generalize this reduction and zbrbits of the secret by

introducing an error term that has a bias(é%)b. One point is that we must
make the secret sparse (thus ug@se-secret) and also randomize thie bits
which are truncated so that they do have a bia% ahd are not constant. We do
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this by a special treatment during th@rse-secret step: for each output equation
we useb new input equations and use these errors bits as the ranedimiz
secret bits. The Stochastic equivalence approximatiopsteain.

We have the following:

— trunc-reduce(b) introduced bits of the secret in the error term. We can easily
see that, by this operation, the number of queries remagsaine, the size
of the secret is reduced Ilybits and the new bias &- (%)b.

trunc-reduce(b) : K =k—b; i/ =n; & = &- (%)b; O, = Os
Complexity: O(1)

As we do not follow the evolution a5 beyondcode-reduce, the trunc-reduce
step can only be done in betwegarse-secret and code-reduce in a chain. When
consideringirunc-reduce(b) outside this case, we under-estiméi¢o 0 and have
& =58-27P. As for guess-secret, the trunc-reduce step requires a transition from
state 3 to itself in the automaton.

6 Results

We illustrate in this section the results obtained by rugniigorithm[4 for

different LPN instances taken from_[[7,8]. They vary from takikg= 32 to

k = 768, with the noise levels:.05,0.1,0.125 0.2 and 025. In Tabld_B we dis-
play the logarithmic time complexity we found for solvihgN without using
guess-secretlg

k

32 48 64 100 256 512 768
0.05 1389426 145133% 16043443 20471826 36.853458 58008527 77.07742
0.1 15041370 18581543 21585%38 27.833534 471348 74150533 99480538
0.125 156633°2 19294700 22943250 28912530 50363520 79.46{55¢ 106459348
0.2 17013480 21250923 24422390 32065%7> 56865428 89638586 121201843
0.25 18421530 22342043 26.865%°° 32943%7° 59473588 9498952 128320378
entry of forma‘c’,__: a = log, complexity,b = log, max-complexity ¢ = precision

subscriptc means that aode-reduce is used
subscript means that @runc-reduce is used

Table 3: Logarithmic time complexity on solvind®N without guess-secret

6 Complete results are provided as an additional materilisoqpaper.
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k
32 48 64 100 256 512 768
005 1185990, 13015, 1444534, 17.200518, 301830 e, 49561720, 68150588,
01 1241558, 16234423, 17.715578,, 24025533, 46508355 7413 99635
0.125 1330539, 16493350 20573853 27263000 503670 797170 1065119368
0.2 17013480 2125928 24422200 3208%7° 56863428 89655704 1211211857
025 184205% 2234%% 268651 3294%7° 594735%  95000%°% 128401777

entry of formal__: a = log, complexity,b = log, max-complexity ¢ = precision
subscripto means that a only 1 bit of the secret is foundWwHT
subscripgh means that guess-secret (b, -) is used

Table 4: Logarithmic time complexity on solvind®N with guess-secret

T

Sequence of chaingdf we analyze in more details one of the chains that we ob-
tained, e.g. the chain farPNs120 125, we can see that it first usesarse-secret.
Afterwards, the secret is reduced by applying 5 timesaiereduce and one
code-reduce at the end of the chain. With a total complexity dP2° and8 < 33%

it recovers 65 bits of the secret.

sparse=secret

(512 622) P77 (519 612)
xor-reduce(67)
=

xor-reduce(54) xor-reduce(66)
- ekl isiaia/N

(458 67.4)
xor-reduce(66) xor-reduce(67)
= =

(392,67.8) (325,67.6)
WHT

(192 68.4) L&, (65,68.4) 1L,

(259,68.2)

The code used is f92 65 concatenation made of tHg5,15 quasi-perfect
Wagner code, somi@9,4], [16,5|, and[18,5] random codes that we found and
6 copies of 419, 6] random code that we found. By manually tuning the number
of equations without rounding, we can obtain with- 2611915 a complexity of
27937 This is the value from Tablg 1.

On theguess-secret reduction. Our results show that thgess-secret step does not

bring any significant improvement. If we compare Tdble 3 Widhle[4 we can
see that in few cases the guess step improves the total catppkeork > 512,
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some results are not better than Tdble 3. This is most likel td the lower
precision used in Tablg 4.

We can see several cases where, at the end of a chaigaedthsecret, only
one bit of the secret is recovered WHT. If only 1 bit of the secret is recovered
by non-bruteforce methods, the next chain E®N,_1. will have to be run
several times, given thguess-secret step used in the chain f&PNy . Thus, it
might happen that the first chain does not dominate the totapéexity. So, our
strategy to use sequences of chains has to be revised, butikets the final
result will not be better than sequences of chains witlout-secret. We want
to avoid these chains ending with 1 bit recovery.

There is only one case whergass-secret without a chain ending with 1 bit
brings a little improvement:PNs120.1: 2741 vs. 27413 with b = 1. Most likely,
this performance witlyuess-secret can be cancelled by finding better codes.

On the trunc-reduce reduction. We did not see much use of thenc-reduce step.
The only use is in the chain faPN4g .05 andLPN76g0.25 (see Tabl€l3) where
one bit is truncated. Again, a better code would most likelydl us to better
chains with notunc-reduce.

Comparing the resultsFor practical values we compare our results with the
previous work. We take as reference the analysis done I292and [7,8].

In Tables'h and 16 we display the analysis conducted_iri |2P,hg29],
only the query complexity is given. We took the query comjiekom [29]
and computed what is the time complexity in order to compadtie @ur results.
Our results are better by a factor of @p to £, depending on the parameters.

. k . k
256 512 768 256 512 768
005 50 79 102 005 42 65 87
0125 56 88 125 0125 52 82 109
025 64 100 142 025 64 99 139
Table 5: Security of PN [29] Table 6: Security of PN [7]8]

The comparison with [23] was shown in Table 1 in IntroductiBrom the
work [23] from ASIACRYPT'14 we have thdtPNs120.125 can be solved in time
complexity of Z°7 (in fact, more as some complexities were underestimated).
We do better, provide concrete codes and we even removg:dfiesecret Step
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with an optimized use of a code. Thus, the results of Algaridhimprove all
the existing results on solvingPN.

7 Conclusion

In this article we have proposed an algorithm for creatirduotion chains with
the optimal max-complexity. The results we obtain bring iayements to the
existing work and to our knowledge we have the best algoritbmsolving
LPNs120.125. For instance, we improve the results from ASIACRYPT'14][23
by showing how to select the code and to optimize the sequehduction
steps. Furthermore, for the covering codes, we proposeaeencodes for dif-
ferentLPN instances. We believe that our algorithm could be furthexptet
and automatized if new reduction techniques would be iniced.

As future works, we could look at applications to th& E problem. Kirch-
ner and Fouque [28] improve th&VE solving algorithms by refining the mod-
ulus switching. We could also look at ways to keep track obésaof secret
bits bitwise, in order to allow cascades @ffe-reduce steps and random use of

trunc-reduce.
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A Approximating n by using Central Limit Theorem

In order to approximate the number of queries needed to soddePN instance
we consider when the Walsh Hadamard Transform fails to diieecbrrect se-
cret. This scenario happens when for anotef s, we have thaf () > f(s).
Following the analysis from [7] this translates W (y) < HW(d'), for y =
AT+ andd = A'sT +¢'T. For eachs, we takey as a uniformly distributed
random vector. l.e.

n/

mﬂ@>ﬂwzpizm—mg4.

LetXy,...,Xy be random variable correspondingdo=y; —d/. SinceE(y;) =
1LEMd) =1 /—2%' andy; andd/ are independent, we have tHatx;) = $ and
Var(X) = %. By using the Central Limit Theorem we obtain that

Pr{x1+...+xn/sow¢<ﬂ>,

V252

and¢ can be calculated bg(x) = 3 + %erf(%), whereerf is the Gauss er-

ror function. Applying the reasoning for arg/+# s we obtain that the failure
probability is bounded b9 if

(1-PfX 4.t Xy <O 1>1-0
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From this inequality and the previous approximation we dedbe following
A-PX ..t Xy <O 1>1-05

o[ LS
V25

V> V2521 (1- -0 )

) < 1—(1—6)2k’—1—1 &

1
Thus, we require to haven’ ~ —/25-2—1¢ ! <1 (1-0) zk’1> . If we use
&2

theapproximatiorq)(\/@?z) \}ﬁ 25 \(/2;:5

1) In( Ca *1) This brlngs an improvement of factor two over the Hoeffdrgind
that requiresy > 8In(4 )5’ 2,

we obtain that! > 2(28' 2 —

On the validity of the Stochastic independence approxonafl he above com-

putation makes sense when we can use the Stochastic inegenapproxima-

tion. We now look at how to avoid using it. So, the seatajenerated by the
sparse-secret reduction is randomly sampled once. The &sl) now depends

on this secretl. We only knowE (& (d)) = &. The above computation is only
making sure that

~(1-9(E@)* <0

—VE(d) which depends od. We now want to study the average
V2002 P Y ’

probability of failure

whereZ =

p—E(1-(1-6(2)* )

Typically, & (d) is concentrated around an average value dependifty¥(d).
So, ifE(Z) « 0, values ofZ close to 0 occur with rare probability.

The value ok’ in WHT is typically not too small. Since we want the proba-
bility of failure to be below 33%, we neej( Z) to be very small. In this region of
the curve, of thd) function, we can thus approximaE ¢ (2)) ~ ¢(E(Z)). The

t—1—(1- )2 "~1is concave. So, thanks to the Jensen inequality, the average
probability of failure is

pP<1-(1-E(6@2)* '~1-(1-$(E@2)* <6

So, fork’ not too small, what we obtain with the Stochastic independeap-
proximation is a safe condition for having an average priibalof failure be-
low 6.

30



	Optimization of LPN Solving Algorithms

