
High-precision Secure Computation of

Satellite Collision Probabilities∗

Brett Hemenway† Steve Lu‡ Rafail Ostrovsky§ William Welser IV¶

Abstract

The costs of designing, building, launching and maintaining satellites make satellite operators ex-
tremely motivated to protect their on-orbit assets. Unfortunately, privacy concerns present a serious
barrier to coordination between different operators. One obstacle to improving safety arises because
operators view the trajectories of their satellites as private, and refuse to share this private information
with other operators. Without data-sharing, preventing collisions between satellites becomes a challeng-
ing task.

A 2014 report from the RAND Corporation proposed using cryptographic tools from the domain of
secure Multiparty Computation (MPC) to allow satellite operators to calculate collision probabilities
(conjunction analyses) without sharing private information about the trajectories of their satellites.

In this work, we report on the design and implementation of a powerful new MPC framework for high-
precision arithmetic on real-valued variables in a two-party setting where, unlike previous works, there is
no honest majority, and where the players are not assumed to be semi-honest. We show how to apply this
new solution in the domain of securely computing conjunction analyses. Our solution extends existing
protocols, in particular the integer-based Goldreich-Micali-Wigderson (GMW) protocol, whereby we use
combine and optimize GMW with Garbled Circuits (GC). We prove security of our protocol in the two
party, semi-honest setting, assuming only the existence of one-way functions and Oblivious Transfer (the
OT-hybrid model). The protocol allows a pair of satellite operators to compute the probability that their
satellites will collide without sharing their underlying private orbital information. Techniques developed
in this paper would potentially have a wide impact on general secure numerical analysis computations.
We also show how to strengthen our construction with standard arithmetic message-authentication-codes
(MACs) to enforce honest behavior beyond the semi-honest setting.

Computing a conjunction analysis requires numerically estimating a complex double integral to a high
degree of precision. The complexity of the calculation, and the possibility of numeric instability presents
many challenges for MPC protocols which typically model calculations as simple (integer) arithmetic or
binary circuits.

Our secure numerical integration routines are extremely stable and efficient, and our secure conjunc-
tion analysis protocol takes only a few minutes to run on a commodity laptop.

1 Introduction

There are currently more than 1300 active satellites orbiting the earth [UCS15], and this number is growing
rapidly. Technological improvements have drastically reduced the barriers to building, launching and main-
taining satellites in orbit, and consequently the number of different governments and private corporations
maintaining active satellites is growing at an increasing rate (see Figure 1). As the number of satellites
and operators grows, the problem of coordinating operations between the different operators becomes more
challenging.

∗This work is supported in part by the Defense Advanced Research Projects Agency (DARPA). The views expressed are
those of the author and do not reflect the official policy or position of the Department of Defense or the U.S. Government.
†fbrett@cis.upenn.edu
‡steve@stealthsoftwareinc.com
§rafail@cs.ucla.edu
¶bwelser@rand.org

1

mailto:fbrett@cis.upenn.edu
mailto:steve@stealthsoftwareinc.com
mailto:rafail@cs.ucla.edu
mailto:bwelser@rand.org

1995 2000 2005 2010 2015
0

100

200

300

Number of Different Satellite Operators

1995 2000 2005 2010 2015

0

500

1,000

Number of Active Satellites

Figure 1: The number of distinct satellite operators is increasing dramatically. In January 1995 there were
only 21 different operators, while in January 2015 there were 357 according to the Union of Concerned
Scientists [UCS15]. During the same time frame, the number of active satellites increased from 24 to over
1200.

2

In February 2009 the telecommunication satellite Iridium-33 collided with the Russian Kosmos 2251 in
Low Earth Orbit (LEO). Their relative velocity was over 20,000 miles per hour, and both satellites were
instantly destroyed and more than 1000 debris chunks over 4 inches in diameter were created [VO09].

Preventing future collisions requires coordination between a growing number of satellite operators. Un-
fortunately, privacy concerns present a barrier to cooperation, and in fact satellite operators view the precise
trajectories of their on-orbit assets as private information. The Space Surveillance Network (SSN) man-
aged by U.S. Strategic Command (USSTRATCOM) currently tracks more than 20,000 orbital objects with
diameters greater than 10 cm. These tracking data, obtained by ground-based telescopes, are a valuable
source of information, but they are too low-fidelity to calculate the probability that two active satellites will
collide. Calculating collision probabilities (termed a “conjunction analyses”) requires high-fidelity data from
the satellites’ on-board instrumentation – and these high-fidelity data are only available to the satellite’s
operator.

Thus we are in a situation where satellite operators want to keep their high-fidelity orbital information
private, yet these are exactly the data needed to compute conjunction analyses and prevent further collisions.
To overcome this obstacle, some operators have contracted the services of a trusted outside party (e.g. AGI).
Operators then share their private data with the trusted party, the trusted party performs the conjunction
analyses, and issues warnings if the collision probability exceeds a given threshold.

Trusted third parties do not provide a perfect solution, however, as many stakeholders cannot agree on
a single trusted party, and even when such a mutually trusted party can be found, they can command a
high price for their services. Secure multiparty computation (MPC) provides a cryptographic alternative to
a trusted third party. Using MPC to securely compute satellite conjunction analyses was first proposed as
a potential solution by Hemenway, Welser and Baiocchi [HWIB14]. Following that proposal, the problem of
securely computing conjunction analyses was incorporated into DARPA’s PROCEED program as a potential
use-case for MPC technology, and received further media attention [HW15]. A three-party honest-majority
protocol that could securely perform conjunction analyses was investigated in [KW14a].

Although MPC provides a general framework for computing arbitrary functions securely, efficiency is a
primary concern. The four main approaches to MPC use Fully Homomorphic Encryption (FHE) [Gen09], the
GMW Protocol [GMW87], the information-theoretic BGW protocol [BOGW88] or Garbled Circuits (GC)
[Yao82, Yao86]. All four methods begin by converting the function of interest into a circuit (either boolean or
arithmetic) and then evaluating the circuit gate-by-gate.1 This approach yields polynomial-time algorithms,
but without heavy optimizations, these protocols are not practical for any but the simplest calculations.
Indeed, one of the primary technical challenges in this area is to design protocols that are efficient enough
to be used in practice. Several works in the past [FSW03, CS10, ABZS13, KW14b, PS15] have looked at
optimizing MPC for real-valued computations, both for fixed and floating point, though these operate in the
honest majority setting, which is a major barrier in the two-party setting for when two satellite operators
only want to talk to each other.

1.1 Our Results

In this paper we describe a new design and implementation of a secure two-party computation framework for
high-precision arithmetic of real-valued functions that go beyond standard floating point levels of accuracy.
As an application, we show that it allows two satellite operators to perform a conjunction analysis securely
without the need to share their private orbital information with each other or any outside party. From a
theoretical standpoint, our solution is provably secure in the OT-hybrid model assuming only the existence
of one-way functions.

Our main contribution is an efficient construction of a new scheme that can securely evaluate complex
numerical calculation, in particular, the numerical integration of calculating the probability of collision in a
conjunction analysis computation via “dynamic” fixed-point integer calculations. Our new scheme extends
the integer-arithmetic GMW protocol [GMW87] and Garbled Circuits [Yao82, Yao86], and we show how to
do it securely in the two-party setting where there is no honest majority. This scheme can evaluate not only
arithmetic gates (+,×), but also augmented functionality gates which include comparison (which will be
optimized as a less-than-zero gate), shift-by-constant, which then allows us to perform higher order functions

1An alternative approach using Garbled RAM [LO13, GHL+14] avoids the problem of converting the calculation to a circuit.
Practical implementations of GRAM is an interesting area to be explored.

3

such as integer division, square root, exp, erf, and numerical integration. As part of our new construction,
we also introduce several optimizations and secure computation tools along the way, which may be of
independent interest. Furthermore, our framework is sufficiently general that it could be of interest to other
domains that require the secure computation of numerical analysis. Finally, we provide an extension to the
scheme by deploying the arithmetic MAC technique of BeDOZa [BDOZ11] and SPDZ [DPSZ12] to provide
security guarantees against a larger class of adversaries.

Our secure numerical integration routines are extremely stable and efficient. Using commercial hardware
(a Dell laptop), we are able to compute a conjunction analysis in just a few minutes. We envision a
deployment, where operators use public orbital information to identify satellites that are at risk of collision.
Then, for each of these “close” encounters the two owners would engage in a secure two-party computation to
calculate the true collision probability. After this public prefiltering, each operator will only have have a small
number of high-precision conjunction analysis calculations that need to be performed securely. Conjunction
analyses can be performed for near approaches up to five days in advance [HAO10], so a computation time
on the order of minutes should be efficient enough for practical applications.

2 Background

2.1 Secure Computation

We use the standard real/ideal paradigm for defining security of a Multiparty Computation (MPC) protocol.

We let
comp
≈ denote computational indistinguishability of probability distributions, i.e., no PPT algorithm

can distinguish them with non-negligible probability.

Definition 2.1. We say that a (two party) protocol π securely computes (in the semi-honest model) a
deterministic functionality F if for every PPT algorithm A there is a PPT algorithm Sim such that

IDEALFSim
comp
≈ REALπA

Where IDEALFSim is the probability distribution of the output of the simulator Sim interacting with the
ideal functionality (i.e., Sim gets the input and output of the corrupted party) and REALπA is the probability
distribution of the view (protocol messages and internal randomness) of the corrupted party A during the
execution of the real protocol.

We briefly outline some of the relevant technology below.

2.1.1 Garbled Circuits

Garbled Circuits (GC) were originally proposed by Andrew Yao in oral presentations [Yao82, Yao86]. The
first formal proof of security for Yao’s GC protocol was given by Lindell and Pinkas [LP09], and later
formalized as a standalone cryptographic primitive by Bellare, Hoang and Rogaway [BHR12b, BHR12a].

Although there have been many improvements and variants on Yao’s original idea for garbled circuits,
the important features of GC-based MPC protocols are: (1) the protocol can be done in two rounds of
communication, independent of the size of the circuit. (2) Each garbled gate is encrypted using a symmetric-
key cryptosystem (e.g. AES) so evaluating the garbled circuit requires roughly a number of AES operations
proportional to the size of the circuit. (3) Transferring the input tokens requires OT, a public-key operation,
and the size of this public-key computation is roughly proportional to the size of the secret inputs.

More formally, a circuit garbling scheme as a triple of algorithms (G,GI,GE) where G(1k, C) takes
as input a security parameter k and circuit C and outputs some garbled circuit Γ and garbling key gsk.
X ← GI(x, gsk) converts an input x and a gsk into a garbled input X, and y ← GE(Γ, X) evaluates a garbled
circuit Γ on an garbled input X. We only consider schemes that are projective, namely X ← GI(x, gsk)
can be decomposed into garbling the bits of x, namely X ← GI(0, x0, gsk), . . . , GI(n, xn, gsk). Correctness
means that y should be equal to C(x). The security property is that, given Γ and X, nothing is revealed
about x beyond what is revealed by the output. More formally,

4

Correctness For correctness, we require that for any circuit C and input x we have that that:

Pr [C(x) = GE(Γ, X)] = 1

where (Γ, gsk)← G(1k, C) and X ← GI(x, gsk).

Security For security, we require that there is a PPT simulator CircSim such that for any C, x, we have
that:

(Γ, X)
comp
≈ CircSim

(
1k, C, C(x)

)
where (Γ, gsk)← G(1k, C) and X ← GI(x, gsk).

In recent years, there have been many extremely efficient implementations of garbled circuits including
FastGC [HEKM11], VMCrypt [Mal11], the billion-gate compiler [KSS12], JustGarble [BHKR13], TASTY
[HKS+10], ABY [DSZ15], OblivM [LWN+15] and Frigate [MGC+16].

2.1.2 Secret-sharing based Protocols

Secret-sharing based protocols were first introduced by works of GMW [GMW87], or BGW [BOGW88]
and CCD [CCD88]. Although these three protocols are all based on secret-shared computations, each uses
different mechanisms and has different security models (honest vs. no honest majority, the existence of
Oblivious Transfer, etc.). In these protocols, each player begins by secret-sharing [Sha84] her private inputs
among all the players. The players then engage in a protocol to compute the given circuit, gate-by-gate,
on the shares. The GMW protocol requires OT for each multiplication gate, while the BGW protocol is
information-theoretic and computing each gate requires only linear algebra (along with the assumption that
a strict majority of players are honest). The important features of secret-sharing based protocols are: (1)
the round complexity of the protocol is proportional to the depth of the circuit. (2) The GMW protocol
requires a number of OTs roughly proportional to the number of multiplication gates in the circuit.

There have been many practical implementations of GMW-based MPC protocols including VIFF [DGKN09],
TinyOT [NNOB12] and Wysteria [RHH14]. The Sharemind platform [BLW08] provides a general-purpose
platform for secure computation based on the BGW protocol. The Sharemind platform has been used
to perform conjunction analyses [KW14a]. A more detailed comparison of our work with the Sharemind
implementation can be found in Section 6.2.

Archer et al. provide a survey on the state of practical MPC protocols [ABPP15].

2.1.3 Online/Offline Model of Secure Computation

Our construction works in the online/offline model of computation, and we briefly review the model here.
The idea behind the online/offline model is that certain amounts of cryptographic material can be computed
independently of the input, such that it can be stored and then recalled during the live computation when the
inputs are available. To improve efficiency, we split our secure computation into two phases: the offline phase
where input-independent data is precomputed and the online phase where input-dependent computations
occur. Early research in this area was done by Beaver [Bea95, Bea97], and the power of this model continues
to be demonstrated in works such as Ishai et al. [IKM+13] and have found use in implementations as
well [BDOZ11, DPSZ12]

Th offline phase may involve communication between the parties – as long as that communication is
independent of their private inputs. In some situations, we can use the aid of an offline dealer that only
participates during the offline phase and contributes no inputs nor receives any outputs during the online
phase, but instead distributes correlated randomness to the parties. Secondly, we can talk about two kinds
of pre-computed data: those that remain persistent across multiple online invocations (e.g. public keys
and parameters being sent in advance), and those that are used and consumed (e.g. one-time pads being
sent in advance). Then, during the online phase, cryptographic material from the offline phase is used in
conjunction with the inputs in order to do the live computation. We will see many instantiations of this in
the forthcoming sections.

5

OT

(r0, r1) b
rb

Oblivious Transfer

SISO-M

(x0, y0) (x1, y1)
z0 z1

z0 + z1 = (x0 + x1)(y0 + y1)

Shared-input-shared-output multiplication

SO-M
x y
z0 z1

z0 + z1 = xy

Shared-output multiplication

Figure 2: The basic functionalities of Oblivious Transfer (OT), and oblivious multiplication

2.2 Oblivious Transfer

Oblivious transfer (OT) is a cryptographic primitive introduced by Rabin [Rab05], and we use the 1-out-of-2
variant introduced by Even-Goldreich-Lempel [EGL82]. In this variant, a Sender holds two string values x0
and x1 and the Receiver holds a choice bit b. The Receiver should get xb without learning anything about
x1−b and without the Sender learning anything about b. This can be viewed as a secure protocol for the
functionality OT((x0, x1); b) = (⊥;xb), where ⊥ denotes the empty message. We write OTm to indicate that
the strings x0 and x1 are of length m. Oblivious transfer can be implemented under a variety of standard
assumptions (cf. Goldreich’s book [Gol01, Gol04] for details).

2.3 Shared Arithmetic Triples (Oblivious Linear-function Evaluation)

Oblivious linear function evaluation is a natural extension of OT, where one party (e.g. the Sender) holding
two values a, b ∈ F and another party (e.g. the Receiver) holding some value x ∈ F. The goal is to have the
Receiver get ax+ b without learning a, b and without the Sender learning x.

We consider two alternative, equivalent functionalities: one of shared-input-shared-output multiplication
(SISO-M), and one of just shared-output multiplication (SO-M). Due to the symmetric nature of these
notions, we refer to the two parties as Alice and Bob instead of the Sender and Receiver.

For SISO-M, Alice and Bob hold shares of two field elements, x, y and they would like to obtain shares
of the product. In particular, Alice holds x0, y0 ∈ F and Bob holds x1, y1 ∈ F and the goal is to have Alice
obtain a random z0 ∈ F and Bob obtain z1 such that (z0 + z1) = (x0 + x1) · (y0 + y1). Note that since each
of the two outputs is uniformly distributed over the field, each party learns no additional information about
the other party’s input. In the shared-output version, Alice holds x, Bob holds y and they want to obtain
z0 and z1 such that (z0 + z1) = x · y. See Figure 2.

2.4 Conjunction Analysis Calculations

Before we describe our secure conjunction analysis computation, we review the problem of computing it in
the clear. Our secure computation solution is based on Alfano’s method [Alf05].

Each satellite is modelled as a spherical object, and thus its dimensions are completely captured by a
single parameter, its radius. Although the radius is not particularly sensitive, our solution will hide the

6

Figure 3: The hardbody of radius Ra+Rb traces out a collision tube through the combined density ellipsoid.
The probability of collision is the probability mass of the density function inside the collision tube.

Cross section of pdf
Cross section of
collision tube

Figure 4: The Encounter Plane

radius as well the trajectory information. Each satellite operator’s private input has four parts

Position: pa,pb in R3

Velocity: va,vb in R3

Error: Covariance matrices Ca,Cb in R3×3

Radius: Ra, Rb in R

Private inputs from each satellite operator.

Each satellite is assumed to deviate from its position, p, and these deviations are assumed to be normally
distributed with covariance matrix2 C. Thus each satellite’s physical location is given by p +N (C), These
normal distributions are truncated at eight standard distributions [Alf07] resulting in a “density ellipsoid.”
Although each satellite is on an elliptical path, in any short time window, the satellite’s trajectory is almost
linear, and during the course of the conjunction analysis, the two satellites are assumed to have linear relative
velocities. These simplifying assumptions were not introduced to facilitate a secure computation, but instead
are all part of the routine (insecure) conjunction analyses being performed on a daily basis.

Because the positional errors on the two satellites are assumed to be independent, we can shift all the
errors onto one body, and imagine a “hardbody” of radius Ra +Rb passing through a density ellipsoid with
covariance matrix Ca + Cb. This spherical hardbody traces a “collision tube” through the combined density
ellipsoid, and the probability of collision is then simply the probability mass of the density ellipsoid within
this collision tube (See Figure 3).

To simplify the calculation further, the three dimensional pdf is sliced, perpendicular to the relative
velocity, at the point of nearest approach (i.e., at the point where the density is largest). This defines the
“encounter plane”, and the cross-section of the ellipsoid in the encounter plane is a density ellipse (See Figure
4).

Thus the final probability is calculated by integrating the two dimensional density ellipse in the region
given by the cross-section of the hardbody. Given the combined radius R = Ra + Rb, the center of the

2These covariance matrices are usually assumed to be diagonal, i.e., the variances along the three principal axes are inde-
pendent. This assumption does not significantly affect the computation.

7

hardbody in the encounter plane, (xm, ym), and the lengths of the semi-principle axes (σx, σy) of the density
ellipse, we calculate the probability of collision, p.

p =
1

2πσxσy

∫ R

−R

∫ √R2−x2

−
√
R2−x2

f(x, y)dydx (1)

where the integrand is

f(x, y) = exp

[
−1

2

[(
x− xm
σx

)2

+

(
y − ym
σy

)2
]]

Changing variables, this becomes

p =
3√

8πσx

∫ R

−R
g(x)dx (2)

where the integrand is

g(x) =

[
erf

(
ym +

√
R2 − x2√

2σy

)

+ erf

(
−ym +

√
R2 − x2√

2σy

)]
exp

(
−(x+ xm)2

2σ2
x

)
This integral does not have a closed form, and Alfano suggests approximating this integral using Simpson’s

Rule (i.e., approximating the integral using arcs of parabola). The complete calculation is described in
Algorithm 1. A more thorough discussion of the mathematics involved is in Appendix A. We also apply a
change-of-variables z = x/R so that the square root inside the integral and the limits of integration does not
depend on inputs, which allows for greater flexibility in hardwiring constants into the circuit.

Algorithm 1 The conjunction analysis calculation

1: Inputs: {vi,Ci,pi, Ri}i∈a,b
2: vr ← vb − va
3: i← vr

|vr| , j← vb×va

|vb×va| , k← i× j

4: Q←
[
j k

]
5: C← QT (Ca + Cb)Q
6: (u,v)← Eigenvectors(C)
7: (σ2

x, σ
2
y)← Eigenvalues(C)

8: σx ←
√
σ2
x, σy ←

√
σ2
y

9: u← u
|u| , v← v

|v|
10: U←

[
u v

]
11:

[
xm
ym

]
← UTQT (pb − pa)

12:

p← 1

2πσxσy

∫ R

−R

∫ √R2−x2

−
√
R2−x2

f(x, y)dydx

13: Where

f(x, y) = exp

[
−1

2

[(
x− xm
σx

)2

+

(
y − ym
σy

)2
]]

14: Return: p

8

G1: −1 //G1 is the constant value −1
G2: ∗ G1 I1 //G2 is −1 ∗ I1
G3: + I2 G2 //G3 is I2− I1
G4: < 0 G3 //G4 is 1 if I2− I1 < 0, else 0
G5: ∗ G4 I1 //G5 is I1 if I2− I1 < 0, else 0
G6: ∗ G4 G1 //G6 is −1 if I2− I1 < 0, else 0
G7: 1 //G7 is 1
G8: + G7 G6 //G8 is 1 if I2− I1 ≥ 0, else 0
G9: ∗ G8 I2 //G9 is I2 if I2− I1 ≥ 0, else 0
O1: + G9 G5 //output gate 1 is max(I1, I2).

Figure 5: A circuit that takes two inputs (I1 and I2) and returns the maximum of the two.

3 Our Techniques

Our construction uses an “augmented” arithmetic circuit, consisting of (integer) addition, multiplication
and division gates, with special gates for comparisons and bit-shifts, and we securely compute this circuit
gate-by-gate.

3.1 Basic Gates

The basic gates used in our construction are as follows:

• input: Input gates represent inputs in Z, and are represented with the prefix I, thus I3 is input gate 3.

• output: Output gates represent outputs in Z, and are represented with the prefix O, thus O2 is output
gate 2.

• const: Constant gates output a fixed constant. The constants are in Z (though we will later see that
they are within some bound), which means in particular that they may include negative integers. Thus
G20: −7 sets the value of gate 20 to −7.

• +: Addition gates take two integers (in Z) as inputs and output their sum. Note that subtraction gates
can be implemented using addition and multiplication gates since we are working over the integers,
thus for the remainder of the paper we eliminate subtraction gates from our discussion.

• ∗: Multiplication gates take two integers (in Z) as inputs and output their product. For example,
G100: ∗ G50 G51 represents that the output of gate G100 is the product of outputs of two gates G50
and G51.

• < 0: This is a less-than-zero gate. It takes an integer (in Z) as input and outputs 1 if the integer is
strictly less than 0. In particular, G100: < 0 G50 represents that the output of gate G50 is set to be 1
if and only if G50 < 0.

• >> c: This gate represents a shift-by-constant gate, though as we shall see, it will actually represent
truncation (via an implicit exponent reduction). The gate takes shifts an input by a public constant
that is the output of a const gate. For example, G100: >> c G50 G51 represents that the output of
gate G100 is G50 shifted to the right by G51.

9

3.2 Integer Representation and Implicit Denominator

Conceptually, the conjunction analysis computation works over the real numbers, and thus a few steps need
to be taken in order to represent them as finite-sized integers. One approach is to represent real numbers
using the standard IEEE floating point specification and perform arithmetic operations in that fashion. This
is the approach that was taken in [KW14a].

To leverage the power of arithmetic circuits, a natural choice would be approximate real numbers as
rationals. Thus we could approximate every r ≈ a/b and carry around two integers to represent each value.
Using this representation addition is somewhat complex, although division is essentially “free.”

After unsatisfactory performance using the rational representation, the representation that we use is
akin to that of fixed-width arithmetic. We use an implicit rational representation where the denominator
is some power of 2. This power is computed based on a static analysis of the input ranges and the circuit
itself, and is attached to each wire as public “metadata”. Using this representation, we can obtain as many
decimal places of accuracy as desired at the cost of the numerator growing larger. Because the denominator
is public, during a secure computation, each party can locally adjust their shares in order to arrive at a
common denominator. For example, if Alice holds x0/2

n and y0/2
m and Bob holds x1/2

n and y1/2
m, then

they can locally convert the x shares to have denominator max(2n, 2m) by multiplying by 2|n−m| to the
shares with the smaller denominator.

The numerators are represented as m-bit two’s-complement signed integers, and m can be chosen large
enough that during the course of evaluation it will never overflow. To further ensure non-overflow, we use
these shift gates as accuracy truncation rather than an actual shift: namely anytime we shift the numerator,
we also implicitly shift the denominator, hence not changing the overall number. Therefore, shift gates can
be thought of as truncation gates.

3.3 Combining GC with Arithmetic GMW

We compute (integer) addition and multiplications natively using GMW. To compute comparison and shift
gates, we represent them as Boolean circuits and then evaluate them using GC. The GC must take two secret-
inputs and compute a secret sharing of the output of the gate. Since the inputs are arithmetically secret
shared, one must first convert them to bits before inputting them into the Boolean circuit that computes
an augmented gate, and then convert them back into arithmetic shares. We explain how two parties can
perform these computations in Algorithms 2 and 3. Share conversion of this nature has been investigated in
previous works, e.g. Yu and Yang [YY12].

Algorithm 2 Share-converted Less-Than-Zero

1: Hardwired: A modulus M = 2m

2: Inputs: Alice holds x0, Bob holds x1. Alice additionally provides a random R
3: x← x0 + x1 (mod M) using standard m-bit add-with-carry circuit
4: b← sgn(x)
5: Return: z1 = b+R (mod M) to Bob. Alice sets z0 = −R (mod M) herself.

Algorithm 3 Share-converted shift-right-by-constant

1: Hardwired: A modulus M = 2m and a shift constant c.
2: Inputs: Alice holds x0, Bob holds x1. Alice additionally provides a random R
3: x← x0 + x1 (mod M) using standard m-bit add-with-carry circuit
4: y ← x >> c by duplicating the sign bit wire and dropping c rightmost wires
5: Return: z1 = y +R (mod M) to Bob. Alice sets z0 = −R (mod M) herself.

Representing Mathematical Functions as Circuits: Evaluating the integral given in Equation 2
requires division, exp(·),

√
·, and erf(·). We explain how we chose to implement these functions using our

circuits.

10

Circuit Representation for Division: We implement integer division using repeated subtraction.
Using known bounds on the inputs, we can track maximum and minimum values for each gate in the circuit,
and using this (public) meta information, we can bound the number of subtractions necessary for each
division in the circuit.

Circuit Representation for exp(·): We represent the function exp(·) using a degree-24 Taylor series.
We hard-code the Taylor coefficients as constants in the circuit.

Circuit Representation for
√
·: To approximate a square root, we use the iterative Babylonian Algo-

rithm. Given an input S, and an initial estimate x0, the Babylonian Algorithm computes

xn+1 =
1

2

(
xn +

S

xn

)
For increased efficiency, we compute multiple steps at once, i.e., computing xn+4 as a ratio of two degree
16 polynomials in S and x0. For our calculations, we do 6 batches of degree 16 each to ensure a sufficient
degree of accuracy.

Circuit Representation for erf(·): Recall

erf(x) =
2√
π

∫ x

0

e−t
2

dt

Unfortunately, erf has no closed-form solution, so we need a method for approximating erf using arithmetic
circuits. Taylor expansions of erf fare poorly outside of a very restricted domain (see Appendix D). Instead
of the Taylor expansion, we approximate 1− erf(x) using the degree 96 rational function:

1

(1 + a1x+ a2x2 + a3x3 + a4x4 + a5x5 + a6x6)16

Where

a1 = .3275911 a4 = .0001520143
a2 = .254829592 a5 = .0002765672
a3 = .0092705272 a6 = .0000430638

When x > 0 this approximation has strong error bounds that are uniform for all values x. In particular, this
approximation has an absolute error less than 10−7 across the entire range [AS65].

4 Main Construction

We now describe our main construction, which is the semi-honest two-party secure computation of the
conjunction analysis functionality in the online/offline model. We let πCA denote the protocol we are about
to describe. We first describe how to precompute the cryptographic resources during the offline phase.

4.1 Precomputation of Cryptographic Resources

In the offline preprocessing phase, we generate three cryptographic “resources” for later use.

4.1.1 Pregenerated Random OTs

Our computation requires executing a huge number of OTs. Using a now standard trick due to Beaver
[Bea95], we can generate random OTs during the precomputation phase and then later “consume” these
random OTs during the online computation.

To pregenerate a random OT, the Sender holds random (r0, r1) and the Receiver holds a random bit z.
After running OT on these random values, so the Receiver gets rz. We now describe how to use this random
OT to perform an actual OT in the online phase.

Now suppose they want to run OT on actual inputs (s0, s1) for the sender and b for the Receiver. To
begin, the Receiver sends w = z⊕ b, then the Sender sends to the Receiver (q0, q1) = (s0⊕ r0⊕w, s1⊕ r1⊕w).
Finally the Receiver outputs t = qb ⊕ rz.

11

There are two methods by which the participants can generate the necessary random OT instances
during the online phase. (1) The participants can generate a small number of OT instances and then use OT
extension [IKNP03] to extend these to a huge number of OTs. (2) They can make use of a trusted dealer
who simply provides correlated randomness to the two players, i.e., the dealer will generate three random
values (r0, r1, z) and provide r0, r1 to Alice and z, rz to Bob.

4.1.2 Pregenerated Random Triples

Similar to OTs, for shared arithmetic triples, we can generate random arithmetic triples in the precomputa-
tion phase. We outline the technique on how to actually generate shared-output versions of these, which is
due to the work of Ishai et al. [IPS09]. This technique works in batches of size t and makes use of OTs.

Suppose Alice holds a1, . . . , at and Bob holds b1, . . . , bt and they want to compute shares of all ai · bi. In
other words, they want to compute a SO-M (see Figure 2). Let k = 2t and n = ck where c is a constant.
Suppose we have t distinct evaluation points ζi and n distinct evaluation points θi, distinct from the ζs.
Bob: Let B(x) be a random degree k − 1 polynomial such that B(ζi) = bi for i = 1 . . . t. Such a B can be
found by interpolation. Sample the polynomial at the points θi to get yi = B(θi) for i = 1 . . . n. Sample
L ⊂ {1, . . . , n} at random of size t+ k − 1. Set vi = yi if i ∈ L, and vi to be random if i /∈ L. Send the vis
to Alice.
Alice: Let A(x) be the unique degree t− 1 polynomial such that A(ζi) = ai for i = 1 . . . t. Such an A can be
found by interpolation. Let Alice choose R(x), a random degree t+ k − 2 polynomial. Compute xi = A(θi)
and ri = R(θi) for i = 1 . . . n. Set wi = xi · vi − ri.
Alice and Bob: For each i = 1 . . . n, Bob plays the role of the Receiver in an OT protocol with Alice, who
plays the role of the Sender. Bob sets his bit b to be 1 if and only if i ∈ L, and Alice sets her messages
x1 = wi and x0 to be random.
Bob: Bob sets Q to be the unique polynomial of degree t + k − 2 with Q(θi) = wi for i ∈ L, again via
interpolation. Bob sets bobi = Q(ζi), Alice sets alicei = R(ζi), for i = 1 . . . t. These are the output shares
z0,i = alicei and z1,i = bobi for Alice and Bob, respectively.

To see why this works, observe that Q+R = A ·B, and so bobi +alicei = Q(ζi) +R(ζi) = A(ζi) ·B(ζi) =
ai · bi.

To convert these into shared-input-shared-output triples, we proceed as follows: Suppose Alice holds
x0, y0 and Bob holds x1, y1. They want to compute shares z0 and z1 of (x0 +x1)(y0 + y1). This is just equal
to x0y0 +x0y1 +x1y0 +x1y1. They can make two calls to the above protocol, once with x0 and y1 as inputs,
and once with x1 and y0 as inputs, which allows us to get shares for the cross-terms x0y1 and x1y0.

4.1.3 Pregenerated Garbled Circuits

Our protocol will use garbled circuits to compute the shift and comparison gates on secret-shared values.
Because the circuit garbling procedure is input-independent, we perform a small precomputation here where
we generate all the Γ during this phase.

Our garbled circuits implementation uses a fixed-key blockcipher (AES) as described in JustGarble
[BHKR13]. We do not include optimizations like free XOR [KS08, KMR14, App13] or half-gates [ZRE15].

4.2 Online Phase

For the online phase, we use the arithmetic version of the Goldreich-Micali-Wigderson [GMW87] paradigm:
each party secret shares his or her inputs, then performs gate-by-gate operations as described below. Alice
and Bob’s inputs are denoted X0, Y0 and X1, Y1 respectively.

• For every addition and subtraction gate, Alice and Bob respectively add or subtract their local shares
Z0 = X0 ± Y0 and Z1 = X1 ± Y1.

• For every multiplication gate, Alice and Bob consume a shared triple to obtain Z0 and Z1 as follows.

In order to “consume” a precomputed multiplication triple, we do the following steps. Suppose Alice
holds X0, Y0 and Bob holds X1, Y1, and they wish to compute shares Z0 for Alice and Z1 for Bob such
that (Z0 + Z1) = (X0 +X1)(Y0 + Y1).

12

Suppose we have a pregenerated triple, i.e., two random values A and B and we let A · B = C.
Now suppose Alice holds random shares A0, B0, C0 and Bob holds random shares A1, B1, C1 where
A0 + A1 = A, B0 + B1 = B, C0 + C1 = C. Then by “consuming” this random triple, Alice and Bob
can compute shares of Z as follows:

Alice locally computes W0 = X0−A0, V0 = Y0−B0, Bob locally computes W1 = X1−A1, V1 = Y1−B1.

Alice sends Bob W0, V0 and Bob sends Alice W1, V1.

Alice locally computes Z0 = C0 + (W0 +W1)Y0 + (V0 + V1)X0 − (W0 +W1)(V0 + V1).

Bob locally computes Z1 = C1 + (W0 +W1)Y1 + (V0 + V1)X1 − (W0 +W1)(V0 + V1).

Observe that Z0+Z1 = (C0+C1)+(W0+W1)(Y0+Y1)+(V0+V1)(X0+X1)−(W0+W1)(V0+V1), which
in turn is equal to C+(X−A)Y+(Y−B)X−(X−A)(Y−B) = C+Z−AY+Z−BX−Z+BX+AY−C =
Z.

• For every shift gate, Alice and Bob’s shares are X0 and X1 and they want to shift (X0 + X1) by
some publicly known amount N . This is accomplished using a (precomputed) garbled circuit comput-
ing Algorithm 3, where Alice sends Bob the garbled circuit and then Bob uses OT to obtain labels
corresponding to his inputs.

• For every comparison gate (optimized as a less-than-zero gate), Alice has her share X0 and Bob has his
share X1 and they want to see if (X0 +X1) is positive or not. This is done via a circuit that computes
Algorithm 2. We then use the garbled version of this circuit (that was precomputed earlier) to evaluate
it where Alice sends Bob the garbled circuit and then Bob uses OT to obtain labels corresponding to
his inputs.

Note that this process can be parallelized across an entire layer of the circuit, so that interaction occurs
at each level of the arithmetic circuit rather than at each gate (excluding the free gates). In the end, the
output values are shared as O0 and O1, whereupon Alice and Bob reveal to each other their shares to obtain
the final output.

4.3 Security Proof

We now state our main theorem.

Theorem 4.1. Assume the existence of an OT functionality (we work in the OT-hybrid model) and a secure
garbling scheme (G,GI,GE) (which can be built from any one-way function). Then protocol πCA securely
computes the conjunction analysis functionality.

Proof Sketch. We show how a PPT simulator Sim can efficiently simulate the view of a party given only
their input and the output of the CA in the OT-hybrid model. We let CircSim denote the garbled circuit
simulator. We refer the reader to [IPS09] for a proof of security of the shared triples generation in the
OT-hybrid model. Suppose we have a topological ordering of the M wires W0, . . . ,WM (we can associate
the output wire(s) of a gate with the gate itself). We go through a standard hybrid argument and define
a series of hybrids of views Hybi in which the real gates are replaced with simulated gates, gate by gate.
Next, we show how to generate simulated shares for the output of a gate given the simulated input shares
(of the corrupted party) of a gate.

For input gates, if the input belongs to the corrupted party, then Sim has the actual value and can secret
share it. Otherwise, if the input belongs to the other party, the simulator generates a random share and
sets the simulated received share as that random share. For output gates, since Sim knows the output, given
the input share, it will claim the received share is the correct output minus its own share. For addition
and subtraction gates, since no interaction is needed, input shares are simply added or subtracted to obtain
the output shares. For multiplication gates, by the security of the offline phase of triple generation due
to [IPS09] and the security of basic GMW protocol, the share of the output wire can be set to be uniformly
random. Finally, the less-than-zero and shift gates are calculated via a garbled circuit, and is the only
source of asymmetry between the two parties. When Alice is being simulated, since she is the garbled circuit
generator and chooses R, the simulator also generates a garbled circuit honestly and chooses a random R and

13

sets that as Alice’s simulated output share. On the other hand, when Bob is being simulated, the simulator
first chooses a uniformly random output share R′, and then invokes CircSim on R′ to obtain a simulated
garbled circuit and input labels (X,Γ). Then, in order to generate the view for Bob, it makes the OT-hybrid
oracle return X and simulates a message Γ from Alice.

This concludes the description of how the simulator Sim simulates wires. The entire circuit is then
simulated gate by gate.

5 Extending the Construction

In this section, we show how to extend our construction to provide security against semi-malicious adversaries.
In the malicious security model, corrupted parties are allowed to deviate arbitrarily from the prescribed
protocol, and the protocol is secure if nothing revealed beyond what is revealed by the output alone.

Our extended construction considers a slightly weaker model, where in the presence of malicious behavior,
the honest party will detect such activity and will immediately abort the protocol. The event of abort is
information, so the honest player’s decision to abort the protocol, may leak information – but we allow this
leakage.

The construction in this section achieves security against malicious adversaries with correlated abort (see
e.g. [IKO+11]), i.e., nothing is revealed except the output, unless in the case of an abort where nothing is
learned except that an abort occurred.

In order to extend our solution from the semi-honest model to this stronger setting, we note that our
shared triples generation is only secure in the semi-honest model, and thus in order to be able to now securely
precompute triples we must resort to another technique. There are several works (e.g. [BDOZ11, DPSZ12]
and their follow-up research) that focus on optimizing this offline construction, and our novel contribution is
focused on the online phase. Therefore, we employ a secure two-party computation solution with an offline
phase that assumes the assistance of a semi-trusted dealer.

We describe how to securely evaluate an arithmetic circuit C(x1, . . . , xn, y1, . . . , yn) containing +,−,×, <
0, >> c gates over the integers, where < 0 is the “less-than-zero” gate, and >> c is the “arithmetic-shift-
right-by-c” gate (we also include “constant” gates). In terms of representation, we bound the total number
of bits of any intermediate value in the computation and choose a modulus N that is twice as large as the
bound plus a security parameter, and use [N/2, N/2) as the set of representatives for the integers modulo
N . We henceforth take all arithmetic to be modulo N , where comparison to zero and shift still makes sense
because we are taking the half-interval around zero representation.

Suppose Alice holds the inputs x1, . . . , xn and Bob holds the inputs y1, . . . , yn. We will evaluate each gate
individually, and thus evaluate the entire circuit by evaluating the “tree” of gates inductively (this is done
in parallel to the furthest extent possible, we only wait if one gate depends on another gate). For addition,
subtraction, multiplication, and constant gates, we employ an arithmetic MAC style strategy for evaluation
(see, e.g. [BDOZ11]) which we describe here.

Let g be a gate, and let L and R be the left and right inputs, respectively, and let O = g(L,R) be the
output of the gate. Let MACα,β(x) be αx+ β. We inductively assume that the two inputs are shared and
MACced in the following fashion:

• Alice and Bob each privately hold their own global MAC key, αA and αB , and they each hold a unique
β for each wire in the circuit.

• Let βLA, β
L
B , β

R
A , β

R
B denote the β for the left and right inputs, for Alice and Bob.

• Alice will then hold random shares xL and xR and Bob will hold random shares yL and yR subject to
xL + yL = L and xR + yR = R.

• Alice will hold wLA = MACαB ,βL
B

(xL) and wRA = MACαB ,βR
B

(xR).

• Bob will hold wLB = MACαA,βL
A

(yL) and wRB = MACαA,βR
A

(yR).

• GOAL: Obtain xO, w
O
A , β

O
A for Alice and yO, w

O
B , β

O
B for Bob such that the inductive invariants xO +

yO = O, wOA = MACαB ,βO
B

(xO), and wOB = MACαA,βO
A

(yO) hold.

14

For each gate type, we describe what is required as pregenerated content, and what is done online. As
the first step to setup, the dealer generates αA and αB and sends them to Alice and Bob respectively.

Constant Gates. For constant gates, if the constant is c, the dealer generates βA, βB at random, x at
random, and sets y = c − x. It then computes wA = MACαB ,βB

(x) and wB = MACαA,βA
(y). It sends

x,wA, βA to Alice and y, wB , βB to Bob to store. During the online phase, Alice and Bob recall these values
from storage when needed.

Addition and Subtraction Gates. For addition/subtraction gates, no pregeneration by the dealer is
necessary. Indeed, Alice computes βOA = βLA±βRA , wOA = wLA±wRA, and xO = xL+xR, and Bob performs the
analogous computations. Then it is the case that the inductive invariant holds since: xO + yO = xL ± xR +
yL± yR = (xL + yL)± (xR + yR) = L±R = O, and wOA = wLA±wRA = MACαB ,βL

B
(xL)±MACαB ,βR

B
(xR) =

(αB · xL + βLB)± (αB · xR + βRB) = αB(xL ± xR) + (βLB ± βRB) = αB · xO + βOB = MACαB ,βO
B

(xO).

Multiplication Gates. For multiplication gates, the pregeneration consists of an authenticated “triple”.
The dealer generates two random numbers a, b and computes c = a · b. The dealer then creates authenti-
cated shares for each of these three values as follows. Randomly select βaA, β

b
A, β

c
A, β

a
B , β

b
B , β

c
B , and xa, xb, xc

at random, and set ya = a − xa, yb = b − xb, yc = c − xc. It then sets waA = MACαB ,βa
B

(xa), wbA =

MACαB ,βb
B

(xb), w
c
A = MACαB ,βc

B
(xc) and waB = MACαA,βa

A
(ya), wbB = MACαA,βb

A
(yb), w

c
B = MACαA,βc

A
(yc).

It sends xa, xb, xc, w
a
A, w

b
A, w

c
A, β

a
A, β

b
A, β

c
A to Alice, and ya, yb, yc, w

a
B , w

b
B , w

c
B , β

a
B , β

b
B , β

c
B to Bob.

During the online step, each party subtracts their a share from their left share (i.e., subtracting w, x, β
simultaneously), and the b share from their right share. The resulting differences, call them r and s are
mutually revealed by sending each other the resulting MAC and value, and mutually verified. Then each
computes their local result as the sum of their c share with the opened r times their right share, the opened
s times their left share, and the opened value r · s.

For the remaining two gate types, < 0 and >> c, we must take additional care because there are also
MAC values attached to each wire, so simply running Algorithms 2 and 3 will not suffice. For example, if
we are computing a < 0 gate, then we want to compute authenticated shares of O = (LA + LB) < 0, where
O is 0 if it is false and 1 if it is true. The dealer will precompute both possible outputs: an authenticated
sharing of 0 and of 1. However, in order to preserve privacy, we cannot reveal to either party which is the
sharing of 0 and which is the sharing of 1, otherwise they would learn the output. Thus, we have a “flip”
bit f , such that the output is flipped if f is 1. The parties share f : Alice holds fA, Bob holds fB such that
f = fA⊕fB . Thus, if we compute ((LA+LB) < 0)⊕fA⊕fB and reveal this Boolean result to both parties,
it properly indexes which authenticated share they should each use, and will be a correct sharing of O with
a MAC.

We model LTZ = ((LA + LB) < 0)⊕ fA ⊕ fB as a Boolean circuit: the addition is done via a straight-
forward adder-with-carry circuit, the comparison just looks at the sign bit, and it finishes with two XOR
gates. In order to securely evaluate it, we use the garbled circuit methodology with precomputation. The
dealer generates a garbled circuit and key (G, gsk) = GC(LTZ). The dealer also generates the garbled 0/1
labels for each input bit by calling the projective input garbler GI(i, 0, gsk), GI(i, 1, gsk) for all i < |input|.
The dealer sends G to Bob, and the wire labels (garbled input keys) to Alice. It also pregenerates random
OTs on behalf of Alice and Bob (i.e. it sends (r0, r1) to one party and (b, rb) to the other for random strings
r0, r1 and random bit b), so that the keys can be obliviously selected by Bob. During the online phase, Alice
selects the keys corresponding to her inputs and sends them to Bob, and uses oblivious transfer to select
his keys. Bob then evaluates G and sends back to Alice the result of G, which will then allow them both to
select a pregenerated authenticated sharing of the correct bit (generated above).

For shift-by-constant gates, there are multiple output bits, and we treat each bit individually and recon-
struct the output via the standard bits-to-integer

∑
ai2

i transformation, performed on the authenticated
shares.

6 Benchmarks

6.1 Internal Testing and Benchmarks

Our implementation takes 20 integer inputs, each representing real numbers as follows: an integer n represents
the real number n

220 . These 20 inputs correspond to the satellite trajectories of Party 1 and Party 2, namely

15

Gate Number
Input 20

Output 1
Constant 353
Addition 36435

Subtraction 95823
Multiplication 101574
Less-than-zero 32270

Shift-by-constant 526

Total 267002

Figure 6: The number of gates in the optimized circuit

the vectors for position (xi, yi, zi), velocity (vxi , vyi , vzi), error (σxi , σyi , σzi), and a radius Ri for i = 1, 2.
The output is a single integer representing the probability of collision in the same format.

We spent a significant amount of effort optimizing the circuit, and after optimization, the final circuit
contained 2.67× 105 gates (see Figure 6 for a breakdown).

6.1.1 Bounds and Error Tolerance

The goal of a conjunction analysis calculation is to facilitate decision-making and improve space situational
awareness. Because our system is providing a numerical approximation to an integral without a closed form,
it is important to ensure that the approximations provide sufficient accuracy to inform decision making.
As noted in [Alf07], due to the many simplifications used in practice both in mathematical terms (integral
approximation, rounding) and physical terms (curvature of the earth, relativistic effects), at some point,
the error in the conjunction analysis becomes dominated by these approximations. For example, if the true
collision probability is 0.00000001, it may be sufficient to obtain an estimate that has a fairly large relative
error. On the other hand, if the true collision probability is .15, then it a much higher (relative) accuracy
may be necessary to inform decision-making. The probability region between 10−1 and 10−7 is called the
“operational decision region,” [Alf07], and it is most important to maximize the (relative) accuracy for
probabilities within this region. Alfano suggests that within this region, estimating the probability to within
2 significant figures (which translates to roughly 1% relative error), should be enough to ensure accurate
decision making.

Internally, we evaluated the circuit on 2000 test cases and obtained the following error bounds:

Absolute error
|approx− true|

Relative error∣∣approx−true
true

∣∣
Min 9.000× 10−10 1.240× 10−8

Max 8.512× 10−4 19 (see remark below)
Avg 7.027× 10−5 9.623× 10−3

Error tolerance across all tests

Remark: In all cases where the relative error was extremely large, the true probabilities were extremely
close to zero, and the large relative error would not impact decision making, e.g. cases where the “true”
probability was 10−15, and we estimated 2 · 10−14.

If we focus on the operational decision region, we obtain much better bounds on the relative error.

Absolute error
|approx− true|

Relative error∣∣approx−true
true

∣∣
Min 9.000× 10−10 2.190× 10−6

Max 9.608× 10−5 2.543× 10−3

Avg 5.759× 10−7 1.208× 10−5

16

Error tolerance in the operational decision region

6.1.2 Benchmarks

We benchmarked our system on a virtual machine running 64bit CentOS 6.4. The machine had 8GB of
RAM, 4 processors, and 100GB of hard disk space.

We tested both pregeneration time and online run time between two parties for a single conjunction, as
well as disk space used. We present the average runtime over 2000 tests as well as bounds on the maximum
and minimum times.

Pregeneration Time
real 1m30s ± 15s
user 38s ± 15s
sys 27s ± 25s

The pregeneration phase also generates four files (two for each party): index0, index1, share0, share1.
The files index0, index1 index the gate information and are 555 kilobytes each. The files share0 and
share1 are contain the pregenerated garbled circuits, OTs and SISO-M shares needed for the computation.
The computation requires a huge number of these shares, and the file share0 is 5.2 gigabytes in size, while
share1 is 3.8 gigabytes. The file share0 is larger because this file contains the pre-generated garbled circuits.
These share files are needed for each computation, and are all consumed during the online phase.

Once the private inputs are learned, the online phase can be computed in the times below:

Online Time
real 5m2s ± 15s
user 4m59s ± 15s
sys 15s ± 10s

The fact that the real time is so much larger than the system time indicates that most of the time is
due to disk I/O, thus if the share files are stored in memory (say on a more powerful machine), then the
evaluation could be performed much faster.

6.2 Comparison with the Sharemind Implementation [KW14a]

Secure computation of conjunction analyses was one of the target use-cases for MPC in DARPA’s PROCEED
program, and consequently it has been used as a benchmark for other secure computation systems. Our
implementation was done in parallel with that of Kamm and Willemson[KW14a], but the design and goals
of these projects are fundamentally different. We focused on building a two-party protocol that was custom-
tailored to the problem of securely computing conjunction analyses. Kamm and Willemson focused on
building an IEEE 754 floating point library for the three-party Sharemind system, and used the conjunction
analysis application to exhibit the capabilities of their general platform.

Below, we highlight some of the main architectural differences between our implementation and that of
Kamm and Willemson. Our implementation is a two-party system built using GMW and garbled circuits,
whereas the Sharemind implementation is a three-party system based on the BGW protocol. Our system
uses public-key cryptography to ensure user privacy, whereas the BGW protocol is an information-theoretic
protocol that requires that at least two out of the three servers are non-colluding to ensure privacy. Our
system provides security against a malicious adversary with correlated abort, whereas the Sharemind system
only provides security against semi-honest adversaries. Our system uses fixed precision arithmetic, whereas
the Sharemind system implements IEEE 754 floating point arithmetic.

Kamm and Willemson [KW14a] report a computation time of 3m24s using single-precision floating point
operations and 4m6s using double-precision floats when distributed across 3 machines, each with 12 cores
running at 2.93 GHz and 48 GB of memory.

17

7 Conclusion

In this work, we described the design and implementation of a custom secure computation protocol to
compute the probability of satellite collisions. The underlying collision probability calculation requires
numerically estimating a complicated integral – something that was, until recently, beyond the reach of
secure computation techniques. We envision that our techniques can extend to other areas that require
secure numerical computations as well. In order to improve efficiency, we custom built and optimized an
augmented arithmetic circuit to estimate the collision probabilities. We constructed a secure computation
protocol then used a combination of GMW and garbled circuits to evaluate these augmented circuits, which
allowed us to evaluate our conjunction analysis circuit on the participants’ private inputs. Our secure
computation works in the offline/online model, where during the offline phase the parties work to generate
a large amount of correlated randomness in the form of OTs and shared arithmetic triples. Later, in the
online phase, this correlated randomness is consumed to facilitate the secure computation. Because of the
sheer quantity of correlated randomness needed, the limiting factor in our computation was disk I/O.

This work provides positive evidence for the fact that MPC technology is now capable of evaluating very
complex functions securely and efficiently.

References

[ABPP15] David W Archer, Dan Bogdanov, Benny Pinkas, and Pille Pullonen. Maturity and Performance
of Programmable Secure Computation. https://eprint.iacr.org/2015/1039, 2015.

[ABZS13] Mehrdad Aliasgari, Marina Blanton, Yihua Zhang, and Aaron Steele. Secure computation on
floating point numbers. In NDSS 2013. The Internet Society, February 2013.

[Alf05] Salvatore Alfano. A Numerical Implementation of Spherical Object Collision Probability. Jour-
nal of the Astronautical Sciences, 53(1):103–109, 2005.

[Alf07] Salvatore Alfano. Review of Conjunction Probability Methods for Short-term Encounters. In
Proceedings of the AAS/AIAA Space Flight Mechanics Meeting, volume 127 PART 1, pages
719–746, feb 2007.

[App13] Benny Applebaum. Garbling XOR gates “for free” in the standard model. In Amit Sahai, editor,
TCC 2013, volume 7785 of LNCS, pages 162–181. Springer, Heidelberg, March 2013.

[AS65] Milton Abramowitz and Irene A. Stegun, editors. Handbook of Mathematical Functions with
Formulas, Graphs, and Mathematical Tables. Dover, 1965.

[BDOZ11] Rikke Bendlin, Ivan Damg̊ard, Claudio Orlandi, and Sarah Zakarias. Semi-homomorphic en-
cryption and multiparty computation. In Kenneth G. Paterson, editor, EUROCRYPT 2011,
volume 6632 of LNCS, pages 169–188. Springer, Heidelberg, May 2011.

[Bea95] Donald Beaver. Precomputing oblivious transfer. In Don Coppersmith, editor, CRYPTO’95,
volume 963 of LNCS, pages 97–109. Springer, Heidelberg, August 1995.

[Bea97] Donald Beaver. Commodity-based cryptography (extended abstract). In 29th ACM STOC,
pages 446–455. ACM Press, May 1997.

[BHKR13] Mihir Bellare, Viet Tung Hoang, Sriram Keelveedhi, and Phillip Rogaway. Efficient Garbling
from a Fixed-Key Blockcipher. In Security and Privacy (SP), 2013 IEEE Symposium on, pages
478–492. Dept. of Comput. Sci. & Eng., Univ. of California, San Diego, La Jolla, CA, USA,
IEEE, may 2013.

[BHR12a] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Adaptively secure garbling with applica-
tions to one-time programs and secure outsourcing. In Xiaoyun Wang and Kazue Sako, editors,
ASIACRYPT 2012, volume 7658 of LNCS, pages 134–153. Springer, Heidelberg, December 2012.

18

[BHR12b] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled circuits. In Ting
Yu, George Danezis, and Virgil D. Gligor, editors, ACM CCS 12, pages 784–796. ACM Press,
October 2012.

[BLW08] Dan Bogdanov, Sven Laur, and Jan Willemson. Sharemind: A framework for fast privacy-
preserving computations. In Sushil Jajodia and Javier López, editors, ESORICS 2008, volume
5283 of LNCS, pages 192–206. Springer, Heidelberg, October 2008.

[BOGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In 20th ACM STOC,
pages 1–10. ACM Press, May 1988.

[CCD88] David Chaum, Claude Crépeau, and Ivan Damg̊ard. Multiparty unconditionally secure protocols
(abstract) (informal contribution). In Carl Pomerance, editor, CRYPTO’87, volume 293 of
LNCS, page 462. Springer, Heidelberg, August 1988.

[CR08] Sylvain Chevillard and Nathalie Revol. Computation of the error function erf in arbitrary
precision with correct rounding. In J. D. Bruguera and M. Daumas, editors, In RNC 8, the 8th
Conference on Real Numbers and Computers, pages 27–36, July 2008.

[CS10] Octavian Catrina and Amitabh Saxena. Secure computation with fixed-point numbers. In Radu
Sion, editor, FC 2010, volume 6052 of LNCS, pages 35–50. Springer, Heidelberg, January 2010.

[DGKN09] Ivan Damg̊ard, Martin Geisler, Mikkel Krøigaard, and Jesper Buus Nielsen. Asynchronous
multiparty computation: Theory and implementation. In Stanislaw Jarecki and Gene Tsudik,
editors, PKC 2009, volume 5443 of LNCS, pages 160–179. Springer, Heidelberg, March 2009.

[DPSZ12] Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty computation
from somewhat homomorphic encryption. In Reihaneh Safavi-Naini and Ran Canetti, editors,
CRYPTO 2012, volume 7417 of LNCS, pages 643–662. Springer, Heidelberg, August 2012.

[DSZ15] Daniel Demmler, Thomas Schneider, and Michael Zohner. ABY - A framework for efficient
mixed-protocol secure two-party computation. In NDSS 2015. The Internet Society, February
2015.

[EGL82] Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized protocol for signing con-
tracts. In David Chaum, Ronald L. Rivest, and Alan T. Sherman, editors, CRYPTO’82, pages
205–210. Plenum Press, New York, USA, 1982.

[FSW03] Pierre-Alain Fouque, Jacques Stern, and Jan-Geert Wackers. Cryptocomputing with rationals.
In Matt Blaze, editor, FC 2002, volume 2357 of LNCS, pages 136–146. Springer, Heidelberg,
March 2003.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzenmacher,
editor, 41st ACM STOC, pages 169–178. ACM Press, May / June 2009.

[GHL+14] Craig Gentry, Shai Halevi, Steve Lu, Rafail Ostrovsky, Mariana Raykova, and Daniel Wichs. Gar-
bled RAM revisited. In Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014,
volume 8441 of LNCS, pages 405–422. Springer, Heidelberg, May 2014.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A com-
pleteness theorem for protocols with honest majority. In Alfred Aho, editor, 19th ACM STOC,
pages 218–229. ACM Press, May 1987.

[Gol01] Oded Goldreich. Foundations of Cryptography: Basic Tools, volume 1. Cambridge University
Press, Cambridge, UK, 2001.

[Gol04] Oded Goldreich. Foundations of Cryptography: Basic Applications, volume 2. Cambridge Uni-
versity Press, Cambridge, UK, 2004.

19

[HAO10] Robert Hall, Salvatore Alfano, and Alan Ocampo. Advances in Satellite Conjunction Analysis.
In Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference,
2010.

[HEKM11] Yan Huang, David Evans, Jonathan Katz, and Lior Malka. Faster Secure Two-Party Computa-
tion Using Garbled Circuits. In In USENIX Security Symposium, 2011.

[HKS+10] Wilko Henecka, Stefan Kögl, Ahmad-Reza Sadeghi, Thomas Schneider, and Immo Wehrenberg.
TASTY: tool for automating secure two-party computations. In Ehab Al-Shaer, Angelos D.
Keromytis, and Vitaly Shmatikov, editors, ACM CCS 10, pages 451–462. ACM Press, October
2010.

[HW15] Brett Hemenway and William Welser. Cryptographers Could Prevent Satellite Collisions. Sci-
entific American, (February):28–29, feb 2015.

[HWIB14] Brett Hemenway, William Welser IV, and Dave Baiocchi. Achieving Higher-Fidelity Conjunc-
tion Analyses Using Cryptography to Improve Information Sharing. Technical report, RAND
Corporation, 2014.

[IKM+13] Yuval Ishai, Eyal Kushilevitz, Sigurd Meldgaard, Claudio Orlandi, and Anat Paskin-
Cherniavsky. On the power of correlated randomness in secure computation. In Amit Sahai,
editor, TCC 2013, volume 7785 of LNCS, pages 600–620. Springer, Heidelberg, March 2013.

[IKNP03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers effi-
ciently. In Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages 145–161. Springer,
Heidelberg, August 2003.

[IKO+11] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Manoj Prabhakaran, and Amit Sahai. Effi-
cient non-interactive secure computation. In Kenneth G. Paterson, editor, EUROCRYPT 2011,
volume 6632 of LNCS, pages 406–425. Springer, Heidelberg, May 2011.

[IPS09] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Secure arithmetic computation with no
honest majority. In Omer Reingold, editor, TCC 2009, volume 5444 of LNCS, pages 294–314.
Springer, Heidelberg, March 2009.

[KMR14] Vladimir Kolesnikov, Payman Mohassel, and Mike Rosulek. FleXOR: Flexible garbling for XOR
gates that beats free-XOR. In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014,
Part II, volume 8617 of LNCS, pages 440–457. Springer, Heidelberg, August 2014.

[KS08] Vladimir Kolesnikov and Thomas Schneider. Improved Garbled Circuit: Free XOR Gates and
Applications. In Proceedings of the 35th international colloquium on Automata, Languages and
Programming, Part II, ICALP ’08, pages 486–498, Berlin, Heidelberg, 2008. Springer-Verlag.

[KSS12] Benjamin Kreuter, Abhi Shelat, and Chih H Shen. Billion-gate secure computation with mali-
cious adversaries. In Proceedings of the 21st USENIX conference on Security symposium, Secu-
rity’12, page 14, Berkeley, CA, USA, 2012. USENIX Association.

[KW14a] Liina Kamm and Jan Willemson. Secure floating point arithmetic and private satellite collision
analysis. International Journal of Information Security, pages 1–18, 2014.

[KW14b] Toomas Krips and Jan Willemson. Hybrid model of fixed and floating point numbers in secure
multiparty computations. In Sherman S. M. Chow, Jan Camenisch, Lucas Chi Kwong Hui, and
Siu-Ming Yiu, editors, ISC 2014, volume 8783 of LNCS, pages 179–197. Springer, Heidelberg,
October 2014.

[LO13] Steve Lu and Rafail Ostrovsky. How to garble RAM programs. In Thomas Johansson and
Phong Q. Nguyen, editors, EUROCRYPT 2013, volume 7881 of LNCS, pages 719–734. Springer,
Heidelberg, May 2013.

20

[LP09] Yehuda Lindell and Benny Pinkas. A proof of security of Yao’s protocol for two-party compu-
tation. Journal of Cryptology, 22(2):161–188, April 2009.

[LWN+15] Chang Liu, Xiao Shaun Wang, Kartik Nayak, Yan Huang, and Elaine Shi. ObliVM: A program-
ming framework for secure computation. In 2015 IEEE Symposium on Security and Privacy,
pages 359–376. IEEE Computer Society Press, May 2015.

[Mal11] Lior Malka. VMCrypt: modular software architecture for scalable secure computation. In Yan
Chen, George Danezis, and Vitaly Shmatikov, editors, ACM CCS 11, pages 715–724. ACM
Press, October 2011.

[MGC+16] Benjamin Mood, Debayan Gupta, Henry Carter, Kevin Butler, and Patrick Traynor. Frigate:
A Validated, Extensible, and Efficient Compiler and Interpreter for Secure Computation. In
Proceedings of the IEEE European Symposium on Security and Privacy (Euro S&P), 2016.

[NNOB12] Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank Burra. A
New Approach to Practical Active-Secure Two-Party Computation. CRYPTO, 7417 LNCS:681–
700, 2012.

[PS15] Pille Pullonen and Sander Siim. Combining secret sharing and garbled circuits for efficient
private IEEE 754 floating-point computations. In Michael Brenner, Nicolas Christin, Benjamin
Johnson, and Kurt Rohloff, editors, FC 2015 Workshops, volume 8976 of LNCS, pages 172–183.
Springer, Heidelberg, January 2015.

[Rab05] Michael O. Rabin. How to exchange secrets with oblivious transfer. Cryptology ePrint Archive,
Report 2005/187, 2005. http://eprint.iacr.org/2005/187.

[RHH14] Aseem Rastogi, Matthew A. Hammer, and Michael Hicks. Wysteria: A programming language
for generic, mixed-mode multiparty computations. In 2014 IEEE Symposium on Security and
Privacy, pages 655–670. IEEE Computer Society Press, May 2014.

[Sha84] Adi Shamir. Identity-based cryptosystems and signature schemes. In G. R. Blakley and David
Chaum, editors, CRYPTO’84, volume 196 of LNCS, pages 47–53. Springer, Heidelberg, August
1984.

[UCS15] Union of concerned scientists. http://www.ucsusa.org/, 2015. Accessed 2015-11-09.

[VO09] Associated Press Veronika Oleksyn. What a mess! experts ponder space junk problem. USA
Today, February 2009.

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In 23rd FOCS,
pages 160–164. IEEE Computer Society Press, November 1982.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In 27th
FOCS, pages 162–167. IEEE Computer Society Press, October 1986.

[YY12] Ching-Hua Yu and Bo-Yin Yang. Probabilistically correct secure arithmetic computation for
modular conversion, zero test, comparison, MOD and exponentiation. In Ivan Visconti and
Roberto De Prisco, editors, SCN 12, volume 7485 of LNCS, pages 426–444. Springer, Heidelberg,
September 2012.

[ZRE15] Samee Zahur, Mike Rosulek, and David Evans. Two Halves Make a Whole. In CRYPTO, volume
9057, pages 220–250, 2015.

21

http://eprint.iacr.org/2005/187

Appendix

A Details on Projecting into the Encounter Plane

Calculating Encounter Plane:
Recall the inputs to the calculation are, two velocity vectors va,vb in R3, two covariance matrices Ca,Cb

in R3×3, two position vectors pa,pb in R3 and two radii Ra, Rb in R.
The encounter plane is defined to be the plane perpendicular to the relative velocity of the objects,

containing the point pa. The point pa will be taken as the origin in the encounter plane. Calculating a basis
for the encounter plane can then be done as follows:

• Define the relative velocity vr = vb − va

• Define the encounter coordinates

i =
vr
|vr|

, j =
vb × va
|vb × va|

, k = i× j

Thus the encounter plane is the j-k plane, and j,k form an orthornormal basis for this plane.

• Let
P =

[
i j k

]
Then P is the change-of-basis matrix that takes the standard basis to the (i, j,k)-basis, and the matrix
P is orthogonal, i.e., PTP = I.

Projecting Into the Encounter Plane:
Once the encounter plane is defined, we project the entire ellipsoid into the encounter plane.

• Let Q =
[
j k

]
. Then Q is the 3× 2 matrix that takes vectors in the encounter plane (written in the

j-k basis) to vectors in R3 in the standard basis. The 2 × 3 matrix QT projects vectors in R3 to the
encounter plane (relative to the j− k basis).

• Then the covariance matrix, projected into the encounter plane becomes

C = QT (Ca + Cb)Q

This j-k basis is not convenient to work in, however, because we would like to choose a basis for the
encounter plane where the basis vectors are aligned with the principle axes of the ellipse. Thus we
need to diagonalize the (symmetric) matrix C. See Appendix B for further discussion.

• Let U be the 2× 2 matrix whose columns are orthonormal eigenvectors of C, thus

UTCU =

[
σ2
x 0

0 σ2
y

]
The eigenvalues of C are the scalars σ2

x, σ
2
y. Because C is a covariance matrix it will be positive-definite,

so the square roots of its eigenvalues will be real. See Appendix C for notes on calculating eigenvectors
and eigenvalues of a symmetric 2× 2 matrix.

• We are only interested in the relative positions of the objects, translating, we find that the center of
the “hardbody” is at pb − pa (in R3). Projecting this onto the encounter plane (multiplying by QT),
and then putting it in the eigenvector basis (multiplying by UT), we have[

xm
ym

]
= UTQT (pb − pa)

22

B Mathematics Ellipses and Ellipsoids

In this section we review some of the basic mathematical facts concerning ellipses.

B.1 Definition of an Ellipse

An ellipsoid whose principle axes are parallel to the coordinate axes and centered at the origin is given by
an equation

x2

a2
+
y2

b2
+
z2

c2
= 1 (3)

Where a, b, c are the lengths of the semi-principle axes of the ellipse.3 We can write equation 3 concisely
as

xTAx = 1 (4)

where

x =

 x
y
z

 , A =

 a2 0 0
0 b2 0
0 0 c2

Since xTAx = xTATx, then xTAx = xT ((A + AT)/2)x. Since (A + AT)/2 is symmetric, when dealing

with quadratic forms, we can always assume A is symmetric.
This leads to a simple formulation of the formula for an ellipse when the principle axes of the ellipse

are not aligned with the coordinate axes. If A is a symmetric matrix, then the equation xTAx = 1 is the
equation of an ellipse where the eigenvectors of A represent the principle axes of the ellipse and the inverses
of the eigenvalues are the squares of the lengths of the corresponding semi-principle axes. Note that because
A is symmetric, the spectral theorem tells us that the eigenvalues of A are orthogonal (which we would
expect since they are the principle axes of the ellipsoid).

B.2 Slicing an Ellipsoid by a Plane

If u and v are orthonormal vectors spanning a plane in R3, then the matrix

B =

 | |
u v
| |

transforms vectors in the (u,v)-plane to vectors in R3.

If the (3 × 3) matrix A defines an ellipsoid, then vectors in the (u,v) plane are in the ellipsoid exactly
when they satisfy the equation

zTBTABz = 1 (5)

where z is a vector in R2 representing the point in (u,v)-plane, written in the {u,v} basis.
If A is a symmetric matrix, then BTAB is also symmetric, so equation 5 represents an ellipse (in the

two dimensional plane defined by u,v).
The eigenvectors of BTAB represent the directions of the principle axes of the ellipse (in the (u,v)-basis)

and the eigenvalues of BTAB represent the inverses of the squares of the lengths of the semi-principle axes.

3If the center of the ellipsoid is at the point p = (px, py , pz), then the equation becomes

(x− px)2

a2
+

(y − py)2

b2
+

(z − pz)2

c2
= 1,

but we will focus on ellipsoids centered at 0.

23

B.3 Ellipsoids of Multivariate Normals

The density function for a multivariate normal distribution with mean 0 and covariance matrix C, is given
by

1√
(2π)k|C|

exp

(
−1

2
xTC−1x

)
The argument to exp is actually in the form of an ellipse (xTC−1x). In fact, the equation xTC−1x = 1

is an equation of an ellipse centered at 0, extending one variance in each direction.
Thus the square roots of the eigenvalues of C are the lengths of the semi-principle axes of the ellipsoid

that extends one standard deviation in each deviation.

C Eigenvectors and Eigenvalues and of 2× 2 Symmetric Matrices

Calculating the semi-principle axes of the projected ellipsoid requires calculating the eigenvectors and eigen-
values of the symmetrix 2 × 2 matrix QT (Cb + Ca)Q. To facilitate calculations, the equations for the
eigenvectors of a 2× 2 symmetric matrix are given below.

If A =

[
a b
b d

]
, then the eigenvectors of A are

[
2b

d−a±
√

(d−a)2+(2b)2

1

]

with eigenvalues 1
2

[
d+ a±

√
(d− a)2 + (2b)2

]
.

Normalizing the eigenvectors, we find the two normalized eigenvectors are
2b(

d−a±
√

(d−a)2+(2b)2
)2

+(2b)2

d−a±
√

(d−a)2+(2b)2(
d−a±

√
(d−a)2+(2b)2

)2
+(2b)2

D Taylor Expansions of erf

A natural choice for representing erf as a circuit is to use the Taylor expansion. We can Taylor expand erf(·)
as

erfx =
2√
π

∞∑
n=0

(−1)nx2n+1

n!(2n+ 1)
,

which, by [CR08] has absolute error∣∣∣∣∣erfx− 2√
π

N∑
n=0

(−1)nx2n+1

n!(2n+ 1)

∣∣∣∣∣ ≤ 2√
π

x2N+1

N !(2N + 1)
.

Unfortunately, the error function has horizontal asymptotes (see Figure 7, a property that is not shared
by any polynomial. Thus Taylor expansions for erf fare poorly for large inputs (see Figure 8).

24

x

f(x)

f(x) = erf(x)

erf(x) =
2√
π

∫ x

0

e−t
2

dt

Figure 7: The error function

1.0e–10

1.0e+10

–5 5
x

∣∣∣∣∣erf(x)−
50∑
n=0

(−1)nx2n+1

n!(2n+ 1)

∣∣∣∣∣
Figure 8: The absolute error of the 50 term Taylor expansion for erf.

25

	Introduction
	Our Results

	Background
	Secure Computation
	Garbled Circuits
	Secret-sharing based Protocols
	Online/Offline Model of Secure Computation

	Oblivious Transfer
	Shared Arithmetic Triples (Oblivious Linear-function Evaluation)
	Conjunction Analysis Calculations

	Our Techniques
	Basic Gates
	Integer Representation and Implicit Denominator
	Combining GC with Arithmetic GMW

	Main Construction
	Precomputation of Cryptographic Resources
	Pregenerated Random OTs
	Pregenerated Random Triples
	Pregenerated Garbled Circuits

	Online Phase
	Security Proof

	Extending the Construction
	Benchmarks
	Internal Testing and Benchmarks
	Bounds and Error Tolerance
	Benchmarks

	Comparison with the Sharemind Implementation KW14

	Conclusion
	Details on Projecting into the Encounter Plane
	Mathematics Ellipses and Ellipsoids
	Definition of an Ellipse
	Slicing an Ellipsoid by a Plane
	Ellipsoids of Multivariate Normals

	Eigenvectors and Eigenvalues and of 2 2 Symmetric Matrices
	Taylor Expansions of erf

