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Abstract. This paper presents a low-resource hardware implementation
of the widely used crypto_box function of the Networking and Cryptog-
raphy library (NaCl). It supports the X25519 Diffie-Hellman key ex-
change using Curve25519, the Salsa20 stream cipher, and the Poly1305
message authenticator. Our targeted application is a secure communica-
tion between devices in the Internet of Things (IoT) and Internet servers.
Such devices are highly resource-constrained and require carefully op-
timized hardware implementations. We propose the first solution that
enables 128-bit-secure public-key authenticated encryption on passively-
powered IoT devices like WISP nodes. From a cryptographic point of
view we thus make a first step to turn these devices into fully-fledged
participants of Internet communication. Our crypto processor needs a
silicon area of 14.6 kGEs and less than 40µW of power at 1MHz for a
130 nm low-leakage CMOS process technology.
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1 Introduction

We need to empower computers with their own means of gathering in-
formation, so they can see, hear and smell the world for themselves, in
all its random glory. RFID and sensor technology enable computers to
observe, identify and understand the world—without the limitations of
human-entered data. —Kevin Ashton, June 2009 [2]
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In 1999, Ashton coined the term of the “Internet of Things” (IoT) for a
network of sensors that communicate data over the Internet and thus give com-
puters a way of sensing the world. Since then, various technological advances
have brought us closer to turning this vision into reality and large companies are
working on implementing these technologies on large scale. For example, Hewlett
Packard’s “Central Nervous System for the Earth (CeNSE)” project aims at im-
plementing “a highly intelligent network of billions of nanoscale sensors designed
to feel, taste, smell, see, and hear what is going on in the world” [10].

A representative platform for implementing sensors is called Wireless Identifi-
cation and Sensing Platform (WISP), first proposed by Sample, Yeager, Powledge
and Smith in [31]. WISP nodes are passively powered, wireless computing and
sensing devices that communicate data to an ultra-high-frequency (UHF) RFID
reader.

Most applications of this Internet of Things are safety-critical, security-
critical, or involve processing private data. For example, HP lists as applications
of CeNSE “roads, buildings, bridges, and other infrastructures; machines such as
those used in airplanes and manufacturing plants; and organizations that work
on health and safety issues, such as the contamination of food and water, dis-
ease control, and patient monitoring”. Communicating such sensitive data over
the Internet obviously raises security concerns. From a cryptographic point of
view, the ideal solution is to communicate all data end-to-end authenticated
and encrypted between a WISP node and the server processing the data. Key
management for secret-key cryptography does not scale well, so authentication
of billions of sensor nodes distributed over the whole planet calls for public-key
cryptography.

For the communication of servers and large client computers such as desktop
computers, laptops, and smartphones there exist various cryptographic libraries
and frameworks that set up such end-to-end public-key authenticated encryp-
tion. However the question remains whether at least one of these frameworks is
compatible with the highly restricted computational capabilities of WISP nodes.

This paper answers this question positively. More specifically, we present a
carefully optimized hardware architecture of the basic primitives of the open
Networking and Cryptography library (NaCl) [8]. In particular, we ported the
crypto_box primitive into hardware including the X25519 elliptic-curve Diffie-
Hellman key exchange [4], the Salsa20 stream cipher [5], and the Poly1305 secret-
key one-time authenticator [3]. Our design is able to run a 128-bit-secure public-
key authenticated encryption at the following hardware performance: Our small-
est design of all primitives requires 14.6 kGEs of silicon area and is able to es-
tablish a secure Internet connection within 1.7 seconds when clocked at 4 MHz.
Our fastest design needs 18 kGEs and performs public-key authenticated encryp-
tion within about 400ms. Our crypto-processor can be used and integrated into
WISPs and related low-resource sensor nodes. Optimizations of other manda-
tory system components such as random-number generation, analog front-end
and protocol handling for RF communication, or non-volatile memory are not
covered in this paper and need further investigation.



The application described above defines the optimization goals we aimed at
in both choices of primitives and implementation as follows:

Low power, not low energy. WISPs harvest the power that is emitted by an
RF-signal-emitting reader device. The maximal power available to the core
is usually only a few tens of microwatts per megahertz. As the device is not
battery-powered, energy consumption is a minor concern.

Compatibility with Internet crypto. We want our solution to be easy to
integrate with existing crypto used for Internet communication. A somewhat
heavy-weight choice would be SSL/TLS with a suitable selection of primi-
tives [22]. We instead decided to go with the approach taken by NaCl, which
is easier to integrate and very efficient in software. This paper shows that it
can also be very efficient in hardware.

No need for signatures. There are two main differences between public-key
authentication as used by NaCl’s crypto_box and cryptographic signatures.
One difference is that the authenticating parties have to be online at the
same time to establish a key via static Diffie-Hellman, which prohibits a
delegation of trust to offline parties. In this setting, we assume that the
WISP node knows that the public key of the server is authentic which is
a reasonable assumption in the IoT scenario where WISPs transmit sensed
data to a specific (trusted) server in the Internet. Furthermore, the service of
non-repudiation is not essentially necessary in this context, we can therefore
avoid the overheads of implementing digital signatures.

Small and fast public-key authenticated encryption. The aim of the
proposed design is not to optimize a single primitive, but to obtain small
area and reasonable speed for a combination of primitives for public-key au-
thenticated encryption. For example, a standalone hardware implementation
of AES (or even a lightweight cipher such as PRESENT [9]) would be much
smaller than a standalone implementation of Salsa20. Similarly, AES-GCM
would be more efficient than Salsa20+Poly1305 for secret-key authenticated
encryption. However, the public-key part needs arithmetic on big integers,
which we compose of arithmetic on 32-bit integers. This approach gives us
all the building blocks we need for Salsa20 and Poly1305 almost for free in
terms of silicon area.
We believe that it is possible to achieve even smaller area if we resorted
to a binary elliptic curve for Diffie-Hellman and combined this with, for
example, AES-GCM. Obviously it is possible to obtain even better efficiency
when reducing the security to, for example, 80 bits. However, the central
contribution of this paper is to show that we can achieve 128-bit secure
public-key authenticated encryption with a conservative choice of primitives
on low-resource WISP nodes having a very small footprint in terms of area
and power.

Nonce generation. NaCl’s crypto_box receives as one input a public nonce.
This paper does not discuss how this nonce is generated; for a discussion of
how nonces are integrated into higher-level protocols, see [8, Sec. 2].



Related work. The cryptographic primitives used in NaCl for the crypto_box
public-key authenticated encryption have been designed for high software per-
formance. Consequently, the primitives have so far mainly been implemented in
software. Most of this software is included in the eBACS SUPERCOP bench-
marking framework [7]. There also exist optimized implementations for embed-
ded microcontrollers (e.g., AVRs, MSP430, or ARM Cortex M) which are not
supported by SUPERCOP. Examples are given in [11,17,19,27]

The focus on software implementations does not mean that there exist no im-
plementations in hardware. In particular for the Salsa20 stream cipher there exist
various hardware implementations with different optimization targets. For exam-
ple, there are FPGA implementations [12,24,34] and also ASIC designs [13,16,38].
The only hardware implementation of Curve25519 that we are aware of is the
throughput-optimized FPGA implementation by Sasdrich and Güneysu, which
achieves a throughput of more than 32, 000 scalar multiplications per second on
a Xilinx Zynq 7020 FPGA [32]. Besides Curve25519 however there exist a broad
range of other elliptic-curve implementations over Fp. Most of them perform
scalar multiplication on Weierstrass curves and target various FPGA platforms.
Typical examples—that have a similar security level as Curve25519—are given
in [1,14,15,25,26,28,30,35].

We are not aware of any hardware implementations of Poly1305.

Notation. In [4], Bernstein introduced a high-security high-performance elliptic-
curve Diffie-Hellman key-exchange scheme called Curve25519. The name origi-
nally referred to the complete scheme, but was later also used to refer to the spe-
cific elliptic curve used in this scheme. To eliminate possible confusion, Bernstein
recently suggested to use the term X25519 for the “recommended Montgomery-
X-coordinate DH function” and the term Curve25519 for the underlying elliptic
curve. We adopt this new terminology in this paper.

Availability of results. We will make all results described in this paper avail-
able online. In particular we will place the HDL implementation described in
this paper into the public domain to maximize reusability of our results4. The
entire implementation avoids all patents that the authors are aware of.

Roadmap. The paper is organized as follows. In Section 2, we will give a short
introduction into NaCl and its underlying cryptographic primitives. Section 3
presents our processor and describes the hardware architecture and all its imple-
mented components. In Section 4, we describe the machine-code implementation
including X25519, Salsa20, and Poly1305. Finally, results are given in Section 5.

2 Preliminaries – the crypto_box function

The Networking and Cryptography library (short: NaCl), developed by Bern-
stein, Lange, and Schwabe, advertises a “simple high-level API” [8]. The core

4 The source code is available at http://mhutter.org/research/vlsi/#naclhw and
at http://cryptojedi.org/crypto/#naclhw.
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functionality of this API is the crypto_box function, which offers public-key
authenticated encryption. It computes an authenticated ciphertext from a mes-
sage, a nonce, the sender’s private key, and the receiver’s public key. The receiver
feeds this authenticated ciphertext together with the nonce, his private key, and
the sender’s public key into the crypto_box_open function to verify the authen-
tication tag and recover the message.

In principle, NaCl supports different independent implementations of this
function with different underlying primitives. However, the default construction
used in NaCl (and targeted in previous NaCl optimization papers) is a construc-
tion based on the X25519 elliptic-curve Diffie-Hellman (ECDH) key exchange,
the XSalsa20 stream cipher, and the Poly1305 secret-key one-time authenticator.
We briefly review these three primitives in the following subsections.

Curve25519 and the X25519 function. In 2006, Bernstein proposed the
X25519 ECDH scheme [4]. The scheme is based on arithmetic on the Montgomery
curve “Curve25519” with equation E : y2 = x3 + 486662x2 + x defined over the
field F2255−19. This curve was chosen for high security and high performance.
For details about the security properties see [4, Sec. 3].

X25519 secret keys are byte arrays of length 32. Inside X25519, such a byte
array is interpreted as a little-endian-encoded 256-bit integer. Before this integer
is used as a scalar in elliptic-curve scalar multiplication, the most significant bit is
set to 0, the second-most significant bit is set to 1, and the three least significant
bits are set to 0. X25519 public keys are also byte arrays of length 32, and encode
the x-coordinate of a point on Curve25519.

X25519 uses the fast x-coordinate-only differential-addition chain proposed
by Montgomery in [29] to compute a shared secret kP from a secret key k and
a public key P . Key-pair generation uses the same computation with a fixed
basepoint. The computation involves 255 “ladder steps” and one final inver-
sion in F2255−19. Each ladder step involves 5 multiplications, 4 squarings, one
multiplication by the constant (486662+ 2)/4, and some additions and subtrac-
tions in F2255−19. The final inversion can be computed as exponentiation with
F2255−21. An efficient addition chain for this exponentiation proposed in [4] takes
254 squarings and 11 multiplications.

The XSalsa20 stream cipher. The Salsa20 stream cipher is an eSTREAM fi-
nalist designed by Bernstein [5] and performes 20 rounds on an internal state. The
XSalsa20 stream cipher was introduced by Bernstein in [6]. It uses the same core
as Salsa20, but supports a 192-bit nonce instead of the Salsa20 64-bit nonce. This
is achieved by a fast nonce-setup, called HSalsa20, followed by Salsa20 keystream
generation. This combination is denoted as XSalsa20. For details see [6, Sec. 2].

The computations inside HSalsa20 and Salsa20 are very similar, in particular
they both use the same 20-round transformation on blocks of 64 bytes. A block
is treated as a 4× 4-matrix of 32-bit words. Each of the 20 rounds consists of 16
add-rotate-xor sequences, such as

s4 = x0 + x12
x4 ^= (s4 >>> 25)



The main difference between HSalsa20 and Salsa20 is that they use a different
finalization computation to produce a 64-byte output block in the case of Salsa20
and a 32-byte output block in the case of HSalsa20.

Poly1305 secret-key authentication. The Poly1305 authenticator was intro-
duced by Bernstein in [3]. The security of this authenticator requires that a key
is used only once; inside crypto_box this is ensured by prepending a 32-byte
zero-block in front of the message and then using the XSalsa20 encryption of
this zero block as authentication key. The computations in Poly1305 are based
on arithmetic in the finite field F2130−5. The authentication tag is computed by
processing the input in 16-byte blocks. For each block, Poly1305 treats the block
as an element of F2130−5, adds this element into a state, and multiplies the state
by a secret value r ∈ F2130−5, which is essentially the first half of the 32-byte se-
cret key with some bits set to zero. After the whole message has been processed,
the authentication tag is computed as addition of the state with the second half
of the 32-byte secret key.

3 A crypto_box specific instruction-set processor

Implementing public-key authenticated encryption in hardware is a challeng-
ing task and requires many different design decisions. Since we aim for a very
efficient architecture in terms of low-resource requirements, we decided to im-
plement an Application Specific Instruction Set Processor (ASIP). In contrast
to microprocessors, ASIPs are usually less flexible because there might be no
compiler support for the custom processor. The machine code needs to be im-
plemented “by-hand” or by self-written compilers that support the optimized
instruction set. On the other hand, ASIPs can benefit in terms of efficiency,
i.e., higher speeds and lower area and power requirements. Basically, the main
features of our design can be summarized as follows:

Resource efficiency. Our processor was designed with resource efficiency in
mind. This means that we aimed for a low-area architecture that re-uses
resources as much as possible. Our hardware components such as the imple-
mented hardware multiplier have been chosen to require only a low number
of logic gates while providing appropriate speeds.

Platform independency. Our design does not make use of any technology-
specific components. It is therefore flexible in the sense that it can be syn-
thesized on different CMOS-process technologies and FPGAs.

Security. All implemented cryptographic primitives share a security level of
128 bits. Furthermore, we avoided to use any secret branch conditions in
our implementation and guarantee that all operations run in constant time.
We therefore offer a baseline implementation that can be used to compare
with related work and that can be extended in future to integrate hiding and
masking countermeasures that offer protections against DPA and correlation-
collision attacks etc.



Compatibility with the NaCl API. We are fully compatible to the existing
software NaCl interface which offers easy integration of the processor in
existing infrastructures and applications.

Support of efficient primitives. Our processor supports a set of high-level
primitives (that originally have been designed to achieve high speeds) to
offer a range of demanded cryptographic services. We support the following
functions:
1. Establishing secure session keys using the X25519 Diffie-Hellman key

exchange [4] by running crypto_dh_curve25519.
2. Data encryption and decryption using XSalsa20 [5,6].
3. Message authentication using Poly1305 [3].
4. Public-key authenticated encryption by executing the crypto_box func-

tion. The server can then verify the message authenticity by calling
crypto_box_open of the NaCl API.

5. Verification and decryption of NaCl authenticated ciphertexts for secure
transmission of control messages.

3.1 Hardware implementation overview

Our design mainly consists of a memory unit, a controller, and a crypto_box-
specific Arithmetic Logic Unit (ALU). The ASIP can be accessed through a
32-bit interface.

Memory is one of the most critical components in efficient hardware designs.
Especially in implementations of public-key cryptography, it often takes up to
80% of the entire circuit area and also consumes a significant amount of power.
We therefore decided to implement a memory with very generic elements, which
can be efficiently replaced by highly optimized platform-dependent memory tech-
nologies. For volatile memory, we decided to implement a random-access memory
(RAM) instead of a register file. Our design thus supports efficient RAM macros
for specific CMOS process technologies. We also stored all constants regularly
in a read-only memory (ROM) table. This allows a better optimization by the
hardware synthesizer and also enables the use of more efficient ROM macros.

We decided to implement a 32-bit single-port RAM. Single-port memories
have the advantage that they are usually smaller in size compared to multi-
port memories. This fact makes them attractive for implementations running in
resource-constrained environments. Essentially, there are two main reasons for
their smaller footprint: 1) each memory cell is basically composed of 6 transistors
while 8 transistors are usually required for dual-port memories; and 2) the addi-
tional address logic and read/write drivers of multiple ports cause an additional
increase in required resources. For example, Faraday Technology Corporation
offers a synchronous dual-port register-file RAM (with 32×64 = 2048 bits) that
requires 0.035mm2 while a synchronous single-port register-file RAM of the same
company requires only 0.023mm2 on a low-leakage 130 nm CMOS-process tech-
nology. Generally, one-port memories are about 1.4 to 1.7 times smaller than
dual-port memories.



The main drawback of single-port RAMs however is throughput. While dual-
port memories can simultaneously read and/or write two words at different ad-
dresses, single-port memories can access only one address per clock cycle. This
is the reason that most of (not only high-speed but also resource-constrained)
ECC implementations use dual-port memories to keep the arithmetic unit busy
in each clock cycle. In particular, multi-precision multiplication (which is often
the efficiency bottleneck of those implementations) requires that many partial
products are calculated, each needing two operands in each clock cycle.

Optimized single-port memory arithmetic. We address the issue of low
memory throughput and apply a method that allows us to keep the arithmetic
unit busy despite the low throughput of single-port memories. More specifically,
we use product-scanning-based multiplication but process two columns in par-
allel. In each clock cycle, two operands from two columns are chosen while one
operand is kept in a 32-bit register and re-used in the next cycle. This allows to
perform one 32× 32-bit multiplication in each cycle.

Selective memory-bank access. Both RAM and ROM are logically divided
into a set of memory banks with a data width of 256 bits each. The RAM is
composed of 9 memory banks: 1×256 bits are needed for storing the x-coordinate
of the (fixed or random) base point, 1× 256 bits are needed to store the private
key of the X25519 Diffie-Hellman key exchange, and 7×256 bits are required for
scalar multiplication. The ROM is composed of 6 memory banks, which contain
constants for modular reductions in F2255−19 for Curve25519 and F2130−5 for
Poly1305, 2 logic masks, the curve parameter a24, and σ for XSalsa20.

We restricted access to the memory from the I/O interface and only allow
read/write to RAM banks with index 0 and 1. All other memory banks are not
accessible from outside.

Secret-key-dependent memory-bank switching. Curve25519 uses the Mont-
gomery powering ladder [29,20] as scalar-multiplication method. In each ladder-
step iteration, two curve-point coordinates need to be swapped depending on
a secret scalar bit. To avoid secret-key dependent branch conditions, we imple-
mented an additional memory logic that conditionally swaps the addresses of
two memory banks depending on a single bit in constant time. This avoids a
secret-key dependent branch condition in software and makes a swap-function
implementation unnecessary.

3.2 The controller

The controller is composed of two program ROMs, a program-counter, an in-
struction decoder, a dedicated multiplication controller, and a flattened memory-
management unit including address decoding and page-table control.

We decided to implement two distinct program ROMs: one that contains
the program code for Curve25519 and one that mainly contains the code for
XSalsa20 and Poly1305. During implementation, it has been shown that both
program ROMs have nearly the same code size (the ROM for Curve25519 is



slightly smaller in size so that we padded the remaining bytes with zero to
obtain equally sized ROMs). Splitting the ROMs has the advantage that 1) the
critical path is reduced due to smaller tables, 2) the area is reduced since modern
hardware synthesizers can apply better optimizations, and 3) splitting allows to
effectively “isolate” one ROM to reduce power consumption while the other ROM
is active.

The special-purpose instruction set. We implemented 46 instructions, out
of which 26 instructions are general-purpose instructions and 20 are special in-
structions tailored for efficient NaCl crypto_box computations. From these 46
instructions, there are 6 program-flow instructions that for example allow the
use of subroutine calls to reduce code size. Almost all instructions directly load
operands from or store to memory, which improves performance and avoids the
need of (costly) CPU registers.

crypto_box-optimized memory paging. We further applied the following
optimization in order to reduce the memory-instruction width and necessary op-
code size, respectively. By analyzing our crypto_box implementation, we iden-
tified that in most cases only access to a limited amount of memory banks is
necessary (especially in subroutines). This is why we decided to implement a
lightweight memory-management unit that makes use of a memory-paging tech-
nique in order to reduce the length of the total opcode. Thus, we reserve only 2
bits for memory-page addressing. A page consists of 4 non-contiguous memory
banks that are pre-determined and statically stored in a page-address table in
ROM. During execution, only 1 page can be concurrently active and instruc-
tions can access only the 4 memory banks of this page. A memory page can
be selected using the Memory Page Select (MPS) instruction, for subroutines we
implemented the dedicated Memory Page Increment (MPI) and Memory Page
Decrement (MPD) instruction that both increment/decrement the page index.

By applying these enhancements, only 9 bits of opcode are needed for all
instructions. From these 9 bits, up to 5 bits are used for memory addressing
purposes: two bits are needed to select one memory-bank from the active page
and three bits are needed to select a single 32-bit word from the virtual 256-bit
memory bank.

Single-level subroutines and parameter passing.Our memory-paging tech-
nique also enables easy address-parameter passing to subroutines. By simply
selecting different pages, subroutines can operate on different memory banks
without additional lines of code and without additional registers to store the
parameters. To enable single-level subroutines, we integrated an 11-bit register
that holds the return address. An additional multiplexer is used to update the
program counter after returning from the subroutine. To efficiently address the
subroutines in the program ROM, we implemented an address decoder using a
ROM lookup-table.

Improving speed by operand prefetching. In order to increase the speed
of our ASIP design, we apply operand prefetching. This allows that instructions
can already preset the address of an operand that is needed in the subsequent
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Fig. 1: Column-wise product-scanning multiplication (left) and 2-column parallel
product-scanning multiplication (right).

instruction. Since loading from RAM generally requires two cycles, this improves
performance by simply “prefetching” an operand during execution of the previous
instruction.

To store prefetched operands, we integrated a dedicated 32-bit prefetch buffer.
This buffer is located right at the input of the Arithmetic Logic Unit (ALU).
The ALU can then either load the prefetched operand from the buffer or it can
directly load constants from ROM within a single clock cycle.

2-column product-scanning hardware multiplier control. The perfor-
mance of Curve25519 and Poly1305 largely depends on the performance of big-
integer multiplication. We build this big-integer multiplication from 32× 32-bit
multiplications, but instead of implementing it in software, we integrated a ded-
icated controller that is used to provide fast multiplication based on product-
scanning multiplication. Instead of processing all partial products column-wise
(which is often done by executing a multiply-accumulate instruction on many
platforms), we process two columns in parallel. The controller chooses operands
from one and the other column alternately, therefore ”hopping“ between the
columns as shown in Figure 1. The figure shows an A × B = 6 × 6-word multi-
plication as an example, where all word multiplications A[i] × B[i] with index
i ∈ [0, 5] are represented as black dots and the processing is indicated with an
arrow. The processing starts from right to left and the result C is the sum of all
partial-product columns.

For three consecutive word multiplications, two operands are always the same
because of the parallel processing of the two columns. This allows to buffer
one operand in a 32-bit register while another operand can be prefetched from
memory. The ALU is therefore busy in each clock cycle.

3.3 The arithmetic logic unit

The ALU consists of a digit-serial multiplier, a rotation unit, a carry-handling
logic, a prefetch buffer, and an accumulator register.

The core element of the ALU is a digit-serial multiplier. This type of multi-
plier processes several bits (so-called digits) in parallel in contrast to bit-serial



multipliers which process one operand bit-by-bit only. They are therefore sig-
nificantly faster while requiring less resources than single-cycle array multipliers
(in terms of both area and power). We pay for these advantages with a longer
critical path delay5 that limits the maximum frequency of our design to a few
MHz. For our targeted application range, this is not a problem.

We made our multiplier flexible such that the digit size can be configured
before synthesis (parameter w ∈ {2, 4, 8, 12, 16} defines parallelism). By changing
this parameter we can trade higher speed for smaller area. The main components
of our multiplier are a set of adders that are connected in series and that are
shifted by one bit each. The output of the multiplier is then fed to an optimized
multi-operation logic (MOL) that is able to perform both arithmetic as well
as logic operations. Configured as an adder, it can be used to add the partial
products of the digit-serial multiplier to the accumulator register. Besides this,
it can be also configured to subtract operands (e.g., for modular reduction) or
to perform an AND, OR, or XOR operation.

crypto_box-dedicated rotating. To keep the area requirements low, we de-
cided to implement a crypto_box dedicated rotation logic that is able to rotate
the accumulator register by several fixed offsets that are required for imple-
menting the crypto_box function. Also for the digit-serial multiplication, the
accumulator register can be rotated by w bits to the right and it can be rotated
back to further multiply-and-accumulate partial products without the need of
additional registers to buffer the intermediate results (or to store or load them
from memory). For Salsa20 it is necessary to rotate the accumulator by 7, 9, 13,
and 18 bits to the right. To speed up the reduction in Poly1305, we also support
rotation by 2 and 30 bits to the right.

For ECC scalar multiplication, one might expect an accumulator size of 67
bits: 2×32 bits for holding the words of the multiplication results, and 3 bits for
storing carries. However, as we process two columns in parallel, it is necessary
to extend the size of the accumulator by 32 bits to store the intermediate result.
The accumulator has thus a size of 99 bits in total.

For efficient carry handling, we implemented a dedicated register that stores
the carry bit. This is especially necessary for modular reduction where the prime
modulus (loaded from ROM) is either added or subtracted depending on the
carry/borrow of the underlying operation. To achieve constant runtime, we also
load the prime modulus from ROM and perform an addition or subtraction oper-
ation in the case of already reduced results. In this case, however, we deactivate
the addition/subtraction logic so that the unmodified number will be written
back to memory (which equals to adding/subtracting zero).

4 Machine-code implementations

In this section, we summarize the implementation of Curve25519, XSalsa20, and
Poly1305 using our special-purpose instruction set. In total, our implementa-
tion needs 9 × 256 bits of memory, i.e., 9 memory banks (further denoted by
5 Our multiplier is part of the critical path and constitutes 40-53% of the total delay.



Table 1: The supported ASIP command set
Command Hex Description
DH-1 0x00 X25519 Diffie-Hellman key exchange: computes public key
DH-2 0x01 X25519 Diffie-Hellman key exchange: computes session key
INIT 0x02 HSalsa20: computes extended session key
FIRST 0x03 XSalsa20: computes first cipher block
UPDATE 0x04 XSalsa20: computes next cipher block
FINALIZE 0x05 Poly1305: computes authentication tag
DECRYPT 0x06 XSalsa20/Poly1305: decrypts and authenticates a single block

R0,. . . ,R8). Only two memory banks are user-accessible to load and store in-
put/output data, the remaining banks are read/write protected.

The general communication flow works as follows. Data can be sent via the
32-bit I/O interface. The input data (e.g., the plaintext) can be stored in either
R0 or R1. After that, a crypto_box operation can be started by sending one out
of five supported commands listed in Table 1. In particular, we implemented a
busy-wait polling mechanism to sample the status of the crypto_box-operation
processing. If the busy flag is set, the device still performs operations; data (e.g.,
the ciphertext) can be accessed from R0 or R1 after the busy flag is cleared.

4.1 The X25519 key exchange

The first step in X25519 is to generate a public key. This can be done by our
ASIP as follows. First, the private key needs to be written to R0 and the base
point of Curve25519 to R1. Second, by sending the DH-1 command, the public
key is calculated which can be retrieved from R1 after busy-wait polling.

In the second step, the secret-key is established by exchanging the public-
keys. For this purpose, the public-key of the opponent is written to R1, R0 still
holds the private key of the device and remains the same. After sending the
DH-2 command, a session-key is established and stored in the (read-protected)
memory-bank R6.

Initialization.Our implementation of X25519 starts with an initialization phase
were all memory banks are initialized. Some of the memory banks are initialized
to zero or one; others are initialized to the x-coordinate of the point. In DH-1
this is the fixed base P , in DH-2 it is the public-key received from the communi-
cation partner. Additionally, it is necessary to apply masking operations to the
32-byte secret key (see Section 2). In total, the initialization for X25519 needs
77 instructions and 77 cycles.

Curve25519 differential addition-and-doubling.We implemented the Mont-
gomery powering ladder to perform scalar multiplication. Since Curve25519 is
a curve in Montgomery form, it allows to perform efficient x-coordinate-only
operations. To keep the memory-requirements as low as possible, we efficiently



Listing 1 Differential addition-and-doubling on x-coord-only Montgomery
curves using 5M+4S+8add+1Ma and 6+ {xD} registers and a24 = (a+2)/4.
Require: X1, X2, Z1, Z2, xD, a24
Ensure: X1, X2, Z1, Z2

1:

1. R1 ← X2 + Z2

2. X2 ← X2 − Z2

3. Z2 ← X1 + Z1

4. X1 ← X1 − Z1

5. R1 ← R1 ×X1

6. X2 ← X2 × Z2

7. Z2 ← Z2 × Z2

8. X1 ← X1 ×X1

9. R2 ← Z2 −X1

10. Z1 ← R2 × a24
11. Z1 ← Z1 +X1

12. Z1 ← R2 × Z1

13. X1 ← Z2 ×X1

14. Z2 ← R1 −X2

15. Z2 ← Z2 × Z2

16. Z2 ← Z2 × xD
17. X2 ← R1 +X2

18. X2 ← X2 ×X2

2: return (X1, Z1, X2, Z2)

re-ordered the Montgomery formula [29] and provide an explicit formula requir-
ing 5M + 4S + 8add + 1Ma24 while needing only 6 working registers (plus the
register to store the base point xD). One variable a24 = (a+ 2)/4 is stored as a
constant. The formula is shown in Listing 1.

Modular-arithmetic subroutines. To reduce code size, we implemented the
modular arithmetic for addition, subtraction, and multiplication in subroutines.
These subroutines are called by the main program. Furthermore, each subroutine
can be called with different memory-page selection indices, which allows the
subroutine to operate on different memory banks. Note that these subroutine
implementations are responsible for the major part of the program ROM.

Modular reduction has been implemented efficiently by exploiting the under-
lying pseudo-Mersenne prime field form of 2255−19. Fast reduction can be applied
by basically shift and add operations. Shifting is done by multiplications with
a constant. We applied an iterative modular reduction method, meaning that
we first perform the arithmetic operation and reduce the result afterwards (to
lower complexity). For modular reduction after a 256-bit addition/subtraction,
we stored the carry/borrow bit using custom instructions named STC, STI, and
STX. Then, we add/subtract the constant 38 from the result depending on the
carry/borrow bit; otherwise zero is added/subtracted to provide constant run-
time. For modular reduction after a 256-bit multiplication, the higher 256 bits
of the result are multiplied with 38 and added to the lower 256 bits. This can
efficiently be done using the special-purpose MULADD and MULACC instructions.

We implemented modular inversion based on Fermat’s little theorem. It re-
quires 11 multiplications and 254 squarings for a 256-bit modular inversion and
runs in constant time. Squarings can be faster than multiplication, but we de-
cided to re-use the multiplication routine to avoid additional code size for modu-
lar squaring. In our implementation, the same multiplication instruction is con-
secutively called up to 99 times. It is worth to note that we also evaluated if
a dedicated loop instruction would further reduce the area requirements. How-
ever, it turns out that the required repeating logic would take more area than
the synthesizer is able to optimize in look-up tables so we decided to keep the
repetition of several multiplication instructions in ROM.



4.2 A streaming API for crypto_box

We decided to implement a streaming API that allows efficient authenticated
encryption on WISPs. Basically, our implementation is able to encrypt and au-
thenticate arbitrarily long data. However, due to the limited resources that we
have available, we decided to work on 64-byte chunks only. It is therefore nec-
essary to stream the data from external (non-volatile) memory (where WISPs
usually store sensed data) and to perform encryptions in a streaming mode. The
data authentication tag is calculated in parallel and can be retrieved after the en-
cryption of the last data block. The format of the crypto_box output starts with
the authentication tag, so our streaming API requires the reader to re-arrange
data. This is no problem for a reader with reasonably large memory; it is im-
possible in the small memory of our ASIP if we want to support messages that
are longer than 64 bytes. In addition to that, we provide a method to decrypt
and authenticate one block of data which leads to a plaintext data payload of 32
bytes. These 32 bytes can for example be used to submit commands or status
data to the WISP device (e.g., an Internet server requests sensitive data from
the WISP or confirms the receipt of authenticated encrypted data).

The streaming API supports four commands: INIT, FIRST, UPDATE, and
FINALIZE (listed in Table 1). We describe these commands now in a more detail:

Initialization. The INIT command initializes the internal state for authenti-
cated encryption. The state for HSalsa20 has 512 bits and therefore requires two
memory banks. It is initialized with a 192-bit nonce that needs to be stored into
R0 before calling INIT. Additionally, the state is initialized with the XSalsa20
constant σ, which is loaded from ROM, a dedicated block counter value that
is incremented after each processed block, and the session key that is stored in
R6 after calling DH-2. The INIT process runs in constant time and needs to be
executed only once after DH-2 invocation.

Keystream update. The FIRST and UPDATE commands are used to update the
internal state of the keystream. The ciphertext is calculated by performing block
encryption. In addition, also the state of the Poly1305 authentication tag is up-
dated after encryption. Note that FIRST needs to be executed only for the first
64-byte plaintext, after that, UDPATE must be called. Before calling these com-
mands, a 64-byte plaintext block needs to be stored in R0 and R1. This plaintext
block is then encrypted by applying the Salsa20 function on the internal state.
At the end of Salsa20, the inital state has to be added to the internal state to
obtain the final keystream. To save memory, we do not copy this at the beginning
but calculate it on-the-fly. All needed data is already stored in RAM and ROM
and therefore the execution time is not increased. The ciphertext is generated
by XORing the internal state with the plaintext. Finally, the calculation of the
authentication tag starts using Poly1305.

The special treatment for the first 64-byte block is necessary because this
block is used as initialization state for Poly1305. As described in Section 2,
this block consists of 32 bytes of zero and 32 bytes of plaintext stored in R0
and R1. When FIRST is called, the plaintext is encrypted using Salsa20 and the



encryption result of the first 32 zero-bytes is used to obtain the key for Poly1305.
Note that during the FIRST process, the first 32 bytes of the ciphertext are zero.
These zeros need to be replaced by the Poly1305 message authentication tag
after the stream encryption.

After every 16 bytes of the ciphertext, Poly1305 is called to update the au-
thentication tag. During the FIRST process, Poly1305 is executed twice, be-
cause R1 contains only 32 bytes of valid ciphertext. During the UPDATE process,
Poly1305 is executed 4 times because the ciphertext is stored in both R0 and R1.
Note that the preliminary authentication tag is stored in an internal memory
bank and is updated after each UPDATE invocation. The main difference between
UPDATE and FIRST is that during an update R0 holds a valid plaintext and there-
fore needs to be replaced with the appropriate ciphertext. Furthermore, the keys
for Poly1305 are already generated.

Message-authentication tag. By sending the FINALIZE command, the final
message authentication tag is calculated. The 16-byte tag is moved to the user-
accessible memory-bank R0 where all other remaining bytes are set to zero.

The command flow for authenticated stream-encryption is given as follows:

1. Write a 192-bit nonce into the memory bank R0 and start the streaming
operation by sending the INIT command.

2. Busy-wait polling until processor is ready.
3. Set the first 32 bytes of R0 to zero (this is the place holder for the zero-

padded 16-byte message-authentication tag); send also the first 32 bytes of
the plaintext to R1 and start the operation by sending the FIRST command.

4. Busy-wait polling until processor is ready; read back the 64 bytes of cipher-
text from R0 and R1.

5. Write 64 bytes of the plaintext into R0 and R1 and continue authenticated
encryption by sending the UPDATE command.

6. Busy-wait polling; read back the 64 bytes of ciphertext from R0 and R1.
7. Repeat Steps 5 to 6 until the whole plaintext is processed.
8. Send the FINALIZE command to generate the message-authentication tag.
9. Busy-wait polling until processor is ready; read back 32 bytes from R0 that

contains the zero-padded 16-byte authentication tag.
10. Overwrite the first 32 bytes of the ciphertext (which have been previously

set to zero) with the 32 bytes obtained in Step 9.

Decryption. The DECRYPTION command is used to decrypt and authenticate a
64-byte block of data. This block contains the zero-padded 16-byte authentica-
tion tag written into R0 and the 32-byte ciphertext written into R1. In a first
step, the authentication tag of the ciphertext in R1 is calculated using Poly1305.
This new tag is then subtracted from R0. If both tags match, the whole memory
bank R0 will be zero and the ciphertext can be considered authentic. If the tags
do not match, R0 will be different from zero. Finally, the ciphertext in R1 is
decrypted using XSalsa20 as also done during the execution of FIRST except of
the fact that only one memory bank needs to be processed to obtain the 32-byte
plaintext stored in R1. Authenticated decryption is done as follows:



1. Write the 16-byte authentication tag into the memory bank R0 and set all
other bytes to zero; store the corresponding 32-byte ciphertext into R1 and
start the decryption operation by sending the DECRYPT command.

2. Busy-wait polling until processor is ready; read back the 32-byte plaintext
from R1 and check if R0 is zero.

5 Implementation Results

We implemented our design in VHDL and used Cadence Encounter R©RTL Com-
piler (v08.10-s238_1, 64-bit) for synthesis. For the following evaluation, we used
the UMC 130 nm 1.2V/3.3V 1P8M LL logic CMOS process. For this process, one
gate equivalent (GE) corresponds to the area of a two-input NAND gate of size
5.12 µm2. All designs have been synthesized for a target frequency of 1MHz. Fur-
thermore, all area results are post-synthesis results (to make a fair comparison
with related work) but note that the area requirements change during back-end
design where the overhead for placement and routing (clock distribution, wire
interconnections, etc.) is included. For power evaluations, we considered these
overheads by simulating after place and route using First Encounter (v08.10-
s273_1, 64bit) with NanoRoute (v08.10-s155).

Table 2 shows the results of our design for several multiplier configurations.
We provide results for a digit size w = 2, 4, 8, 12, 16 to report numbers for a
trade-off between speed and area. In terms of speed, most speed-up is observed
for the X25519 key exchange. Depending on w, both Diffie-Hellman operations
DH-1 and DH-2 require between 811 170 and 3 455 394 clock cycles. Note that DH-2
needs an additional amount of 34 cycles compared to DH-1 because it requires an
inversion of the word order of the session key. Authenticated encryption using
XSalsa20 and Poly1305 requires 6 641 cycles for initialization, the streaming
update function needs between 7 443 and 9 291 cycles per 64-byte data block,
and preparing the authentication tag needs only 62 cycles. Decryption of control
messages can be performed in between 7 271 to 9 085 cycles.

In terms of area, our smallest design (using a 2-bit parallel digit-serial mul-
tiplier) requires 14.6 kGEs; the largest design needs 18 kGEs. The area of the
controller is nearly the same independent of the size of the multiplier. The two
program ROMs for Curve25519 and XSalsa20/Poly1305 have different lengths:
1 088 Lines of Code (LOC) are needed for Curve25519 and 1 625 LOCs are needed
for XSalsa20/Poly1305. The ALU, in contrast, gets larger the more bits are pro-
cessed in parallel. ROM for constants needs about 310 GEs and the 32-bit I/O
interface needs 157 GEs. A closer look at the controller and datapath compo-
nents shows that the major parts are due to the program ROM (31-50%), the
multiplier (9-31%), the rotation unit (9-11%), the multi-operation logic (4-5%),
the accumulator (4-5%), and the prefetch buffer (2-6%).

Our smallest design needs around 40 µW of power at 1MHz while the fastest
design needs about 70 µW. Half of the power is spent for the RAM, the remaining
power is consumed by the program ROM (15-26%), the accumulator (8-24%),
the digit-serial multiplier (7-18%), and the rotation logic (8%).



Table 2: Performance of our crypto_box implementation for different multiplier digit-
sizes w. We report numbers for X25519 key exchange (DH-1 and DH-2) and authenti-
cated encryption using XSalsa20 and Poly1305

w
Speed [Cycles]a Area [GEs]b

Ctrl ROM Total incl. RAM
DH-1 DH-2 FIRST UPDATE DECRYPT +ALU std-cells macro

2 3 455 394 3 455 428 8 117 9 291 9 085 10 555 307 29 319 14 648
4 1 957 282 1 957 316 7 705 8 465 8 049 10 761 308 29 526 14 855
8 1 151 906 1 151 940 7 685 8 427 7 513 11 484 311 30 252 15 581
12 971 682 971 716 7 557 8 171 7 385 11 794 313 30 564 15 893
16 811 170 811 184 7 443 7 943 7 271 13 869 311 32 637 17 966

a INIT takes 6 641 cycles and FINALIZE needs 62 cycles for all digit sizes w.
b Total area is given for a 2 304-bit standard-cell based RAM design (18.3 kGEs) as
well as an optimized synchronous one-port register file RAM with the FSC0L_D_SY
memory technology from Faraday Technologies (needing 3 629 GEs).

We also had a closer look at the critical path of our design to evaluate the
maximum supported frequency. The path starts at the instruction buffer in the
controller, goes through the ROM in the memory unit and takes its way through
the digit-serial multiplier in the ALU, and finally ends in RAM. Depending on
the width of the multiplier, the duration of the critical-path delay is between
53.4 and 82.6 nano seconds. Thereof, the largest delay (64-75%) is caused by
the adder structure of the digit-serial multiplier. The maximum frequency of our
design is therefore 12-18 MHz (depending on configuration). This is fast enough
for our targeted applications which are typically clocked with only a few MHz.

Further area/speed trade-offs. Further optimizations are possible, e.g., the
entire 256-bit finite-field multiplication can be implemented as program code
without needing a dedicated multiply control. For example, we implemented the
multiplication as a classical product-scanning multiplication using 209 additional
instructions. For the 130-bit multiplication in Poly1305, 83 additional instruc-
tions are necessary. As a result, we reduced the area requirements to 13.2 kGEs
(including the RAM macro) for a 32-bit multiplier digit size of w = 2. The
number of clock cycles for DH-1 is however increased by 10.3% to 3.852 million
cycles. The cycle count for FIRST is increased by 12.3% to 9 257 cycles and the
UPDATE command takes 19.7% longer, i.e., 11 571 cycles.

Comparison with related work. Table 3 lists different ASIC implementations
of ECC that have similar field sizes (192-256 bits). While most related work fo-
cuses on efficient scalar multiplication on different types of curves, it shows that
our design competes well even though more cryptographic services are offered.
In fact, our processor supports a high-security stream cipher, a message au-
thenticator, and a Diffie-Hellman key exchange using Curve25519. The required
resources for those services, e.g., storage for the public key during key agreement
is included in our numbers. Having these services available, our design is able



Table 3: Comparison of ASIC implementations of ECC with similar field sizes
Features of the Size Time Area [GEs]a Area·Time
(Co-)processor [bits] [Cycles] std-cells macro std-cells macro

Wolkerstorfer [37] Weierstraß Fp/F2m 256 1 175 451 37 200b n.a. 43.73 n.a.
Lai et al. [21] Weierstraß Fp/F2m 256 252 067 197 028 n.a. 49.66 n.a.
Satoh et al. [33] Weierstraß Fp/F2m 256 880 000 55 647 n.a. 48.97 n.a.

Liu et al. [23] Twisted Edwards 207 182 653 n.a.c n.a. n.a. n.a.Fp = 2207 − 5131

Hutter et al. [18] NIST P192, 192 753 393 n.a. 21 502 n.a. 16.20AES, SHA1
Wenger [36] NIST P256 256 3 367 000 n.a. 27 244 n.a. 91.73
Ours (smallest) Curve25519, 255 3 455 394 29 319 14 648 101.31 50.61
Ours (fastest) Salsa20, Poly1305 811 170 32 637 17 966 26.47 14.57

a Area numbers include memory in either standard-cell based RAM technology or
optimized RAM macro blocks. We list both for a fair comparison.

b Wolkerstorfer reported 31 kGEs for his core but this excludes the storage for the
private key (scalar) and public key (X and Y coordinates). For a more fair comparison
we included 6.2 kGE required for this memory.

c Authors reported 5 821 GEs for the size of their ALU. Memory is not included.

to perform 128-bit public-key authenticated encryption using the given primi-
tives while most related work targets authentication services only. In terms of
Salsa20, we can compare our work with the smallest implementation reported so
far which is due to Henzen, Carbognani, Felber, and Fichtner [16]. Their Salsa20
implementation needs 9.97 kGEs. For Poly1305 there are no previous hardware
implementations to compare with.

When looking at the area-time-power (ATP) product, our design outperforms
related work by more than a factor of 3. Wolkerstorfer reports a power consump-
tion of more than 500µW for a frequency of 1MHz on a 192-bit curve using a
350 nm CMOS cell library. This corresponds to more than 130µW on 130 nm
CMOS and with a 256-bit curve (ATP: > 5.68, standard-cell RAM). Hutter et
al. report 1.6mW on a 350 nm CMOS yielding an even larger ATP. Lai reported
578µW for a 160-bit curve (ATP: 28.70, standard-cell RAM). Wenger’s design,
which is based on an 8-bit AVR clone, needs 76µW (ATP: 6.97, RAM macros).
Our fastest design needs 70µW, which yields an ATP product of only 1.02 with
RAM macros and 1.85 with standard-cell RAM.
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