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Abstract. In less than a decade fully homomorphic encryption has
made significant advances. Despite all these improvements it is quite a
challenge to reduce the parameter sizes and specifically evaluation keys.
Eliminating the need for such prohibitively large evaluation keys and
expensive noise management techniques has become a significant thrust
among homomorphic encryption researchers. In a notable attempt, Gen-
try, Sahai, and Waters (GSW) introduced a scheme based on the approx-
imate eigenvector problem that eliminates evaluation keys and costly key
switching operations. In another very recent development, the Subfield
Lattice Attack was introduced by Albrecht, Bai, and Ducas showing that
the asymptotic security level with narrow key distributions may be far
less than assumed in NTRU based FHE proposals.
In this paper, we propose a new FHE scheme F-NTRU that adopts the
flattening technique proposed in GSW to derive an NTRU based scheme
that (similar to GSW) does not require evaluation keys or key switch-
ing. Our scheme eliminates the decision small polynomial ratio (DSPR)
assumption but relies only on the standard R-LWE assumption. Our
scheme uses wide key distributions, and hence is immune to the Subfield
Lattice Attack. We provide implementation results which show reason-
able evaluation times compared to existing schemes while eliminating the
need for storing and managing costly evaluation keys.

Keywords: Homomorphic Encryption, Flattening, NTRU, DSPR, Subfield Lat-
tice Attack

1 Introduction

The notion of fully homomorphic encryption (FHE) scheme stayed as an open
question for a few decades since its introduction by Rivest et al. [36]. In the
meantime, numerous schemes featured limited homomorphic functionality, e.g.
restricted to evaluate a non-universal set of gates, or prohibitive growth in noise
or ciphertext sizes restricting the evaluation depth. These schemes are referred
commonly referred to as partially homomorphic cryptosystems. Some of these
schemes and their homomorphic properties are Elgamal encryption system [18]
additive homomorphism in Zq, Goldwasser-Micali cryptosystem [26] additive ho-
momorphism in Z2, RSA cryptosystem [37] multiplicative homomorphism on Zq



and Paillier cryptosystem [35] additive homomorphism in Zq. Later, in 2009 the
first working FHE scheme was constructed by Gentry [20, 21]. However, the pro-
posed scheme was lacking in performance and it was not possible to implement
anything practical. For instance, its most crucial operation called bootstrapping,
which is used to restore the noise in ciphertext to an acceptable level, was taking
30 seconds in this very first implementation. After the introduction of the first
FHE scheme, we witnessed the introduction of many new FHE constructions
aimed at bringing FHE closer to real-world applications and with fewer assump-
tions. Several integer-based constructions and learning with error (LWE)-based
constructions may be found in [15, 10, 11] and in [5, 22, 23], respectively.

These recent constructions brought along an impressive array of optimiza-
tion techniques that can compete with the expensive bootstrapping operation.
Such one scheme, which is based on LWE, was constructed by Brakerski, Gen-
try and Vaikuntanathan (BGV) [4]. The scheme uses a method called modulus
switching to mitigate noise growth in ciphertexts. By applying modulus switch-
ing at each multiplicative level, exponential noise growth is prevented thereby
maintaining noise at a fixed level throughout the homomorphic evaluation lev-
els. The scheme was implemented as a software library HElib [27] using C++.
The library was used by Gentry, Halevi and Smart [24] to implement the AES
circuit homomorphically. The authors also introduced SIMD techniques [39] to
batch multiple messages and process homomorphic AES circuits in parallel. They
achieved amortized runtime of 2 seconds for 120 parallel blocks. Later, a new
technique is introduced by Brakerski [3] that is applicable to LWE schemes. It
uses tensor products to decrease noise growth from quadratic to linear.

Recently, another leveled FHE scheme was presented by López-Alt, Tromer,
Vaikuntanathan (LTV) in [31]. Their scheme is based on a variant of NTRU
[28] constructed earlier by Stehlé and Steinfeld [40]. The scheme is capable of
processing homomorphic functions for various users with each having different
public-secret key pairs. The authors introduced a new key switching technique
called relinearization. By using it alongside with modulus switching, they are
capable to mitigate the noise growth and keep the growth linear in size over the
levels. However, the relinearization method requires evaluation keys to operate
for each level of computation. This brings a prohibitve memory requirement
especially for deep circuit evaluations.

The NTRU variant in [40] was later modified and implemented by Bos et al. in
[1]. They adopt the tensor product technique in [3] and achieved a scale-invariant
scheme with limited noise growth on homomorphic operations. Also, with the
use of the tensor product technique the authors managed to improve the security
of the LTV scheme [31] by using much higher levels of noise and thereby remove
the Decisional Small Polynomial Ratio (DSPR) assumption. Instead the scheme
relies only on the standard lattice reductions as in [40]. However, as the authors
also note, the YASHE scheme brings in large evaluation key and complicated
key switching procedure. Specifically, the size of the evaluation keys are `3w,q in
which q is modulus, w is radix and ` = blog qc. In [1] the authors introduce a
modification (YASHE’) to their scheme to eliminate the problems of expensive



tensor product calculations and large evaluation keys. However, this modification
re-introduces the DSPR assumption due to increase in noise.

Another modified LTV-FHE implementation was presented by Doröz et al.
in [16]. The security of their scheme depends on the DSPR and R-LWE as-
sumptions as in [31]. Their implementation uses the relinearization and modulus
switching methods as in [31] to cope with noise. They use a ring structure to
create a specialized modulus, i.e. select modulus as q = pL in which p is a prime
number. With the specialization the authors managed to significantly reduce
the evaluation key size by creating evaluation keys only for the first level and
by reusing them for to other levels simply by computing modular reduction.
This reduces the size of the evaluation keys significantly. They evaluate AES
homomorphically and achieved amortized runtime of 51 seconds per block.

Motivated by the complex noise management techniques, e.g. relineariza-
tion, modulus switching, bootstrapping, of the earlier FHE schemes Gentry, Sahai
and Waters [25] proposed a new scheme based on the approximate eigenvector
problem. The system uses matrix additions and multiplications which makes it
asymptotically faster. At first, they define the GSW scheme as a somewhat ho-
momorphic scheme since for a depth L circuit with B-bounded parameters the

noise grows with a double exponential B2L . To convert the scheme into a leveled
FHE, they introduce a Flatten operation which decomposes the ciphertext en-
tries into bits. The secret key is also kept in a special powers of two form. With
these modifications, the noise performance is improved greatly. For a depth L
circuit with B-bounded secret key entries and 1-bounded (flattened) ciphertexts,
the error magnitude is at most (N + 1)LB for N = log(q)(n + 1). However, ci-
phertexts still take a considerable space Θ(n2 log(q)2) and as noted by GSW [25]
the scheme may not be as efficient as existing leveled schemes in practice.

Applications. The advancements in FHE constructions led many researchers
to experiment on practicality of various homomorphic applications. Lauter et
al. investigates evaluation of homomorphic averages, standard deviations, and
logistical regressions, which are underlying tools for real-word applications, in
[34]. They also investigates evaluation of genomic data algorithms like Pear-
son Goodness-of-Fit test, the D′ and r2-measures of linkage disequilibrium, the
Estimation Maximization (EM) algorithm for haplotyping, and the Cochran-
Armitage Test for Trend homomorphically in [29]. Another medical application
is presented by Bos et. al in [2]. They implement a cardiovascular disease pre-
diction service homomorphically which patients send their health information in
secret and an analysis is performed in the cloud server. Aside from the medical
there are other FHE applications as well. Like in [17] Doröz et al. proposed a
bandwidth efficient private information retrieval (PIR) scheme using the NTRU
based homomorphic encryption scheme. Another study by Çetin et al. exposes
the limitations of word-size arithmetic in FHE and suggests solutions [7], i.e.
convergence based iterative division, comparison, zero check and thresholding
algorithms. The same authors study homomorphic sorting algorithms with re-
spect to multiplicative depth and proposes a new scheme that is more suitable
for FHE implementations with low multiplicative depth; and homomorphic au-



tocomplete, in [8] and [6], respectively. In another work, Dai et al. implement
existing schemes using GPU to achieve significant acceleration. In [14] they im-
plemented sorting and achieved 12 – 41 times speedup over [8] depending on
the sorting size. In [13] they implemented the PIR scheme of [17] and achieved
13–34 times speedup depending on the database size. Lastly, Dai et al. imple-
mented AES and Prince block ciphers in [12] and achieved 7.3 and 1.28 seconds
of runtime, respectively.

The Subfield Lattice Attack. To overcome the efficiency bottleneck of FHE
numerous optimizations along with customized selections of parameters have
been proposed in the literature, e.g. special form lattice dimensions and moduli
permitting efficient number theoretical transforms and batching, assumptions
regarding the distributions of noise and parameters, etc. Indeed, these optimiza-
tions yielded significant advances in performance sizes over the years, e.g. faster
evaluation with smaller evaluation key.

On the downside many of these assumptions are still open to debate from
a security point of view. A very recent work by Albrecht, Bai and Ducas [33]
painfully demonstrated this fact. The authors exploit the presence of a subfield
to solve the NTRU problem for large moduli q and show that when the NTRU
parameters are chosen poorly then the DSPR problem is not as hard as be-
lieved thereby invalidating the underlying security assumption in LTV [31, 16]
and YASHE’ [1]. Thus, the asymptotic security of both schemes is significantly
reduced. The authors suggest a more cautious choice of parameters to minimize
the effect of the attack. Even with such a remedy, the lattice dimension needs
to be increased to restore the projected security level. Moreover, the selection of
parameters renders batching rather difficult further diminishing the performance
of both schemes.

Our Contribution. In this work, we present a new leveled FHE scheme F-
NTRU that is based on the Stehlé and Steinfeld variant of NTRU [40] and
adopts Flattening noise management technique introduced in (GSW) [25]. In
a nutshell, we are able to achieve the best of both implementations in [1], i.e.
elimination of expensive evaluation keys and reduction of security assumptions.
Specifically,

– We introduce the first NTRU based FHE implementation that uses the Flat-
tening method of GSW. Our scheme uses the encryption methods of NTRU
for ciphertext creation, converts them into a matrix structure and makes use
of the Flattening noise management technique.

– Similar to the YASHE construction [1] our scheme uses a wide key distribu-
tion and hence only relies on standard lattice reductions as in [40] (no DSPR
assumption). Thus, our scheme is immune to the Subfield Lattice Attack by
Albrecht, Bai and Ducas [33].

– Using the Flattening technique, we are able to multiply ciphertexts with only
linear increase in the size of the noise level. Our scheme does not use any
expensive noise reduction techniques such as relinearization and the need for
prohibitively large evaluation keys.



– Our construction does not require evaluation keys whereas the YASHE con-
struction has evaluation keys whose size grows Õ(L4) where L represents
the evaluation depth. This makes it impossible to use YASHE in deep eval-
uations.
achieve significantly small ciphertext size compared to the YASHE construc-
tion for the same level of multiplicative depth support.

– We introduce a variant of the scheme that reduces the ciphertext size and
improves the homomorphic evaluation speed at the expense of the DSPR
assumption.

– We provide implementation results and a comparison to YASHE.

2 Overview of NTRU Based FHE Schemes and GSW

In this section we briefly summarize the schemes relevant to our construction.
We also briefly summarize schemes that we compare against later.

2.1 Stehlé and Steinfeld’s NTRU Variant

In [40] Stehlé and Steinfeld introduced a modification to the NTRU [28] scheme
to make the scheme secure under the assumed quantum hardness of the standard
worst-case lattice problem. The scheme fixes the ring to R = Z[x]/〈xn+1〉 where
n is a power of 2 and chooses q ≤ Poly(n). Also, chooses a message space Zp.
Using a discrete Gaussian distribution random samples f ′, g are chosen where
the secret key becomes f = pf ′ + 1. Set public key h = pf−1g. A message
µ is encrypted by computing c = hs + pe + µ mod q where s, e are Gaussian
distribution samples. To decrypt we simply compute µ = c · f mod p.

2.2 DHS Scheme

Recently, Doröz, Hu and Sunar implemented single-key variation of the multi-
key LTV-FHE scheme. This scheme is introduced in 2012 by López-Alt, Tromer
and Vaikuntanathan (LTV) [31] as a full-fledged, multi-key and leveled fully
homomorphic encryption scheme which is based on the NTRU cryptosystem.
The NTRU scheme is a public key cryptosystem that is introduced by Stehlé
and Steinfeld [40]. New additions to the NTRU scheme are operations for noise
and key control are relinearization and modulus switching. Another addition to
the scheme is adding random noise to the public key for security.

The DHS implementation has the operational ring Rq = Zq[x]/〈xn + 1〉 in
which q is our modulus and n is the degree of the polynomial. The scheme uses a
truncated Gaussian error distribution function χ for sampling polynomials. The
truncated distribution χ is B-bounded which means coefficient sizes are between
range [−B,B]. The implementation has following four primitive functions:

– KeyGen. Using the security parameter λ, we create a sequence of modulus
for each level as qi = qd−i in which q is a prime. Later, we sample polynomials



g ∈ χ and f ′ ∈ χ and compute secret key f = 2f ′ + 1 and public key

h = 2gf−1 in Zq0 . In the next step, we compute the evaluation keys ζ
(0)
τ (x) =

hsτ+2eτ+2τf which {sτ , eτ} ∈ χ and τ = [0, blog q0c]. Computed evaluation
keys are for level index 0. For the rest of the levels we recycle the evaluation
keys using the ring structure. To use the evaluation keys for level index

i, we simply compute ζ
(i)
τ (x) = ζτ (x) mod qi. This reduces the memory

requirement significantly.

– Encrypt. In order to encrypt a message bit µ for level i, we compute c(i) =
h(i)s+ 2e+ b which {s, e} ∈ χ and h(i) = h(0) mod qi.

– Decrypt. In order to decrypt at level i, we compute µ = dc(i)f (i)cqi (mod 2).

– Evaluation. Homomorphic evaluation requires relinearization and modulus
switching after each multiplication or an addition operation. Since the addi-
tive operations do not create significant noise like multiplications, we apply
the noise reduction techniques only after a multiplication. Relinearization is

computed as c̃(i)(x) =
∑
τ ζ

(i)
τ (x)c̃

(i−1)
τ (x). The polynomials c̃

(i−1)
τ (x) have

the form of c̃(i−1)(x) =
∑
τ 2τ c̃

(i−1)
τ (x). Relinearization is followed by mod-

ulus switching which we compute as c̃(i)(x) = b qi
qi−1

c̃(i)(x)e2. This reduces

the noise level by log (qi/qi−1) bits. In modulus switching we need to match
the parity bits of the messages between the old and new moduli: b·e2.

Note that the DHS implementation uses cyclotomic polynomials Φm(x) to define
the ring instead of 〈xn + 1〉. The degree of the polynomial is n = φ(m) where φ
is the Euler’s totient function. This setup allows batching of multiple messages
into the same ciphertext polynomial and thereby enables parallel processing.

2.3 BLLN

The BLLN scheme was introduced by Bos et al. in [1]. BLLN is based of the
scheme proposed by Stehlé and Steinfeld [40]. The authors create a scheme called
YASHE by using the construction of [40] and modify it by applying the tensor
product technique of [3] to curb the noise growth in multiplications. With this
it becomes possible to use a high level of noise in encryptions with which the
schemes becomes DSPR hard as in [40]. However, this brings large evaluation
keys into the scheme and it makes difficult to use in practice: the evaluation
key consists of `3 = O((log (q))3) ciphertexts. To mitigate this problem, in the
same reference the authors introduced another scheme called YASHE’. They
discard the tensor product and decrease the size of the evaluation keys, i.e. `
ciphertexts. However, they have to reduce the noise levels on fresh ciphertexts
which brings back the DSPR security assumption. In the following, we first give
the Basic scheme and later explain YASHE and YASHE’ constructions using the
Basic scheme.

Basic. We set the ring as R = Z[X]/〈xn + 1〉, t as the plaintext modulus, χerr

and χkey as the Gaussian distribution for sampling. The scheme has the following
primitive functions:



– ParamsGen. For security parameter λ we create n = n(λ), q = q(λ),
χkey = χkey(λ) and χerr = χerr(λ).

– KeyGen. We sample f ′, g ∈ χkey. Set secret key f = tf ′+ 1 and public key
h = tgf−1.

– Encrypt. To encrypt message µ, we sample s, e ∈ χerr and compute c =
bq/tcµ+ e+ hs.

– Decrypt. To decrypt a message simply compute µ =
⌊
t
qfc
⌉

where b·e is

rounding to the nearest.

There are 3 notations need explanation before we summarize the YASHE
scheme. The authors use ⊗ for the tensor product. The notation Pw,q is used to
convert a number to an array with powers of w, i.e. Pw,q(x)→ (x, xw, xw2, . . . , xw`w,q−1)
for `w,q = (logw q + 2). Last notation is Dw,q which decomposes a value into its

word sizes, i.e. Dw,q(x)→ (x0, x1, . . . , x`w,q−1) where x =
∑`w,q−1
i=0 xiw

i.

YASHE. The Basic scheme explained above is used to construct a leveled FHE
scheme. The primitive operations of the scheme is as follows:

– ParamsGen. The parameters are selected the same way as in Basic scheme.
– KeyGen. The public and secret key pairs are selected using the Basic.KeyGen

routine, i.e. h, f ← Basic.KeyGen. Sample e, s ∈ χ`
3
w,q
err . Compute the evalua-

tion keys

ζ =
[
f−1Pw,q(Dw,q(f)⊗Dw,q(f)) + e + hs

]
∈ R`

3
w,q .

– Encrypt. Encrypt message µ as in Basic scheme.
– Decrypt. Decrypt message as in Basic scheme.
– KeySwitch. Compute 〈Dw,q(c), ζ〉 where c is a ciphertext.
– Addition. Addition of two ciphertexts c1 and c2 is c = c1 + c2.
– Multiplication. Multiplication of two ciphertexts is computed as

c =

[⌊
t

q
Pw,q(c1)⊗ Pw,q(c2)

⌉]
and later apply KeySwitch to c and output.

YASHE’. The primitive operations are as follows:

– ParamsGen. The parameters are selected the same way as in Basic scheme.
– KeyGen. The public and secret key pairs are selected using the Basic.KeyGen

routine, i.e. h, f ← Basic.KeyGen. Sample e, s ∈ χ`w,qerr . Compute the evalua-
tion keys

ζ =
[
f−1Pw,q(Dw,q(f)⊗Dw,q(f)) + e + hs

]
∈ R`w,q .

– Encrypt. Encrypt message µ as in Basic scheme.
– Decrypt. Decrypt message as in Basic scheme.



– KeySwitch. Compute 〈Dw,q(c), ζ〉 where c is a ciphertext.
– Addition. Addition of two ciphertexts c1 and c2 is c = c1 + c2.
– Multiplication. Multiplication of two ciphertexts is computed as

c =

[⌊
t

q
c1c2

⌉]
and later apply KeySwitch to c and output.

2.4 Impact of the Subfield Lattice Attack on LTV and YASHE’

On the downside many of these assumptions are still open to debate from a secu-
rity point of view. A very recent work by Albrecht, Bai and Ducas [33] painfully
demonstrated this fact. The authors exploit the presence of a subfield to solve
the NTRU problem for large moduli q and show that when the NTRU parame-
ters are chosen poorly it becomes possible to norm-down the NTRU public key
h to a subfield yielding an easier lattice problem. Consequently, and any suffi-
ciently good solution may be lifted to a short vector in the full NTRU lattice.
The attack works when the secret key f is chosen from a narrow distribution,
e.g. ||f || 5 √q and when the polynomial modulus is chosen such that a subfield
of reasonable size exists. In this setting, Albrecht et al. show that the DSPR
problem is not as hard as believed thereby invalidating the basic assumption
in the LTV [31, 16] and YASHE’ [1] schemes. Thus, the subfield lattice attack
significantly diminishes the asymptotic security of both schemes.

Both LTV and YASHE’ rely on the secret key from being sampled form a
narrow distribution to support even a single homomorphic multiplication. This
eliminates the possibility of sampling the key from a wider distribution. The
adverse effect of the attack could be mitigated, by maximizing size of the subfield
as recommended in [33]. Even then, the lattice dimension and parameters need
to be increased to restore the projected security level of LTV and YASHE’.
Another important side effect of the Subfield Lattice Attack is that it makes the
selection of parameters that support batching rather difficult.

2.5 GSW Scheme

Gentry, Sahai and Waters [25] proposed this new scheme based on the hardness
of the approximate eigenvector problem. The construction consists of simple
matrix addition and multiplication operations to perform homomorphic addi-
tion and homomorphic multiplication. The advantage of the scheme is that it
eliminates the need of relinearization, storage of evaluation keys and even mod-
ulus switching. As many other homomorphic schemes the security is based on
the LWE problem.

We explain the scheme in four primitive functions in below. Before the ex-
planations we should note some of the preliminaries that is used in the primi-
tive functions. A vector ~a = (a0, . . . , ak−1) is split into its bits using the func-
tion BitDecomp(~a) = (a0,0, . . . a0,`−1, . . . , ak−1,0 . . . , ak−1,`−1). We are able to



reconstruct the elements from the bit representations using the inverse of the
BitDecomp as BitDecomp−1(~a) = (

∑
2ja0,j , . . . ,

∑
2jak−1,j). The most impor-

tant function that the scheme uses is flattening. It keeps the ciphertexts bounded
so that the noise increase after multiplicative operations are limited. We sim-
ply evaluate it as Flatten(~a) = BitDecomp(BitDecomp−1(~a)). The last function
is Powersof2(~a) = (a0, 2a0, . . . , 2

`−1a0, . . . , ak, 2ak, . . . , 2
`−1ak) which multiplies

the vector elements with powers of two. Using these functions, the encryption
scheme is defined with the following primitives:

– Setup. We select λ as the security parameter and L as multiplicative depth.
Then compute lattice dimension n = n(λ, L), error distribution χ = χ(λ, L),
parameter m = m(λ, L) = O(n log q). Also, set ` = dlog qe + 1 and N =
(n+ 1)`.

– KeyGen. We sample ~t← Znq and compute ~s← (1,−t1,−t2, . . . ,−tn). Then,
set the secret key ~v = Powersof2(~s). The public key matrix is computed by
first generating uniform matrix B ← Zm×nq and error vector ~e ← χm. We

set (n + 1) column matrix A having ~b = B · ~t + ~e as the first column and ~b
in rest of the columns as the public key.

– Encrypt. A message µ is encrypted by simply computing C = Flatten(µIN+
BitDecomp(R·A)) ∈ ZN×Nq . In the equation R is selected as a uniform matrix

R ∈ {0, 1}N×m.
– Decrypt. Select a row of the matrix, i.e. Ci as the i-th row of matrix C.

Compute xi ← 〈Ci, ~v〉 and the message as µ′ = bxi/vie.

The beauty of the GSW scheme is that straightforward addition and mul-
tiplication of ciphertext matrices suffice to compute homomorphic additions
and multiplications. First, lets observe that the construction holds the prop-
erty C ·~v = µ ·~v+~e, since secret key ~v is the approximate eigenvector related to
the ciphertext. Therefore, adding ciphertext matrices has the effect of adding the
corresponding eigenvalues (messages): (C1 + C2) · v = (µ1 + µ2) · v + (e1 + e2).
Similarly the matrix product of the ciphertexts (in any order) multiplies the
eigenvalues: C1 ·C2 ·v = C1(µ2 ·v +e2) = µ2(µ1 ·v +e1) +C1 ·e2 = µ1µ2 ·v +e.

3 Our proposal: F-NTRU Scheme

Here we propose a new scheme called F-NTRU that shares the goals of the GSW
construction [25], i.e. no evaluation keys, no expensive relinearization operations,
no modulus switching and simple homomorphic additions and multiplications.
To this end we adopt the flattening approach of [25] and apply it to the NTRU
variant, i.e. NTRU’, by Stehlé and Steinfeld [40].

Preliminaries. We work in Rq = Zq[x]/〈xn + 1〉. We adapt two functions from

[25] to work in the polynomial setting as follows:

– Bit-Decomposition: The BitDecomp function takes a ciphertext polyno-
mial c(x) and splits them into binary polynomials and forms a vector as:

~c(x) = BitDecomp(c(x)) = [c`−1(x) c`−2(x) . . . c2(x) c1(x) c0(x)].



Here a polynomial ci(x) with index i represents the binary polynomial that
is formed using the ith bit index of the coefficients of c(x). One may easily
reconstruct the ciphertext c(x) by simply computing:

c(x) =

`−1∑
i=0

2i · ci(x) ∈ Rq.

Note that when we are computing BitDecomp−1, the elements in the vector
do not necessarily have to be binary polynomials. It is possible that polyno-
mials can contain coefficients that are not bits.

– Flatten: When we are performing arithmetic operations, i.e. addition and
multiplication, in our scheme, the elements of a flattened ciphertext vector
loose their binary form. These extra bits in the coefficients of the polynomials
cause additional noise in subsequent arithmetic operations. To prevent this,
we use Flatten. Flatten restructures all the elements of the ciphertext vector
into binary polynomials. We evaluate the Flatten operation as follows:

Flatten (~c(x)) = BitDecomp
(
BitDecomp−1 (~c(x))

)
.

Here in the equation BitDecomp−1 converts the ciphertext vector into a
full ciphertext polynomial in Rq. Later, using BitDecomp we convert the
ciphertext into a binary polynomial vector again. Basically, this method
carries over the extra bits of an element in the vector from least significant
to most significant and performs a modular reduction using q to prevent
overflow in the overall scheme.

The F-NTRU Scheme. The primitive operations of F-NTRU are defined as

follows:

– KeyGen: We use the key generation method of NTRU’ to select our pa-
rameters. For a security parameter λ, we choose our message modulus as 2,
modulus q = q(λ), polynomial degree n = n(λ) where n is power of 2. Also
we set Gaussian distributions χerr = χerr(λ) and χkey = χkey(λ). Sample
g, f ′ ∈ χkey and set public key h = 2gf−1 and secret key f = 2f ′ + 1.

– Encrypt: In order to encrypt a message µ, we create a vector with length
` = log q. Later, we fill the elements with encryptions of zeros using the
NTRU’ scheme:

~c = {Enc`−1(0),Enc`−2(0), . . . ,Enc0(0)} = {c`−1, c`−2, . . . , c0},

where Enci(0) = hsi + 2ei + 0. We call this the ciphertext vector. We take
the transpose of the vector to list the elements in row and apply BitDecomp
to the ciphertexts to turn the vector into a `× ` matrix:

c = BitDecomp(~c>)



Then, we use the matrix to encrypt a message µ by evaluating:

C = Flatten(I` · µ+ c).

Here, in the equation I` is identity matrix with size `.
– Decrypt: To decrypt the message we take the first row of the matrix and

apply Inverse-Bit-Decomposition to form a NTRU’ ciphertext:

BitDecmop−1{c(0,`−1), c(0,`−2), . . . , c(0,2), c(0,1), c(0,0)} = c0.

Once the NTRU’ ciphertext is constructed, we are able to decrypt the mes-
sage using the secret key f for the NTRU’ scheme as bc0fe mod 2 = µ.

– Eval. The homomorphic XOR and AND operations are simply computed
as matrix addition and multiplication operations, respectively followed by a
Flatten operation, i.e.

C ′ = Flatten(C + C̃) , C ′ = Flatten(C · C̃).

3.1 Correctness of Homomorphic Circuit Evaluation

The correctness of encryption/decryption trivially follows from the correctness
of the NTRU’ scheme. In this section we briefly demonstrate how the NTRU’
ciphertext and associated F-NTRU ciphertext matrix forms are preserved thus
allowing homomorphic evaluation. For clarity we use ciphertexts of sizes ` = 4.

First note that BitDecomp−1(C) is actually a vector that contains the en-
cryptions of message bits scaled by powers of 2:

BitDecomp−1(Flatten(I`·µ+c)) =
[
c`−1 + 2`−1 · µ, . . . , c1 + 21 · µ, c0 + 20 · µ

]>
.

This is the form we need to preserve throughout homomorphic evaluations for
correctness.
Homomorphic XOR. A homomorphic XOR operation between two ciphertext

matrices is computed as:

C ′ = Flatten(C + C̃) =
c(3,3) + c̃(3,3) + µ+ µ̃ c(3,2) + c̃(3,2) c(3,1) + c̃(3,1) c(3,0) + c̃(3,0)

c(2,3) + c̃(2,3) c(2,2) + c̃(2,2) + µ+ µ̃ c(2,1) + c̃(2,1) c(2,0) + c̃(2,0)
c(1,3) + c̃(1,3) c(1,2) + c̃(1,2) c(1,1) + c̃(1,1) + µ+ µ̃ c(1,0) + c̃(1,0)
c(0,3) + c̃(0,3) c(0,2) + c̃(0,2) c(0,1) + c̃(0,1) c(0,0) + c̃(0,0) + µ+ µ̃

 .
When we apply BitDecomp(−1) to the rows of the addition matrix we obtain:

[(c3 + c̃3) + 8(µ+ µ̃), (c2 + c̃2) + 4(µ+ µ̃), (c1 + c̃1) + 2(µ+ µ̃), (c0 + c̃0) + 1(µ+ µ̃)]

The ciphertext vector is still valid for the following two reasons:

1. The first part of the addition ci + c̃i still holds an encryption of zero. The
only difference is that it is noisier compared to a fresh encryption.



2. The second term in each entry is the message scaled by powers of two, i.e.
2i · (µ+ µ̃) as in a fresh ciphertext.

Homomorphic AND. A homomorphic AND operation between two ciphertext

matrices is computed as:

C ′ = Flatten(C · C̃) =
[
~c′3, ~c′2, ~c′1, ~c′0

]>
=

c(3,3) + µ c(3,2) c(3,1) c(3,0)
c(2,3) c(2,2) + µ c(2,1) c(2,0)
c(1,3) c(1,2) c(1,1) + µ c(1,0)
c(0,3) c(0,2) c(0,1) c(0,0) + µ

·

c̃(3,3) + µ̃ c̃(3,2) c̃(3,1) c̃(3,0)
c̃(2,3) c̃(2,2) + µ̃ c̃(2,1) c̃(2,0)
c̃(1,3) c̃(1,2) c̃(1,1) + µ̃ c̃(1,0)
c̃(0,3) c̃(0,2) c̃(0,1) c̃(0,0) + µ̃


We summarize the derivation of the rows of the product matrix as follows:

Row 0: In Table 1 we show columns of the vector ~c′0 = BitDecomp(c′0(x)).

In the last row of the table we evaluate BitDecomp−1(~c′0). The last column
contains the respective powers of 2 used in BitDecomp−1 for easy reference. The

~c′(0,3) c(0,3) · (c̃(3,3) + µ̃) +c(0,2) · c̃(2,3) +c(0,1) · c̃(1,3) +(c(0,0) + µ) · c̃(0,3) 8
~c′(0,2) c(0,3) · c̃(3,2) +c(0,2) · (c̃(2,2) + µ̃) +c(0,1) · c̃(1,2) +(c(0,0) + µ) · c̃(0,2) 4
~c′(0,1) c(0,3) · c̃(3,1) +c(0,2) · c̃(2,1) +c(0,1) · (c̃(1,1) + µ̃) +(c(0,0) + µ) · c̃(0,1) 2
~c′(0,0) c(0,3) · c̃(3,0) +c(0,2) · c̃(2,0) +c(0,1) · c̃(1,0) +(c(0,0) + µ) · (c̃(0,0) + µ̃) 1

c′0 c(0,3) · c̃3 + c(0,2) · c̃2 + c(0,1) · c̃1 + c(0,0) · c̃0 + c0 · µ̃+ c̃0 · µ︸ ︷︷ ︸
c̄0

+µ · µ̃

Table 1. Derivation of Row 0 of product ciphertext

final ciphertext in Table 1 has the proper ciphertext form: The first part of the
ciphertext c(0,3) · c̃3 + c(0,2) · c̃2 + c(0,1) · c̃1 + c(0,0) · c̃0 + c0 · µ̃+ c̃0 · µ is still an
encryption of zero since ciphertexts ci and c̃i are encryptions of zero and their
multiplication with a binary polynomial will result in zero encryptions as long
as noise is contained.

Row 1: We apply the same arithmetic for the row number 1 and form a similar
construction in Table 2. We achieve a similar derivation for second row in Table 2.
The only difference is that now the message is scaled by 2.

We can now generalize the arithmetic for each row i as follows:

c′i =

`−1∑
j=0

c(i,j) · c̃j + ci · µ̃+ c̃i · µ︸ ︷︷ ︸
c̄i

+2i(µ · µ̃). (1)

As shown in Equation 1, after a matrix multiplication the ciphertext vector
elements contains a (noisier) encryption of zero along with the message scaled by

powers of 2, i.e. ~c′ = {c̄`−1+2`−1µ̄, . . . c̄1+21µ̄, c̄0+20µ̄} in which µ̄ = µ·µ̃. Hence
correctness holds throughout circuit evaluation as long as noise is contained.



~c′(1,3) c(1,3) · (c̃(3,3) + µ̃) +c(1,2) · c̃(2,3) +(c(1,1) + µ) · c̃(1,3) +c(1,0) · c̃(0,3) 8
~c′(1,2) c(1,3) · c̃(3,2) +c(1,2) · (c̃(2,2) + µ̃) +(c(1,1) + µ) · c̃(1,2) +c(1,0) · c̃(0,2) 4
~c′(1,1) c(1,3) · c̃(3,1) +c(1,2) · c̃(2,1) +(c(1,1) + µ) · (c̃(1,1) + µ̃) +c(1,0) · c̃(0,1) 2
~c′(1,0) c(1,3) · c̃(3,0) +c(1,2) · c̃(2,0) +(c(1,1) + µ) · c̃(1,0) +c(1,0) · (c̃(0,0) + µ̃) 1

c′1 c(1,3) · c̃3 + c(1,2) · c̃2 + c(1,1) · c̃1 + c(1,0) · c̃0 + c1 · µ̃+ c̃1 · µ︸ ︷︷ ︸
c̄1

+2(µ · µ̃)

Table 2. Derivation of Row 1 of product ciphertext

4 Optimizations

In our scheme we are able to perform certain optimizations on the arithmetic
operations to reduce computational complexity and the memory footprint. The
two main optimizations we perform are:

Using High Radix Representations. The flattened ciphertext matrix takes
up a large space, `2 = O(log(q)2). To mitigate we may us a higher radix represen-
tation, i.e. a larger radix 2ω and group ω bits for each element of the ciphertext
matrix. When we apply BitDecomp−1, we use the powers of the chosen radix
(2w)i instead of powers of 2i to reconstruct the ciphertext. With this approach
we drastically reduce the matrix size: `′ = `/ω. Note that the number of zero
encryptions of NTRU’ should be equal to `′ as well. Using the high radix encod-
ing the ciphertext size is reduced by ω times. In addition, the ciphertext matrix
size is reduced by ω2 which decreases the complexity of matrix multiplication
significantly.

Matrix Multiplication. A straight schoolbook matrix multiplication takes
O(`3) time and it may reduced to O(`2.374) time using Coppersmith-Winograd
algorithm. However, to evaluate deep circuits we will need a large modulus
and even with the Coppersmith-Winograd algorithm multiplication will be slow.
Therefore, we change matrix multiplication into a matrix-vector multiplication
as follows:

BitDecomp−1
(
BitDecomp(~c) · BitDecomp(~̃c)

)
= BitDecomp(~c) · ~̃c.

A schoolbook matrix-vector multiplication has O(`2) runtime which is faster
than a matrix multiplication. The only downside of the algorithm is that a
binary by a high radix polynomial multiplication should be implemented instead
of a binary by binary polynomial multiplication. Although binary by high radix
polynomial multiplication is slower, the time gap is closed in the higher level
while computing the matrix-vector product for large ` values.

5 Security Analysis

Our scheme uses the NTRU’ encryption scheme adopted from [40]. In F-NTRU ,
an attacker has access only to a ciphertext vector which holds NTRU’ ciphertexts



build with fresh encryptions of zero. Therefore as long as NTRU’ ciphertexts are
secure, our scheme is also secure. According to the Stehlé and Steinfeld [40], their
scheme is IND-CPA secure under the hardness of R-LWE assumption as long as
the error has a wide distribution DZn,σ, i.e. σ >

√
q · poly(n). However, in the

DHS and YASHE’ schemes such a high noise instantiations are not possible due to
the noise growth in homomorphic multiplications. Therefore, both schemes use
narrow error distributions and additionally assume hardness of the Decisional
Small Polynomial Ratio (DSPR) Problem along with the R-LWE assumption.

Fortunately, our scheme has a better control on noise management. The (size
of the) noise increases linearly with the multiplicative depth. Therefore, we are
able to use a wide error distribution and achieve IND-CPA security as in the
original scheme by Stehlé and Steinfeld in [40]. Thus the standard deviation
σkey of the discrete Gaussian distribution DZn,σkey

needs to be set as:

σkey > 2n
√

log (8nq) · q1/2+ε

for ε > 0, i.e. ε = 2−80. In this setting we are able to generate a public key
h = g/f , i.e. g ∈ χkey and f ′ ∈ χkey (f = 2f + 1) in which χkey is truncated
DZn,σkey

, that is indistinguishable from a uniformly random distribution.

For R-LWE security we follow the settings in [31]. The noise parameters s
and e are sampled from the distribution χerr, a truncated Gaussian distribution
DZn,σerr

. The standard deviation σerr of the error distribution has the follow-

ing bound σerr >
√

log (n). With this bound, we are able to add noise to our
public key and keep it computationally indistinguishable from random uniform
distribution.

As above mentioned, the distributions χkey and χerr are truncated Gaussian
distributions. They are also defined as B-bounded1 distributions which means
the samples are selected from [−B,B]. The bound value B is selected as a
function of the advantage ε in a distinguishing attack, e.g. ε = 2−80. The function,
e.g. see [19], gives for a sample x ∈ χ the probability of x being larger than k · σ
for a factor k is:

Probx←DZn,σ [|x| > k · σ] = erf(k/
√

2).

Using the equation above, we select the factor k as k(ε) = min{k | erf(k/
√

2) <
ε}, and select the B-bound as B = k(ε) · σ.

Parameter Selection. The existing attacks rely on the lattice reduction al-
gorithms and the best attack known in practice is BKZ 2.0 [9] by Chen and
Nguyen. The quality of the security is measured by Hermite factor δ. In [30]
Linder and Peikert derive a linear security estimate using the Hermite factor δ:

log(TBKZ(δ)) = 1.8/ log(δ)− 110.

1 We get rid of the subscripts key and err for simplicity. We use Bkey and Berr if they
need to be specified.



In order to have at least 80-bit security, i.e. TBKZ = 280, we need δ ≤ 1.0066. In
[30] the Hermite factor δ is given as:

δ(n, q, σ, ε) = 2
log2

(
q/σ·
√

2 log(1/ε)
)
/(4n log q)

.

Using these equations and by fixing the Hermite factor, i.e. δ = 1.0066, we
achieve the same security level for various values of n by changing q and σ.

6 Noise Analysis

In this section we analyze the noise performance of our scheme with homomor-
phic evaluations. In case of a homomorphic addition, the noise increases only
a small percent compared to homomorphic multiplication. In our analysis we
want to determine the depth of the circuit we can evaluate and still decrypt
correctly with growing noise. This analysis includes average case and worst case
scenarios for homomorphic multiplication that estimates the number of possible
multiplicative levels. Since additions contribute minimally to noise growth we
focus only on homomorphic multiplications.

For an element a ∈ R we define the Euclidean norm ||a|| =
√∑

a2i and the
infinity norm ||a||∞ = max|ai| for all possible values of i. In multiplication, we
can bound the noise growth with the aid of the following Lemma.

Lemma 1 ([32, 31]). In a ring R = Z[x]/〈xn + 1〉, for any two polynomials
a, b ∈ R we have the following norms ||ab|| ≤

√
n||a|| · ||b|| and ||ab||∞ ≤ n||a||∞ ·

||b||∞.

Homomorphic Multiplication. We assume the evaluation circuit is arranged
into a tree with levels of parallel multiplication gates that accept input the out-
put ciphertexts from the previous level. Lets denote a ciphertext matrix that are
at a certain multiplicative level i as C(i). Then, a ciphertext matrix at a multi-
plicative level C(i) = C(i−1) · C̃(i−1). Lets recall that these ciphertext matrices
are actually NTRU’ ciphertext vectors with BitDecomp applied. We also denote

the ciphertexts in the vector for multiplicative level i and row index j as c
(i)
j .

In the first multiplicative level, i.e. i = 0, ciphertext vectors are fresh encryp-
tions with security paramters explained in Section 5. Basically, we have samples

g, f ′ ∈ χkey and s, e ∈ χerr and ciphertexts c
(0)
j = hsj + 2ej + 2jµ where µ is the

message, f = 2f ′+ 1 and h = 2gf−1 is public key. Lets recall that for ciphertext
matrix multiplications we have NTRU’ ciphertexts that hold the form given in
Equation 1. The equation can be rewritten with level index to show the result
of a multiplicative level as:

c
(i)
j =

`−1∑
k=0

c(j,k) · c̃
(i−1)
k + c

(i−1)
j · µ̃+ c̃

(i−1)
j · µ+ 2j(µ · µ̃).

We can simplify the equation, for noise evaluation, by replacing radix size poly-
nomials c(j,k) with yτ , choosing ciphertext vector index j = 0, and substituting



y(i) in place of all ciphertexts since they have the same noise level for the same
multiplicative level i:

y(i) = y(i−1)yτ `+ y(i−1)µ̃+ y(i−1)µ+ µµ̃.

To be able to decrypt y(i) correctly, we need ||y(i)f ||∞ < q/2. Thus, we need

||y(i)f ||∞ ≤ ||y(i−1)fyτ `||∞ + ||y(i−1)fµ̃||∞ + ||y(i−1)fµ||∞ + ||µµ̃f ||∞.

Later, we expand ||y(i−1)f ||∞ in terms of ||y(i−2)f ||∞ and continue the process
recursively. At the lowest level we have:

||y(0)f ||∞ = ||c(0)f ||∞ ≤ ||2gf (−1)sf ||∞ + ||2ef ||∞.

Since ||g||∞ = ||f ′||∞ = Bkey, ||s||∞ = ||e||∞ = Berr, the worst-case noise is
equal to:

||y(0)f ||∞ ≤ 2nBkeyBerr + 2nBerr(2Bkey + 1)

≤ 2nBerr(3Bkey + 1).

For an arbitrary level i, the noise can be evaluated recursively by setting Bi =
||y(i)f ||∞, ||yτ ||∞ = 2ω − 1 and ||µ||∞ = 1 as:

||y(i)f ||∞︸ ︷︷ ︸
Bi

≤ ||y(i−1)fyτ `||∞︸ ︷︷ ︸
`n(2ω − 1)B(i−1)

+ ||y(i−1)fµ̃||∞︸ ︷︷ ︸
nB(i−1)

+ ||y(i−1)fµ||∞︸ ︷︷ ︸
nB(i−1)

Bi ≤ `n(2ω − 1)B(i−1) + 2nB(i−1)

Bi ≤ (`n(2ω − 1) + 2n)B(i−1)

In the noise analysis we exclude ||µµ̃f ||∞ because it only occurs at the last
level when we want to decrypt. The noise actually stems from the noisy zero

encryptions, i.e. c̄k =
∑`−1
k=0 c(j,k) · c̃

(i−1)
k + c

(i−1)
j · µ̃ + c̃

(i−1)
j · µ. In the final

multiplicative level ||µµ̃f ||∞ adds additional noise ||µµ̃2f ′||∞ = 2n2Bkey.

Average Case Noise Analysis. In the average case the noise accumulation will
be much lower than what the bound given above predicts due to the Gaussian
distribution. Using the worst case noise analysis, we can simply rewrite the
average case noise analysis for the first multiplicative level as:

||y(0)f ||∞ ≤ 2
√
nBkeyBerr + 2

√
nBerr(2Bkey + 1)

≤ 2
√
nBerr(3Bkey + 1),

and for the remaining levels we obtain

Bi ≤
√
`
√
n(2ω − 1)B(i−1) + 2

√
nB(i−1)

Bi ≤ (
√
`n(2ω − 1) + 2

√
n)B(i−1) .

For the last stage we have additional noise from ||µµ̃f || as 2nBkey.



7 The F-NTRU’ Variant

The F-NTRU construction manages to eliminate evaluation keys and relineariza-
tions and the DSPR assumption. However, the ciphertext grows due to the ma-
trix based construction compared to a standard NTRU based SHE constructions.
The growth in the ciphertext size not only increases the memory footprint, but
also increases the latency of homomorphic evaluations. With this motive we in-
troduce a variant we call F-NTRU’ that uses less noise, by sampling the secret
key f ′ and g from a slightly narrower distribution, i.e. O(poly(n) · q1/3) in-
stead of O(poly(n) ·q1/2). From Section 5 remember that for F-NTRU we require
σkey > 2n

√
log (8nq) · q1/2+ε. For a discussion on the effect of noise distribution

on the security of NTRU based schemes, and possible attacks enabled by the
use of very narrow key distributions see [33].

Under this modification we can select smaller parameters. The security and
noise analysis presented above still applies with the exception of the re-introduced
DSPR assumption. Therefore we can still use the noise bounds and parameter
derivations by simply setting the noise to the appropriate values, i.e. for f ′ and
g we use σkey > 2n

√
log (8nq) · q1/3+ε and for e and s we use σerr =

√
log(n).

8 Complexity

In Table 3 we summarize the asymptotic complexities of F-NTRU and YASHE
schemes. We use ` = log q/ω for radix size ω. Note that our scheme does not
require evaluation keys. However F-NTRU ciphertexts consist of ` polynomials.
On the other hand YASHE requires `3 polynomials for evaluation keys. For ho-
momorphic AND evaluation our scheme requires `2 polynomial multiplications
whereas YASHE needs `2 polynomial multiplications followed by a costly key
switching operation computed via `3 polynomial multiplications.

F-NTRU/F-NTRU’ YASHE

Eval. Key Size - O(`3n log q)
Ciphertext Size O(`n log q) O(n log q)
AND Eval. O(`2) O(`2)
Key-Switching - O(`3)

Table 3. Comparison of F-NTRU and YASHE: homomorphic AND evaluation and Key
Switching complexities are in terms of polynomial multiplications with ` = log q/ω.

9 Parameter Selection

Using the earlier noise analysis we evaluate maximum modulus size log qmax for
various values of polynomial degree n, i.e. log (n) ∈ [10, 14]. Using the input pair
log (n) and log qmax we evaluate maximum multiplicative depth L in Table 4.



Note that for similar sizes of q, the dimension n doubles for F-NTRU’ to keep
the Hermite at δ(n) = 1.0066, however we can accommodate roughly % 50 more
evaluation levels in F-NTRU’ .

F-NTRU F-NTRU’
log (n) ω blog (qmax)c Lworst Lavg blog (qmax)c Lworst Lavg

10
16

197
1 2

117
1 1

8 2 3 1 2
1 3 7 2 5

11
16

359
3 5

210
2 4

8 5 8 3 6
1 7 14 5 10

12
16

677
7 11

389
5 8

8 10 16 7 12
1 13 28 10 21

13
16

1305
15 22

744
11 16

8 19 31 14 23
1 26 52 19 40

14
16

2555
29 43

1448
22 32

8 36 59 28 45
1 48 97 37 74

Table 4. Supported multiplicative depth for various radix selections, i.e. ω = {1, 8, 16}.
The distinguishing advantage is set to 2−80.

For comparison, we also tabulated parameter choices for selected depths for
F-NTRU, F-NTRU’ and YASHE as shown in Table 5.

L F-NTRU F-NTRU’ YASHE

5 (12,527) (12,389) (11,359)
10 (13,943) (13,700) (13,840)
20 (14,1807) (14,1341) (14,1705)
30 (15,2727) (15,2024) (14,2538)
40 (15,3608) (15,2679) (15,3550)
50 (15,4497) (16,3422) (15,4440)
100 (16,9227) (17,7015) (16,9378)

Table 5. Parameters (log (n), log (q)) to support depth L evaluations with ω = 16.

10 Implementation Results

We implemented the F-NTRU and F-NTRU’ schemes using Shoup’s NTL library
version 9.6.4 [38] compiled with the GMP 6.1 package. We run our experiments



on a server, which 125 GBs of RAM and Intel Xeon E5-2637v2 64-bit CPU at 3.5
Ghz, using a single thread. The timing results for homomorphic multiplication
are summarized in Table 6. In the implementation we use cyclotomic polynomial
Φm as modulus instead of xn + 1. The timings given in the table are normalized
by the number of message slots.

L Message Slots F-NTRU F-NTRU’

5 256 52 msec 23 msec
10 512 260 msec 120 msec
20 1024 1.9 sec 780 msec
30 2048 8.0 sec 3.0 sec

Table 6. Homomorphic amortized multiplication times for radix selection ω = 16.
Distinguishing advantage is set to 2−80.

Note in Table 4 that it is advantageous to select large radix sizes ω for
faster evaluation. This decreases the run-time significantly, however, the depth
is reduced somewhat since the noise is increased. As for ciphertext sizes, we are
able to decrease it by a factor of ω. This gives a big advantage especially in large
cases, e.g. log n ≤ 13.

The main advantage of the proposed F-NTRU and F-NTRU’ schemes is
that it eliminates costly evaluation keys and the slow relinearization operation
that comes with it as demonstrated in Table 7. In addition the homomorphic
evaluation is immensely simplified as we do no longer care about keeping track
of the evaluation levels per ciphertext. Finally, we compare the ciphertext sizes
also in Table 7. As in GSW [25] our constructions require larger ciphertexts for
similar depth evaluations compared to the other schemes although this problem
is somewhat alleviated in F-NTRU’ . The ciphertext size may be further reduced
with more aggressive choices of ω.

Evaluation Key Ciphertext

F-NTRU/F-NTRU’ YASHE F-NTRU F-NTRU’ YASHE
L ω = 16 ω = 2 ω = 16 ω = 16 ω = 2

5 0 3.86 TB 8.4 MB 4.6 MB 87 KB
10 0 478 TB 50 MB 30 MB 820 KB
20 0 n/a 389 MB 220 MB 3.3 MB
30 0 n/a 1.77 GB 970 MB 4.9 MB
40 0 n/a 3.10 GB 1.71 GB 13 MB

Table 7. Evaluation key and ciphertext sizes to support depth L evaluation.



11 Conclusion

We presented a new leveled FHE scheme F-NTRU based on a variant of NTRU
and by making use of a recently proposed noise management technique. Our
scheme manages to eliminate costly evaluation keys, and any need for key switch-
ing and relinearization operations. We rigorously analyzed the security and noise
performance of the proposed scheme, and determined parameters needed for cor-
rect evaluation of circuits of arbitrary depth. Our scheme makes use of wide key
distributions and does not suffer from the Subfield Lattice Attack as LTV and
YASHE’. Unlike these schemes, our proposed scheme does not rely on the DSPR
assumption.

We analyzed and compared our scheme to the only other NTRU based FHE
scheme immune to the attack, i.e. YASHE. While our scheme features larger
ciphertext sizes, unlike YASHE, our scheme does not suffer from costly evaluation
keys and relinearization operations and therefore supports deep homomorphic
evaluation.
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