
Collision Attack on Grindahl

Thomas Peyrin

Nanyang Technological University, Singapore
thomas.peyrin@gmail.com

Abstract. Hash functions have been among the most scrutinized cryptographic
primitives in the previous decade, mainly due to the cryptanalysis breakthroughs
on MD-SHAfamily and the NIST SHA-3 competition that followed. Grindahl
is a hash function proposed at FSE 2007 that inspired several SHA-3 candidates.
One of its particularities is that it follows the AES design strategy, with an effi-
ciency comparable to SHA-256. This paper provides the first cryptanalytic work
on this scheme and we show that the 256-bit version of Grindahl is not col-
lision resistant. Our attack uses byte-level truncated differentials and leverages
a counterintuitive method (reaching an internal state where all bytes are active)
in order to ease the construction of good differential paths. Then, by a careful
utilization of the freedom degrees inserted every round, and with a work effort of
approximatively 2112 hash computations, an attacker can generate a collision for
the full 256-bit version of Grindahl.

Key words: Grindahl, AES, hash functions, collision, cryptanalysis.

1 Introduction

Cryptographic hash functions are fundamental primitives in information security used
in a variety of applications such as message integrity, authentication schemes or digital
signatures. Mathematically speaking, a hash function maps {0, 1}∗, the set of all finite
length bit strings, to {0, 1}n where n is the fixed size of the hash value. Ideally, a
cryptographic hash function H should possess the following properties [19]:

– collision resistance: finding a pair x 6= x′ ∈ {0, 1}∗ such that H(x) = H(x′)
should require 2n/2 operations;

– 2nd preimage resistance: for a given x ∈ {0, 1}∗, finding an x′ 6= x such that
H(x) = H(x′) should require 2n operations;

– preimage resistance: for a given y ∈ {0, 1}n, finding an x ∈ {0, n}∗ such that
H(x) = y should require 2n operations.

Generally, hash functions are built upon a compression function and a domain ex-
tension algorithm. A compression function h has the same security requirements as a
hash function but takes fixed length inputs instead. Then, a domain extension method

This article is the extended and updated version of an article published at ASIACRYPT
2007 [39]. The author is supported by the Singapore National Research Foundation Fellowship
2012 (NRF-NRFF2012-06).

allows the hash function to handle arbitrary length inputs by defining an (often itera-
tive) algorithm using the compression function as a black box. The pioneering work
of Merkle and Damgård [11,29] provided to designers an easy way in order to turn
collision resistant compression functions onto collision resistant hash functions. After
dividing the message to hash (appropriately padded) into blocks mi, one simply has
to update iteratively a state cvi (called chaining variable) with each message block:
cvi+1 = h(cvi,mi). The first state is defined by the initial value cv0 = IV . Finally,
after having processed every message block, the final state is the output of the hash func-
tion. Even if preserving collision resistance, it has been shown that this iterative process
presents flaws [14,23,24,25] and new algorithms [3,7] with better security properties
have been proposed.

Almost all published hash functions define a compression function that can be used
with any hash domain extension algorithm. There are three different ways of building a
compression function. First, one can relate the security of h to a hard problem, such as
factorization [10], finding small vectors in lattices [4], syndrome decoding [1] or solv-
ing multivariate quadratic equations [8]. The usually bad efficiency of these schemes
is compensated by the proofs of security they provide. Another very active domain is
the construction of secure compression functions based on block ciphers, which would
allow for example to build AES-based compression functions. The problem of building
a secure n-bit compression function from an ideal n-bit block cipher is more or less
resolved [9,42,43] and due to a need of bigger output size the cryptographic commu-
nity is now concentrating on the problem of building a secure (k × n)-bit compression
function from an ideal n-bit block cipher [20,41,45]. Finally, the most common and
efficient way of building a compression function is from scratch, for example the well
known and previously standardized SHA-1 [38] or MD5 [44]. Usually, the dedicated
compression functions follow the Davies-Meyer mode that turns a block cipher into a
compression function, and a block cipher is therefore built from scratch for that pur-
pose. Nevertheless, most hash standards (based on addition-rotation-XOR operations)
use this type and they have been broken by novel cryptanalysis results [46,47,48,49].

In order to anticipate further improvements of the attacks, NIST has initiated in
2008 an effort [37] to develop the next hash standard through a public competition,
similar to the development process for the Advanced Encryption Standard [36]. This
competition finally ended with the choice of KECCAK [6] as the new SHA-3 standard.
As precursors of many SHA-3 candidates, some hash functions have been published
before the competition, such as LAKE [2], FORK-256 [21], Radio-Gatùn [5] or
Grindahl [28].

Despite using known parts of AES for its round transformation, Grindahl can-
not be considered as a conservative proposal. This 256-bit hash function does not use
the famous Merkle-Damgård paradigm nor the Davies-Meyer construction and the de-
signers preferred a new configuration: an internal state much bigger than the output
size, updated by message words thanks to a fast round function. As output function,
blank rounds without incoming message words precede the final truncation of the inter-
nal state. Regarding implementation, it requires not much memory and runs faster than
SHA-256. The idea underlying this construction is that a big internal state will make it
harder for an attacker to build internal collisions (collisions happening before the blank

rounds), while collisions due to the final truncation are very unlikely to be forced be-
cause of the large number of cryptographic operations during the blank rounds. The
designers of Grindahl claimed a collision security of 2128 operations as for an ideal
256-bit hash function1, and security arguments were provided with regard to the num-
ber of active Sboxes in a differential path. However, we show in this article that one can
find a collision with a work effort of only 2112 hash computations. Our method utilizes
truncated differences which are very helpful for simplifying the differential analysis of
AES-based primitives. In order to further facilitate the search for good differential paths,
we will intentionally reach internal states entirely filled with differences and build the
collision path backwards starting from a colliding state. Finally, once the differential
path set, we leverage the freedom degrees available at each round in order to reduce the
collision attack complexity as much as possible.

The paper is organized as follows. In Section 2, we briefly recall the specification of
the Grindahl hash function and in Sections 3 and 4 we begin the analysis with vari-
ous observations on the scheme and the general methodology that allows us to build a
differential path. Then, in Section 5, we provide the first collision attack on Grindahl.
Finally, we discuss possible patches in Section 6 and we conclude in Section 7.

Since the first publication of our attack at the ASIACRYPT 2007 conference [39],
several attacks built on our results. First, our reasoning was likely to apply to the 512-
bit version of Grindahl as well, even if the much bigger internal state hardens the
attacker’s task (his ability to control the differential transitions of the MixColumns op-
erations is reduced). Using our findings, Khovratovich [26] described the first collision
attack on the 512-bit version of Grindahl by starting with potentially less interesting
truncated differential paths, but for which whole structures of inputs (instead of pairs)
can be built in order to greatly reduce the attack complexity. Moreover, our idea to apply
truncated differential analysis for the study of AES-based cryptography primitives (only
reasoning on the MixColumns truncated differential transitions) looks very promising,
as confirmed by the later discovery of rebound attacks [30] and its numerous varia-
tions [34,32,33] that broke many SHA-3 candidates during the competition. Finally,
it is to be noted that our freedom degrees fixing technique is quite efficient against
stream-cipher oriented hash functions, as shown for example on Radio-Gatùn [31].

On the constructive side, several SHA-3hash functions proposals [18,22,35] took
care of our attacks during the design phase. In particular, the designers of FUGUE [18]
managed to prove lower bounds on the complexity of our techniques when applied to
their proposal. In general, preventing this type of attacks without an important efficiency
drop is not trivial, and it seems that slightly increasing the internal state size is a good
solution.

2 The Grindahl Family of Hash Functions

Grindahl is a family of hash functions based on the so-called Concatenate-Permute-
Truncate strategy, where in our case the permutation uses the design principles of

1 Concerning second-preimage and preimage, the authors also claimed a resistance up to 2128

computations, which is lower than what one expects from an ideal 256-bit hash function.

Rijndael [12], well known for being the winning candidate of the Advanced En-
cryption Standard (AES) process [36]. Two algorithms are defined, a version with a
256-bit output and a 512-bit one. Also, a compression function mode is given, taking
only fixed-length inputs, to be used with any hash domain extension algorithm. We give
in this section a brief description of the Grindahl hash function with a 256-bit output.
For a more detailed specification of the algorithm, we refer to [28].

Let n = 256 be the number of output bits of the hash function H , with an internal
state IS of 48 bytes (384 bits), and let M be the message (appropriately padded) to
be hashed. M is split into m blocks M1, . . . ,Mm of 4 bytes each (32 bits). At each
iteration k, the message block Mk is used to update the internal state ISk−1. We call
extended internal state EISk the concatenation of the message block Mk+1 and the
internal state ISk, i.e. EISk = Mk+1||ISk and we thus have |EISk| = 416 bits. We
denote by trunct(x) the rightmost t bits of x. Let P : {0, 1}416 7−→ {0, 1}416 be a non-
linear permutation, and let IS 0 be the initial internal state defined by IS 0 = {0}384.
Then, for each iteration k with 0 < k < m, we have ISk = trunc384(P (EISk−1)).
For the last iteration, the truncation is omitted: EISm = P (EISm−1). Finally, we apply
eight blank rounds EISk = P (EISk−1), for m < k ≤ m + 8, and the final output of
the hash function is trunc256(EISm+8).

The description is not complete since P has not yet been defined. This permutation
follows the design principle of AES (the reader is expected to be familiar with the
transformation defined in the AES specifications) and thus the extended state EIS is
viewed as a matrix of bytes. However, instead of a (4, 4) byte matrix, we have a matrix
α of 4 rows and 13 columns in the case of the 256-bit version of Grindahl. The entry
of the matrix α located at the i-th row and the j-th column is a byte denoted by αi,j .
Consequently, we have:

α =


α0,0 α0,1 · · · α0,12

α1,0 α1,1 · · · α1,12

α2,0 α2,1 · · · α2,12

α3,0 α3,1 · · · α3,12

 .

By splitting the extended internal state EIS into 52 8-bit chunks x0, . . . , x51, we can
define the conversion from EIS to α by αi,j = xi+4×j and this mapping has a natural
inverse. Before each iteration, the first column of α is overwritten with the incoming
message block. To conclude the description, the permutation P is defined as

P (α) = MixColumns ◦ ShiftRows ◦ SubBytes ◦ AddConstant(α).

MixColumns. This transformation is defined as in the AES specifications, that is a lin-
ear mixing operation which operates on each column of the state independently, com-
bining the four bytes in each column in order to provide diffusion.

ShiftRows. As for AES, this transformation cyclically shifts bytes a number of positions
along each row, but here the i-th row is rotated by ρi positions to the right, with ρ0 = 1,
ρ1 = 2, ρ2 = 4 and ρ3 = 10.

SubBytes. The only non-linear part of the permutation. This substitution replaces each
byte of the state by its corresponding byte in the AES Sbox lookup table.

AddConstant. Because we are in the hash function setting, no key is available and the
AddRoundKey function from AES has to be changed. Therefore, it is replaced by the
function AddConstant which is simply defined by α3,12 ←− α3,12 ⊕ 01, where 01 is
the byte-wise hexadecimal value of 1.

The 512-bit version of Grindahl is based on the same design principle as the 256-
bit version, but the extended internal state is larger (8 rows instead of 4). The compres-
sion function mode for Grindahl-256 simply consists in hashing 40 4-byte message
blocks for each compression function call.

3 First Observations

Before describing the whole collision attack, we begin this section with some remarks
about Grindahl that will be useful in the following sections. The first observation
allows us to build a differential path in a precomputation phase and the second one
speeds up the final collision search.

3.1 A potential attack and the truncated differences
In the original Grindahl paper [28], a section explains a potential attack method,
pointed out by an anonymous reviewer. This method seems quite natural: the attacker
does not look at the actual values of differences inserted in the bytes of the internal
state, but only checks if there is a difference or not (this greatly simplifies the analysis).
Said in other words, he only forces the zero difference to some bytes of the state, while
allowing any difference for the remaining bytes. We call this kind of zero or non-zero
differences truncated differences in reference to the very similar truncated differences
used by Knudsen in [27]. Then, a chain of truncated differences in which in every round
the number of actives bytes (bytes with a non-zero truncated difference) is low must be
found. In this differential path, the truncated differences can only be erased during two
stages of an iteration: during a MixColumns transformation or during the truncation at
the end of the iteration. This implies that the number of truncated differences in a col-
umn can be reduced and their row position changed by a clever use of the MixColumns
transformation, even if one can never erase all the truncated differences of a column at
a time. Otherwise, a truncated difference is deleted if it goes to the first column of α
at the end of the iteration, due to the truncation trunc384(·). Since at this stage of the
attack the whole differential path is already settled, one cannot force anything for the
truncation but one can play with the message blocks inserted at each iteration, in order
to force a correct behavior in the MixColumns processes (see Section 3.2). In fact, the
message bytes act as control bytes in the sense that new input bytes do not affect some
parts of the internal state for a limited number of rounds (see Section 3.3).

To summarize, a truncated difference can be removed during the differential path
construction by the truncation or during the collision search by a clever use of control
bytes. The feasibility of this method was left as an open problem: one of its main points
is that the attacker has to always keep as few active bytes as possible in the differential
path, but we will see later that the designers of Grindahl prevented this kind of low
weight path during the conception. We argue in Section 4.1 that there exists a better
technique to find collisions for Grindahl.

3.2 Differences transitions in the MixColumns function

The MixColumns transformation matrix used in Grindahl is the same as in the spec-
ifications of AES [12], and its Maximum Distance Separable (MDS) property ensures
maximal difference propagation. More precisely, the sum of the number of active bytes
of the input and the output is always greater than or equal to 5. In other words, the
number of non-zero truncated differences of the input and the output of MixColumns is
always greater than or equal to 5 (or obviously equal to zero if there is no difference at
all).

More formally, let V = (A,B,C,D) be an input vector of four bytes A, B, C and
D; and let W = (A′, B′, C ′, D′) be an output vector of four bytes A′, B′, C ′ and D′.
We denote the function MixColumns by MC : V 7−→ W or MC : (A,B,C,D) 7−→
(A′, B′, C ′, D′). We also denote by Di(V1, V2) the function returning 1 if the i-th byte
of the 4-byte vectors V1 and V2 are different, and 0 otherwise. Finally, ND(V1, V2)
returns the number of such differences, i.e. ND(V1, V2) = #{i |Di(V1, V2) = 1}. We
thus have that if W1 = MC (V1) and W2 = MC (V2) with V1 6= V2, then

ND(V1, V2) +ND(W1,W2) ≥ 5.

Another interesting property is that any input byte of MixColumns defines a per-
mutation for any output byte. Therefore, with W1 = MC (V1), W2 = MC (V2) and
V1 6= V2 drawn uniformly and randomly in {0, 1}4×8, we have for any 1 ≤ i ≤ 4:

PD = P [Di(W1,W2) = 0] =
2563 − 1

2564 − 1
' 2−8,

PD = P [Di(W1,W2) = 1] = 1− PD ' 1− 2−8.

Our goal is to compute the probability that a fixed mask of input truncated dif-
ferences maps to a fixed mask of output truncated differences (later this will be often
utilized in order to compute the probability of success of the differential path). For ex-
ample, we want to compute the probability that two input words V1 and V2 distinct in
their 2 first bytes result in two output words different in their 3 first bytes through Mix-
Columns (note that this is slightly different from the event that any 2-byte difference
input maps to any 3-byte difference output). We can compute those probabilities in two
ways, formally or empirically by testing exhaustively all the input values: since Mix-
Columns is linear, dealing with differences or values is the same (during the test, instead
of looking for differences or non-differences, we checked for zero values or non-zero
values). We give in Table 1 an approximation of the probability P that two 4-byte input
words with DI 6= 0 different bytes in predefined positions map to two 4-byte out-
put words with DO 6= 0 different bytes in predefined positions through MixColumns:
P ' 2−8×(4−DO) if DI +DO ≥ 5, and P = 0 otherwise.

3.3 The control bytes

Modifying some message bytes will obviously modify quite quickly the internal state,
but not immediately. For each modified byte of the message Mk, we give in Table 2
the columns of s (in its matrix representation α) affected by this modification after 1, 2

Table 1. Approximate probability that two 4-byte input words with DI 6= 0 different bytes in
predefined positions map to two 4-byte output words with DO 6= 0 different bytes on predefined
positions through MixColumns. The values are base 2 logarithms.

HH
HHHDI

DO 0 1 2 3 4

0 0 -∞ -∞ -∞ -∞
1 -∞ -∞ -∞ -∞ 0
2 -∞ -∞ -∞ -8 0
3 -∞ -∞ -16 -8 0
4 -∞ -24 -16 -8 0

and 3 iterations. For more than 3 iterations, the Grindahl diffusion is such that any
message byte affects the complete internal state. This diffusion feature will allow us to
attack different columns of different iterations independently: we will be able to control
independently the behavior of some MixColumns transitions. Those control bytes will
be useful during the collision search phase of the attack and will later help us to speed
up the search for a message pair that follows exactly our predefined differential path.

4 High-Level View of the Attack

In this section, we study possible ways of finding a good differential path for the 256-
bit version of Grindahl: we look for a path of k iterations starting from IS 0 and
so that with two different messages M and M ′ we have the same hash output, i.e.
trunc256(EISm+8) = trunc256(EISm′+8). Finding a differential path leading to a
collision and including the blank rounds seems hard since no message block is inserted
during this last operation and so we have very little control on this part. However, the
problem looks much easier when trying to find an internal collision: a differential path
excluding the blank rounds, i.e. EISm = EISm′ . One can easily see that by avoiding to
add any difference right after, an internal collision will directly provide a full collision
after the blank rounds. Here, we explain how to find such a differential path and give
techniques that decrease the overall complexity of the attack.

4.1 A counterintuitive strategy

We now have all the necessary tools to build a truncated differential path, evaluate its
probability of success and speed up the collision search. But how to actually find a good
truncated differential path? The natural intuition one would have (as the anonymous
reviewer suggested) is to always maintain a low number of truncated differences along
the path in order to increase its probability of success, though finding one such path
seems really difficult as one can convince oneself with Property 1 from the original
Grindahl paper [28]:

Property 1. An internal collision for Grindahl-256 requires at least 5 iterations.
Moreover, any differential path starting or ending in the extended state with no dif-

Table 2. Influences on the columns of the extended internal states for a modification of a byte of
the message block Mk = (Ak, Bk, Ck, Dk) incoming at iteration k in Grindahl. We denote
by X if the column is affected (or active) and void if not. The first table shows influences on
ISk−1, the second on ISk and the third on ISk+1.

0 1 2 3 4 5 6 7 8 9 10 11 12
Ak X
Bk X
Ck X
Dk X

0 1 2 3 4 5 6 7 8 9 10 11 12
Ak X X X X
Bk X X X X
Ck X X X X
Dk X X X X

0 1 2 3 4 5 6 7 8 9 10 11 12
Ak X X X X X X X X X X
Bk X X X X X X X X X X
Ck X X X X X X X X X X
Dk X X X X X X X X X X

ference contains at least one round where at least half of the extended state bytes (ex-
cluding the first column) are active.

This property can be verified with a meet-in-the-middle exhaustive search, as ex-
plained in the original Grindahl paper. Besides, with a small speed improvement of
this algorithm, one can check that an internal collision for Grindahl-256 requires in
fact at least 6 iterations. Another observation is that by introducing differences in the
state and after a few iterations we quickly come to an all-active pair of extended states.
This all-active pair of extended states is almost stable: the probability that an all-active
pair of columns remains an all-active pair of columns through MixColumns is approx-
imatively PA = (1 − 2−8)4, so for the twelve columns of the extended state (except
the first column) we have a probability of P 12

A ' 2−0.27. Thus, our first idea is to not
search for a path starting from a zero difference but from an all-active pair of extended
states, which is very easy to get. The overwhelming probability P 12

A allows us to start
with as much valid starting states as we want (each valid starting state can be generated
with an average complexity of 20.27 computations).

This concept of letting all the differences spread is really counterintuitive for a cryp-
tographer, especially when dealing with hash functions where an attacker always tries
to keep control of the difference spreading during the differential path. Nevertheless,
this idea makes sense here because it looks like the designers built their hash function
with the major security argument being that controlling the difference spreading should
be hard, as illustrated by Property 1 from their original paper. Thus, we will let it be

totally out of our control (but in fact completely under control in terms of truncated
differential path) and right after try to force it to a collision. Furthermore, this method
is facilitated by the fact that unconstrained fresh message words are arriving at each
iteration and then the two different parts of the attack (first arrive to an all difference
state and second make it a collision) can be done independently.

Overall, this method allows us to greatly simplify the truncated differential path
search (just like we simplified the analysis with the truncated differences). Even if we
might not obtain the best possible path with this technique, we will get very good ones,
which will be sufficient for a collision attack.

4.2 How to build a truncated differential path

Searching for a differential path starting from an all-active pair of extended internal
states and ending in a collision is quite easy. One method is to search backward almost
exhaustively since in Grindahl the truncated differences propagate in the forward
direction as quickly as in the backward direction. More precisely, if we look for a colli-
sion at the end of iteration k, we try all the possible truncated difference masks for the
message blocks inserted at iterations k, k− 1, etc. and all the possible backward transi-
tions of truncated differences through MixColumns (same as for the onward direction),
until we come to an all-active pair of extended states. This algorithm can be greatly
improved with an early-abort strategy: we compute a lower bound on the complexity
cost of the current path we are building (taking in account the control provided by the
active/passive bytes, see Section 5) and we stop the search branch if the complexity of
the attack is already greater than or equal to 2128 operations. We also stop the search
if we went too far in terms of number of iterations: in some particular cases the over-
all complexity of a differential path can remain stable even if its number of iterations
increases, for example when the number of MixColumns transitions imposed is lower
than or equal to the number of control bytes inserted.

Obviously, always adding truncated differences to all the message blocks inserted is
the fastest way to reach this goal. However, we will later use the message bytes inserted
as control bytes to attack some parts of the differential path independently and therefore
increase the probability of success of the path. Then, it may be better not to go too fast
on adding truncated differences in order to have more iterations during the differen-
tial path. Doing so increases the total number of message blocks inserted and therefore
provides more control bytes. This can be regarded as some kind of dilution of the Mix-
Columns constraints to be imposed by stretching the differential path. For example, we
can find a path starting from an all-active pair of extended internal states and requir-
ing only 4 iterations to get a collision, with a probability of success of approximatively
2−312. Still, another path requiring 8 iterations to get a collision with a probability of
success of approximatively 2−440 may be better. Indeed, in the latter case, even if the
probability of success has been divided by a factor 2128, we have inserted 8 message
word pairs instead of only 4 in the former case. Consequently, we get roughly 256 ad-
ditional degrees of freedom compared to the former case (4 pairs of message of 4 bytes
each) and those can be used to attack some parts independently, potentially decreasing
the complexity by more than a factor 2128. Naturally, limits exist: at some point, adding
more iterations does not improve things anymore. Also, control bytes cannot always be

used in an ideal way and we only come to a lower bound on the complexity cost of the
path. Once potentially good paths have been found, a case by case analysis is required.
This analysis can be automated and is explained in the next section.

5 A Collision Attack for Grindahl-256

In this section, we use the previous observations to present a complete collision attack
for the 256-bit version of Grindahl. Other attacks might be possible, depending on
which differential path we use, but we explain here the details for the collision attack
corresponding to the best path found according to our technique.

5.1 Our truncated differential path

Before describing our attack, we give in Figure 1 the truncated differential path used,
which has been generated with a program implementing the previously explained method
(see Section 4.2). It starts from an all-active pair of states and collides after 9 iterations
(for space reasons, the first iteration is not represented in Figure 1, but it simply maps
an all-active truncated difference to itself). A cell stands for a byte and each group of
cells represents a 52-byte extended internal state. A dark cell means that we have a
non-zero difference for this byte, and a light cell stands for no difference. Each row of
extended internal states represents one iteration. The first column gives the differences
in the state just after its update with the 4-byte message word, and the second column
gives the same state after application of the ShiftRows transformation. Finally, the third
column represents the internal state just after application of the MixColumns function.
In this third column, the dark active cells marked with a light-grey circle in the middle
represent the cells located in a column for which the differential transition through the
MixColumns is not free (the cells located in the first column of the state are filled with
dark-grey to depict that we do not care about the differences in these cells since they
will be erased by the truncation). Note that because the AddConstant and SubBytes
functions have no effect on the differential path, they are omitted here. Each first 4-byte
column of the first column states represents the message words inserted at each itera-
tion, that will later be used as control bytes. The first 4-byte column of the state after
every MixColumns transition can have whatever difference mask since those bytes will
be immediately truncated.

This differential path is the best found among other possible candidates leading to
the same complexity. We denote by k the number of the last iteration of our differential
path, i.e. the last row of Figure 1. First, one can check that all the MixColumns tran-
sitions are valid, i.e. verify the MDS property. This differential path has a probability
of success of approximatively 2−55×8 = 2−440 (55 MixColumns constraints forced in
total), which seems very low at first sight. However, in this path, we also have a lot
of message blocks inserted that one can use during the collision search to force some
MixColumns constraints independently.

Our aim is to find a pair of messages following the expected differential path. For
this, we do not handle each iteration one by one, but we deal with each of the 4-byte
message words inserted one by one. Said in other words, we will fix the four bytes

Mk iteration k

0 1 2 3 4 5 6 7 8 9 10 11 12

SHIFTROW

Mk−1 iteration k − 1

0 1 2 3 4 5 6 7 8 9 10 11 12

SHIFTROW

Mk−2 iteration k − 2

0 1 2 3 4 5 6 7 8 9 10 11 12

SHIFTROW

Mk−3 iteration k − 3

0 1 2 3 4 5 6 7 8 9 10 11 12

SHIFTROW

Mk−4 iteration k − 4

0 1 2 3 4 5 6 7 8 9 10 11 12

SHIFTROW

Mk−5 iteration k − 5

0 1 2 3 4 5 6 7 8 9 10 11 12

SHIFTROW

Mk−6 iteration k − 6

0 1 2 3 4 5 6 7 8 9 10 11 12

SHIFTROW

Mk−7 iteration k − 7

0 1 2 3 4 5 6 7 8 9 10 11 12

SHIFTROW

0 1 2 3 4 5 6 7 8 9 10 11 12

MIXCOL

0 1 2 3 4 5 6 7 8 9 10 11 12

MIXCOL

0 1 2 3 4 5 6 7 8 9 10 11 12

MIXCOL

0 1 2 3 4 5 6 7 8 9 10 11 12

MIXCOL

0 1 2 3 4 5 6 7 8 9 10 11 12

MIXCOL

0 1 2 3 4 5 6 7 8 9 10 11 12

MIXCOL

0 1 2 3 4 5 6 7 8 9 10 11 12

MIXCOL

0 1 2 3 4 5 6 7 8 9 10 11 12

MIXCOL

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

TRUNC

0 1 2 3 4 5 6 7 8 9 10 11 12

TRUNC

0 1 2 3 4 5 6 7 8 9 10 11 12

TRUNC

0 1 2 3 4 5 6 7 8 9 10 11 12

TRUNC

0 1 2 3 4 5 6 7 8 9 10 11 12

TRUNC

0 1 2 3 4 5 6 7 8 9 10 11 12

TRUNC

0 1 2 3 4 5 6 7 8 9 10 11 12

TRUNC

Fig. 1. A possible truncated differential path, starting from an all-active internal state and poten-
tially providing a collision after 8 iterations.

of a message word pair and check that the newly imposed MixColumns differential
transitions are the ones expected in our truncated differential path. If so, we continue to
the next message word pair until we get a collision.

In Table 3, we give all the dependencies of the MixColumns transitions with the
message blocks inserted, used as control bytes during the collision search, following the
differential path from Figure 1. The cost of all the transitions are given (see Section 3.2)
along with the number of control bytes inserted at each iteration (see Section 3.3). The
second column of the table gives the position of the columns of the state in which
we force a truncated differential transition during a MixColumns transformation, and
the first column indicates in which iteration this event occurs. For each transition, we
give in the third column its cost in terms of number of bytes (i.e. for a cost c, the
transition has a probability of 2−c×8). Then, each of the seven other columns of the
table represents a pair of message words that will be used as control bytes (the letters a
or A, b or B, c or C and d or D represent respectively the first, second, third and fourth
byte of the 4-byte message inserted). Capital letters means that we have 2 control bytes
(a difference is inserted for this message block and we can make independently both
messages of the pair vary) and small letters means that we only have 1 control byte (no
difference inserted for this message block). In the core of the table a dash or a cross
represents the fact that the MixColumns transition indicated by the corresponding row
is affected by the control byte indicated by the corresponding column. We divided those
dependencies for the sake of simplicity, the crosses are the dependencies that may be
used for the attack: chronologically they represent for each MixColumns transition the
dependencies of the last involved message word during the attack. The last row gives
the cost of each message word insertion during the collision search in terms of number
of bytes. The sum for all the message blocks gives the total complexity of the attack.

By looking at Table 3, since there can be several crosses in a single column, one may
have the impression that some bytes of the message are used several times during the
attack. However, we recall that in Table 3 the crosses do not represent the dependencies
that we will use, but the ones that we may use during the attack. We ensured that no
freedom degree is used twice during the message bytes fixing procedure.

Finally, from Table 3, one can check that we need to test 214×8 = 2112 all-active
pairs of internal state in order to have a good probability of obtaining a collision, as 14
MixColumns constraints cannot be forced independently during the collision search.
We explain the whole process in more details in the next section.

5.2 The collision search

Our final collision search is based on three steps. The first one generates a sufficient
number of all-active extended internal states and the second one checks for each can-
didate if a collision can be found by using the control bytes. Once a pair of message
blocks following the differential path is found, the third step ensures the validity of our
new internal collision by forcing the last truncation.

First step: start with the predefined initial value of Grindahl and compute a few
iterations with lots of truncated differences in the incoming message blocks in order to

Table 3. Dependencies of the message blocks used as control bytes and inserted during the trun-
cated differential path from Figure 1, for a collision at the end of iteration k.

message blocks inserted
it col cost k − 8 k − 7 k − 6 k − 5 k − 4 k − 3 k − 2

A B C D A B C D A B c D a B c D A b C D A B C D A B c d
2 1 − ×

k-7 3 1 × ×
7 1 ×
1 1 − − − − ×
2 1 − − − − ×
3 2 − − − − × ×

k-6 7 1 − − − ×
8 1 − − − − ×

10 1 − − ×
12 1 − − − × ×
2 1 − − − − − − − − ×
3 1 − − − − − − − − × ×

k-5 8 1 − − − − − − − − ×
9 1 − − − − × × × ×

11 1 − − − − − − × ×
1 1 − − − − − − − − − − − − ×
3 1 − − − − − − − − − − − − × ×
4 2 − − − − − − − − − − − − ×

k-4 7 1 − − − − − − − − − − − ×
9 1 − − − − − − − − × × × ×

10 1 − − − − − − − − − − ×
11 1 − − − − − − − − − − × ×
12 1 − − − − − − − − − − − × ×
1 3 − − − − − − − − − − − − − − − − ×
2 2 − − − − − − − − − − − − − − − − ×
4 2 − − − − − − − − − − − − − − − − ×

k-3 5 2 − − − − − − − − − − − − − − − − × ×
9 2 − − − − − − − − − − − − × × × ×

10 2 − − − − − − − − − − − − − − ×
11 1 − − − − − − − − − − − − − − × ×
12 2 − − − − − − − − − − − − − − − × ×
1 3 − ×

k-2 2 3 − ×
6 3 − − − − − − − − − − − − − − − − − − − × ×

12 2 − − − − − − − − − − − − − − − − − − − × ×
k-1 3 3 − × ×

COST 0 0 0 1 2 6 5

quickly come to an all-active pair of states denoted A after a few iterations. From this
pair of statesA, generate 214×8 = 2112 new all-active pairs of statesA1, . . . ,A2112 , for
example by choosing randomly a new input pair of message blocks. When all the pos-
sible pairs of message blocks for A are exhausted, replace A by another all-active pair
of states found during the process. This part requires 2112 × 20.27 = 2112.27 iterations.

Second step: in this step, for each pair of message words (Mk−i,M
′
k−i) inserted,

their bytes are used in order to adjust the behavior of the MixColumns transitions where
crosses appear at column Mk−i in Table 3. Then, we continue the attack by fixing the
control bytes iteration per iteration: for the message blocks inserted at the beginning of
iterations k − 8, k − 7, k − 6 of our truncated differential path from Table 3, there are
more control bytes incoming than necessary. Indeed, we have 8, 8 and 7 control bytes
available for the messages inserted at iterations k − 8, k − 7 and k − 6 respectively,
whereas we only require 2, 7 and 7 bytes of degrees of freedom. Note that since in
Table 3 the crosses represent the bytes of the last message word involved in a transition,
the previous dependencies (represented by a dash) are already fixed at this point. For
each step, the total cost is equal to the sum of the costs of all the MixColumns transitions
involved, minus the number of control bytes available from Mk−i, provided they can
all be utilized properly (which is often the case). Consequently, at this point of the
attack, we maintain 2112 pairs of messages and states following the differential path.
For the message words inserted at iteration k − 5, we have 6 control bytes for 7 bytes
of conditions, thus we only keep 1 out of 28 message pairs and we go to the (k − 4)-
th message word with 2104 valid pairs. We continue in the same way for the three
remaining message words k − 4, k − 3 and k − 2, having 7, 8 and 4 control bytes
respectively and requiring 9, 14 and 9 bytes of conditions. Concerning the k − 2 case,
we only have 4 control bytes and not 6 as indicated in Table 3, because c and d are
not involved in any MixColumns transition and so they cannot be considered as control
bytes. Finally, we expect to have one pair of messages following the differential path
with a good probability by starting with 214×8 = 2112 all-active pairs of states.

Third step: add a (k + 1)-th message block without truncated difference in order to
force a truncation after the last iteration k of the differential path (remember that there
is no truncation of the extended internal state before the blank rounds).

5.3 Discussion on the attack

The distinction between crosses and dash dependencies is a restriction for the attacker
but allows a simpler description of the attack. When dealing with crosses, the attacker
knows that all the previous dependencies are already set and it makes things much
simpler even if better attacks may exist by using a more complicated message byte
fixing schedule. The very same remark applies for the fact that we fix the message
bytes word by word: much simpler to describe but maybe not the best technique.

To the contrary, dealing with crosses does not mean that the control bytes can be
used carelessly. There may exist situations where the attacker cannot use all of its

control bytes: we took care of the dependencies word-wise with the crosses/dash dis-
tinction, but the byte-wise dependencies remain. Still, those situations occur relatively
rarely and do not happen in our presented differential path.

For the sake of clarity, we explain more precisely how to deal with the control bytes
by giving an example. Let us set ourselves when the attacker has to fix the message
pair incoming at step k − 5 (seventh column in Table 3). The previous message words
have already been fixed during the attack, thus we only have to deal with the crosses in
Table 3. Some MixColumns differential transitions have to behave as required by the
truncated differential path, and this has a cost. For example, at the second column of the
(k− 5)-th iteration, we need a 4 non-zero truncated differences to 3 non-zero truncated
differences transition and this will happen with probability 2−8, therefore with a cost
of 1 byte. However, in order to make this event occur, we can use the second byte of
the message word inserted at iteration k − 5 in order to randomize the instantiation of
the transition. There are several ways of doing this step, and this is discussed below.
We actually have a good probability to find 28 valid pairs of message bytes for this
transition: two control bytes for one byte of condition. We repeat the process for the
seventh column transition of iteration k − 4 with the fourth byte of the message word:
again two control bytes for one byte of condition. Next, we identify the subset of the
cross product of the two sets of 28 byte pairs such that the twelfth column transitions of
iteration k− 4 is verified (depending only on the two previously fixed pairs of message
bytes), which costs one byte of condition. So, we maintain 28 valid possibilities. Then,
we fix the first byte of the message word to deal with the third column transition of
iteration k − 4: since this costs one control byte for one byte of condition, we still
maintain 28 valid possibilities. Finally, with the remaining byte of the message word
(the third), we look for a good transition for the ninth column of iteration k−3: this costs
one control byte for two bytes of conditions but we had maintained 28 valid possibilities
before, so that in the end we have a good probability to find a valid message word for
all the transitions cited. Yet we did not take care of the eleventh column of iteration
k − 4, which costs us one byte of condition. To summarize, this whole step will cost
us 28 tries because we had a total of six control bytes for a total of seven bytes of
conditions. Repeating this reasoning for all the message words inserted at each iteration
of the differential path explains the 2112 tries cost for the whole collision attack.

For simplicity we described an attack requiring 2112 memory but a simple version
without memory is also possible with the same computational complexity. During the
first step, instead of memorizing all the elements A1, . . . ,A2112 before launching the
second step, one can directly run the second step for each element Ai, without keeping
track of them.

One may argue that even if the attacker needs to try 2112 all-active pairs of states,
the basic operation may be costly when playing with the control bytes. Indeed, with
the previous example, some steps require to pass through 28 or 216 values of message
words, each requiring only a SubBytes computation on a whole column, or one or two
iteration processes (depending on the column in which the state the transition occurs).
Even if it is still an attack, the complexity would be slightly higher. This argument is
true if the attacker uses a naive search method. However, inexpensive precomputations
allow to reduce the computational cost of the search table lookups. For example, with

as few as 232 precomputation time and memory, one can generate all the information
needed to quickly execute the search needed during the third step of the collision search.
Only a few table lookups would then be required. One might also wonder why we did
not count the complexity of the few 4 non-zero truncated differences to 4 non-zero trun-
cated differences transitions. Such transitions always have a high probability to happen
PA = (1− 2−8)4 ' 2−0.02 and therefore they have very little effect on the complexity
of the attack. Finally, the compression function mode performs 40 iterations for one
compression call. Thus our attack actually runs in less than 2112 hash computations, all
the complexity coming from the generation of 2112 all-active pairs of states.

We checked that this method also works with a complexity of at most 2120 hash
computations for all the rotation constants providing the best diffusion, which seems
to indicate that the internal state of Grindahl is not large enough to ensure a proper
collision resistance.

6 Possible Patches

Most of the difficulty of the presented attack is to actually find a good differential path,
and this is possible by the analysis simplification induced by letting the differences to-
tally spread and start from an all-active pair of states. Besides, even if better differential
paths may be found by maintaining a low weight of differences (which seems hard to
find) instead of going through an all-active pair of states, we believe that the complex-
ity would not drastically decrease compared to our attack. In fact, the complexity cost
grows quickly due to the last iterations of the differential path where very few control
bytes are available, and these steps will remain very costly whatever the differential
path used. Said in other words, we can compute a lower bound on the complexity of
an attack using any truncated differential path and control bytes. For example, a short
program tells us that a similar truncated differential attack for the 256-bit version of
Grindahl requires at least 2104 operations (whatever the truncated differential path
and the message words byte fixing schedule) even if this does not mean that such an
attack exists.

Thus, it would be very interesting to think of a new version of Grindahl, with
a comparable efficiency, that resists the presented attack but also any attack dealing
with truncated differences and control bytes (and also the independent flaw identified
in [17]). However, one needs some assumption on the power of the control bytes. A
plausible assumption could be that a control byte can only correct a MixColumns tran-
sition located one, two or three iterations after its introduction. This seems a relatively
weak assumption since after three iterations, a message byte affects the entire internal
state of the compression function. Using no assumption at all would lead to nonsense as
in this case using a path with a huge number of iterations would theoretically provide
enough control bytes for the entire differential path, reducing the lower bound to 1. It
is a bidimensional problem since apart from the lower bound value, with a too weak
assumption the program may go through too many leaves in the search tree (whose size
is reduced with an early abort programming) and never output anything. Moreover, a
too strong assumption may not model well the attacker in practice.

Finally, one wants the lower bound on the complexity of an attack using truncated
differential path and control bytes to be at least 2128 operations, and even larger for a
good security margin. If this is possible, an attacker who wants to find a collision would
have to first find a differential path and then to deal with the actual values of differences
in order to lower the complexity. The SubBytes transformation would therefore dis-
courage this kind of attack and we would obtain a hash function with a strong security
argument. A new Grindahl version with such a property and a reasonable efficiency
could be therefore designed by adding some more columns in the states for example.

The question of the number of columns to be added or other possible patches is
left open for future research. However, it is to be noted that the SHA-3 semi-finalist
FUGUE [18], a direct successor of Grindahl, was built with the aim of resisting to
this type of attack [39]. In particular, the designers increased the internal state size and
proposed a much better diffusion layer, finally succeeding in formally proving resis-
tance of FUGUE against the methods we presented in this article. Moreover, the SHA-3
hash function candidates AURORA [22] and LUX [35] also proposed arguments with
regard to our attacks as their proposals share similarities with Grindahl. However,
some other vulnerabilities were later discovered for these two candidates [16,40,13,15].

7 Conclusion and future work

In this article, we described a collision attack on the AES-based Grindahl hash func-
tion using a byte-wise truncated differential path. The rather small internal state size
can be exploited by a counterintuitive technique in which the attacker first lets all the
differences spread. Then, by a sharp message bytes fixing schedule along with the back-
ward construction of a colliding truncated differential path starting from an all-active
internal state, one can compute a collision with no more than 2112 round computations
for the full 256-bit version of Grindahl.

Attacking the second-preimage resistance of Grindahl using the same method
seems difficult since the attacker has access to much less freedom degrees (only the
difference in the message bytes can be randomized, not the values anymore) and the
security claim from the designers is the same as for collision resistance, i.e. 2n/2.

Acknowledgments

The author would like to thank the designers of Grindahl (Lars Knudsen, Christian
Rechberger, Søren Thomsen), Henri Gilbert, Olivier Billet, Yannick Seurin for their
valuable remarks on the attack and discussions on the Grindahl design, as well as
the anonymous referees for their helpful comments.

References

1. D. Augot, M. Finiasz and N. Sendrier. A Family of Fast Syndrome Based Cryptographic
Hash Functions. In E. Dawson and S. Vaudenay, editors, Progress in Cryptology – My-
crypt 2005, volume 3715 of Lecture Notes in Computer Science, pages 64–83. Springer-
Verlag, 2005.

2. J-P. Aumasson, W. Meier and R.C.-W. Phan. The Hash Function Family LAKE. In
M.J.B. Robshaw, editor, Fast Software Encryption – FSE 2008, volume 5086 of Lecture
Notes in Computer Science, pages 36–53. Springer-Verlag, 2008.

3. M. Bellare and T. Ristenpart. Multi-Property-Preserving Hash Domain Extension and
the EMD Transform. In X. Lai and K. Chen, editors, Advances in Cryptology – ASI-
ACRYPT 2006, volume 4284 of Lecture Notes in Computer Science, pages 299–314.
Springer-Verlag, 2006.

4. K. Bentahar, D. Page, M-J.O. Saarinen, J.H. Silverman and N.P. Smart. LASH. In
Proceedings of Second NIST Cryptographic Hash Workshop, 2006 . Available from:
www.csrc.nist.gov/pki/HashWorkshop/2006/program_2006.htm.

5. G. Bertoni, J. Daemen, M. Peeters and G. Van Assche. RadioGatun, a Belt-and-Mill Hash
Function. In Proceedings of Second NIST Cryptographic Hash Workshop, 2006 . Available
from: www.csrc.nist.gov/pki/HashWorkshop/2006/program_2006.htm.

6. G. Bertoni, J. Daemen, M. Peeters and G. Van Assche. The Keccak SHA-
3 submission. Submission to NIST (Round 3), 2011 . Available from:
http://keccak.noekeon.org/Keccak-submission-3.pdf.

7. E. Biham and O. Dunkelman. A Framework for Iterative Hash Functions: HAIFA.
In Proceedings of Second NIST Cryptographic Hash Workshop, 2006 . Available from:
www.csrc.nist.gov/pki/HashWorkshop/2006/program_2006.htm.

8. O. Billet, M.J.B. Robshaw and T. Peyrin. On Building Hash Functions From Multivariate
Quadratic Equations. In J. Pieprzyk, H. Ghodosi and E. Dawson, editors, Information Secu-
rity and Privacy – ACISP 2007, volume 4586 of Lecture Notes in Computer Science, pages
82–95. Springer-Verlag, 2007.

9. J. Black, P. Rogaway, and T. Shrimpton. Black-Box Analysis of the Block-Cipher-Based
Hash-Function Constructions from PGV. In M. Yung, editor, Advances in Cryptology –
CRYPTO 2002, volume 2442 of Lecture Notes in Computer Science, pages 320–335.
Springer-Verlag, 2002.

10. S. Contini, A.K. Lenstra and R. Steinfeld. VSH, an Efficient and Provable Collision-Resistant
Hash Function. In S. Vaudenay, editor, Advances in Cryptology – EUROCRYPT 2006, vol-
ume 4004 of Lecture Notes in Computer Science, pages 165–182. Springer-Verlag, 2006.

11. I. Damgård. A Design Principle for Hash Functions. In G. Brassard, editor, Advances in
Cryptology – CRYPTO’89, volume 435 of Lecture Notes in Computer Science, pages 416–
427. Springer-Verlag, 1989.

12. J. Daemen and V. Rijmen The Design of Rijndael. Springer-Verlag, 2002.
13. W. Dai. OFFICIAL COMMENT: LUX. NIST mailing list (local link), 2008 . Available

from: http://ehash.iaik.tugraz.at/uploads/e/ec/Lux_dai.txt.
14. R.D. Dean. Formal Aspects of Mobile Code Security. PhD thesis, Princeton University, 1999.
15. N. Ferguson. RE:OFFICIAL COMMENT:LUX. NIST mailing list (local link), 2009 . Avail-

able from: http://ehash.iaik.tugraz.at/uploads/2/21/Lux_niels.txt.
16. N. Ferguson and S. Lucks. Attacks on AURORA-512 and the Double-Mix Merkle-Damgaard

Transform. Cryptology ePrint Archive, Report 2009/113, 2009
17. M. Gorski and S. Lucks and T. Peyrin. Slide Attacks on a Class of Hash Functions. In

J. Pieprzyk, editor, Advances in Cryptology – ASIACRYPT 2008, volume 5350 of Lecture
Notes in Computer Science, pages 143–160. Springer-Verlag, 2008.

18. S. Halevi, W.E. Hall and C.S. Jutla. The Hash Function Fugue. Submission to NIST (up-
dated), 2009

19. A.J. Menezes, S.A. Vanstone, and P.C. Van Oorschot. Handbook of Applied Cryptography.
CRC Press, Inc., Boca Raton, FL, USA, 1996.

20. S. Hirose. Some Plausible Constructions of Double-Block-Length Hash Functions. In
M.J.B. Robshaw, editor, Fast Software Encryption – FSE 2006, volume 4047 of Lecture
Notes in Computer Science, pages 210–225. Springer-Verlag, 2006.

21. D. Hong, D. Chang, J. Sung, S. Lee, S. Hong, J. Lee, D. Moon and S. Chee. A New Dedicated
256-Bit Hash Function: FORK-256. In M.J.B. Robshaw, editor, Fast Software Encryption –
FSE 2006, volume 4047 of Lecture Notes in Computer Science, pages 195–209. Springer-
Verlag, 2006.

22. T. Iwata, K. Shibutani, T. Shirai, S. Moriai and T. Akishita. AURORA: A Cryp-
tographic Hash Algorithm Family. Submission to NIST, 2008 . Available from:
http://ehash.iaik.tugraz.at/uploads/b/ba/AURORA.pdf.

23. A. Joux. Multi-collisions in Iterated Hash Functions. Application to Cascaded Constructions.
In M. Franklin, editor, Advances in Cryptology – CRYPTO 2004, volume 3152 of Lecture
Notes in Computer Science, pages 306–316. Springer-Verlag, 2004.

24. J. Kelsey and T. Kohno. Herding Hash Functions and the Nostradamus Attack. In S. Vaude-
nay, editor, Advances in Cryptology – EUROCRYPT 2006, volume 4004 of Lecture Notes in
Computer Science, pages 183–200. Springer-Verlag, 2006.

25. J. Kelsey and B. Schneier. Second Preimages on n-bit Hash Functions for Much Less Than
2n Work. In R. Cramer, editor, Advances in Cryptology – EUROCRYPT 2005, volume 3494
of Lecture Notes in Computer Science, pages 474–490. Springer-Verlag, 2005.

26. D. Khovratovich. Cryptanalysis of Hash Functions with Structures. In M.J. Jacobson Jr.,
V. Rijmen and R. Safavi-Naini, editors, Selected Areas in Cryptography – SAC 2009, volume
5867 of Lecture Notes in Computer Science, pages 108–125. Springer-Verlag, 2009.

27. L.R. Knudsen. Truncated and Higher Order Differentials. In B. Preneel, editor, Fast Software
Encryption – FSE 1994, volume 1008 of Lecture Notes in Computer Science, pages 196–211.
Springer-Verlag, 1995.

28. L.R. Knudsen, C. Rechberger and S.S. Thomsen. Grindahl - A family of hash functions. In
A. Biryukov, editor, Fast Software Encryption – FSE 2007, volume 4593 of Lecture Notes in
Computer Science, pages 39–57. Springer-Verlag, 2007.

29. R.C. Merkle. One Way Hash Functions and DES. In G. Brassard, editor, Advances in Cryp-
tology – CRYPTO’89, volume 435 of Lecture Notes in Computer Science, pages 428–446.
Springer-Verlag, 1989.

30. F. Mendel, C. Rechberger, M. Schläffer and S.S. Thomsen. The Rebound Attack: Cryptanal-
ysis of Reduced Whirlpool and Grøstl. In O. Dunkelman, editor, Fast Software Encryption
– FSE 2009, volume 5665 of Lecture Notes in Computer Science, pages 260–276. Springer-
Verlag, 2009.

31. T. Fuhr and T. Peyrin. Cryptanalysis of RadioGatún. In O. Dunkelman, editor, Fast Software
Encryption – FSE 2009, volume 5665 of Lecture Notes in Computer Science, pages 122–138.
Springer-Verlag, 2009.

32. H. Gilbert and T. Peyrin. Super-Sbox Cryptanalysis: Improved Attacks for AES-Like Per-
mutations. In S. Hong and T. Iwata, editors, Fast Software Encryption – FSE 2010, volume
6147 of Lecture Notes in Computer Science, pages 365–383. Springer-Verlag, 2010.

33. M. Lamberger, F. Mendel, C. Rechberger, V. Rijmen and M. Schläffer. Rebound Distinguish-
ers: Results on the Full Whirlpool Compression Function. In M. Matsui, editor, Advances in
Cryptology – ASIACRYPT 2009, volume 5912 of Lecture Notes in Computer Science, pages
126–143. Springer-Verlag, 2009.

34. F. Mendel, T. Peyrin, C. Rechberger and M. Schläffer. Improved Cryptanalysis of the Re-
duced Grøstl Compression Function, ECHO Permutation and AES Block Cipher. In M.J. Ja-
cobson Jr., V. Rijmen and R. Safavi-Naini, editors, Selected Areas in Cryptography –
SAC 2009, volume 5867 of Lecture Notes in Computer Science, pages 16–35. Springer-
Verlag, 2009.

35. I. Nikolić, A. Biryukov and D. Khovratovich. Hash family LUX - Algorithm Speci-
fications and Supporting Documentation. Submission to NIST, 2008 . Available from:
http://ehash.iaik.tugraz.at/uploads/f/f3/LUX.pdf.

36. National Institute of Standards and Technology. FIPS 197: Advanced Encryption Standard,
November 2001 . Available from: www.csrc.nist.gov.

37. National Institute of Standards and Technology. Advanced Hash Standard . Available from:
www.csrc.nist.gov/pki/HashWorkshop/index.html.

38. National Institute of Standards and Technology. FIPS 180-2: Secure Hash Standard, August
2002 . Available from: www.csrc.nist.gov.

39. T. Peyrin. Cryptanalysis of Grindahl. In K. Kurosawa, editor, Advances in Cryptology –
ASIACRYPT 2007, volume 4833 of Lecture Notes in Computer Science, pages 551–567.
Springer-Verlag, 2007.

40. T. Peyrin. Slide attacks on LUX. NIST mailing list (local link), 2008 . Available from:
http://ehash.iaik.tugraz.at/uploads/6/62/Lux_peyrin.txt.

41. T. Peyrin, H. Gilbert, F. Muller and M.J.B. Robshaw. Combining Compression Functions and
Block Cipher-Based Hash Functions. In X. Lai and K. Chen, editors, Advances in Cryptology
– ASIACRYPT 2006, volume 4284 of Lecture Notes in Computer Science, pages 315–331.
Springer-Verlag, 2006.

42. B. Preneel. Analysis and Design of Cryptographic Hash Functions. PhD thesis, Katholieke
Universiteit Leuven, 1993.

43. B. Preneel, R. Govaerts, and J. Vandewalle. Hash Functions Based on Block Ciphers: A
Synthetic Approach. In D.R. Stinson, editor, Advances in Cryptology – CRYPTO ’93, volume
773 of Lecture Notes in Computer Science, pages 368–378. Springer-Verlag, 1993.

44. Ronald L. Rivest. RFC 1321: The MD5 Message-Digest Algorithm, April 1992 . Available
from: www.ietf.org/rfc/rfc1321.txt.

45. Y. Seurin and T. Peyrin. Security Analysis of Constructions Combining FIL Random Oracles.
In A. Biryukov, editor, Fast Software Encryption – FSE 2007, volume 4593 of Lecture Notes
in Computer Science, pages 119–136. Springer-Verlag, 2007.

46. X. Wang, X. Lai, D. Feng, H. Chen and X. Yu. Cryptanalysis of the Hash Functions MD4
and RIPEMD. In R. Cramer, editor, Advances in Cryptology – EUROCRYPT 2005, volume
3494 of Lecture Notes in Computer Science, pages 1–18. Springer-Verlag, 2005.

47. X. Wang, Y.L. Yin, and H. Yu. Finding Collisions in the Full SHA-1. In V. Shoup, editor, Ad-
vances in Cryptology – CRYPTO 2005, volume 3621 of Lecture Notes in Computer Science,
pages 17–36. Springer-Verlag, 2005.

48. X. Wang and H. Yu. How to Break MD5 and Other Hash Functions. In R. Cramer, editor,
Advances in Cryptology – EUROCRYPT 2005, volume 3494 of Lecture Notes in Computer
Science, pages 19–35. Springer-Verlag, 2005.

49. X. Wang, H. Yu and Y.L. Yin. Efficient Collision Search Attacks on SHA-0. In V. Shoup,
editor, Advances in Cryptology – CRYPTO 2005, volume 3621 of Lecture Notes in Computer
Science, pages 1–16. Springer-Verlag, 2005.

