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Abstract
Helper Data Systems are a cryptographic primitive that allows for the reproducible extraction
of secrets from noisy measurements. Redundancy data called Helper Data makes it possible to
do error correction while leaking little or nothing (‘Zero Leakage’) about the extracted secret
string. We study the case of non-discrete measurement outcomes. In this case a quantization
step is required. Recently de Groot et al. described a generic method to perform the quantization
in a Zero Leakage manner. We extend their work and show how the quantization intervals
should be set to maximize the amount of extracted secret key material when noise is taken into
account.

1 Introduction

1.1 Helper Data Systems

Security with noisy data is the art of reproducibly extracting secret data from noisy measurements
on a physical system. The two main applications are read-proof storage of cryptographic keys
using Physical Unclonable Functions (PUFs) [16, 17, 10, 14, 2, 13] and privacy-preserving storage
of biometric data. Power-off storage of keys in digital memory can often be considered insecure.
(For instance, fuses can be optically inspected with a microscope; flash memory may be removed
and then read digitally.) PUFs provide an alternative way to store keys, namely in analog form,
which allows the designer to exploit the inscrutability of analog physical behavior. Keys stored in
this way are referred to as Physically Obfuscated Keys (POKs) [9].
In both the biometrics and the PUF/POK case, one faces the problem that some form of error
correction has to be performed, but under the constraint that the redundancy data (which is visible
to attackers) does not endanger the secret. This problem has been addressed by the introduction
of a special security primitive, the Helper Data System (HDS). A HDS in its most general form
is shown in Fig. 1. The Gen procedure takes as input a measurement X. Gen outputs a secret
S and (public) Helper Data W . The helper data is stored. In the reproduction phase, a fresh
measurement Y is obtained. Typically Y is a noisy version of X, close to X (in terms of e.g.
Euclidean distance or Hamming distance) but not necessarily identical. The Rec procedure takes
Y and W as input. It outputs Ŝ, an estimate of S. If Y is not too noisy then Ŝ = S.

X

Y
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Rec

S

Ŝ

W

Figure 1: Data flow in a generic Helper Data System.

Two special cases of the general HDS are the Secure Sketch (SS) and the Fuzzy Extractor (FE) [8].
The Secure Sketch has S = X (and Ŝ = X̂, an estimator for X). If X is not uniformly distributed,
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then S is not uniform. The SS is suitable for privacy-preserving biometrics, where the stored
biometric enrollment data is a cryptographic hash of X, just like hashed storage of passwords;
high entropy of S (given W ) is required, but not uniformity. The Fuzzy Extractor is required to
have a (nearly) uniform S given W . The FE is typically used for extracting keys from PUFs and
POKs. Note that there is a generic construction to obtain a FE from a SS: privacy amplification on
X by applying a suitable information-theoretic hash function. This can be either a Universal Hash
Function (UHF) [3, 15, 12] or, more sophisticatedly, a q-wise independent hash function. UHFs
have the advantage of being simple to implement and providing information-theoretic security
guarantees for all applications of the extracted key; however, they waste a lot of source entropy.
Key derivation with q-wise independent hash functions can be done almost without any entropy
loss [7] but gives information-theoretic guarantees only for ‘unpredictability applications’, which
include signatures, Message Authentication Codes and keyed hashing.
In this paper we consider the general HDS case: S 6= X and S is not necessarily uniform. The
general HDS is of particular interest when X is a continuum variable: (i) The least significant
digits of X are not interesting for key extraction and (ii) In view of the excellent performance of
q-wise independent hashes [7] it is best to first extract from X a non-uniform high-entropy discrete
secret and then compress it to make it more uniform.

1.2 Zero Leakage quantisation

In the biometrics case and in several PUF/POK scenarios the raw measurement data X is analog
or nearly analog. A typical HDS then consists of two stages. The first stage is a HDS that maps
the continuous X to a discrete space, i.e. it discretizes (quantizes) X. The second stage is a HDS
acting on a discrete source, e.g. the Code Offset Method [1, 11, 8, 6, 19]. Both stages make use of
helper data, and in both stages one has to worry about leakage.
In the fist stage it is possible to make a construction such that W leaks nothing about S. Intuitively
speaking, W contains the ‘least significant bits’ of X, which are noisy, while S contains the ‘most
significant bits’. A HDS that achieves independence of S and W is called a Zero Leakage HDS
(ZLHDS).
Verbitskiy et al. [18] introduced a Zero Leakage Fuzzy Extractor (ZLFE) for X ∈ R.1 They divided
the space R into N intervals A0, . . . , AN−1 that are equiprobable in the sense that Pr[X ∈ Aj ] =
1/N for all j. At enrollment, if X lies in interval Aj then S is set to j. For the helper data they
introduced a further division of each interval Aj into m equiprobable subintervals (Ajk)m−1k=0 . If
the enrollment measurement X lies in interval Ajk then the index k is stored as helper data. The
fact that all these subintervals are equiprobable leads to independence between the helper data
and the secret.
De Groot et al. [5] took the limit m→∞ and showed that the resulting scheme is not just a ZLFE
but the generic best performing ZLFE for X ∈ R; other ZLFEs for X ∈ R can be derived from
the generic scheme. Furthermore, de Groot et al. generalized the scheme of [18] from ZLFEs to
general ZLHDSs by allowing intervals A0, . . . , AN−1 that are not equiprobable. Several questions
were left open regarding the Rec procedure in general ZLHDSs and the performance of ZLHDSs
compared to ZLFEs.

1.3 Contributions and outline

We investigate ZLHDSs for X ∈ R.

• First we derive an optimal Rec procedure that minimises the probability of reconstruction
errors. We obtain analytic formulas for Gaussian noise and Lorentz-distributed noise.

• Using this Rec procedure we study the performance of ZLHDSs compared to ZLFEs. We
define performance as the mutual information between S and Ŝ conditioned on the fact
that the adversary knows W . This mutual information I(S; Ŝ|W ) represents the maximum
amount of secret key material that can be extracted from X using a ZLHDS. It turns
out that the intricacies of the Rec procedure cause the mutual information to become a

1A high-dimensional measurement is usually split into one-dimensional components, e.g. using Principal Compo-
nent Analysis or similar methods. A HDS is then applied to each component individually. The results are combined
and then serve as input for the 2nd stage.
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very complicated function of the choice of quantisation intervals A0, . . . , AN−1. We have to
resort to numerics. Our numerical results for Gaussian source and Gaussian noise show that
optimisation of the quantisation intervals yields an improvement with respect to the ZLFE
in terms of mutual information as well as reconstruction error probability. In most cases
the gain in I(S; Ŝ|W ) is modest (a few percent), but the reduction of the error rate can be
substantial. We conclude that in practice it is better to use a ZLHDS than a ZLFE.

In Section 2 we introduce the notation used in this paper and give a rather long summary of
the results of de Groot et al. [5]. In Section 3 we derive the optimal Rec procedure and provide
analytic expressions (as far as possible) for the mutual information and the error rate. Section 4
presents the numerical results for Gaussian X and Gaussian noise.

2 Preliminaries

2.1 Notation and terminology

We use capital letters to represent random variables, and lowercase letters for their realizations.
The input and output variables of the HDS are as depicted in Fig. 1. Sets are denoted by calli-
graphic font. The set S is defined as S = {0, . . . , N − 1}. For α ∈ S we define pα = Pr[X ∈ Aα].
The expected value with respect to a random variable Z is denoted as Ez. The mutual information
(see e.g. [4]) between X and Y is denoted as I(X;Y ), and the mutual information conditioned on
the third variable Z as I(X;Y |Z). The probability density function (pdf) of the random variable
X ∈ R in written as f(x) and its cumulative distribution function (cdf) as F (x).

2.2 Zero Leakage definition

For technical reasons, de Groot et al. used the following definition of the Zero Leakage property.

Definition 2.1 (Zero Leakage). Let W ∈ W. We call a HDS a Zero Leakage HDS if and only if

∀V⊆W Pr[S = s|W ∈ V] = Pr[S = s]. (1)

The property (1) implies I(W ;S) = 0.

2.3 Noise model

We adopt the noise model from [5]. The X and Y are considered to be noisy versions of an
underlying ‘true’ value. Without loss of generality X is taken to have zero mean. The standard
deviations of X,Y ∈ R are denoted as σX and σY respectively. The verification sample Y is related
to the enrollment measurement as Y = λX +R, where λ ∈ [0, 1] is the attenuation parameter and
R is zero-mean additive noise, independent of X. We have σ2

Y = λ2σ2
X + σ2

R. The correlation
between X and Y is

ρ
def
=

E[XY ]− E[X]E[Y ]

σXσY
= λ

σX
σY

, (2)

with ρ ∈ [−1, 1]. The relation between λ, ρ, σX , and σR is given by λ2 = ρ2

1−ρ2
σ2
R

σ2
X

. Two special

cases are often considrered:
Perfect enrollment. During enrollment there is no noise. The X equals the ‘true’ value. In this
situation it holds that σ2

Y = σ2
X + σ2

R and λ = 1.
Identical conditions. The amount of noise is the same during enrollment and reconstruction.
In this situation it holds that σ2

Y = σ2
X and λ2 = ρ2 = 1− σ2

R/σ
2
X .

The pdf of Y givenX = x is denoted as ψ(y|x) = v(y−λx). The noise is considered to be symmetric
and fading, i.e. v(−z) = v(z) and v(z) is a decresing function of |z|. The cdf corresponding to v is
denoted as V .
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2.4 The ZL scheme of [5]

The helper data is considered to be continuous, W ∈ W ⊂ R, and without loss of generality de
Groot et al. set W = [0, 1). The left boundary of the quantisation region Aα is denoted as Ωα,
α ∈ S. (See Fig. 2.) It holds that

Ωα = F inv

(
α−1∑
i=0

pi

)
, (3)

where F inv stands for the inverse function of F . Note that Ω0 = −∞. The Gen procedure is
written as s = Q(x), w = g(x), where the Q and g functions are given by

Q(x) = max{α ∈ S : x ≥ Ωα} ; g(x) =
F (x)− F (ΩQ(x))

pQ(x)
=
F (x)−

∑Q(x)−1
i=0 pi

pQ(x)
. (4)

The relation between x, s and w can be written in a more friendly form as

F (x) = F (Ωs) + wps =

s−1∑
i=0

pi + wps. (5)

The thus defined w ∈ [0, 1) is called quantile helper data since it measures which quantile of the
probability mass ps is located between F (Ωs) and x. It was shown that the random variable W ,
given S, has a uniform pdf. Consequently the scheme is a ZLHDS.
The mapping of x to (s, w) is a bijection. For the mapping of (s, w) to x the following notation is
used,2

ξs,w
def
= F inv(

s−1∑
i=0

pi + wps). (6)

Figure 2: Illustration of the quantization boundaries Ωα and regions Aα.

In the case of the Fuzzy Extractor (pα = 1/N for all α ∈ S) the optimal reconstruction procedure
was found to be the following maximum-likelihood ‘decoder’,

ŝ = RecFE(y, w) = arg max
α∈S

ψ(y|ξαw). (7)

Eq. (7) can be conveniently implemented by defining decision boundaries (ταw)Nα=0. If y ∈ [ταw, τα+1,w),
then ŝ = α. In the case of symmetric fading noise the location of the decision boundaries dictated
by (7) was found to be

τFEαw = λ
ξα−1,w + ξαw

2
. (8)

Here one has to read ξ−1,w = −∞ and ξNw =∞, resulting in τ0w = −∞, τNw =∞. Fig. 3 shows
how to intuitively understand (8). Each pdf ψ(y|ξαw) in (7) is centered around y = λξαw and drops
off symmetrically. The crossing point where one α-value becomes more likely than another lies
exactly halfway between the centers of two neighbouring pdfs; such a crossing point is a decision
boundary.

2We often omit the comma and write ξsw.
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λξα−1,w λξαw λξα+1,w
ταw τα+1,w

ψ(y|ξα−1,w)
ψ(y|ξαw)

ψ(y|ξα+1,w)

Figure 3: Visual representation of the decision boundaries for the reconstruction phase.

3 Optimization of the general ZLHDS

In this section we extend the results of de Groot et al. [5]. We generalize equations (7) and (8).
Then we derive analytic expressions for I(S; Ŝ|W ) and the reconstruction error probability Perr

in terms of the scheme’s parameters. We also discuss the relation between Perr and the bit error
rate.

3.1 ZLHDS reconstruction

For the sake of completeness we explicitly show that W given S = s is uniform. (This fact was
implicit in [5] and was not separately stated.)

Lemma 3.1. The probability density function of the helper data W given the secret S is uniform.

Proof. For the pdf of W given S = α we write ρ(w|α). We start from pαρ(w|α)dw = f(ξαw)dξαw.

The validity of this equation is readily verified. Applying
∫ 1

0
to the left hand side yields pα by

definition; on the right hand side the equivalent operation is integration over ξαw on the interval

Aα, which also yields pα. Now we can write ρ(w|α) = f(ξαw)
pαdw/dξαw

= f(ξαw)
dF (ξαw)/dξαw

= f(ξαw)
f(ξαw) = 1. In

the second equality we used (5) with s = α kept constant while w varies.

Lemma 3.2. For the general HDS the optimal reconstruction procedure is given by

ŝ = Rec(y, w) = arg max
α∈S

pαψ(y|ξαw). (9)

Proof. This is a slight modification of Lemma 4.1 in [5], with the same starting point.

Rec(y, w) = arg max
α∈S

Pr[S = α|Y = y,W = w] = arg max
α∈S

Pr[S = α, Y = y,W = w]

Pr[Y = y,W = w]
. (10)

Since the denominator does not depend on α, it can be eliminated.

Rec(y, w) = arg max
α∈S

Pr[S = α, Y = y,W = w]

= arg max
α∈S

Pr[Y = y|S = α,W = w]ρ(w|α)pα.

Using Lemma 3.1 we get

ŝ = Rec(y, w) = arg max
α∈S

pαPr[Y = y|S = α,W = w]. (11)

Since (α,w) uniquely defines ξαw, the probability Pr[Y = y|S = α,W = w] equals Pr[Y = y|X =
ξαw], for which the notation ψ(y|ξαw) is used.

From (9) we can derive an optimal placement of the boundaries ταw for general noise and general
HDS.
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Lemma 3.3. For a ZLHDS the reconstruction boundary ταw obtained using pdf intersections
satisfies the following equation:

pα−1ψ(ταw|ξα−1,w) = pαψ(ταw|ξαw). (12)

Proof. From Lemma 3.2 we see that the decision boundary is the point y where the function
pαψ(y|ξαw) intersects the function pα−1ψ(y|ξα−1,w).

In the FE case, pα−1 = pα and (12) reduces to ψ(ταw|ξα−1,w) = ψ(ταw|ξαw), which directly
yields (8). In the general HDS case, however, the difference between the pα parameters changes
the heights of the pdfs ψ(y| · · · ) in Fig. 3, which leads to a more complicated solution for the
decision boundaries.

Theorem 3.4. Let the noise be Gaussian with zero mean and variance σ2
R. Then the intersection

points as specified in (12) are given by

ταw = λ
ξα−1,w + ξαw

2
+

σ2
R ln pα−1

pα

λ(ξαw − ξα−1,w)
. (13)

Proof. The Gaussian noise is given by ψ(y|x) = 1√
2πσR

e
− (y−λx)2

2σ2
R . Eq. (12) then becomes

pα−1√
2πσR

e
−

(ταw−λξα−1,w)2

2σ2
R =

pα√
2πσR

e
− (ταw−λξαw)2

2σ2
R . (14)

Taking the logarithm on both sides of the equation yields a linear equation in ταw, with solution
(13).

Theorem 3.5. Let the noise be Lorentz-distributed, ψ(y|x) = 1/σR
1+π2(y−λx)2/σ2

R
. Let pα 6= pα−1. If

the following condition holds

pαpα−1(λξα,w − λξα−1,w)2 ≥ σ2
R

(pα − pα−1)2

π2
, (15)

then the reconstruction boundary ταw is given by

ταw =
pα−1λξαw − pαλξα−1,w

pα−1 − pα
− 1

pα−1 − pα

√
pαpα−1(λξαw − λξα−1,w)2 −

σ2
R

π2
(pα−1 − pα)2. (16)

Proof. Substitution of the Lorentz distribution into (12) yields

pα

1 + π2σ−2R (ταw − λξαw)2
=

pα−1

1 + π2σ−2R (ταw − λξα−1,w)2
. (17)

Inversion of both sides of the equation gives a quadratic equation in ταw. (If pα = pα−1 then it
reduces to a linear equation with (8) as the solution.) The quadratic equation has solutions only
if the discriminant is nonnegative, which is equivalent to the condition (15). Finally we have to
choose the correct sign preceding the square root of the determinant. We choose the sign in such a
way that λξα−1,w < ταw < λξαw. We verify as follows that (16) indeed satisfies these inequalities.
On the one hand, (16) can be written as

ταw = λξαw +
pαλ(ξαw − ξα−1,w)−

√
· · ·

pα−1 − pα
. (18)

Note that ξαw − ξα−1,w > 0. If pα−1 > pα then the
√
· · · ‘wins’ and the numerator of the fraction

is negative, as it should be. If pα−1 < pα then the denominator is negative and the
√
· · · ‘loses’,

making the numerator positive. On the other hand, (16) can also be written as

ταw = λξα−1,w +
pα−1λ(ξαw − ξα−1,w)−

√
· · ·

pα−1 − pα
. (19)

If pα−1 > pα then the
√
· · · ‘loses’ and the fraction is positive. If pα−1 < pα then the

√
· · · ‘wins’

and the fraction is again positive.
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Remark. If one adopts (13) as decision boundaries, an incorrect reconstruction procedure may
result under some pathological circumstances. This can happen, for example, if for some α it
happens that pα � pα−1 and pα � pα+1; then in Fig. 3 the middle curve is located beneath the
intersection of its neighbours, and ŝ cannot equal α even if s = α. In practice we will never see
this pathological case.

3.2 Optimization of the quantization intervals

As announced in Section 1.3, we want to maximize the amount of key material extracted from
X by the ZLHDS. We have to take into account two effects: the noise, which limits how much
of the entropy of X can be recovered in the reconstruction phase, and the fact that the adver-
sary knows W . The quantity of interest is the mutual information between S and Ŝ given W :
I(S; Ŝ|W ). This represents the ‘secrecy capacity’ or quality of the channel from S to Ŝ created
by the ZLHDS. If a perfect error correction mechanism is used as the second-stage HDS, i.e. one
that achieves the Shannon bound, then I(S; Ŝ|W ) is the achievable key length.
We note that even though H(S|W ) = H(S), we have I(S; Ŝ|W ) 6= I(S; Ŝ) because Ŝ is not
independent of W .

Lemma 3.6. For a zero leakage helper data system the mutual information can be expressed as

I(S; Ŝ|W ) = H(S)− H(S|Ŝ,W ) = I(S; Ŝ,W ). (20)

Proof. We write I(S; Ŝ|W ) = H(S|W ) − H(S|Ŝ,W ). Due to the ZL property it holds that
H(S|W ) = H(S).

The mutual information I(S; Ŝ|W ) can be seen as a function of the system parameters p0, . . . , pN−1.
These parameters completely fix the Gen and Rec procedures. (The λ, σX and σR are given by
nature and cannot be chosen). Hence we want to determine how to set vector (pα)α∈S as a func-
tion of λ, σX , σR so as to maximize our target function. Unfortunately, I(S; Ŝ|W ) depends on
the pα parameters in a very complicated way. The Gen is simple enough, but the Rec procedure
has decision boundaries ταw (12) that depend on p0, . . . , pN−1 not only directly but also via the
ξαw points as specified in (6); this dependence is quite convoluted as the ξαw invoke the non-
smooth stepwise function Q as well as the nonlinear F inv. Analytic maximisation of I(S; Ŝ|W )
is intractable. It is clear, however, that a maximum must exist. Consider the ZLFE at fixed
N ≥ 3. Not all intervals Aα have equal width, which leads to unequal probabilities for jumping
from one interval to another due to noise. Making the narrowest intervals slightly broader reduces
the reconstruction error probability (with a positive effect on our target function) and the entropy
of S (with a negative effect). It is intuitively clear that at large σR the effect of reconstruction
errors weighs more heavily than the H(S) effect; then we expect a nontrivial maximum at a pα
setting different from the FE’s pα = 1/N . The numerics in Section 4 show that this is indeed the
case.
For the efficiency of the numerical optimisation we now look for a simple form in which to represent
I(S; Ŝ|W ). We introduce the following notation,

Υŝ|sw
def
= Pr[Ŝ = ŝ|S = s,W = w] =

∫ τŝ+1,w

τŝw

ψ(y|ξsw)dy = V (τŝ+1,w−λξsw)−V (τŝw−λξsw). (21)

We can express the mutual information entirely in terms of the pα and Υŝ|sw parameters.

Lemma 3.7. For the ZLHDS the mutual information can be written as

I(S; Ŝ|W ) =

N−1∑
s=0

N−1∑
ŝ=0

∫ 1

0

dw psΥŝ|sw log
Υŝ|sw∑N−1

β=0 pβΥŝ|βw
. (22)

Proof.

I(S; Ŝ|W ) = Esŝw log
Pr[S = s, Ŝ = ŝ|W = w]

Pr[S = s|W = w]Pr[Ŝ = ŝ|W = w]

= Ew
N−1∑
s,ŝ=0

Pr[S = s|W = w]Υŝ|sw log
Pr[S = s, Ŝ = ŝ|W = w]

Pr[S = s|W = w]Pr[Ŝ = ŝ|W = w]
. (23)

7



In the last line we used the chain rule Pr[S = s, Ŝ = ŝ,W = w] = EwPr[S = s|W = w]Υŝ|sw.

Next we use Ew(· · · ) =
∫ 1

0
dw(· · · ) as implied by Lemma 3.1, and Pr[S = s|W = w] = ps by

the ZL property. Finally we apply these rules, and Pr[Ŝ = ŝ|W = w] =
∑
s psΥŝ|sw, inside the

logarithm.

3.3 Reconstruction errors

While we are mainly interested in the mutual information, we also care about the practical imple-
mentation aspects of the second-stage HDS. The second-stage HDS typically employs an Error-
Correcting Code (ECC). If the output of the first-stage HDS has a high bit error rate, this causes
problems for the ECC. In our numerics we keep track of the error rate.
We write Perr = Pr[Ŝ 6= Q(X)] for the overall probability that Ŝ is not equal to S. This is an
averaged quantity, i.e. averaged over X. For fixed x we have

Pr[Ŝ = Q(X)|X = x] = ΥQ(x)|Q(x),g(x). (24)

Averaging over x gives

1− Perr = ExPr[Ŝ = Q(X)|X = x] = ExΥQ(x)|Q(x),g(x) =
∑
s∈S

ps

∫ 1

0

dw Υs|sw. (25)

In the last step we used that x uniquely maps to (s, w) = (Q(x), g(x)). Eq. (25) together with
(21) is the most convenient way to analytically express the reconstruction error probability.
We consider the case where s is encoded as a Gray code. This is a well known technique to reduce
the number of bit flips when a reconstruction error occurs. Table 1 lists the Gray code that we
use. (Other, equivalent, encodings are possible.) We will look at N ∈ {3, 4, 5, 6}. The length of
the Gray code is dlogNe bits.

s 1st bit 2nd bit 3rd bit
0 0 0 0
1 0 0 1
2 0 1 1
3 0 1 0
4 1 1 0
5 1 1 1

Table 1: Three-bit Gray code used for N = 5 and N = 6. The highlighted cell shows the two-bit
Gray code that we use for N = 3 and N = 4.

The Bit Error Rate (BER) is given by

BER =
E[# bit errors]

dlogNe
=

1

dlogNe

dlogNe∑
t=0

tPr[# bit errors = t]. (26)

We introduce the following notation,

∆ŝ|s
def
= Pr[Ŝ = ŝ|S = s] = EwΥŝ|sw. (27)

All the probabilities in (26) can be calculated in terms of the ∆ŝ|s probabilities. The details are
given in the Appendix.
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4 Numerical results

We present numerical results for the optimization described in Section 3, for N ∈ {3, 4, 5, 6}. We
consider a Gaussian source X and Gaussian noise. (This is already a rather accurate model for
Coating PUFs [16]). Without loss of generality we set σX = 1. Only the ratio σR/σX matters.
We consider the two cases defined in Section 2.3: perfect enrollment and identical conditions.
We implemented (22) in Wolfram Mathematica 10.2 as a symbolic function. We used the built-in
function FindMaximum to obtain optimum values for p0, . . . , pN−1. In order to reduce the dimension
of the search space we imposed the symmetry pN−1−α = pα by hand.
Fig. 4 shows I(S; Ŝ|W ) versus Perr for various σR.

• When σR is small, the optimum setting of the HDS is close to the FE setting pα = 1/N , and
it is clearly visible that increasing N has a very large benefit for the mutual information.

• For somewhat larger σR, there is a clear difference between the optimised HDS and the FE.
For example, in the λ = 1 graph at σR = 0.25 we see that at N = 6 the transition from
FE to HDS brings a modest improvement of the mutual information and a reduction of Perr

from ≈ 23% to ≈ 10%. The reduced Perr means that the ECC in the second stage is much
easier to implement for the HDS than for the FE.

• At σR > 0.5 the noise is so bad that the HDS and the FE perform almost equally badly
(though the HDS is always slightly better). Increasing N improves the mutual information
only slightly, and at the cost of a large increase in Perr.

Fig. 5 shows the same data, but with the BER on the horizontal axis. The ‘zigzag’ at the transition
from N = 4 to N = 5 occurs because the Gray code jumps from a 2-bit representation of s to a
3-bit representation, with little noise in the first of the three bits.
Fig. 6 shows the BER as a function of σR/σX . The curves for N = 4 and N = 5 cross each other;
this causes the ‘zigzag’ in Fig. 5. The graphs of Perr as a function of σR/σX (Fig. 7) are much
smoother. For completeness Fig. 8 plots the BER versus Perr. The relation is clearly nonlinear.

Fig. 9 shows the optimal values of p0, . . . , pN−1 for the perfect enrollment case (λ = 1). At σR = 0
it holds that pα = 1/N for all α, which is the FE configuration. When σR increases, the outer
regions A0, AN−1 shrink while the central region(s) become broader. Then at some point this
trend reverses. At very large σR the pα values stabilize, but not in the FE configuration.
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Figure 4: Mutual information versus Perr for perfect enrollment (upper figure) and identical con-
ditions (lower figure). At fixed σR, data points for the general HDS are connected with a solid
line, while a dashed line corresponds to the FE.
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Figure 5: Mutual information versus BER for perfect enrollment (upper figure) and identical
conditions (lower figure). At fixed σR, data points for the general HDS are connected with a solid
line, while a dashed line corresponds to the FE.
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Figure 6: Bit Error Rate as a function of the noise parameter σR/σX . Perfect enrollment

Figure 7: Perr as a function of the noise parameter σR/σx. Perfect enrollment.
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Figure 8: BER versus reconstruction error probability Perr. Perfect enrollment. At given σR, data
points for the HDS are connected with a solid line, while a dashed line corresponds to the FE.

Figure 9: The pα values as a function of the noise parameter σR/σX , for λ = 1, N = 3, 4, 5, 6.
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5 Summary

We have extended the results of de Groot et al. [5] in the case of non-equiprobable quantisation
intervals. Lemma 3.3 gives the recipe for finding the optimal decision boundaries used in Rec.
The result for Gaussian and Lorentzian noise is given in Theorems 3.4 and 3.5.
We have studied the mutual information I(S; Ŝ|W ), which is an upper bound on the amount
of secret key material that can be robustly extracted from X. The mutual information is most
conveniently expressed in terms of the ps and Υŝ|sw parameters (22). The dependence of the Υŝ|sw

on p0, . . . , pN−1 is so complicated that optimisation of I(S; Ŝ|W ) cannot be done analytically. The
figures in Section 4 show the results of numerical optimisation in a simple model where the source
and the noise are Gaussian. Such a model is reasonably accurate for Coating PUFs. For every
combination (N, σR/σX) the optimized ZLHDS clearly performs better than the ZLFE in terms
of both mutual information and reconstruction error rate. The reduction in Perr is substantial.
This makes the design of a second-stage HDS much more practical, since it makes is easier to
implement an ECC that can cope with the bit errors introduced by reconstruction errors.
As future work we will apply the numerical optimisation to different source distributions, matching
e.g. biometric data.
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Appendix: Bit error rates

We list expressions for the BER (26) in terms of the ∆ŝ|s probabilities (27), when the Gray code
of Table 1 is used. We assume a symmetric source pdf f and symmetric noise. As a result the
optimal pα values have the symmetry pN−1−α = pα, and there is a large number of symmetries
between the ∆··· values, ∆N−1−ŝ|N−1−s = ∆ŝ|s.

N N ·BER
3 2p0(∆1|0 + 2∆2|0) + 2p1∆2|1
4 2p0(∆1|0 + ∆3|0 + 2∆2|0) + 2p1(∆0|1 + ∆2|1 + 2∆3|1)
5 2p0(∆1|0 + ∆3|0 + 2∆2|0 + 2∆4|0) + 2p1(∆0|1 + ∆2|1 + 2∆3|1 + 3∆4|1) + 2p2(∆1|2 + 2∆0|2)
6 2p0(∆1|0 + ∆3|0 + 2∆2|0 + 2∆4|0 + 3∆5|0) + 2p1(∆0|1 + ∆2|1 + 2∆3|1 + 2∆5|1 + 3∆4|1)

+2p2(∆1|2 + ∆3|2 + 2∆0|2 + 2∆4|2)

The p-index in this table runs only to dN/2e − 1 because of the α ↔ N − 1 − α symmetry; this
also gives rise to the factor 2 in front of each pα. Inside the parentheses, the numerical factor in
front of each ∆ indicates the number of bit flips that occur due to that specific transition.
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