
A modified block Lanczos algorithm with fewer
vectors

Emmanuel Thomé

INRIA Nancy / LORIA
615 rue du jardin botanique

54600 Villers-lès-Nancy

Abstract. The block Lanczos algorithm proposed by Peter Montgomery
is an efficient means to tackle the sparse linear algebra problem which
arises in the context of the number field sieve factoring algorithm and its
predecessors. We present here a modified version of the algorithm, which
incorporates several improvements: we discuss how to efficiently handle
homogeneous systems and how to reduce the number of vectors stored
in the course of the computation. We also provide heuristic justification
for the success probability of our modified algorithm.
While the overall complexity and expected number of steps of the block
Lanczos is not changed by the modifications presented in this article,
we expect these to be useful for implementations of the block Lanczos
algorithm where the storage of auxiliary vectors sometimes has a non-
negligible cost.

1 Linear systems for integer factoring

For factoring a composite integer N , algorithms based on the technique of com-
bination of congruences look for several pairs of integers (x, y) such that

x2 ≡ y2 mod N.

This equality is hoped to be non trivial for at least one of the obtained pairs,
letting gcd(x− y,N) unveil a factor of the integer N .

Several algorithms use this strategy: the CFRAC algorithm, the quadratic
sieve and its variants, and the number field sieve. Pairs (x, y) as above are ob-
tained by combining relations which have been collected as a step of these al-
gorithms. Relations are written multiplicatively as a set of valuations. All the
algorithms considered seek a multiplicative combination of these relations which
can be rewritten as an equality of squares. This is achieved by solving a system
of linear equations defined over F2, where equations are parity constraints on

? This article is based on work by the author contributed as chapter 7 in Topics in
Computational Number Theory inspired by Peter L. Montgomery, by Joppe W. Bos
and Arjen K. Lenstra, to be published by Cambdridge University Press.

?? March 24, 2016; Version for this file: d76dfc6

each valuation considered, and unknowns indicate whether or not relations are
to be selected as part of the combination.

We are therefore facing a linear algebra problem. Writing the relations col-
lected as the rows of a matrix M with coefficients in F2, we are to find several
solutions to the homogeneous linear system

xTM = 0.

To fix notations, we let the matrix M be square of size N ×N . It is noteworthy
that the matrix M is extremely sparse, as can be illustrated by data from some
factoring experiments: for the factoring of RSA-512 in 1999, the matrix M had
N ≈ 7 × 106 and 62 non-zero coefficients per row, and for the RSA-768 factor-
ization in 2009, the matrix M had N ≈ 2 × 108 and 144 non-zero coefficients
per row.

This sparsity property can be exploited to yield efficient algorithms which
solve the linear system in a “black-box” fashion, that is, without ever modify-
ing the matrix M . The only access to the matrix M which is allowed to such
algorithms is the operation of multiplying M (or its transpose) by a vector, and
obtain the result. The interesting black-box algorithms are those which solve the
linear system using at most O(N) times this operation. For sparse matrices, this
approach is considerably cheaper than “dense” algorithms which do not exploit
the sparsity property, with regard to both the time and space complexity (which
would, for dense algorithms, be O(Nω) and O(N2)).

2 The standard Lanczos algorithm

Dealing with sparse linear systems is an important topic which goes beyond com-
putational number theory. Among the sparse algorithms which can be employed
(reviewed in early works such as [6]), we find the conjugate gradient and the
Lanczos algorithms, which were both originally stated in the context of solving
numerical systems occurring, for example, in the context of the solution of par-
tial differential equations. With some adaptation work, it is possible to use these
algorithms over finite fields, with limitations which we will mention in §3. The
Wiedemann algorithm [10] was proposed as a method particularly well adapted
to finite fields. We will discuss in §9 how it compares with the Lanczos and block
Lanczos algorithms.

As a first step towards presenting the block Lanczos algorithm, we give here
an overview of how the standard Lanczos algorithm can be used to solve ho-
mogeneous or inhomogeneous linear systems over finite fields. Arguments which
appear in the justification of the standard Lanczos are also important to the
block Lanczos context, which explains this preliminary overview. Within this
section, we assume that the base field is Fp for some prime p.

Briefly put, the Lanczos algorithm is the Gram-Schmidt orthogonalization
process applied to a Krylov subspace. We need to work with a symmetric matrix
A defined over Fp. Different problems can be stated, for example depending
on whether we intend to solve a homogeneous or inhomogeneous linear system.

2

Another distinction comes from the linear system which we want to solve in the
first place. While in some cases it does indeed define a symmetric matrix A, it
may also be that we form A as A =MMT , and solve a linear system involving A
as a derived means of solving one involvingM . Such a strategy would be natural
in the prospect of solving the linear systems as defined in §1. In that case, the
matrix A is never actually computed, and the black box “multiplication by A” is
instead realized as the composition of the two black boxes multiplying by MT

and M .
For expository purposes, we assume in this section that we have a right-hand

side vector b ∈ FN
p , and intend to solve for x ∈ FN

p the equation

Ax = b.

The matrix A being symmetric, we may consider the inner product defined
from A as vTAw for vectors v, w ∈ FN

p . We say that v and w are A-orthogonal
whenever vTAw = 0. A vector is A-isotropic if it is A-orthogonal to itself.

The Lanczos algorithm focuses on the sequence of Krylov subspaces of FN
p

defined as Vi =
〈
v0, Av0, A

2v0, . . . , A
iv0
〉
, where v0 = b. It is clear that the

sequence of subspaces (Vi)i≥0 is strictly increasing up to some index, and then
stationary.

We define a sequence of vectors (vi)i≥0, computed so as to satisfy the two
following conditions:

vi is A-orthogonal to vj whenever i 6= j, (1)
Vi = 〈v0, . . . , vi〉 . (2)

We proceed by induction, and assume that a sequence of vectors v0 to vi has been
computed so that the two conditions above hold. We now see how to compute
vi+1. We begin by noting (using condition (2) inductively) that

Vi+1 = 〈v0〉+AVi = 〈v0〉+AVi−1 + 〈Avi〉 = Vi + 〈Avi〉

so that setting vi+1 to be any vector within the affine subspace Vi + Avi fulfils
condition (2) for index i+ 1. In order to satisfy condition (1), we let:

vi+1 = Avi −
∑
j≤i

vTj A
2vi

vTj Avj
vj .

We leave for further discussion the important question of the non-degeneracy of
the denominators in the expression of vi+1.

It turns out that the equation above defining vi+1 can be simplified. Indeed,
because Avj ∈ Vj+1, we have that vTj A2vi = 0 whenever j < i− 1. This implies
that only two terms in the sum above are non-zero, yielding the following shorter
equation for defining vi+1:

vi+1 = Avi − ci+1,ivi − ci+1,i−1vi−1,

ci+1,i =
vTi A

2vi
vTi Avi

vi, ci+1,i−1 =
vTi−1A

2vi

vTi−1Avi−1
vi−1.

3

Note also that we have Avi−1 ∈ vi + Vi−1, so that vTi−1A2vi = vTi Avi. We can
then simplify the expression of ci+1,i−1 as

ci+1,i−1 =
vTi Avi

vTi−1Avi−1
vi−1.

The sequence of vectors (vi)i≥0 can thus be computed with a simple recur-
rence procedure, requiring only a short amount of history to be updated from
each iteration to the next (namely, the vectors vi+1 and vi as well as the scalar
vTi Avi).

We now discuss the termination of the computation of the sequence of vectors
(vi)i≥0. It is clear that vi+1 can be computed only as long as the following
condition holds:

∀j ≤ i, vTj Avj 6= 0. (3)

We assume that condition (3) holds until some index m (not included), and that
vm = 0. This implies Vm = Vm−1. Define now x as

x =
∑
i<m

vTi b

vTi Avi
vi.

By construction?, we have Ax− b ∈ Vm−1. Vectors vi for indices i < m form an
A-orthogonal basis of Vm−1, therefore (Ax− b)TAvi = 0 for all i < m because of
the expression of x. It follows from (1) and (3) that we have Ax = b. Computing
the summands of x can be done at the same time as the sequence (vi)i≥0 is
computed, adding the need for one extra vector of FN

p .
Condition (3) may fail to hold without reaching vm = 0, however. This is

because the positive characteristic setting does not forbid A-isotropic vectors:
it may happen that vTmAvm = 0 without vm = 0. In this case, the algorithm
fails. In [4], Eberly and Kaltofen show that condition (3) is equivalent to the
matrix H(A, b) = (bTAi+j+1b)0≤i<m being of generic rank profile (all leading
principal minors are non-zero). They further show how it is possible to control
the failure probability with appropriate randomization, under the assumption
that the coefficient field is large enough.

3 The case of characteristic two

When p = 2, the standard Lanczos algorithm cannot work, as A-isotropic vectors
are bound to occur. This problem is an incurable failure condition in the finite
field case, but an analogous mishap can also be encountered in the numerical
case: if some vTi Avi happens to be very close to zero, then numerical instability
occurs.

Techniques to address this issue have been proposed in the numerical context
quite early on, namely the look-ahead Lanczos algorithm [9] which suggests to
? This argument uses the fact that we have chosen v0 = b. Had we chosen v0 arbitrarily,
then we would need to assume b ∈ Vm.

4

compute vi+1 from several of the previous iterates. In the context of integer
factorization and linear systems defined over F2, early techniques suggested, e.g.
in [6], to overcome the issue of A-isotropic vectors were quite inefficient, requiring
for example to do all computations in a field F2k for some k. Coppersmith [2]
and Montgomery [7], in a somewhat simpler form, proposed to efficiently solve
this problem by taking inspiration from the look-ahead technique, and more
importantly by considering several vectors simultaneously.

The theoretical benefit is that if we consider a block of n vectors v (repre-
sented by a matrix of size N × n), the matrix vTAv might fail to be invertible,
but its rank defect may be expected to be reasonably small, thereby allowing
the algorithm to proceed.

Considering blocks of vectors is also a great practical benefit when dealing
with sparse matrices defined over F2. Multiplying a sparse matrix by a vector
requires, for each matrix coefficient, to access a single coefficient (hence a single
bit) of the input vector. Despite the fact that memory access probably reaches
the nearby bits of the input vector as well, these do not matter and one expects
that their value is most often discarded. When a block of n vectors is considered,
and n is equal to the machine word size (say, n = 64), then there is a natural
alternative way to proceed. Storing blocks of vectors as N -element arrays of n-
bit machine words, it is possible to compute simultaneously the product of a
sparse matrix by a block of vectors in essentially the same number of distinct
memory accesses than required for doing a single matrix-times-vector operation.
The question is then whether such an approach leads to a modification of the
Lanczos algorithm which requires fewer iterations.

4 Orthogonalizing a sequence of subspaces

The key to the block Lanczos algorithm is the idea of considering a sequence of
subspaces of dimension larger than 1. We use boldface letters to denote blocks
of n vectors, and the notation 〈v〉 denotes the subspace of FN

p spanned by the n
columns of v. We extend this trivially to 〈v0,v1〉 As in the case of the standard
Lanczos, we define notions which are related to the inner product defined by the
matrixA. We say that spaces 〈v〉 and 〈w〉 areA-orthogonal whenever vTAw = 0.
It is clear that vTAw is an n× n matrix with coefficients in Fp.

We first describe a naive extension of the Lanczos algorithm to the setting
of blocks of vectors, and explain why it does not work (at least not if p may be
small). We need to define an analogue to the sequence of mutually orthogonal
vectors (vi)i≥0 considered in the standard Lanczos algorithm. Let us fix an arbi-
trary vector block v0 as a starting point (to be discussed in §7). We may attempt
to define a sequence of vector spaces with vT

i Avi non-singular as follows.

– Set t = Avi −
∑
j≤i

vj(v
T
j Avj)

−1(vT
j A

2vi).

– Define vi+1 as a maximal set of columns within t so that vT
i+1Avi+1 is

invertible.

5

The key problem with the approach above is that vi+1 is a block of possibly
fewer vectors than vi: when tTAt above is not of full rank, some vectors are dis-
carded and not selected in vi+1. This implies that after some steps, the expected
dimension of the block 〈vi〉 collapses to zero, with no further progress possible.
(A rule of thumb expecting a rank defect of 1 with probability 1

p predicts that
no more than np steps can be done before this collapse.)

To address this issue, Montgomery suggested an idea related to the look-
ahead Lanczos [9] (but apparently discovered independently): allow to build or-
thogonal subspaces from a larger number of the previous iterates. For notational
ease, we depart slightly here from the notations used in [7]. We define sequences
(vi)i≥0, (di)i≥0, and (wi)i≥0, where vi ∈ FN×n

p , wi ∈ FN×n
p , and di ∈ Fn×n

p

diagonal with entries in {0, 1}. We require, for all i ≥ 0:

wi = vidi,

[wT
i Awi]di

6= 0 (principal minor marked by di) (4)

wT
j Avi = 0 whenever j < i. (5)

The diagonal matrix di essentially encodes the choice of a subset of {1, . . . , n},
which justifies the notation [wT

i Awi]di
for the principal minor attached to this

set (note that we have [vT
i Avi]di

= [wT
i Awi]di

). It is clear that condition (5)
also implies wT

i Awj = 0 whenever i 6= j.
In Montgomery’s algorithm, the sequence of orthogonal subspaces is the se-

quence wi, which are formed from as many columns from vi as possible (condi-
tion 4 imposes that the inner product defined by A is non-degenerate on 〈wi〉).
Vectors from vi which are not selected in wi, instead of being dropped, are
considered again for selection in the next iterations.

As for the standard Lanczos algorithm, we explain how the conditions above
can be satisfied with an explicit inductive construction. The starting point of
each iteration is the vector block vi. The first step is to compute di (and hence
wi) so as to satisfy condition (4). In a second step, we compute vi+1 so as to
satisfy condition (5).

5 Construction of the next iterate

We first discuss how to compute di (and hence wi) from vi. We need the following
lemma:

Lemma 1. Let X ∈ Fn×n
p be a symmetric matrix of rank r, and S ⊂ {1, . . . , n}

be indices of r independent columns of X. Then the principal minor [X]S is
non-zero.

To see this, assume without loss of generality that S = {1, . . . , r}. Columns of
indices r+1 and above can be expressed as combinations of the first r columns.

We may write a matrix Σ =

(
1r ∗
0 1n−r

)
so that XΣ has only its r first columns

non zero. The matrix X′ = ΣTXΣ has its last n − r rows and columns equal

6

to zero, so that only its leading r × r submatrix is non-zero. Since X′ has rank
r and this submatrix coincides with the leading r × r submatrix of X, this is
saying that [X]S 6= 0, as claimed.

Lemma 1 implies that computing di so as to satisfy condition (4) only
amounts to Gaussian elimination on the n× n matrix vT

i Avi.
An inverse of the submatrix whose row and column indices are encoded by

di can be computed from the same Gaussian elimination procedure. Therefore,
we assume that a by-product of the computation of di is an n× n matrix winv

i

such that:

winv
i = winv

i di = diw
inv
i ,

di = winv
i (wT

i Awi) = winv
i (vT

i Avi)di

The former condition above expresses the fact that winv
i is zero outside the row

and column indices encoded by di, while the latter expresses the fact that it is
an inverse to the corresponding submatrix. Note that this construction implies
that winv

i is symmetric.

Assuming di and wi have been derived from vi, we now build vi+1 from
Awi and vi. Given that Awi has, by construction, n − rank(di) zero columns,
we complete it with the columns of vi which were not selected in wi. We then
write vi+1 as follows.

t = Avidi + vi(1− di),

vi+1 = t−
∑
j≤i

wjw
inv
j wT

j At.

It is clear from the quantities computed so far that vi+1 is A-orthogonal to wj

for all j ≤ i, which is condition (5). We remark that we could have used, as
Montgomery does, the vector block Awi + vi = t + wi instead of the value
chosen above for t, and this would have led to the same value for vi+1.

6 Simplifying the recurrence equation

The previous section defines a complete set of equations for determining vi. How-
ever the expression above for vi+1 is a very deep recurrence, which would lead to
poor time and space complexity. We therefore need, as is done in the standard
Lanczos algorithm, to show that the recurrence equation can be simplified.

We first restate the recurrence relations from the previous section, and in-
troduce some auxiliary notation ci+1,j .

vi+1 = Avidi + vi(1− di)−
∑
j≤i

wjci+1,j , (6)

ci+1,j = winv
j wT

j A(Avidi + vi(1− di)).

7

Condition (5) implies that the second summand in the expression of ci+1,j is zero
for j < i. We now examine the first summand for j < i. Consider equation (6)
for index j, and multiply by dj . We obtain:

Awj = vj+1dj +O(〈w0, . . . ,wj〉),
wT

j A
2wi = djv

T
j+1Avidi,

where the notation O(V), for V a subspace of FN
p , denotes any vector block

whose columns belong V .
The equations above yield the following simpler form for ci+1,i−1:

ci+1,i−1 = winv
i−1v

T
i Avidi.

Better, for j +1 < i, we consider equation (6) for index j +1 and multiply it by
1 − dj+1. We obtain the following equation, from which we rewrite vj+1 in an
interesting way:

vj+2(1− dj+1) = vj+1(1− dj+1) +O(〈w0, . . . ,wj+1〉),
vj+1 = wj+1 + vj+1(1− dj+1)

= vj+2(1− dj+1) +O(〈w0, . . . ,wj+1〉).

This implies, for j = i−1, j = i−2, and more generally for any j < i (repeatedly
using the last fact):

ci+1,i−1 = winv
i−1v

T
i Avidi,

ci+1,i−2 = winv
i−2(1− di−1)v

T
i Avidi,

ci+1,j = winv
j

 i−1∏
k=j+1

(1− dk)

vT
i Avidi (7)

We remark that this expression for ci+1,i−2 is simpler than in [7].
In the normal course of the computation, it is easy to ensure that (1−di)(1−

di+1) = 0: this expresses the fact that column indices which are not selected
among the independent columns in vT

i Avi used to define di have to be given
priority when defining di+1 at the next step. As long as this can be achieved,
we obtain that whenever j ≤ i− 3, we have ci+1,j = 0. In [7], Montgomery does
exactly like this, and computes each iterate vi+1 with access to only the three
previous iterates vi, vi−1, and vi−2.

The particular form of equation (7), however, allows to write a simpler recur-
rence, which has the advantage of limiting the storage needs of the algorithm.
Define

pi = vi−1w
inv
i−1 + vi−2w

inv
i−2(1− di−1) + · · · ,

=
∑
j<i

vjw
inv
j

i−1∏
k=j+1

(1− dk).

8

By equations (6) and (7), we see that the contribution of all iterates before wi

in the expression of vi+1 can be simplified as:∑
j<i

wjci+1,j = piv
T
i Avidi.

The computation of the sequence of vector blocks (vi)i≥0 from a starting
vector block v0 can now be summarized. At the start, we have p0 = 0. For all
i ≥ 0, we proceed through the following steps.

– Compute vT
i Avi and vT

i A
2vi. Deduce di (giving, or not, priority to indices

not selected in di−1 — it makes no difference) and winv
i . If di = 0, terminate

(see §7).
– Compute

ci+1,i = winv
i (vT

i A
2vidi + vT

i Avi(1− di)),

vi+1 = Avidi + vi(1− di)− vici+1,i − piv
T
i Avidi,

pi+1 = viw
inv
i + pi(1− di)

– Memorize vi+1 and pi+1 for the next iteration.

7 Termination

As the computation of the sequence of vector block proceeds, we clearly have

〈w0, . . . ,wi〉 ⊂ 〈v0, Av0, . . . , A
kv0, . . .〉,

dim〈w0, . . . ,wi〉 =
∑
j≤i

rankdj =
∑
j≤i

rankvT
j Avj ,

dim〈v0, Av0, . . . , A
kv0, . . .〉 ≤ N.

Therefore, the number of iterations can be studied by first examining the ex-
pected rank of vT

j Avj . Montgomery writes in [7] the generating function for
the rank defect of an arbitrary n × n symmetric matrix over Fp. For p = 2,
the result obtained is that the expected rank defect is 0.764.... We thus have
E[rankdi] ≈ N − 0.764, from which we expect that at most an expected value
of N

n−0.764 iterations are computed.
The actual termination condition which causes the iterative process to stop

at index m (more exactly, become stationary, if we consider winv
m = 0 to be a

legitimate value) is when we reach dm = 0, which means that vT
mAvm = 0.

When the block dimension n is exceptionally small, this might happen sooner
than the expected value computed above, out of bad luck. We consider here that
the block dimension is large enough, so that this situation does not happen.

Heuristically, we expect a large intersection of 〈vm〉 with the null space of
A, which allows to find close to n solutions to the homogeneous linear system
Ax = 0.

9

We provide here some justification for this fact. Let δ0 be a vector block with
Aδ0 = 0, and let v0 be an arbitrary vector block. We consider the two sequences
corresponding to v0 and v′0 = v0+δ0. It is easy to see that both sequences evolve
synchronously, as the matrices vT

i Avi are equal for both sequences at each step.
Let ∆i =

(
v′i − vi p′i − pi

)
. We have

∆i+1 = ∆i ×Si,

Si =

(
(1− di)− ci+1,i winv

i

−vT
i Avidi (1− di)

)
.

We claim that Si is invertible. Indeed, we have:(
1− di di

di 1− di

)
×Si ×

(
1 0

vT
i A

2vidi 1− di + div
T
i Avidi

)
=(

(1− di)− div
T
i Avidi 0

−winv
i (vT

i Avi(1− di)) 1

)
.

The latter matrix is clearly of full rank. A consequence is that rank∆m =
rank∆0, and that rank(v′m − vm) is expected to be close to rank(δ0). We thus
have no reason to expect that vm is an abnormally poor supply of elements of
the null space of A.

In the case which is relevant for integer factorization problems, we want
to solve the equation xTM = 0, and use the block Lanczos algorithm with
A =MMT . In this case, we expect (as above, heuristically) that the intersection
of 〈vi〉 with the (left) null space ofM is large enough to obtain close to n solutions
to the linear system (provided the null space itself is large enough).

The block Lanczos algorithm can also be used to solve inhomogeneous linear
systems, to some extent. In this case, we assume that the null space dimension
is small compared to the block dimension n. We want to solve Ax = b for several
vectors b. We set the starting vector block v0 with our vectors b, and complete
with random vectors so as to form an n-dimensional vector block. We compute

x =
∑
i<m

viw
inv
i vT

i v0.

Note that x can be computed online at little extra cost, since for i ≥ 1 we have(
vT
0 vi+1 vT

0 pi+1

)
=
(
vT
0 vi vT

0 pi

)
×Si

with Si as above. Maintaining the evolution of x throughout the computation
of the sequence costs some extra memory.

By construction, we have Ax − v0 ∈ 〈vm〉. In [7], Montgomery argues that
heuristically, we have 〈Avm〉 ⊂ 〈vm〉. Based on the assumption that the null
space of A is small enough, we hope to find linear combinations of the columns
of Ax− v0 and Avm which provide some solutions to Ax = b.

10

8 Implementation in parallel

Several implementations of the block Lanczos algorithm exist, and adapt reason-
ably well to parallel computing environments. Different processors (which can be
different nodes communicating via message passing, or simply processor threads)
can collectively compute the sequence (vi)i≥0. It is useful to organize processors
in a two-dimensional (possibly toroidal) mesh, following the explanation in [8].
For simplicity, we assume the mesh has size d × d. Each processor “owns” part
of the data: all vectors considered in the algorithm are divided in d2 fragments,
and the matrix M itself is also spread across processes, in d2 fragments. An
example organization, assuming that M has dimension N1 ×N2 (both assumed
to be divisible by d2), distributes data as follows for the processor on row i and
column j (both indexed from 0) within the mesh:

– For vector blocks of sizeN1×n, row indices [x, x+N1

d2 −1] with x = (di+j)N1

d2 .
– For vector blocks of size N2×n, row indices [x, x+N2

d2 −1] with x = (dj+i)N2

d2 .
– Sub-block of M at position (i, j) when split in blocks of size N1

d ×
N2

d .

In fact, load balancing has to be taken into account, so that the distribution
may actually be slightly different, or equivalently we may need to permute rows
and columns of B adequately.

In this setting, many operations on vectors can be performed locally. The
only collective operation at each step is the multiplication by A = MMT , de-
composed into uT ← vTM first, then v ←Mu, where u and v are vector blocks
of size N2 × n and N1 × n, respectively. Communication goes as follows. After
uT ← vTM , processors on the same mesh column need to share their results so
as to form N2/d valid coefficients of the resulting vector u. For the operation
v ← Mu, the processors in this same mesh column all need these same N2/d
input coefficients. Therefore, the communication operation required after each of
these two products is in fact a pretty common pattern. In the Message Passing
Interface, this operation is called “All-reduce”, and is usually well optimized and
tuned on most serious MPI implementations.

The other operations within each iteration are either of moderate cost (dot
products, or multiplication of vectors by n × n matrices) or totally negligible
(arithmetic directly involving n× n matrices). It should be noted however that
the parallelization of the block Lanczos algorithm can only go as far as the
communication speed allows, since synchronization has to occur after each mul-
tiplication by A =MMT .

9 Recent developments

The block Lanczos algorithm has been successful in factoring projects since its
inception, including record computations until 2005. Compared to the block
Wiedemann algorithm [3], the block Lanczos algorithm seems to need a smaller
number of multiplications of matrices by blocks of vectors. With blocking dimen-
sion n, block Lanczos requires 2N/(n − 0.764) products in total (counting two

11

for each iteration). The block Wiedemann algorithm requires instead N
m + 2N

n
products, depending on the two blocking dimensions m and n. When these are
chosen straightforwardly as m = n, the algorithm needs 3N/n products. This
comparison can shift towards being in favour of the block Wiedemann algorithm
in two ways. First, if for example when m = 4n is a valid choice, only 2.25N/n
products are needed. Also, if large blocking dimensions can be considered (say
we use blocking dimensions m′ and n′ that are two appropriate multiples of n),
then by [5, Theorem 7], only (1+ o(1))N/n products are needed, which is better
than block Lanczos. However, the reason why the block Wiedemann algorithm
has been preferred in most factoring records since 2005 is simply because of
the better distribution opportunities it offers, a criterion which has been most
important given the composite nature of the hardware platforms used.

One may wonder whether the block Lanczos algorithm can be profitably
used in the context of the computation of discrete logarithms, in particular
with the number field sieve variants. An artifact of the number field sieve for
discrete logarithms, called Schirokauer maps, divides the presentation of the
linear algebra problem in two different settings. Given a sparse matrixM defined
over a large finite field, the Schirokauer maps form a dense matrix block S (with
very few columns, but with large coefficients) such that the linear system to
be solved can be written as (M | S)x = 0. It is not, however, the only way to
proceed: any vector x such that Mx ∈ 〈S〉 is a satisfactory solution. As it turns
out, this approach is viable both in the block Lanczos algorithm, as discussed
in §7, as well as in the block Wiedemann algorithm, as discussed in [3, §8]. In
both cases, this is possible as long as the number of columns of the block S is
less than the block dimension n.

References

1. Bos, J.W., Lenstra, A.K.: Topics in Computational Number Theory inspired by
Peter L. Montgomery. Cambdridge University Press (2016), to appear

2. Coppersmith, D.: Solving linear equations over GF(2): Block Lanczos algorithm.
Linear Algebra Appl. 192, 33–60 (Jan 1993)

3. Coppersmith, D.: Solving linear equations over GF(2) via block Wiedemann algo-
rithm. Math. Comp. 62(205), 333–350 (Jan 1994)

4. Eberly, W., Kaltofen, E.: On randomized Lanczos algorithm. In: Küchlin, W.W.
(ed.) ISSAC ’97. p. 176–183. ACM Press (1997), extended abstract

5. Kaltofen, E.: Analysis of Coppersmith’s block Wiedemann algorithm for the par-
allel solution of sparse linear systems. Math. Comp. 64(210), 777–806 (Apr 1995)

6. LaMacchia, B.A., Odlyzko, A.M.: Solving large sparse linear systems over finite
fields. In: Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO’90. LNCS, vol. 537, pp.
109–133. Springer, Berlin, Germany, Santa Barbara, CA, USA (Aug 11–15, 1990)

7. Montgomery, P.L.: A block Lanczos algorithm for finding dependencies over gf(2).
In: Guillou, L.C., Quisquater, J.J. (eds.) EUROCRYPT’95. LNCS, vol. 921, pp.
106–120. Springer, Berlin, Germany, Saint-Malo, France (May 21–25, 1995)

8. Montgomery, P.L.: Parallel block Lanczos (2000), slides of presentation at RSA-
2000, dated January 17, 2000

12

9. Parlett, B.N., Taylor, D.R., Liu, Z.A.: A look-ahead Lanczos algorithm for unsym-
metric matrices. Math. Comp. 44(169), 105–124 (Jan 1985)

10. Wiedemann, D.H.: Solving sparse linear equations over finite fields. IEEE Trans.
Inform. Theory IT–32(1), 54–62 (Jan 1986)

13

	A modified block Lanczos algorithm with fewer vectors

