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Abstract

Electronic financial transactions in the US, even those enabled by Bit-
coin, have relatively high transaction costs. As a result, it becomes infea-
sible to make micropayments, i.e. payments that are pennies or fractions
of a penny.

To circumvent the cost of recording all transactions, Wheeler (1996)
and Rivest (1997) suggested the notion of a probabilistic payment, that is,
one implements payments that have expected value on the order of micro
pennies by running an appropriately biased lottery for a larger payment.
While there have been quite a few proposed solutions to such lottery-
based micropayment schemes, all these solutions rely on a trusted third
party to coordinate the transactions; furthermore, to implement these
systems in today’s economy would require a a global change to how either
banks or electronic payment companies (e.g., Visa and Mastercard) handle
transactions.

We put forth a new lottery-based micropayment scheme for any ledger-
based transaction system, that can be used today without any change
to the current infrastructure. We implement our scheme in a sample
web application and show how a single server can handle thousands of
micropayment requests per second. We analyze how the scheme can work
at Internet scale.

1 Introduction

This paper considers methods for transacting very small amounts such as 1
10

th

to 1 penny. Traditional bank-based transactions usually incur fees of between
21 to 25 cents (in the US) plus a percentage of the transaction [16] and thus
transactions that are less than 1$ are rare because of this inefficiency; credit-card
based transactions can be more expensive.
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Although several new crypto-currencies have removed the centralized trust
from a currency and have substantially reduced the cost of a large international
transaction, they have not solved the problem of reducing transaction fees to
enable micro-payments. In Fig. 1, we show that Bitcoin transaction fees are
usually at least 0.0001 bitcoin, which corresponds to between 2.5 and 10 cents
over the last two years. See Fig. 8 in the Appendix for another graph showing
the distribution of fees among recent transactions.

The transaction fee pays for the cost of bookkeeping, credit risk and overhead
due to fraud. Although the cost of storage and processing have diminished, the
cost of maintaining reliable infrastructure for transaction logs is still noticeable.
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Figure 1: A plot of transaction fee versus frequency for 1 million transactions
in May 2015. Very few transactions have fees less than 0.0001 Bitcoin. As of
May 2015, 10k milliBitcoin, or 0.0001 bitcoin corresponds to roughly 2.5 cents.

One method for overcoming a transaction fee is to batch several small trans-
actions for a user into a large transaction that occurs say, monthly. Standard
implementations of this idea, however, rely on the extension of credit to the user
from a merchant or bank, and thus, incurr credit risk. Systems like Apple iTunes
and Google play apparently implement their $1 transactions using a probabilis-
tic model for user behavior to pick an optimal time to balance credit risk versus
transaction fee. Systems like Starbucks attempt to sell pre-paid cards for which
several orders result in one credit transaction. PayPal introduced a micro-
payments pricing model (5.0% plus $0.05). Similarly, the Bitcoinj project (see
https://bitcoinj.github.io/working-with-micropayments) enables setting
up a micropayment channel to a single predetermined party (e.g., a single web-
page): Each payer must set up a separate channel and escrow account for each
merchant; moreover, the merchants require a bookkeeping system for each user
(to issue a “claw-back” transactions). In contrast, we are here interested in a
decentralized payment system where users can make micropayments to anyone.
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Lottery-based Micropayments Wheeler [20] and Rivest [19] suggested a
intriguing approach to overcome the cost of bookkeeping for small transactions.
The idea in both works is to employ probabilistic “lottery-based” payments: to
provide a payment of X, the payer issues a “lottery ticket” that pays, say, 100X
with probability 1

100 . In expectation, the merchant thus receives 1
100 ·100X = X,

but now (in expectation) only 1 in a hundred transactions “succeeds”, and thus
the transaction cost becomes 100 times smaller. Several implementations of
this idea subsequently appeared; most notable among them is the Peppercoin
scheme by Micali and Rivest [15] which provided a convenient non-interactive
solution.

However, these elegant ideas all require a trusted third party—either a bank
or an electronic payment companies (e.g., Visa and Mastercard)—to coordinate
the transactions. In this case, the trusted party cannot be verified or audited to
ensure that it is performing its job correctly. Furthermore, to implement these
systems in today’s economy requires a global change to banks and/or electronic
payment companies that handle transactions. Consequently, such solution have
gained little traction in real-life system.

Cryptocurrency-based Micropayments In this paper, we propose micro-
payment systems based on cryptocurrencies. We follow the lottery-based ap-
proach put forth by Wheeler [20] and Rivest [19] and show how to implement
such an approach using any suitable crypto-currency system. We provide two
main solutions:

• Using the current Bitcoin/altcoin scripting language, we provide an imple-
mentation of lottery-based micropayments that only relies on a publicly-
verifiable third party; that is, anyone can verify that the third party is
correctly fulfilling its proper actions. This solution also enables perform-
ing transaction with fast validation times (recall that standard Bitcoin
transactions require roughly 10 minute validations, which is undesirable
in the context of micropayments). Using this solutions, bitcoin-based mi-
cropayments can be implemented today without any change to the current
infrastructure.

• We also suggest simple modifications to the Bitcoin scripting language
that enables implementing lottery-based micropayments without the in-
tervention of any third party. Furthermore, this scheme can be directly
implemented in the Ethereum currency [7] without any modification to
the scripting language. (Validation times for transaction, however, are no
longer faster than in the underlying cryptocurrency.)

At a high-level, the idea behind our solution is the following: The user starts by
transferring 100X into an “escrow”. This escrow transaction has an associated
“puzzle”, and anyone that has a solution to this puzzle can spend the escrow.
Roughly speaking, the solution to the puzzle consists of a signed transcript of
a cryptographic coin-tossing protocol (where the signature is with respect to to
the user’s public key) such that the string computed in the coin-tossing ends
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with 00 (an event that happens with probability 1/100 by the security of the
coin-tossing protocol).

Whenever the payer wants to spend X, it engages with a merchant in a coin-
tossing protocol and agrees to sign the transcript. The merchant thus receives a
signed coin-tossing transcript in every transaction, and additionally, with prob-
ability 1/100, the coin-tossing transcript yields a solution to the puzzle (i.e., the
string computed in the coin-tossing protocol ends with 00). The merchant can
thus spend the money (i.e., 100X) placed in escrow.

This approach, which we refer to as MICROPAY1, however, cannot be di-
rectly implemented today because of limitations in crypto-currency scripting
languages. Additionally, validation times for Bitcoin transactions are high and
a malicious spender who issues several transactions in parallel can cheat.

Our solution, MICROPAY2, makes use of a verifiable trusted third party—
which we refer to as a Verifiable Transaction Service (VTS)—to overcome these
issues. Roughly speaking, the VTS performs a specific polynomial-time compu-
tation and signs certain messages in case the computations produce a desired
result: in our case, the VTS checks whether a coin-tossing transcript is winning,
and if so it “releases” the escrow by signing a release transaction. Thus, anyone
can verify that the VTS only signs messages correctly (by checking that the com-
putation indeed gave the desired result). Furthermore, the VTS is only invoked
on winning transactions (i.e., on average every 1/100 transactions) and can thus
handle a large volume of transactions. Since the VTS only agrees to sign the
escrow release once, MICROPAY2 implements fast transaction validation times.
That is, merchants can be assured that as long as the VTS is acting honestly, as
soon as they receive a signature from the VTS, they will receive their payment
without having to wait for the transaction to appear on the block-chain. Fur-
thermore, if the VTS is acting dishonestly (i.e., if it signs multiple times), this
will be observed. Using a standard approach with locktime, our protocol can
also be slightly modified to ensure that the user can always recover its money
from the escrow within some pre-determined expiration time. MICROPAY2
also implements a penalty mechanism to force sequential behavour by the payer
which prevents a large class of spending attacks.

Finally, MICROPAY2 can be modified into a solution called MICROPAY3
where the VTS never needs to be activated if users are honest—i.e., it is an
invisible third party. This solution, however, has faster validation times than
the underlying cryptocurrency only if one assumes that users are rational.

Generalization to “Smart-Contracts” We mention that our solution pro-
vides a general method for a user A to pay x to different user B if some pre-
determined polynomial-time computation produces some specific output (in
the micropayment case, the polynomial time computation is simply checking
whether the most significant two bits of the random tape are 00.)

Projects like Ethereum [7] provide Turing-complete scripting languages for
crypto-currencies. These systems require a much more sophisticated mecha-
nism to evaluate the scripts associated with transactions in order to prevent
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attacks. Our methods enable extending these “smart-contract” to deal with
probabilistic events (such as our micro-payment “lottery-tickets”). Furthermore,
we enable using other current cryptocurrencies (such as Bitcoin) to implement
a large class of “smart-contracts” even if the contract may be written in a more
complex language than what is currently supported by the scripting languages
for the currency. Finally, our method enables using soft contracts, where the
polynomial-time processes that determines if A should pay x to B may take as
inputs also facts about the world (e.g., the whether the “Red Sox beat Yankees”
in a particular game), or the process may even be specified in natural language,
as long as the outcome of the process is publicly verifiable.

Applications of our Micropayment System We outline some applications
that may be enabled by our system. We emphasize that none of these appli-
cations require any changes to current transactional infrastructures. To make
these applications feasible however, it is critical that the user only needs to
setup once, and be able to interact with any number of merchants, as opposed,
to say, a “channels” system which requires the user to perform a different escrow
transaction with each merchant.

An Ad-Free Internet: Our micropayment system could be used to replace
advertisements on the Internet. Users can request an “ad-free version”
of a webpage by using the protocol httpb:// (instead of http://) which
transparently invokes our micropayment protocol and then serves a page
instead of having the server display an ad on the requested page. In
Section 4, we report on an implementation of this idea.

Pay-as-you-go Games and Services: Our micropayment system could be
used to enable pay-as-you go WiFi internet connections where users pay for
every packet they send. Internet content providers (e.g., newspapers, mag-
azines, blogs, music and video providers) and game-writers could charge
for every item requested by the user, or for game-playing by the minute.

Generalized wagering In some of our schemes, a trusted party is used to
sign a message if a certain event occurs. In our case, the event relates to
a coin-tossing protocol that is executed between two parties. In general,
one can imagine that the trusted-party signs statements about worldly
events that have occurred such as “Red Sox beat Yankees” or “Patriots
win Super Bowl”, or interpret the outcome of contracts written in natural
language. Using such a party, our protocols can be generalized to enable
wagers that are implemented entirely without a bookkeeper, and only
require the parties to trust a 3rd party who can digitally sign facts that
can be publicly verified.

1.1 Prior work

Electronic payments research is vast. This work follows a series of paper [20,
19, 12, 15] on the idea of probabilistic payments, and improves upon them by
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removing or simplifying the trust assumptions and bootstrap requirements for
their systems by using a crypto-currency, by simplifying the cryptographic as-
sumptions needed, and by demonstrating a practical system in a web-server that
implements the protocol. Some prior works focus on reducing the number of
digital signatures required by the protocol: this concern is no longer a bottle-
neck. Moreover, none of those schemes focus on how to implement the transfer
(they all require a bank to handle it).

An older form of digital currency is studied in [6, 5, 13]. These schemes
rely on digital signatures from a trusted-third party (such as a bank) to record
transfer of ownership of a coin. Various (online and off-line) methods are con-
sidered to prevent double-spending attacks. The schemes are not optimized for
handling micropayments, and the economics of the scheme do not depart from
the economics of current credit-card or ACH network based transactions. In
some cases, the schemes offer a level of anonymity not provided by credit-cards
etc.

Coupon-based schemes [10, 1, 18] are similar and require a trusted-party to
issue coupons to users, then users spend these coupons with merchants, who
then return the coupon to the trusted-party. The main focus for this line of
research was to optimize the cryptographic operations that were necessary; to-
day, these concerns are not relevant as we show in our evaluation section (see
§4). Furthermore, these schemes have double-spending problems and require a
trusted-party to broker all transactions and issue and collect coupons.

A few recent works discuss lotteries and Bitcoin, but none focus on reduc-
ing transaction costs or allowing a single setup to issue micropayments to an
unlimited number of merchants. Andrychowicz et al. [2] implement Bitcoin
lotteries using O(n) or O(n2) ledger transactions per lottery where n is the
number of players. Bentov and Kumaresan [3] discuss UC modeling and achiev-
ing fairness in secure computation by providing an abstract description of how
to enforce penalties with Bitcoin through a novel “ladder mechanism” that uses
O(n) transactions per penalty. In contrast, the main idea in our work is to
amortize 2-3 transaction fees over thousands of lottery protocol instances.

The goal of Mixcoin [4] is anonymity, and with this different motivation
(see its footnote 12), the paper describes how to charge for mixing in a prob-
abilistic way. Their mechanism differs in that it uses a random beacon, i.e. a
public trusted source of randomness for the lottery, which does not work for
micropayments.

As mentioned, the Bitcoinj project (see https://bitcoinj.github.io/

working-with-micropayments) enables setting up a micropayment channel to
a single predetermined merchant (e.g., a single webpage), by establishing a new
address for the merchant, so this scheme falls short of our goal of one decentral-
ized payment system where users can make micropayments to anyone.

The most comparable scheme to ours is the Lightning network [17] which
users a network of such channels to enable payments between two arbitrary
parties while only requiring each party to setup a small number of channels.
The Lightning network does not use a trusted party, but rather, each pair of
parties posts a transaction to the network in which both have contributed an
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equal amount, say 100 each. Through (off-chain) private communication, the
pair can exchange transactions, which if posted to the network, would spend
α and (200 − α) to addresses chosen by each party respectively. To maintain
soundness of such a scheme, the network proposes the concept of Revocable
Sequence Verification Contracs, which require several layers of transactions,
penalties, and soft forks of the bitcoin protocol to support sequence majority.
Finally, through the notion of a ”Hashed timelock,” a micropayment can be
relayed from Alice to Dave via intermediaries, albeit via several RSVCs between
the parties. In contrast, schemes in this paper use a verifiable trusted party and
a single penalty mechanism to enforce soundness.

1.2 Outline of the paper

In Section 2 we provide a detailed description of our protocol in an abstract
crypto-currency scheme. This model leaves out many of the implementation
details behind the currency protocol but enables describing our solution in a
convenient way; in essence, this abstract model captures the principles under-
lying all modern ledger-based transactional systems (such as bitcoin and all
alt-coins). In Section 3 we next describe how to implement the abstract solu-
tion using the actual Bitcoin scripting language and formalism. In Section 4
we describe our implementation and present experiments to demonstrate the
practical feasibility of our MICROPAY2 solution. In particular, we report on
the above mentioned “ad-free internet” application.

2 Protocols

Abstract Model for Crypto-currencies A cryptocurrency system imple-
ments a distributed ledger specifying how coins are transferred; we here ignore
how miners are incentivized to ensure that the ledger is available and not manip-
ulated, but instead describe how coins are transferred. Very roughly speaking,
transactions are associated with a public-key pk and a “release condition” Π. A
transaction from an address a1 = (pk,Π) to an address a2 = (pk′,Π′) is valid if
it specifies some input x that satisfies the release condition Π, when applied to
both to a1 and a2; that is Π(x, a1, a2) = 1. The most “standard” release con-
dition Πstd is one where a transaction is approved when x is a signature with
respect to the public key pk on a2; that is, pk is a public-key for a signature
scheme, the “owner” of the address has the secret key for this signature scheme
(w.r.t. pk), and anyone with the secret key for this signature scheme can transfer
bitcoins from the address by signing the destination address. The bitcoin pro-
tocol specifies a restrictive script language for describing the release condition
Π (see §3 for more details on this script language); other crypto-currencies such
as Ethereum [7] allow more expressive script languages. For exposition, we may
ignore the concrete formalism of the scripting language and instead describe our
solutions in prose.
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Finally, to analyze our protocols, we assume that every valid transaction
broadcast to the cryptocurrency network has some chance of being incorporated
into the ledger in the next block. This is a strong assumption about fair access
to the cryptocurrency ledger, in practice, it may be possible for the network
to prevent a particular user from ever adding any transactions to the ledger.
Alternatively, all of the miners in a network may decide not to confirm payments
with release conditions that arise from our protocol.

2.1 MICROPAY 1

We first propose a strawman solution to micropayments that illustrates the main
idea. This solution uses a release condition Π that does not require any third
party at all, but has drawbacks that we discuss and then address in the next
protocol. The only cryptographic primitive required by this protocol (apart
from digital signatures) is that of a commitment scheme (see [11] for details)
which can be implemented with any hash operation such as sha or ripemd;
both are supported in most crypto-currency scripting languages.

Escrow Set-up: To initialize a “lottery-ticket”, a user U with a = (pk,Πstd)
containing 100X coins generates a new key-pair (pkesc, skesc) and trans-
fers the 100X coins to an escrow address aesc = (pkesc,Πesc) (by signing
(a, aesc) using its key corresponding to pk). For easy of exposition, we
defer specifying the release condition Πesc.

Payment Request: Whenever a merchant M wants to request a payment
of X from U , it picks a random number r1 ← {0, 1}128, generates a com-
mitment c← Com(r1; s) (where s represents the string that can be used
to open/reveal the commitment), generates a new bitcoin address a2 (to
which the payment should be sent) and sends the pair (c, a2) to the payer
U .

Payment Issuance: To send a probabilistic payment of X, user U picks a
random string r2, creates a signature σ on c, r2, a2 (w.r.t. to pkesc) and
sends σ to the merchant. The merchant verifies that the signature is valid.

We now return to specifying the release condition Πesc. Define Πesc(x, aesc, a2) =
1 if and only if

1. x can be parsed as x = (c, r1, s, r2, σ)

2. c = Com(r1; s),

3. σ is a valid signature on (c, r2, a2) with respect to the public key pkesc and

4. if the first 2 digits of r1 ⊕ r2 are 00.
In other words, the merchant can ensure a transfer from the escrow address to
a2 happens if it correctly generated the commitment c (and knows the decom-
mitment information r1, s), and then sent c, a2 to U ; U agreed to the transaction
(by providing a valid signature on c, r2, a2), AND the coin toss won the lottery
using r1 ⊕ r2 as randomness.
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Security Analysis It can be shown using standard arguments that the “coin-
tossing” r1 ⊕ r2 cannot be biased (by more than a negligible amount) by either
the merchant or the user (if the merchant can bias it, it can either break the
binding property of the commitment, or forge a signature; if the user can bias
it, it can break the hiding property of the commitment.) As a consequence,
whenever the user agrees to a transaction, the merchant has a 1/100 (plus/minus
a negligible amount) chance of receiving a witness which enables it to release
the money in the escrow address. More precisely, the following properties hold:

• [P1] Consider some potentially malicious user that correctly signs a trans-
action with non-negligible probability. Then, conditioned on the event
that the user produces an accepting signature on a transaction, the mer-
chant receives a witness for the escrow address with probability at least
1/100 (minus a negligible amount) as long as the merchant honestly follows
the protocol.

• [P2] Even if the merchant is arbitrarily malicious, it cannot receive a
witness for the escrow address with probability higher than 1/100 (plus a
negligible amount), as long as the user honestly follows the protocol.

Front-running attacks A subtle problem with MICROPAY1 is the issue
of front running. A malicious payer may monitor the cryptocurrency network
and listen for transactions from the merchant that attempt to spend her es-
crow. Before the merchant’s transaction can be confirmed, a cheating payer
can broadcast her own valid transaction to the network (which she can produce
herself by simulating a merchant in the protocol) to attempt spending her own
escrow first1. The cryptocurrency network sees two competing transactions for
the same escrow, and the one that is confirmed depends on several random fac-
tors; i.e. the payer has initiated a race to spend. In the best case, this attack
reduces the Merchant’s expected revenue from a payment since some winning
tickets may lose the transaction race. In the worst case, if all payers in the sys-
tem are sophisticated and have more resources than the merchants, merchants
may never get paid.

Parallel spend attack A front-running attack is a special case of a more
general parallel spending attack. Our protocols assume that the payer serializes
his purchases; an attacker who issues several payments in parallel can reduce
the expected revenue of a lottery ticket because among the several potential
lottery winners, only one ticket can spend the escrow. The front running attack
described above is an example in which the cheating payer issues a payment to
itself when he becomes aware of a merchant who has a winning ticket.

Mitigating these attacks Both of these payer attacks can be mitigated by
a penalty escrow. Along with a payment escrow, the payer places a penalty

1We thank Bonneau for pointing out the importance of this attack.
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amount that is much larger than the benefit she can expect to receive from a
parallel spending attack2. Each payment lottery ticket can be bound to the
address of a unique penalty escrow. The penalty escrow can be spent in one of
two ways: (a) at a certain “locktime” in the future, the payer herself can spend
her penalty escrow, (b) before that locktime, the escrow can be spent to an
invalid address by anyone presenting two winning lottery tickets for the same
payment escrow. Condition (b) encodes the “burning” of the penalty escrow;
i.e., no merchant or payer can recover the escrow, rather, it is lost to the payer.
This condition prevents colluding merchants who attempt to steal the penalty
escrow.

If a payer now attempts to spend-in-parallel, there is a chance that two
winning lottery tickets are created. In this case, the losing merchant can penalize
the cheating payer by burning the penalty escrow using both its winning lottery
ticket and the lottery ticket used by the winning merchant to spend the payment
escrow.

Scripting MICROPAY1 employs a release condition Πesc that uses two oper-
ations that currently are not supported in the bitcoin scripting language. First,
while digital signatures are supported in the script language, the language only
permits checking the validity of signatures on messages derived from the current
transaction in a very specific way; the checksig operation does not directly allow
signature verification on messages of the form that we use in the protocol. A sec-
ond problem is that arithmetic operations can only be applied to 32-bit values.
Additionally, the penalty escrow release condition require these operations.

2.2 MICROPAY2: Using a VTS

To overcome these issues, the MICROPAY2 scheme employs a (partially-trusted)
third party T , i.e. a Verifiable Transaction Service (VTS). T ’s only task is to
verify certain simple computations and, if the computations are correct, to re-
lease a signature on a transaction. If T ever signs a transaction that corresponds
to an incorrect computation, there is irrefutable evidence that (unless the sig-
nature scheme is broken) T “cheated” (or has been corrupted), and so T can
be legally punished and/or replaced. (To achieve greater robustness against
corruption of T , the task can be split among multiple parties T1, T2, . . . Tn so
that it suffices if a majority of them correctly check the computations.)

MICROPAY2 follows the structure of MICROPAY1 but employs a simpler
release script Π̃esc

2 . This new release condition requires two signatures on a
transaction (a multi-signature), one from the user, and one from the trusted
party T . Roughly speaking, U always provides M a signature on a transaction
to spend the escrow, and in case of a winning ticket, T verifies that the lottery
ticket wins and then provides a second signature on the transaction to spend the
escrow to M . That is, Π̃x

2((σ1, σ2), ax, a2) = 1 if and only if σ1 is a signature

2In theory, an attacker can issue an unlimited number of transactions in parallel. In
practice, however, a parallel attack is quickly discovered on the network, and so the maximum
benefit to such an attack can be estimated.
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of the transaction (ax, a2) with respect to pkx and σ2 is a signature of the
transaction (ax, a2) with respect to pkT , where pkT is T ’s permanent public key.
MICROPAY2 also incorporates the penalty escrow release conditions described
in the previous section. In more details, the system involves the following steps:

• Penalty Escrow Setup: User U with an address a = (pk,Π) generates
a new key-pair (pkpen, skpen) and transfers λX bitcoins to a penalty escrow
apen = (pkpen, Π̃pen

2 ) by signing (a, apen) using its key corresponding to pk.

Recall the release condition Π̃pen
2 (x, apen, a2) = 1 if and only if the trans-

action has been signed by both U and T . Before broadcasting this trans-
action to the network, U and T exchange the following: T provides U a
partially signed transaction (using its signing key) that can be spent by
U after an expiration time e. This can be implemented using lockTime;
U simply signs the partially-signed transaction after lockTime to recover
escrow. It is assumed that the expiration e for a given escrow can be
publicly determined.

• Escrow Setup: User U with an address a = (pk,Πstd) generates a new
key-pair (pkesc, skesc) and transfers X bitcoins to an “escrow” address
aesc = (pkesc, Π̃esc

2 ) by signing (a, aesc) using its key corresponding to pk.
The escrow and penalty escrow addresses must be bound; for example,
the penalty escrow can be index 0 and the payment escrow can be index
1 of the same transaction.

• Payment Request: This step is identical to the one in MICROPAY1:
Whenever a merchant M wants to request a payment of X/100 from U ,
it picks a random number r1 ← {0, 1}128, generates a commitment c =
Com(r1; s) (where s represents the string that can be used to open/reveal
the commitment), generates a new bitcoin address a2 (to which the pay-
ment should be sent) and sends the pair (c, a2) to the payer U .

• Payment Issuance: If the user U agrees to send a probabilistic pay-
ment X/100, it picks a random string r2, creates 1) a signature σ1 on
the transaction (aesc, a2), 2) a signature σ on (c, r2, a2, a

pen) with respect
to pkesc), and 3) a partially-signed transaction σpen and the current block
height that allows T to spend the penalty escrow to address 0 (i.e., an
invalid address for which there does not exist a secret key) within k block
confirmations from the current block height3. U sends σ1, σ, σpen to the
merchant M . The merchant verifies that the payment and penalty escrows
have not been spent, that the penalty address is bound to the escrow ad-
dress, that the escrow’s expiration time is not within the next k blocks,
and that all signatures are valid.

• Merchant Response: M sends U the witness (r1, s). If merchant M
received a winning lottery ticket, then M sends the triple (x, aesc, a2) to T .

3As is standard, the signed transaction σpen spends the penalty escrow amount minus ε
which is reserved to pay the transaction fee.
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T computes a signature σT on the transaction (aesc, a2) using public key
pkT and sends it to M if and only if x = (c, r1, s, r2, σ), c = Com(r1; s),
σ is a valid signature on (c, r2, a2) w.r.t. pkesc, and the last 2 digits of
r1 ⊕ r2 are 00.

Furthermore, T publishes the tuple x (either on its own bulletin board,
on the blockchain, or some alt-chain). If T ever signs (aesc, a2) without
having made public a “witness” x, it is deemed faulty.

Finally, once M has received the signature σT from T , then M can spend
aesc to address a2 (which it controls) using σ1, σT to satisfy the release
condition Π̃esc.

• Penalty: If a merchant presents two winning lottery tickets for the same
payment escrow aesc, and a partially signed penalty transaction σpen that
has a block timestamp within k of the current block height, then T also
signs the penalty transaction and spends it to address 0. T also publishes
the witness for the penalty transaction by publishing the two winning
tickets for (aesc, apen).

• Escrow recovery: After locktime, the payer can recover unspent penalty
escrows. Alternatively, after a payment escrow has been spent by a mer-
chant and sufficiently confirmed on the blockchain, the payer can ask T to
sign a transaction allowing the payer to recover the penalty escrow early.
A payer can always recover its own payment escrow by creating merchant
transactions to herself until she creates a winning lottery ticket.

Security Analysis The following claims can be easily verified using standard
cryptographic techniques:

• If T acts honestly, then properties P1 and P2 from Section 2.1 hold.

• If T deviates from its prescribed instructions, then (a) except with neg-
ligible probability, this can be publicly verified, and (b) the only damage
it can create is to bias the probability that the escrow is released in an
otherwise approved transaction.

By the second claim, T can never “steal” the escrow money. By cheating, it can
only transfer the money to a merchant (even for a losing lottery ticket), but only
to a merchant to whom the user agreed to issue a (micropayment) transaction.
Additionally, by cheating, it can withhold a payment for a merchant. By the
first claim, if T performs either of these (cheating) actions, this can be noticed.

Malicious Merchants A malicious (and not rational) merchant may attempt
to incorrectly cause a payer’s penalty escrow to be burned by receiving a winning
ticket, not spending the ticket immediately, but instead waiting for the payer
to interact with another merchant that receives a winning ticket, and then
finally announcing the original winning ticket as evidence of double spending.
Rational merchants would not implement this attack since they must forfeit the
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entire escrow amount in order to cause the payer to lose the penalty escrow.
Nonetheless, to prevent this attack, the Merchant sends the Payer the witness
(r1, s) for all tickets. Thus, a payer immediately learns if the ticket has won
(and therefore, the escrow cannot be spent again), or lost (in which case it is
safe for the payer to continue spending). If a payer does not receive the witness
for a transaction, the payer must wait until the penalty transaction expires (k
blocks ) before spending again.

Fast Validation Times We finally remark that if T only agrees to sign the
escrow release once, MICROPAY2 implements fast transaction validation times.
That is, merchants can be assured that as long as the T is acting honestly, as
soon as they receive a signature from T , they will receive their payment (without
having to wait for the transaction to appear on the block-chain). Furthermore,
if the VTS is acting dishonestly (i.e., if it signs multiple times), this will be
observed.

2.3 MICROPAY3: Using an “Invisible” VTS

MICROPAY2 requires the intervention of T in every winning transaction. In
the next protocol, MICROPAY3, the VTS T is only invoked when either user or
merchant deviates from their prescribed instructions. In this sense, the trusted
third party T is invisible in the optimistic (honest) case. MICROPAY3, however,
only implements faster validation time than Bitcoin assuming that the payers
are rational (malicious payers can double spend, and are then penalized).

MICROPAY3 proceeds similarly to MICROPAY2, with the key difference
that U releases the money to M whenever M receives a winning ticket by
signing the transaction as T would have done.

If U is not willing to sign the payment escrow, M uses T to spend. Upon
learning that M has won, if U attempts to race and spend its own escrow before
M , then it must create a distinct signed winning tickets, and M can then invoke
the penalty procedure with T using its own partially signed winning ticket as
a witness for cheating. Together, in MICROPAY3, U and M ’s enjoy greater
privacy of their micropayments since T need not be involved in the winning
transactions in the optimistic case.

To implement this idea, the payment escrow release condition uses a 2-
out-of-3 multi-signature under keys pkesc and pkT as before, and also under
another key pkesc2 generated by the user. That is, the new release condition

is, Π̃esc
3 ((σ1, σ2), aesc, a2) = 1 if and only if σ1 and σ2 are unique signatures of

the transaction (aesc, a2) with respect to two distinct keys among the following
three keys: pkesc, pkesc2 , or pkT . As before, to send a micropayment, U sends M
a partially-signed transaction using key pkesc. Now, if the ticket wins, then M
first asks U for another signature on the same transaction under pkesc2 . Using
these two signatures, M can satisfy the release condition and spend the escrow.

• Penalty escrow: The setup is the same as MICROPAY2.
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• Escrow Set-up: The setup is the same as MICROPAY2 except release
condition Π̃esc

3 is used instead of Π̃esc
2 .

• Payment Request: This step is the same as in MICROPAY1; M sends
the pair (c, aM ) to the payer U .

• Payment Issuance: This is the same as MICROPAY2. U sends M a sig-
nature σ1 on the transaction (aesc, aM ), and a signature σ on (c, r2, a

M , apen)
(w.r.t. to pkesc).

• Claim Prize: This is the same as MICROPAY2 except that M sends U
(instead of T ) the winning tuple (x, aesc, aM ). U verifies the witness and
then signs transaction (aesc, aM ) using key skesc2 and sends the resulting
signature σ2 to M . M uses signatures σ1 and σ2 to spend escrow aesc.

If U does not send M a valid signature σ2 within a certain timeout, then
M invokes the Resolve Aborted Prize method.

• Resolve Aborted Prize: When T receives a tuple (x, aesc, aM ) such that
x = (c, r1, s, r2, σ), c = Com(r1; s), σ is a valid signature on (c, r2, a

M )
with respect to pkesc1 , and if the last 2 digits of r1 ⊕ r2 are 00, T signs
(aesc, aM ) with respect to pkT . M uses signatures σ and this new σT to
spend escrow aesc.

• Penalty: T performs the same penalty tasks as in MICROPAY2.

Security Analysis It follows using standard cryptographic techniques that
the same security claims that held with respect to MICROPAY2 also hold for
MICROPAY3. Additionally, note that if U and M are both executing the
protocol honestly, T is never invoked.

2.4 Making Our Schemes Non-interactive

In all of our MICROPAY schemes, the merchant must send the first message
to the payer, which is followed by the payer “confirming” the transaction. In
some situation it may be desirable for the merchant to be able to post a single,
fixed first message, that can be resued for an any number of users (payers)
and any number of transactions (and the payer still just sends a single message
confirming the transaction).

We generalize ideas from Micali and Rivest [15]4 to modify our scheme to
be non-interactive in this respect. We present this technique concretely for the
MICROPAY1 scheme, but note that the technique applies to all of our schemes.
This technique requires each transaction to be uniquely identified by both Payer
and Merchant; e.g. the rough time-of-day and IP-address of the payer and
merchant, which we denote as t, can be used to identify the transaction.

4The central difference is that we rely on a verifiable unpredictable function (VUF), whereas
[15] rely on a verfiable random function (VRF); see [14] for definitions of these notions. Relying
on a VUF enables greater efficiency.
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Merchant Set-up: The merchant samples a verifiable unpredictable function
(VUF) [14] fm and a bitcoin address aM and publishes fM , aM .

Escrow Set-up: The payer follows the same instructions to setup an escrow;
the release condition for the escrow requires a witness (σ, y, π, t, aM ) such
that

1. σ is a signature on (t, aM , fM ) with respect to pkesc

2. π certifies that fM (σ) = y (recall that each VUF is associated with
a proof systems which enables certifying the output of the VUF on
a particular input).

3. H(y) begins with 00, whereH is a hash function modeled as a random
oracle.

Payment Issuance: To send a probabilistic payment of X/100 for transaction
t, the payer retrieves the function fM for the merchant, computes a sig-
nature σ on t, aM , fM (w.r.t. to pkesc) and sends σ to the merchant. The
merchant verifies that the signature is valid.

Claim prize: The merchant’s ticket is said to win the lottery if H(fm(σ))
begins with 00.

Efficient instantiations of VUFs Practical VUFs in the Random Oracle
Model can be based on either the RSA assumption (as in [15]), or the Com-
putational Diffie-Hellman assumption, as we now show. This new VUF (which
leads to greater efficiency than the RSA based one used in [15]) is the same as
a construction from [9] but for our purposes we only need to rely on the CDH
assumption (whereas [9] needs the DDH assumption). Let G be a prime order
group in which the CDH problem is hard and g is a generator. The VUF is
indexed by a secret seed r ∈ Zq, and the public description of the function is
the tuple (G, g, gr). On input y, the VRF evaluates to H(y)r, where H is a ran-
dom oracle, and produces a proof π which is a non-interactive zero-knowledge
proof in the random oracle model that the pair (g, gr, H(y), H(y)

r
) form a DDH

triple.

3 Implementation in Bitcoin

In this section, we describe how our schemes can be implemented in Bitcoin.
We begin with a more formal description of the Bitcoin protocol.

3.1 Formal description of the Bitcoin protocol

A ledger consists of an ordered sequence of blocks, each block consists of a se-
quence of transactions. Blocks and transactions are uniquely identified by a
hash of their contents. Each transaction contains a sequence of inputs and a
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sequence of outputs. An input consists of a triple (tin, i, ω) where tin is the iden-
tifier (hash) of a previous transaction, i is an index of an output in transaction
tin, and ω is the input script or the “cryptographic witness to spend the ith
output of transaction tin.” The ith output of a transaction t consists of a triple
(a, x,Πt,i) where a is an address, x is an amount of Bitcoin, and Πt,i is a “release
condition”, i.e. a predicate that returns either true or false. A “cryptographic
witness” to spend an output (tin, i) is a string ω such that Πtin,i(ω) = 1.

An address a is formed from the public key of an ECDSA key pair as fol-
lows: generate an ECDSA key pair (ask, apk), then compute the hash h ←
00||ripemd-160(sha256(apk)), compute a checksum h′ ← sha256(sha256(h)),
and finally compute the address a ← base58(h||h′1,4) where h′1,4 are the first
four bytes of h′ and base58 is a binary-to-text encoding scheme5. Thus, given
a public key pk, one can verify that it corresponds to a particular address apk.

Suppose the i-th output of transaction tin is (a′,Π′, x′). An input (tin, i, ω)
is valid if the following holds: (a) ω and Π′ can be interpreted as a bitcoin
script, and (b) after executing ω and then executing Π′ on a stack machine, the
machine has an empty stack and its last instruction returns true. A transaction
is considered valid if each of its inputs are valid, and the sum of the amounts of
the inputs is larger than the sum of the amounts of the outputs.

A standard release condition Πstd mentioned earlier in this paper requires a
signature of the current transaction using a key specified in Πstd. This condition
is specified in the Bitcoin scripting language as follows:

dup hash160 [h(pk)] eq verify checksig

An input script that satisfies this condition is ω = [σ] [pk].
To illustrate, we briefly describe the steps to check the release condition Πstd

with script ω. First, ω = [σ] [pk] is interpreted, which pushes the string σ and
the string pk onto the stack. Next, Πstd is interpreted. It first duplicates the
argument on the top of the stack (pk), then hashes the duplicated argument,
pushes the hash of a particular public key pk onto the stack, verifies the equality
of the first two arguments on the stack (which should be the string h(pk) that
was just pushed onto the stack and the hash of the public key given by the input
script ω), and if equal, then checks the signature on the current transaction6

using the next two arguments on the stack which are pk and σ.
Another common release condition is called a script hash. In this case, the

release condition only specifies a hash of the release condition script. This
condition is usually coded in the scripting language as

hash160 [h] eq verify

which is interpreted as a script that first hashes the top argument on the stack,
pushes the string h onto the stack, and then verifies equality of the two. An

5Base58 uses upper- and lower- case alphabet characters and the numerals 1-9, but removes
the upper-case O, upper-case I and lower-case l to eliminate ambiguities

6A very specific transformation is used to change the current transaction into a string upon
which the signature σ is verified using public key pk.
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input script that satisfies this condition might be ω = [a1] [a2] . . . [an] [script],
i.e. the script pushes arguments a1, . . . , an onto the stack, and then pushes a
string script onto the stack. When a certain bit is set in the output address,
then the release condition first evaluates ω to setup the stack, then interprets
the release condition which checks that the first argument [script] on the stack
is the same one specified in the release condition, and then interprets [script] as
a new script which it then executes against the values a1, . . . , an which remain
on the stack.

A script hash is the preferred method for encoding multi-signature release
conditions, i.e. transactions which require more than one party to sign for the
release condition to be satisfied. An example such as

2 [pk1] [pk2] 2 check multisig

pushes 2, pk1, pk2, 2 onto the stack and then runs the check multisig operation
which then reads these 4 arguments and “succeeds if the next two arguments
on the stack correspond to signatures under 2 of the public keys pk1, pk2.” To
satisfy this script, the witness should be of the form ω = 0 σ1 σ2 where σi is a
signature on the transaction under key ski. The extra 0 at the beginning is a
peculiarity of this operation’s syntax.

3.2 Modifications to Bitcoin for MICROPAY1

The Bitcoin script language supports a check sig operation that reads a pub-
lic key and a signature from the stack and then verifies the signature against
the public key on a message that is derived in a special way from the current
transaction. This (and its multi-sig version) is the only operation that per-
forms signature verification. In MICROPAY1, however, our scheme requires
the verification of a signature on a transcript of a coin-tossing protocol, i.e.
step (3) of the release condition Πesc(x, aesc, a2) needs to verify a signature on
the tuple (c, a2, r2). Thus, to support our protocol, we suggest a new opera-
tion check rawsig which reads a public key, a signature, and values from the
stack which it concatenates to produce the message that is used to check the
signature. More specifically, when this instruction is called, the top of the stack
should appear as follows:

[an] · · · [a1] [n] [σ] [pk]

The operation performs the following steps:
1. Read the top argument on the stack; interpret as a public key. (Same as

the first step of check sig.)

2. Read the next argument on the stack; interpret as a signature string.
(Same as the second step of check sig.)

3. Read the next argument n from the stack and interpret as a 32-bit un-
signed integer.
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4. Read the next n arguments an, an−1, . . . , a1 from the top of the stack and
concatenate to the string m = a1||a2|| · · · ||an where || is a unique delimiter
string.

5. Verify that σ is a signature on message m under public key pk. If not,
then abort.

Thus, the only difference between this instruction and the op checksig in-
struction is how the message m is constructed. In the later case, the message
is constructed by removing part of the script from the current transaction in a
specific way. An implementation of this method in the libbitcoin[8] library
requires only 30 additional lines of code.

Additionally, in order to verify that the transcript of our “coin-flipping” pro-
tocol is a winning transcript, we need to add (or xor) integers on the top of the
stack and compare and integer on the stack to a fixed constant. In the current
scripting language, numeric opcodes such as add and ltcmp are restricted to
operating on 4-byte integers. To ensure the soundness of our coin-flipping proto-
col, however, we require the merchant to select a witness x (that is used to form
the commitment c) from 128-bit strings. Thus, the integers on our stack will be
larger than 4-bytes, and currently, the Bitcoin script stops evaluating the script
and fails when this event occurs. To enable our functionality, we require the
operations to truncate the integers on the stack to 4-byte values and continue
evaluating the script (instead of aborting the execution of the script as they do
now). This change requires only five lines of code in libbitcoin.

Finally, in order to implement the penalty condition, the script must verify
the existence of signatures on distinct winning lottery tickets. These operations
can be performed using the same two above changes.

3.3 Implementing MICROPAY2

We implement our second scheme in this section. Figure 2 shows the message
flow; we then describe each message in detail.

step 0. The VTS T publishes a public key pkT and retains a secret key skT

used for signing.
example: Party T publishes public key

0305a8643a73ecddc682adb2f9345817d

c2502079d3ba37be1608170540a0d64e7

step 1. The first step of our scheme is for the user to post an escrow and a
penalty escrow transaction for 100X and λX respectively onto the blockchain.
To do so, the payer generates new addresses aesc and apen while retaining the
associated key pairs (skesc, pkesc, skpen, pkpen), and publishes a transaction on the
ledger that specifies outputs aesc and apen with the escrow release output script7.

7Bitcoin convention suggests the use of a scripthash to implement a multi-signature trans-
action, but in this case, the explicit script allows public verification of an escrow.
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Payer places $ in escrow. 2N8QHzsKadx
92nRUjUX3U5
Cw41VBPgW
HoHv

M
merchant

Ppayer

1. Pick random r1.c=com(r1), Maddr

2 [pkesc] [pkT] checkmultisig

script

The script RS 
requires a multi-
signature by payer 
and by VTS.

VTS

4. Verify win. 

sign L1.

3. If r1+r2<R, t wins lottery.
(L1,s,t,c,r2,r1)

s’=sigVTS(L1)

5. Use (s,s’) and redeem script RS  

to spend escrow.

2.  r2,s,t,L1,T1,spen

L1

transaction 
{  hash da27…ef42 
   input  {  <ESCROW> }  
   script { empty   } 
   … 
   output { <addr_of_M>  
   <standard out script> } 
   version 1 
}

t=sigesc(c,r2,Maddr)
s=sigesc(L1)

esc

spen=sigpen(T1)

T1

Figure 2: An example of how MICROPAY2 can be implemented in the Bitcoin
scripting language.

The output script for esc will be

“2 [pkT ] [pkesc] 2 check multisig”

The script for pen is constructed similarly.

example: The user creates a transaction to post the escrow to the blockchain:

transaction

{

hash e164...099d

inputs

{

input

{

previous_output

{

hash da27...6979

index 0

}

script ""
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sequence 4294967295

}

}

lock_time 0

outputs

{

output

{

script "2 [ 0405...005d ] [ 0469...fe2f ] 2 checkmultisig"

value 1000000

}

output

{

script "2 [ 04e1...e59b ] [ 0469...fe2f ] 2 checkmultisig"

value 10000000

}

}

version 1

}

The escrow address for this example is mgac...RPUC (derived from the first
public key in the first output) and the penalty address is mihF...3KH4. Be-
fore posting this transaction to the blockchain, the User and T first exchange
signatures on transactions which allow U to recover the penalty escrow after a
given time-out. Specifically, using the transaction hash e164...099d, U creates
a transaction t1 that spends output index 1 to an address that U creates with a
locktime that reflects roughly 6 months in the future, and sends t1 to T . Next,
T signs t1 using pkT and sends it back to U . (These steps have been omitted
in the above.) Finally, U posts transaction e164...099d to the blockchain. As
soon as it is confirmed, U can begin spending.

step 2. To request a payment, the merchant picks a random r1 ← {0, 1}128
string and then computes c← H(r1) where H is the SHA256 operation imple-
mented in the Bitcoin scripting language. The merchant also generates a new
Bitcoin address a2 and sends (c, a2) to the payer while retaining the public and
secret keys associated with a2.

example The Merchant picks the random message

r1 ← 29c14f18638da11b75663e050087b591

computes c← sha256(r1) and a new bitcoin address

c =
7c12e848a4a3a9f31c7abea5ab323eeb

6893c3a08675cc6c076e39950e52695e

a2 ← mkKKRLweRbu7Dam82KiugaA9bcnYXSyAVP

and sends the message (c, a2).
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step 3. Upon receiving (c, a2) from a merchant, the payer verifies that c is
the proper length for the hash of a 128-bit string, and that a2 is a well-formed
bitcoin address. The payer picks a random 8-bit string r2 ← {0, 1}8, and then
uses skesc in order to compute the signature σ on the message (c, r2, a2) using
the secret key skesc. The payer also computes a signature σ1 on the transaction
(aesc, a2) using the secret key skesc and a signature σpen on a transaction tpen
that spends the penalty escrow to an invalid address like. The payer sends
(aesc, r2, σ, σ1, σpen, tpen) to the merchant.

example The payer randomly samples r2 ← 37 and then computes a signa-
ture on (c, r2, a2) as

σ ← IKZRV...rgXLHs=

The payer then forms the transaction (aesc, a2) as follows

transaction {

hash 2de3...0e73

inputs {

input {

previous_output {

hash fc72...d347

index 0

}

script ""

sequence 4294967295

}

}

lock_time 0

outputs {

output {

address mkKK...yAVP

script "dup hash160 [ 34a...e2a ] eq_ver chksig"

value 100000

}

}

version 1

}

and then signs the transaction using skesc

σ1 ← 3044...ed01

step 4. Upon receiving (r2, σ, σ1, σpen, tpen) from the payer, the Merchant first
verifies the two signatures on the respective messages and verifies that aesc has
not yet been spent. The merchant then checks whether r1⊕r2 results in a string
whose last two (or alternatively, first two) digits are zero.

If so, then the merchant has a winning ticket. To redeem the escrow amount,
the merchant sends the winning tuple consisting of x = (c, r1, r2, σ, σ1, a

esc, a2)
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to the VTS T . T verifies that the tuple corresponds to a win for the escrow aesc,
and if so, then signs the transaction (aesc, a2) using public key pkT . Specifically,
T verifies that c = H(r1), σ is a valid signature on (c, r2, a2) w.r.t. pkesc, and
the last 2 digits of r1 ⊕ r2 are 00.

Furthermore, T publishes tuple x on its own bulletin board, on the bitcoin
blockchain, or on some “alt-chain.”

If aesc has already been spent when T receives the winning tuple x, then T
looks up the winning tuple x′ used to claim aesc. T then has evidence that U
has double-spent the escrow. T then finds transaction t1 and signature σt, signs
t1 itself using skT to produce σ′t, and then spends apen to address 0 by sending
(t1, σt, σ

′
t) to the cryptocurrency network.

step 5. Finally, once M has received the signature σT from T , then M can
spend aesc to address a2 (which it controls) using σ1, σT to satisfy the release
condition.

4 Evaluation

4.1 Expected Revenue and Expenditure

With each of our probabilistic payment schemes, the seller receives X coins in
expectation for every interaction with a buyer. We provide a statistical analysis
to guarantee that after sufficiently many payments, both the buyer and the
seller respectively spend and receive an amount that is close to the expectation
with high probability.

Our scheme is parameterized by ρ, the probability that a lottery ticket wins.
One can tune ρ to balance the number of winning transactions with the variance
in the actual cost/revenue from each transaction. Although the previous section
used ρ = 1

100 , our implementation uses ρ that is a power of 2 to simplify the coin-
flipping protocol. Thus, in the following sections, we consider ρ1 = 1

128 and ρ2 =
1

512 . A standard Bernoulli analysis suffices because the security properties of
our scheme prevent even malicious parties from biasing independent executions
of the protocol. Let Ri be a random variable denoting revenue from the ith

execution of the protocol (e.g., Ri is either 0 or X/ρ, in our case, either 0
or 128). The total revenue is therefore R =

∑n
i Ri. As discussed previously

E[Ri] = ρ ·X/ρ = X, so E[R] = Xn. Recall that the probability that revenue
is exactly Xk is

Pr [R = Xk] =

(
n

kρ

)
(ρ)

kρ
(1− ρ)

n−kρ

Using this formula and ρ1 = 1
128 , we illustrate the probability of paying (or

receiving) a specific amount per transaction in Fig. 3. These graphs show that
both the buyer (who may, say, make 1000 transactions per year) and a seller
(who may receive 10,000 transactions per month), the average price over those
transactions will be close to the expected amount of X per transaction. The
blue sections of those graphs show 99% of the probability mass.
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Pr[win]=1/128
P

r

Price per transaction

Actual price per transaction (after 1000 transactions)

1%

6%

12%

0.12X X 2X

Pr[win]=1/128

P
r

Price per transaction

Actual price per transaction (after 10000 transactions)

1%

4%

0.7X X 1.33X

Figure 3: Pr of payment amount (parameterized by X) after 1,000 and 10,000
transactions (for win rate ρ1 = 1

128 ). The blue region shows 99% of the mass.
If escrow is 128X, then the expected payment is X.

As the number of transactions increases for a very busy seller (e.g, a web site
that receives millions of views), the guarantees on revenue become even tighter.
To illustrate, we now compute the probability that R < 0.8n, i.e., that revenue
is less than 80% of the expected value:

Pr [R < 0.8n] =

b0.8nρc∑
k=0

Pr [R = ρ · k]

The floor function in the summation’s upper bound make the function “choppy”
and non-monotone at those n when the value discretely increases by 1. The
Chernoff bound is a general tool that can be used to bound tail inequalities
such as this one. However, this estimate is loose, and we instead compute
the exact value in Fig. 4. After 100,000 transactions, there is high probability
that the actual revenue will be at least 80% of the expected value and good
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probability that the revenue will be at least 90% of the expected. In Fig. 5, we
show the same results for win rate ρ2 = 1

512 .
P

r

# of tickets

<80% Expected Rev
<90% Expected Rev

2%

10%

25%

50%

5k 15k 25k 35k 45k

Figure 4: For win rate ρ1 = 1
128 , probability that the seller’s revenue is less than

80% and 90% of the expected revenue. The curves have a “sawtooth” pattern
due to discreteness. At 15,000 and 50,000 transactions, there is a roughly 2%
chance that revenue is less than 80% or 90% respectively of the expected revenue.

P
r

# of tickets

<80% Expected Rev
<90% Expected Rev

2%

10%

25%

50%

10k 50k 100k

Figure 5: For win rate ρ2 = 1
512 , probability that the seller’s revenue is less than

80% and 90% of the expected revenue.
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4.2 Performance of the Scheme

Our schemes are all highly efficient; the first message from the seller requires
only a hash computation (and optionally the creation of a new address, in the
fast version of this step, we reuse the same bitcoin address for all merchant
transactions8). The second message from the buyer requires the computation of
two signatures. The final check to determine whether the transaction is paying
requires two signature verifications and one comparison operation. We first show
micro-benchmarks for each of these operations, and then demonstrate how the
scheme operates in a real system.

Micro-benchmarks for each operation

operation avg time (µs) 95% ci (µs)

Request Ticket 84.9 ± 2.56

Request Ticket (Fast) 3.7 ± 0.12

Make a Ticket 170.6 ± 5.28

Check Ticket 437.6 ± 10.45

VTS Check 496.1 ± 6.60

These measurements where taken on an Intel Core i7-4558U CPU @ 2.80GHz,
with 2 cores, 256 KB of L2 cache per core, 4MB of L3 cache, and 16GB of RAM.
Each function was profiled using the Go language benchmark framework which
called the function at least 10000 times to time the number of nanoseconds per
operation. The Go benchmark framework was run 50 times and averaged to
report the sample time and the 95% confidence interval reported in the table.
Only one core was used during the testing. As the table demonstrates, the pro-
tocol messages can be generated in microseconds, with ticket checking requires
less than half a milli-second. Thus, the overhead of the protocol is very low in
terms of computation.

In terms of communication, we have made no effort to compress or minimize
the size of the messages. For ease of implementation, we use base64 encodings
for the signatures, commitments, and addresses in the protocol (rather than
a more efficient binary encoding). In the table below, we report the size (in
bytes) for each of the messages. The ticket message has a variable size because
it includes two signatures whose message sizes are variable.

8Although Bitcoin specifications suggest that each transaction use a totally new address,
with proper key management on behalf of the merchant, there is no reason the same address
cannot be used to receive many payments.
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operation message size (bytes)

Request Ticket 73

Request Ticket (Fast) 73

Make a Ticket 398 ± 10

Check Ticket -

VTS Check -

4.3 Experiments in a sample web server

To illustrate how our scheme can be used to sell “content” on the Internet,
we developed a webserver that serves dynamic pages and also implements our
MICROPAY2 protocol. Our experiment shows that the overhead of adding
the messages of the micropayment protocol add little in terms of performance
penalty to the infrastructure. The most expensive operation on the server is to
verify the lottery ticket (i.e., check two signatures), and this adds less than half
a milli-second to the server response time—a value that is essentially masked
by the variance in network performance.

In practice, we envision our system as a proxy that sits in front of a legacy
content server and only handles the micropayment; this experiment serves as
an illustrative benchmark for that architecture. In particular, it shows that a
basic and unoptimized server can handle millions of tickets.

Design We implemented a webserver using the Go net/http package. The
server handles three kinds of requests, \base, \ask, and \buy. The \base end-
point returns a page that is rendered with a template and a dynamic parameter
(to model the fact that it is not simply a static page that is cached in memory).
The size of this page is roughly 2kb. This endpoint serves as a control for our
experiment to understand the baseline performance of our webserver implemen-
tation. Next, the \ask endpoint returns the first message of our micropayment
scheme, i.e. a request for a ticket. This method models what a buyer’s client
queries in order to receive a ticket request9. Finally, the \buy endpoint ac-
cepts the second message (the ticket) of our micropayment protocol and checks
whether the ticket is well-formed and whether the ticket is a winning one. If
the ticket is well-formed, the method returns the same dynamically generated
webpage as the \base method. Thus, the combination of making an \ask query
and then a \buy query reflects the overhead of processing a micropayment before
serving content.

Compute-bound experiment In the first experiment, we measured the ex-
tent to which the extra computation for a server would become a bottleneck at

9In practice, the first message will be embedded in the link to the content that requires
a payment, hence the most expensive component of this message—the network cost— can
essentially be hidden from the user’s experience.

26



Internet scale. We ran a client that made both control and experiment requests
from a 2-core/4-hyperthread laptop running on a university network from the
east coast. The control experiment makes a call to \ask and then \base; the ex-
periment makes a call to \ask and \buy. Our experiment attempts to isolate the
difference between calling just \base and accessing the same content through
\buy; but in order to perform the latter, we need to have information conveyed
through \ask. This extra round-trip is hidden in practice because it is bundled
with the (several) calls to a server that are used to access the “homepage” from
which the links to content-for-purchase are conveyed. Thus, to avoid comparing
one round-trip against two, both of the experiments make a call to \ask.

The client issued 25000 requests using 20 threads for at least 20 seconds;
each thread pooled its network connection to amortize network overhead over
the requests. Each run (to either control or experiment) was performed 30
times over the course of a day and a delay of at least 15 seconds was introduced
between runs to allow network connections to gracefully terminate. The client
sent its queries from the east coast. The server used a single core on a t4.xlarge

instance from the US-East region of EC2 which has an Intel Xeon CPU E5-2666
v3 @ 2.90GHz and 8GB of memory.

As illustrated by the table below, the difference between the performance of
the \base system and \buy are overwhelmed by network timing noise; the con-
fidence interval of the experiment roughly matches the microbenchmark timings
for the \buy calls.

operation req/sec avg resp time (95% conf int)

\base 534 1.87 ± 0.26 ms

\buy 497 2.01 ± 0.30 ms

Extrapolation When run as a proxy, a micropayment server with 8 cores/16
threads can handle at least 4000 transactions per second, or roughly 350 million
page views per day. At roughly 600 bytes per message to account for protocol
overheads, this amounts to a bandwidth overhead for micropayment messages
of merely 600 ∗ 4000 = 2.4mb/sec.

Network Test The previous tests did not include network connection over-
head. We ran the same experiment using a single thread making a single request,
serially, 2000 times with a 2 second delay between each request. The client ran
from a laptop connected to the internet over a cable modem. Figure 6 plots
a histogram of the response times for the control and experiment. The two
distributions are very close as expected.

VTS Performance In MICROPAY2, the VTS signs all winning lottery trans-
actions. At Internet scale, this party could become a bottleneck since every
winning ticket must be processed in near real-time to mitigate double-spending
attacks. Based on the microbenchmarks in the previous section, a single core can
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Figure 6: A histogram of response times for a single request over a cable modem.
The base red is the experiment, the overlaid checkerbox is the control.

also verify and sign 2000 winning tickets per second. Including networking over-
head extrapolated from our first experiment, we estimate that a micropayment
server with 8 cores/16 threads can handle at least 4000 winning transactions
per second, or roughly 350 million winning lottery tickets per day. When the
winning ratio parameter is ρ1 = 1

128 , roughly 1 out of 128 tickets will be winning,
and thus, a single VTS server can theoretically support 512,000 global micro-
payment content views per second, or ∼44 billion total micropayment content
views per day. The later number assumed uniform access rate throughout the
day, but real traffic follows cyclic patterns with peak times that are much busier
than off-peak times. These are theoretical maximums, but after adding redun-
dancy for robustness, this analysis and experiment suggests that a small set of
servers suffice to handle Internet scale transaction processing.

Another potential bottleneck occurs with the underlying cryptocurrency
bandwidth. As the graph in Fig. 7 depicts, during 2015, the number of daily
Bitcoin transactions processed on the blockchain hovers around 105. The cur-
rent Bitcoin protocol can only handle 7 transactions per second on average, or
roughly 106 transactions per day, and thus, at parameter ρ1, it seems feasible
for the current Bitcoin protocol to handle roughly 108 total paid transactions.
Many research efforts are underway to increase the bandwidth for the number of
transactions by a factor of 10x to 100X, and our scheme’s scalability naturally
benefits from these advancements. We can also decrease the ρ1 value to improve
the scalability (at the cost of increasing the variance of expected revenue and
costs for the sellers and buyers).
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particular, pointing out issues with front-running in an earlier version of our
protocols.
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Figure 8: A plot of transaction fee versus transaction size for one million Bitcoin
transactions that occurred in May 2015. The Bitcoin specification suggests that
each transaction should pay roughly 0.0001 bitcoin per kilobyte (rounded up)
of transaction data.
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