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Abstract. Recently, proof of space (PoS) has been suggested as a more egalitarian alternative to the
traditional hash-based proof of work. In PoS, a prover proves to a verifier that it has dedicated some
specified amount of space. A closely related notion is memory-hard functions (MHF), functions that
require a lot of memory/space to compute. While making promising progress, existing PoS and MHF
have several problems. First, there are large gaps between the desired space-hardness and what can
be proven. Second, it has been pointed out that PoS and MHF should require a lot of space not just
at some point, but throughout the entire computation/protocol; few proposals considered this issue.
Third, the two existing PoS constructions are both based on a class of graphs called superconcentrators,
which are either hard to construct or add a logarithmic factor overhead to efficiency. In this paper,
we construct PoS from stacked expander graphs. Our constructions are simpler, more efficient and
have tighter provable space-hardness than prior works. Our results also apply to a recent MHF called
Balloon hash. We show Balloon hash has tighter space-hardness than previously believed and consistent
space-hardness throughout its computation.

1 Introduction

Proof of work (PoW) has found applications in spam/denial-of-service countermeasures [20,11] and in the
famous cryptocurrency Bitcoin [34]. However, the traditional hash-based PoW does have several drawbacks,
most notably poor resistance to application-specific integrated circuits (ASIC). ASIC hash units easily offer
∼ 100× speedup and ∼ 10, 000× energy efficiency over CPUs. This gives ASIC-equipped adversaries a huge
advantage over common desktop/laptop users. Recently, proof of space (PoS) [9,22] has been suggested as a
potential alternative to PoW to address this problem. A PoS is a protocol between two parties, a prover and
a verifier. Analogous to (but also in contrast to) PoW, the prover generates a cryptographic proof that it has
invested a significant amount of memory or disk space (as opposed to computation), and the proof should be
easy for the verifier to check. Common wisdom suggests that if an ASIC has to constantly access a large
external memory, its advantage over a CPU will be small if any, making PoS more egalitarian than PoW.

Somewhat unfortunately, two competing definitions of “proof of space” have been proposed [9,22] with
very different security guarantees and applications. Adding to the confusion are other closely related notions
such as proof of secure erasure (PoSE) [38], memory-hard functions (MHF) [37], provable data possession
(PDP) [10] and proof of retrievability (PoR) [28]. A first goal of this paper is to clarify the connections
and differences between all the above notions. We will give detailed comparisons in Section 2. For now, we
summarize them below and in Figure 1.

As its name suggests, a memory-hard function (MHF) is a function that requires a lot of memory/space to
compute. Proof of secure erasure (PoSE) for the most part is equivalent to MHF. Proof of space by Ateniese
et al. [9] extends MHF with efficient verification. That is, a verifier only needs a small amount of space and
computation to check a prover’s claimed space usage. Proof of space by Dziembowski et al. [22] further gives
a verifier the ability to repeatedly audit a prover and check if it is still storing a large amount of data. The
key difference between the two proofs of space lies in whether the proof is for transient space or persistent
space. We shall distinguish these two notions of space and define them separately as proof of transient space
(PoTS) and proof of persistent space (PoPS). PDP and PoR can achieve the space-hardness goal of PoTS
and PoPS, but do not meet the succinctness requirement. Since PoPS is the strongest among the four related
primitives (MHF, PoSE, PoTS and PoPS), the end goal of this paper will be a PoPS with improved efficiency
and space-hardness. Along the way, our techniques and analysis improve MHF/PoSE and PoTS as well.
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Fig. 1: Relation between PoSE/MHF, PoTS, PoPS and PDP/PoR.

Let us return to the requirements for a MHF f . Besides being space-hard, it must take short inputs. This
is to rule out trivial solutions that only take long and incompressible input x of size |x| = N . Such an f
trivially has space-hardness since N space is needed to receive the input, but is rather uninteresting. We do
not have many candidate problems that satisfy both requirements. Graph pebbling, also known as pebble
games, is the only candidate we know of so far. Pebble games on certain graphs have been shown to have high
space complexity or sharp space-time trade-offs. The most famous ones are stacked superconcentrators [36,30],
which have been adopted in MHF [26], PoSE [29] and PoS [9,22].

However, bounds in graph pebbling are often very loose, especially for stacked superconcentrators [36,30].
This translates to large gaps between the desired memory/space-hardness and the provable guarantees in
MHF and PoS (Section 1.1). Furthermore, MHFs and PoS need other highly desired properties that have not
been studied in graph pebbling before (Section 1.2). The main contribution of this paper is to close in on
these unproven gaps and unstudied properties while maintaining or even improving efficiency.

We illustrate these problems in the next two subsections using MHF as an example, but the analysis
and discussion apply to PoS as well. We will also use “memory-hard” and “space-hard” interchangeably
throughout the paper.

1.1 Gaps in Provable Memory Hardness

The most strict memory-hardness definition for a MHF f is that for any x, f(x) can be efficiently computed
using N space, but is impossible to compute using N −1 space. Here, “impossible to compute” means the best
strategy is to take a random guess in the output space of f(·). Achieving this strict notion of memory-hardness
is expensive. Aside from the trivial solution that sets input size to |x| = N , the best known construction has
O(N2) time complexity for computing f [24]. The quadratic runtime makes this MHF impractical for large
space requirements.

All other MHFs/PoSE and PoS in the literature have quasilinear runtime, i.e., N · polylogN , by adopting
much more relaxed notions of memory-hardness. One relaxation is to introduce an unproven gap [29,22]. For
example, in the PoSE by Karvelas and Kiayias [29], while the best known algorithm to compute f needs N
space, it can only be shown that computing f using less than N/32 space is impossible. No guarantees can be
provided if an adversary uses more than N/32 but less than N space.

The other way to relax memory-hardness is to allow space-time trade-offs, and it is usually combined
with unproven gaps. Suppose the best known algorithm (to most users) for a MHF takes S space and T
time. These proposals hope to claim that any algorithm using S′ = S/q space should run for T ′ time, so that
the time penalty T ′/T is “reasonable”. If the time penalty is linear in q, it corresponds to a lower bound
on S′T ′ = Ω(ST ), as scrypt [37] and Catena-BRG [26] did. Notice that the hidden constant in the bound
leaves an unproven gap. Other works require the penalty to be superlinear in q [26,13] or exponential in some
security parameter [31,9,18], but the penalty only kicks in when S′ is below some threshold, e.g., N/8, again
leaving a gap.

We believe an exponential penalty is justifiable since it corresponds to the widely used computational
security in cryptography. However, an ST lower bound and a large unproven gap are both unsatisfactory.
Recall that the motivation of MHF is ASIC-resistance. With an ST bound, an attacker is explicitly allowed
to decrease space usage, at the cost of a proportional increase in computation. Then, an adversary may be
able to fit S/100 space in an ASIC, and get in return a speedup or energy efficiency gain well over 100. This
is partially why ASICs for scrypt, the most popular MHF, are already commercially available [1].

A large unproven gap leaves open the possibility that an adversary may gain an unfair advantage over
honest users, and fairness is vital to applications like voting and cryptocurrency. A more dramatic example is
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perhaps PoSE [29]. With an unproven gap of 32, a verifier can only be assured that a prover has wiped 1/32
fraction of its storage, which can hardly be considered a “proof of erasure”. The authors were well aware of
the problem and commented that this gap needs to be very small for a PoSE to be useful [29], yet they were
unable to tighten it. Every MHF, PoSE or PoS with quasilinear efficiency so far has a large unproven gap (if
it has a provable guarantee at all).

In fact, MHFs have been broken due to the above weaknesses. Scrypt [37] and Catena-BRG [26] both
proved lower bounds for their trade-off resilience. But the hidden constants in the bounds turned out to be
too small to provide meaningful guarantees [14,13]. The lesson is that space-hardness is one of the examples
where exact security matters. PoS proposals so far have not received much attention from cryptanalysis,
but the loose hidden constants in prior works are equally concerning. Therefore, we will be explicit about
every constant in our constructions, and also make best efforts to analyze hidden constants in prior works
(in Table 1, 2 and 3).

1.2 Consistent Memory Hardness

In a recent inspiring paper, Alwen and Serbinenko pointed out an overlooked weakness in all existing MHFs’
memory-hardness guarantees [7]. Again, the discussion below applies to PoS.

The issue is that in current definitions, even if a MHF f is proven to require N space in the most strict
sense, it means N space is needed at some point during computation. It is possible that f can be computed by
an algorithm that has a short memory-hard phase followed by a long memory-easy phase. Then an adversary
can carry out the memory-hard phase on a CPU and then offload the memory-easy phase to an ASIC,
defeating the supposed ASIC-resistance.

Alwen and Serbinenko argue, and we fully agree, that a good MHF should require a lot of memory not
just at some point during its computation, but throughout the majority of its computation. However, we
think the solution they presented has limitations. Alwen and Serbinenko suggested lower bounding a MHF’s
cumulative complexity (CC), the sum of memory usage in all steps of an algorithm [7]. For example, if the
algorithm most users adopt takes T time and uses S space at every time step, its CC is ST . If we can lower
bound the CC of any algorithm for this MHF to ST , it rules out an algorithm that runs for T time, uses S
space for a few steps but very little space at other steps. A CC bound is thus an improved version of an ST
bound, and this is also where the problem is. Like an ST bound, CC explicitly allows proportional space-time
trade-offs: algorithms that run for qT time and use S/q space for any factor q. Even when combined with a
strict space lower bound of S, it still does not rule out an algorithm that runs for qT time, uses S space for a
few steps but S/q space at all other steps. We have discussed why a proportional space-time trade-off or a
long memory-easy phase can be harmful, and CC allows both.

Instead, we take a more direct approach to this problem. Recall that our goal is to design a MHF that
consistently uses a lot memory during its computation. So we will simply lower bound the number of time
steps during the computation with high space usage. If this lower bound is tight, we say a MHF has consistent
memory-hardness.

Another difference between our approach and that of [7] is the computation model. Alwen and Serbinenko
assumed their adversaries possess infinite parallel processing power, and admirably proved lower bounds
for their construction against such powerful adversaries. But their construction is highly complicated and
the bound is very loose [5]. We choose to stay with the sequential model or limited parallelism for two
reasons. First, cumulative/consistent memory-hardness and parallelism are two completely independent issues
and should not be coupled. The problem we are discussing here is extremely important in the sequential
model. Mixing it with the parallel model gives the wrong impression that it only becomes a problem when an
adversary has infinite parallelism. Second, infinite parallelism is unlikely to be achieved for MHFs. Even if
parallel computation is free due to ASICs, to take advantage of it, an adversary also needs proportionally
higher memory bandwidth (at least in our construction). Memory bandwidth is a scarce resource and is the
major bottleneck in parallel computing, widely known as the “memory wall” [8]. It is interesting to study
the infinitely parallel model from a theoretical perspective as memory bandwidth may become cheap in the
future. But at the time being, it is not worth giving up practical solutions that are provably secure in the
sequential model.
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1.3 Our Results

We construct PoTS and PoPS from stacked expanders. Our constructions are conceptually simpler, more
efficient and have tighter space-hardness guarantees than prior works [9,22]. We could base our space-hardness
on a classical result by Paul and Tarjan [35], but doing so would result in a large unproven gap. Instead, we
carefully improve the result by Paul and Tarjan to make the gap arbitrarily small. We then introduce the
notion of consistent memory-hardness and prove that stacked expanders have this property.

These results lead to better space-hardness guarantees for our constructions. For our PoTS, we show that
no computationally bounded adversary using γN space can convince a verifier with non-negligible probability,
where γ can be made arbitrarily close to 1. The prover also needs close to N space not just at some point
in the protocol, but consistently throughout the protocol. In fact, the honest strategy is very close to the
theoretical limits up to some tight constants. For PoPS, we show that an adversary using a constant fraction
of N persistent space (e.g., N/3) will incur a big penalty. It is a bit unsatisfactory that we are unable to
further tighten the bound and have to leave a small gap. But our result still represents a big improvement
over the only previous PoPS [22] whose gap is as large as 2× 256× 25.3× logN .

Our tight and consistent memory-hardness results can be of independent interests. Independent of our
work, Corrigan-Gibbs et al. recently used stacked expanders to build a MHF called Balloon hash [18]. They
invoked Paul and Tarjan [35] for space-hardness and left an unproven gap of 8. Our results show that Balloon
hash offers much better space-hardness than previously believed. Our work also positively answers several
questions left open by Corrigan-Gibbs et al. [18]: Balloon hash is consistently space-hard, over time and
under batching.

2 Related Work

MHF. It is well known that service providers should store hashes of user passwords. This way, when
a password hash database is breached, an adversary still has to invert the hash function to obtain user
passwords. However, ASIC hash units have made the brute force attack considerably easier. This motivated
memory hard functions (MHF) as better password scramblers. Percival [37] proposed the first MHF, scrypt,
as a way to derive keys from passwords. Subsequent works [26,31,3,13,18] continued to study MHFs as key
derivation functions, password scramblers, and more recently as proof of work. In the recent Password Hashing
Competition [25] the majority of finalists [26,3,13] claimed memory-hardness. Most MHFs are based on
non-standard assumptions or lack rigorous analysis, with the exception of Catena [26] and Balloon [18], both
of which use graph pebbling.

The most relevant MHF to our work is Balloon Hash [18], which also used stacked expanders. We were not
aware of their work in the first draft of this paper [40]. In this version, we adopt one technique in Balloon to
improve our space-hardness. Our results in turn show better space-hardness for Balloon and positively answer
several open questions regarding its consistent memory-hardness [18]. We also need additional techniques to
obtain PoS.

MBF. Before memory-hard functions, Dwork et al. [19,21] and Abadi et al. [2] proposed memory-bound
functions (MBF). The motivation of MBF is also ASIC-resistance, but the complexity metric there is the
number of cache misses. A MHF may not be memory-bound since its memory accesses may hit in cache most
of the time. A MBF has to be somewhat memory-hard to spill from cache, but it may not consume too much
memory beyond the cache size. Some connection should exist between MBF and MHF, but we have not seen
any formal studies on this topic.

PoSE. Proof of secure erasure (PoSE) was first studied by Perito and Tsudik [38] as a way to wipe a
remote device. Assuming a verifier knows a prover (a remote device) has exactly N space, any protocol
that forces the prover to use N space was considered a PoSE [38]. This includes the trivial solution where
the verifier sends the prover a large random file of size N , and then asks the prover to send it back. Since
this trivial solution is inefficient and uninteresting, for the rest of the paper when we say PoSE, we always
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mean communication-efficient PoSE, where the prover receives a short challenge, but needs a lot of space
to generate a proof. A reader may have noticed that space-hardness and short input are exactly the same
requirements we had earlier for MHFs. Thus, it is more convenient to think of PoSE as an application of
MHFs, with one small caveat in the definition of space-hardness. We have mentioned that a proportional
space-time trade-off or a large unproven gap are undesirable for MHFs; for PoSE, they are unacceptable. On
the flip side, PoSE does not need consistent space-hardness.

Proofs of space. Two independent works named their protocols “proofs of space” [9,22]. The key difference
is whether the proof is for transient space or persistent space. Ateniese et al. [9] is a proof of transient space
(PoTS). It enables efficient verification of a MHF with polylog(N) verifier space and time. If we simply drop
the efficient verification method and have the verifier redo the prover’s work, PoTS reduces to PoSE/MHF.
Dziembowski et al. [22] is a proof of persistent space (PoPS). It supports “repeated audits” and has two
stages. In the first stage, the prover generates some data of size N , which we call advice. The prover is
supposed to store the advice persistently throughout the second stage. In the second stage, the verifier can
repeatedly audit the prover and check if it is still storing the advice. All messages exchanged between the two
parties and the verifier’s space/time complexity in both stages should be polylog(N). If the prover is audited
only once, PoPS reduces to PoTS.

It is worth pointing out that PoPS allows an honest prover who faithfully stores the advice to respond to
audits using little computation. This is an attempt to address the other drawback of PoW, namely, high
energy cost. Repeated proofs only require persistent storage but little computation, so it consumes little
dynamic energy (and has nothing to benefit from ASICs). Also note that an adversary can always discard the
advice and rerun setup when audited. Whether these features are desirable depends heavily on the application.
In contrast, PoTS can be thought of as a memory/space-hard proof of work where a prover has to invest N
space plus N · polylog(N) computation. Two recent proposals Cuckoo Cycle [46] and Equihash [15] aim to
achieve the same goal as PoTS, and indeed call themselves memory-hard proof of work. They are much more
efficient than PoTS [9] but are based on heuristics. Proof of Space-Time [33] is another recent proposal that
resembles a combination of PoTS and PoPS. It has a security proof but relies on non-standard assumptions.

PDP and PoR. Provable data possession (PDP) [10] and proof of retrievability (PoR) [28] allow a user who
outsources data to a server to repeatedly check if the server is still storing his/her data. If a verifier (user)
outsources large and incompressible data to a prover (server), PDP and PoR can achieve the space-hardness
goal of both PoTS and PoPS. However, transmitting the initial data incurs high communication cost. In this
aspect, PoS [9,22] is stronger primitives as they achieve low communication cost. PDP and PoR are stronger
in another aspect: they can be applied to arbitrary user data while PoS populates prover/server memory only
with random bits. In summary, PDP and PoR solve a different problem and are out of the scope of this paper.

Graph pebbling. Graph pebbling is a powerful tool in computer science, dating back at least to 1970s
in studying Turing machines [17,27] and register allocation [44]. More recently, graph pebbling has found
applications in various areas of cryptography [21,24,23,45,32,26,29,9,22].

Superconcentrators. The simplest superconcentrator is perhaps the butterfly graph, adopted in
MHF/PoSE [26,29] and PoTS [9], but it has a logarithmic factor more vertices and edges (than linear
superconcentrators or expanders). Linear superconcentrators, adopted in PoPS [22], on the other hand, are
hard to construct and usually recursively use expanders as building blocks [16,42,4,43]. Thus, it is clear that
superconcentrator-based MHFs and PoS will be more complicated and less efficient than expander-based
ones (under comparable space-hardness).

3 Pebble Games on Stacked Expanders

3.1 Graph Pebbling and Labelling

A pebble game is a single-player game on a directed acyclic graph (DAG) G with a constant maximum
in-degree d. A vertex with no incoming edges is called a source and a vertex with no outgoing edges is called
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a sink. The player’s goal is to put pebbles on certain vertices of G using a sequence of moves. In each move,
the player can place one pebble and remove an arbitrary number of pebbles (removing pebbles is free in
our model). The player’s moves can be represented as a sequence of transitions between pebble placement
configurations on the graph, P = (P0, P1, P2 · · · , PT ). If a pebble exists on a vertex v in a configuration Pi,
we say v is pebbled in Pi. The starting configuration P0 does not have to be empty; vertices can be pebbled
in P0. The pebble game rule is as follows: to transition from Pi to Pi+1, the player can pebble (i.e., place a
pebble on) one vertex v if v is a source or if all predecessors of v are pebbled in Pi, and then unpebble (i.e.,
remove pebbles from) any subset of vertices. We say a sequence P pebbles a vertex v if there exists Pi ∈ P
such that v is pebbled in Pi. We say a sequence P pebbles a set of vertices if P pebbles every vertex in the
set.

A pebble game is just an abstraction. We need a concrete computational problem to enforce the pebble
game rules. Prior work has shown that the graph labelling problem with a random oracle H implements pebble
games. In graph labelling, vertices are numbered, and each vertex vi is associated with a label h(vi) ∈ {0, 1}λ
where λ is the output length of H.

h(vi) =

{
H(i, x) if vi is a source

H(i, h(u1), h(u2), · · · , h(ud)) otherwise, u1 to ud are vi’s predecessors

Clearly, any legal pebbling sequence gives a graph labelling algorithm. It has been shown that the converse is
also true for PoSE/MHF [21,24,29] and PoTS [9], via a now fairly standard “ex post facto” argument. The
equivalence has not been shown for PoPS due to subtle issues [22], but there has been recent progress in this
direction [6]. We refer readers to these papers and will not restate their results.

Given the equivalence (by either a proof or a conjecture), we can use metrics of the underlying pebble
games to analyze higher-level primitives. Consider a pebble sequence P = (P0, P1, P2 · · · , PT ). Let |Pi| be
the number of pebbles on the graph in configuration Pi. We define the space complexity of a sequence
S(P) = maxi(|Pi|), i.e., the maximum number of pebbles on the graph at any step. It is worth noting that
space in graph labelling is measured in “label size” λ rather than bits.

We define the time complexity of a sequence T (P) to be the number of transitions in P. T (P) equals
the number of random oracle H calls, because we only allow one new pebble to be placed per move. This
corresponds to the sequential model. We can generalize to limited parallelism, say q-way parallelism, by
allowing up to q pebble placements per move. But we do not consider infinite parallelism in this paper as
discussed in Section 1.2.

For a more accurate timing model in graph labelling, we assume the time to compute a label is proportional
to the input length to H, i.e., the in-degree of the vertex. Another way to look at it is that we can transform
a graph with maximum in-degree d into a graph with maximum in-degree 2 by turning each vertex into a
binary tree of up to d leaves.

To capture consistent space-hardness, we define MS′(P) = |{i : |Pi| ≥ S′}|, i.e., the number of configura-
tions in P that contain at least S′ pebbles. Consider a pebble game that has a legal sequence P. If there
exist some S′ < S(P) and T ′ < T (P), such that any legal sequence P′ for that same pebble game has
MS′(P′) ≥ T ′, we say the pebble game is consistently memory-hard. The distance between (S′, T ′) and
(S(P), T (P)) measures the quality of consistent memory-hardness.

3.2 Bipartite Expanders

Now we introduce bipartite expanders, the basic building blocks for our constructions, and review classical
results on their efficient randomized constructions.

Definition 1. An (n, α, β) bipartite expander (0 < α < β < 1) is a directed bipartite graph with n sources
and n sinks such that any subset of αn sinks are connected to at least βn sources.

Prior work has shown that bipartite expanders for any (0 < α < β < 1) exist given sufficiently many edges.
We adopt the randomized construction by Chung [16]. This construction gives a d-regular bipartite expander,
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i.e., there are d outgoing edges from each source and d incoming edges to each sink. It simply connects the
dn outgoing edges of the sources and the dn incoming edges of the sinks according to a random permutation.
Given a permutation Π on {0, 1, 2, · · · , dn − 1}, if Π(i) = j, add an edge from source (i mod n) to sink
(j mod n).

Theorem 1. Chung’s construction yields an (n, α, β) bipartite expander (0 < α < β < 1) for sufficiently
large n with overwhelming probability if

d >
Hb(α) + Hb(β)

Hb(α)− βHb(αβ )

where Hb(α) = −α log2 α− (1− α) log2(1− α) is the binary entropy function.

The theorem has been proven by Bassalygo [12] and Schöning [42], but both proofs were quite involved.
We give a proof using a simple counting argument.

Proof. There are (dn)! permutations in total. We analyze how many permutations are “bad”, i.e., do not
yield an expander. A bad permutation must connect some subset U of αn sinks to a subset V of βn sources.
There are

(
n
αn

)(
n
βn

)
combinations. Within each combination, there are

(
dβn
dαn

)
(dαn)! ways to connect U to V .

There are (dn− dαn)! ways to connect the rest of edges (those not incident to U). The probability that we
hit a bad permutation is

Pr(Π is bad) =

(
n

αn

)(
n

βn

)(
dβn

dαn

)
(dαn)!(dn− dαn)!/(dn)! =

(
n

αn

)(
n

βn

)(
dβn

dαn

)
/

(
dn

dαn

)
Using Robbins’ inequality for Sterling’s approximation

√
2πn(n/e)ne

1
12n+1 < n! <

√
2πn(n/e)ne

1
12n [41],

we have log2

(
n
αn

)
= nHb(α)− 1

2 log2 n+ o(1). Thus,

log2 Pr(Π is bad) = n[Hb(α) + Hb(β) + dβHb(α/β)− dHb(α)]− log2 n+ o(1).

If Hb(α) + Hb(β) + dβHb(α/β)− dHb(α) < 0, or equivalently the bound on d in the theorem statement holds,
then Pr(Π is bad) decreases exponentially as n increases. ut

Pinsker [39] used a different randomized construction, which independently selects d predecessors for each

sink. Pinsker’s construction requires d > Hb(α)+Hb(β)
−α log2 β

[18], which is a slightly worse bound than Theorem 1.

But Pinsker’s construction is arguably simpler than Chung’s because it only needs a random function as
opposed to a random permutation.

3.3 Pebble Games on Stacked Bipartite Expanders

Construct G(n,k,α,β) by stacking (n, α, β) bipartite expanders. G(n,k,α,β) has n(k + 1) vertices, partitioned
into k + 1 sets each of size n, V = {V0, V1, V2, · · · , Vk}. All edges in G(n,k,α,β) go from Vi−1 to Vi for some
i from 1 to k. For each i from 1 to k, Vi−1 and Vi plus all edges between them form an (n, α, β) bipartite
expander. The bipartite expanders at different layers can but do not have to be the same. G(n,k,α,β) has n
sources, n sinks, and the same maximum in-degree as the underlying (n, α, β) bipartite expander. Figure 2 is
an example of G(4,4, 14 ,

1
2 )

with in-degree 2.
Obviously, simply pebbling each expander in order results in a sequence P that pebbles G(n,k,α,β) using

S(P) = 2n space in T (P) = n(k+ 1) moves. Paul and Tarjan [35] showed that G(n,k, 18 ,
1
2 )

has an exponentially

sharp space-time trade-off. Generalized to (n, α, β) expanders, their result was the following:

Theorem 2 (Paul and Tarjan [35]). If P pebbles any subset of 2αn sinks of G(n,k,α,β), starting with

|P0| ≤ αn and using S(P) ≤ αn space, then T (P) ≥ b β2αc
k.
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Fig. 2: A stacked bipartite expander G(4,4, 14 ,
1
2 )

.

This theorem forms the foundation of Balloon hash. We could also base our PoTS/PoPS protocols on it.
However, the space-hardness guarantee we get will be at most n/4. We need β

2α ≥ 2 to get an exponential
time penalty, so αn < βn/4 < n/4.

Through a more careful analysis, we show a tighter space-time trade-off for stacked bipartite expanders,
which will lead to better space-hardness for our PoTS/PoPS protocols as well as Balloon hash. We improve
Theorem 2 by considering only initially unpebbled sinks. Let γ = β − 2α > 0 for the rest of the paper.

Theorem 3. If P pebbles any subset of αn initially unpebbled sinks of G(n,k,α,β), starting with |P0| ≤ γn

and using S(P) ≤ γn space, then T (P) ≥ 2kαn.

Proof. For the base case k = 0, G(n,0,α,β) is simply a collection of n isolated vertices with no edges. Each
vertex is both a source and a sink. The theorem is trivially true since the αn initially unpebbled sinks have
to be pebbled.

Now we show the inductive step for k ≥ 1 assuming the theorem holds for k − 1. In G(n,k,α,β), sinks are
in Vk. The αn to-be-pebbled sinks in Vk are connected to at least βn vertices in Vk−1 due to the (n, α, β)
expander property. Out of these βn vertices in Vk−1, at least βn− γn = 2αn of them are unpebbled initially
in P0 since |P0| ≤ γn. These 2αn vertices in Vk−1 are unpebbled sinks of G(n,k−1,α,β). Divide them into two
groups of αn each in the order they are pebbled in P for the first time. P can be then divided into two parts
P = (P1,P2) where P1 pebbles the first group (P1 does not pebble any vertex in the second group) and P2

pebbles the second group. Due to the inductive hypothesis, T (P1) ≥ 2k−1αn. The starting configuration of
P2 is the ending configuration of P1. At the end of P1, there are at most γn pebbles on the graph, and the
second group of αn vertices are all unpebbled. So we can invoke the inductive hypothesis again, and have
T (P2) ≥ 2k−1αn. Therefore, T (P) = T (P1) + T (P2) ≥ 2kαn. ut

Theorem 3 lower bounds the space complexity of any feasible pebbling strategy for stacked bipartite
expanders to γn, where γ = β − 2α. If we increase β or decrease α, γ improves but the in-degree d also
increases due to Theorem 1. For each γ = β − 2α, we find the α and β that minimize d, and plot it in
Figure 3. The curves show the efficiency vs. space-hardness trade-offs our constructions can provide. For
γ < 0.7, d is reasonably small. Beyond γ = 0.9, d starts to increase very fast. We recommend parameterizing
our constructions around 0.7 ≤ γ ≤ 0.9.

However, even if γ is close to 1, we still have a gap of 2 as our simple pebbling strategy for stacked
bipartite expanders needs 2n space. To address this gap, we adopt the localization technique in Balloon
hash [18].

3.4 Localization of Bipartite Expanders

Localization [18] is a transformation on the edges of a bipartite expander. Consider an (n, α, β) bipartite
expander with sources V = {v1, v2, · · · vn} and sinks U = {u1, u2, · · ·un}. The localization operation first adds
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Fig. 3: Minimum in-degree d to achieve a given γ = β − 2α.
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Fig. 4: Localization for a bipartite expander.

an edge (vi, ui) for all i (if it does not already exist), and then replaces each edge (vi, uj) where i < j with
(ui, uj). Figure 4 highlights the removed and the added edges in red. Pictorially, it adds an edge for each
horizontal source-sink pair, and replaces each “downward diagonal” edge with a corresponding “downward
vertical” edge. This adds at most one incoming edge for each vertex in U .

Let LG(n,k,α,β) be a stack of localized expanders, i.e., the resulting graph after localizing the bipartite
expander at every layer of G(n,k,α,β). LG(n,k,α,β) can be efficiently pebbled using n space, by simply pebbling
each layer in order and within each layer from top to bottom. Once vk,i is pebbled, vk−1,i can be unpebbled
because no subsequent vertices depend on it. A vertex vk,j ∈ Vk that originally depended on vk−1,i is either
already pebbled (if j ≤ i), or has its dependency changed to vk,i by the localization transformation.

When we localize a bipartite expander, the resulting graph is no longer bipartite. The expanding property,
however, is preserved under a different definition. After localization, the graph has n sources and n non-sources
(the original sinks). Any subset U ′ of αn non-sources collectively have βn sources as ancestors (v is an ancestor
of u if there is a path from v to u). Crucially, the paths between them are vertex-disjoint outside U ′. This
allows us to prove the same result in Theorem 3 for stacked localized expanders.

Lemma 1. Let U ′ be any subset of αn sinks of an (n, α, β) bipartite expander, and V ′ be the set of sources
connected to U ′ (we have |V ′| ≥ βn). After localization, there exist βn paths from V ′ to U ′ that are
vertex-disjoint outside U ′.

Proof. After localization, vertices in V ′ fall into two categories. A vertex vi ∈ V ′ may still be an immediate
predecessor to some u ∈ U ′, which obviously does not share any vertex outside U ′ with a path starting from
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any vj (j 6= i). If vi is not an immediate predecessor, then the path vi → ui → u must exist for some u ∈ U ′,
because there was an edge (vi, u) in the original bipartite expander. Any other vj ∈ V ′ (j 6= i) is either an
immediate predecessor or uses uj as the intermediate hop in its path to U ′. In either case, vi does not share
any source or intermediate-hop with any other vj .

Theorem 4. Let γ = β − 2α > 0. If P pebbles any subset U ′ of αn initially unpebbled vertices in the last
layer Vk of LG(n,k,α,β), starting with |P0| ≤ γn and using S(P) ≤ γn space, then T (P) ≥ 2kαn.

Proof. The proof remains unchanged from Theorem 3 as long as we show that P still needs to pebble 2αn
initially unpebbled vertices in Vk−1.

A path from v to u is “initially pebble-free”, if no vertex on the path, including v and u, is pebbled in P0.
Due to the pebble game rule, if a vertex v ∈ Vk−1 has an initially pebble-free path to some u ∈ U ′, then it
needs to be pebbled before u can be pebbled. Since Vk−1 and Vk form a localized expander, due to Lemma 1,
there exist at least βn ancestors in Vk−1 whose paths to U ′ are vertex-disjoint outside U ′. Since vertices in U ′

are initially unpebbled, pebbles in P0 can only be placed on the vertex-disjoint parts of these paths. Therefore,
each pebble can block at most one of these paths. Since |P0| ≤ γn, there must be at least βn− γn = 2αn
vertices in Vk−1 that have initially pebble-free paths to U ′, and they have to be pebbled by P. ut

We now have tight space lower bounds for pebble games on stacked localized expanders. LG(n,k,α,β) can
be efficiently pebbled with n space but not with γn space, where γ can be set close to 1. Next, we show that
pebble games on localized stacked expanders are also consistently space-hard.

3.5 Consistent Space Hardness

Theorem 5. Let 0 < η < γ = β − 2α. If P pebbles any subset of αn initially unpebbled vertices in the last
layer of LG(n,k,α,β), starting with |P0| ≤ ηn, and using T (P) ≤ 2k0αn moves, then

Mηn(P) ≥


0 k < k0

2k−k0 k0 ≤ k ≤ k1
(k − k1 + 1)(γ − η)n k > k1

where k1 = k0 + dlog2(γ − η)ne.

Proof. Let Mk be a lower bound on Mηn(P) where k is the number of layers in LG(n,k,α,β). Similar to the
proof of Theorem 3, there are (β − η)n initially unpebbled vertices in Vk−1 that have to pebbled by P. Let
U be the set of these (β − η)n vertices. Again, we sort U according to the time they are first pebbled. We
divide P into three parts P = (P1,P2,P3). P1 pebbles the the first αn vertices in U ⊂ Vk−1. P1 starts from
the same initial configuration as P and has fewer moves than P, so we have Mηn(P1) ≥Mk−1.

We define P2 to include all consecutive configurations immediately after P1 until (and including) the first
configuration whose space usage is below ηn. P3 is then the rest of P. By definition, every Pi ∈ P2, except
the last one, satisfies |Pi| > ηn. The last configuration in P2 is also the starting configuration of P3, and its
space usage is below ηn. It is possible that T (P2) = 1 or T (P3) = 0, if the space usage after P1 immediately
drops below ηn or never drops below ηn.

Now we have two cases based on T (P2). If T (P2) > (γ − η)n, we have Mk > Mk−1 + (γ − η)n. If
T (P2) ≤ (γ − η)n, then P3 has to pebble at least αn vertices in U , because P1 and P2 combined have
pebbled no more than αn + (γ − η)n = (β − α − η)n vertices in U . And P3 starts with no more than ηn
pebbles and has fewer moves than P, so Mηn(P3) ≥Mk−1. In this case we have Mk ≥ 2Mk−1. Combining
the two cases, we have the following recurrence

Mk ≥ min(Mk−1 + (γ − η)n, 2Mk−1).

For a base case of this recurrence, we have Mk0 ≥ 1, because Theorem 4 says any pebbling strategy that
never uses ηn space needs at least 2k0αn moves. Solving the recurrence gives the result in the theorem. ut
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For a tight bound on the entire sequence, we further chain the vertices in LG(n,k,α,β), by adding an edge
(vi,j , vi,j+1) for every 0 ≤ i ≤ k and 1 ≤ j ≤ n − 1. (We can prove a looser bound without the chaining
technique.) This forces any sequence to pebble all vertices in the same order as the simple strategy.

Corollary 1. Any sequence P that pebbles the chained stacked localized expanders LG(n,k,α,β) starting from an

empty initial configuration in T (P) ≤ 2k0αn steps has M(β−3α)n(P) ≥ n(k − k1) where k1 = k0 + dlog2(αn)e.

Proof. Set η = β − 3α. Theorem 5 shows that beyond the first k1 layers, it is expensive to ever reduce space
usage below ηn. Doing so on layer k > k1 would require at least (k − k1 + 1)αn > αn steps with ηn space
usage to pebble the next αn vertices. The penalty keeps growing with the layer depth. So the better strategy
is to maintain space usage higher than ηn for every step past layer k1. There are at least n(k− k1) steps past
layer k1, and hence the theorem holds. ut

The simple strategy maintains n space for nk steps, i.e., the entire duration except for the first n steps
which fill memory. Corollary 1 is thus quite tight as n(k − k1) and ηn can be very close to nk and n with
proper parameters.

4 Improved Analysis for Balloon MHF

A memory hard function (MHF) is a function f that (i) takes a short input, and (ii) requires a specified
amount of, say N , space to compute efficiently. To our knowledge, all MHF proposals first put the input
through a hash function H so that f(H(·)) can take input of any size, and f(·) only deals with a fixed input
size λ = |H(·)|. λ is considered short since it does not depend on N . There is no agreed upon criterion of
memory-hardness. As discussed in Section 1.1, we adopt the exponential penalty definition.

Definition 2 (MHF). Let k be a security parameter, N be the space requirement, and N ′ be the provable
space lower bound. A memory-hard function y = f(x), parameterized k, N and N ′, has the following properties:
(non-triviality) the input size |x| does not depend on N ,
(efficiency) f can be computed using N space in T = poly(k,N) time,
(memory-hardness) no algorithm can compute f using less than N ′ space in 2k time with non-negligible

probability.

The graph labelling problem on a hard-to-pebble graph immediately gives a MHF. Table 1 lists the
running time T and the provable space lower bound N ′ for all existing MHFs with strict memory-hardness
or exponential penalty (though the former two did not use the term MHF). All of them are based on
graph pebbling. DKW [24] has perfect memory-hardness but requires a quadratic runtime. The other three
have quasilinear runtime but large gaps in memory-hardness. The single-buffer version of Balloon hash
(Balloon-SB) [18] used stacked localized expanders. Using the original analysis in the Balloon hash paper, the
space lower bound N ′ for Balloon-SB is at most N/4 no matter how much we sacrifice runtime.

Our improved analysis shows that Balloon-SB enjoys tighter space-hardness as well as consistent space-
hardness. Theorem 4 shows that Balloon-SB with T = dkN achieves N ′ = γN ., where the relation between γ
and d is shown in Figure 3. Plugging in concrete numbers, Balloon-SB with its suggested in-degree d = 20
already achieves N ′ = 0.4N . To get the previously believed memory-hardness at N ′ = N/8, we only need
d = 8. In addition, Corollary 1 gives a tight bound on consistent memory-hardness. This gives positive
answers to two open questions left in the Balloon hash paper [18]: Balloon hash is space-hard over time and
under batching.

On a less related note, prior work has classified MHFs into data-dependent ones (dMHF) data-independent
ones (iMHF), based on whether the memory access pattern of the MHF depends on its input. Some consider
dMHFs less secure for password hashing for fear of cache timing attacks. Constructions in Table 1 are all
iMHFs and do not have this problem.
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Table 1: Comparison of MHFs with strict space-hardness or exponential penalty.

Scheme DKW [24] KK [29] Catena-DBG [26] Balloon [18] Balloon + our analysis

T N2 2N(log2N)2 2kN log2N 20kN 8kN 20kN dkN

N ′ N N/32 N/20 N/8 N/8 0.4N γN

5 Proofs of Transient Space from Stacked Expanders

5.1 Definition

We use notation (yv, yp)← 〈V(xv),P(xp)〉 to denote an interactive protocol between a verifier V and a prover
P. xv, xp, yv, yp are V’s input, P’s input, V’s output and P’s output, respectively. We will omit (xv) or (xp) if
a party does not take input. We will omit yp if P does not have output. For example, {0, 1} ← 〈V,P〉 means
neither V nor P takes input, and V outputs one bit indicating if it accepts (output 1) or rejects (output 0)
P’s proof. Both P and V can flip coins and have access to the same random oracle H.

Definition 3 (PoTS). Let k, N and N ′ be the same as in Definition 2. A proof of transient space is an
interactive protocol {0, 1} ← 〈V,P〉 that has the following properties:
(succinctness) all messages between P and V have size poly(k, logN),
(efficient verifiability) V uses poly(k, logN) space and time,
(completeness) P uses N space, runs in poly(k,N) time, and 〈V,P〉 = 1,
(space-hardness) there does not exist A that uses less than N ′ space, runs in 2k time, and makes 〈V,A〉 = 1

with non-negligible probability.

The above definition is due to Ateniese et al. [9]. Metrics for a PoTS include message size, prover runtime,
verifier space/runtime, and the gap between N and N ′. The first three measure efficiency and the last one
measures space-hardness.

5.2 Construction

We adopt the Merkle commitment framework in Ateniese et al. [9] and Dziembowski et al. [22] to enable
efficient verification. At a high level, the prover computes a Merkle commitment C that commits the labels of
all vertices in LG(n,k,α,β) using the same random oracle H. The verifier then checks if C is “mostly correct”
by asking the prover to open the labels of some vertices. The opening of label h(v) is the path from the root to
the leaf corresponding to v in the Merkle tree. To compute a commitment C that is “mostly correct”, a prover
cannot do much better than pebbling the graph following the rules, which we have shown to require a lot of
space consistently. We say “a vertex” instead of “the label of a vertex” for short. For example, “commit/open
a vertex” means “commit/open the label of a vertex”.

Computing a Merkle tree can be modeled as a pebble game on a binary tree graph. It is not hard to see
that a complete binary tree with n leaves can be efficiently pebbled with roughly log2 n space (dlog2 ne+ 1
to be precise) in n moves. So P can compute the commitment C using N = n+ log2 n+ k ≈ n space. The
strategy is as follows: pebble V0 using n space, compute Merkle commitment C0 for all vertices in V0 using
additional log2 n space, discard the Merkle tree except the root, and then pebble V1 rewriting V0, compute
C1, discard the rest of the Merkle tree, and continue like this. Lastly, C1 to Ck are committed into a single
Merkle root C.

After receiving C, V randomly selects l0 vertices, and for each vertex v asks P to open v, and all predecessors
of v if v is not a source. Note that P did not store the entire Merkle tree but was constantly rewriting parts
of it because the entire tree has size nk � n. So P has to pebble the graph for a second time to reconstruct
the l0(d+ 1) paths/openings V asked for. This is a factor of 2 overhead in prover’s runtime.

Given the labels of all the predecessors of v (or if v is a source), V can check if h(v) is correctly computed.
If any opening or h(v) is incorrect, V rejects. If no error is found, then C is “mostly correct”. We say a label
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Table 2: Efficiency and space-hardness of PoTS.
prover runtime verifier space/time and message size N ′

ABFG [9] 12kN log2N 6δ−1k2(log2N)2 ( 1
6
− δ)N

This paper 2(d+ 1)kN (d+ 1)δ−1k2 log2N (γ − δ)N

h(vi) is a “fault” under C if it is not correctly computed either as h(i, x) or from vi’s predecessors’ labels
under C. A cheating prover is motivated to create faults using pseudorandom values, because these faulty
labels are essentially free pebbles that are always available but take no space. Dziembowski et al. [22] called
them red pebbles and pointed out that a red pebble is no more useful than a free normal pebble because a
normal pebble can be removed and later placed somewhere else. In other words, any sequence P that starts
with |P0| = s0 initial pebbles and uses m red pebbles and s normal pebbles can be achieved by some sequence
P′ that starts with |P ′0| = s0 +m initial pebbles and uses 0 red pebbles and s+m normal pebbles. We would
like to bound the number of faults, which translate to a bounded loss in provable space-hardness.

If we want to lower bound the number of faults to δn (δ < 1) with overwhelming probability, we can set

l0 = k|V |
δn = δ−1k2. Then, any commitment C with δn faults passes the probabilistic checking with at most

(1 − δn
|V | )

l0 < e−k. Again, k is our security parameter. With at most δn faults, P needs to pebble at least

n− δn sinks (> αn with a proper δ). By Theorem 4 and accounting for faults, a cheating prover needs at
least N ′ = (γ − δ)n ≈ (γ − δ)N space to avoid exponential time.

5.3 Efficiency and Space-Hardness

Table 2 gives the efficiency and space-hardness of our construction, and compares with prior work using
stacked butterfly superconcentrators [9]. Our prover runtime is 2(d+ 1)Nk where 2 is due to pebbling the
graph twice, and d+ 1 is due to the in-degree of our graph plus hashing in Merkle tree. Message size includes
Merkle openings for the l0 = δ−1k2 challenges and their predecessors. The verifier has to check all these
Merkle openings, so its space/time complexity are the same as message size. The efficiency of ABFG [9]
can be calculated similarly using the fact that stacked butterfly superconcentrators have 2kN logN vertices
with in-degree 2. To match their space-hardness, which cannot be improved past N ′ = 1

6N with existing
proof techniques, we only need in-degree d = 9. To match their efficiency, we set d = 6 log2N , which we
approximate as 150. That gives our construction very tight space-hardness at N ′ = (0.85− δ)N . Furthermore,
Corollary 1 gives a tight bound on consistent memory-hardness. Adjusting for faults, an adversary needs
n(k − k1) steps whose space usage is at least (β − 3α− δ)n.

For simplicity, we used a single security parameter k. But in fact, the term k2 in message size and verifier
complexity should be kk′ where k′ is a statistical security parameter. k′ can be set independently from our
graph depth k, which captures computational security. The same applies to the DFKP construction in Table 3.

6 Proof of Persistent Space from Stacked Expanders

6.1 Definition

Definition 4 (PoPS). Let k be a security parameter, N be a the space and advice requirement, N ′0 and
N ′1 be two space lower bound parameters. A proof of persistent space is a pair of interactive protocols
(C, y)← 〈V0,P0〉 and {0, 1} ← 〈V1(C),P1(y)〉 that have the following properties:
(succinctness) all messages between P0 and V0, and between P1 and V1 have size poly(k, logN),
(efficient verifiability) V0 and V1 use poly(k, logN) space and time,
(completeness) P0 and P1 satisfy the following

– P0 uses N space, runs in poly(k,N) time, and outputs y of size N ,
– P1 uses N space, runs in poly(k, logN) time, and 〈V1(C),P1(y′)〉 = 1,

(space-hardness) there do not exist A0 and A1 such that
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– A0 uses poly(k,N) space, runs in poly(k,N) time, and 〈V0,A0〉 = (C, y′) where |y′| < N ′0,
– A1 takes y′ as input, uses N ′1 space, runs in 2k time, and makes 〈V1(C),A1(y′)〉 = 1 with non-negligible

probability.

(C, y) ← 〈V0,P0〉 represents the setup stage. P outputs advice y of size N , which is supposed to be
stored persistently. V (through interaction with P) outputs a verified commitment C. {0, 1} ← 〈V1(C),P1(y)〉
represents one audit. The input of two parties are their respective output from the setup stage, and in the
end V either accepts or rejects. It is implied that an audit V1 has to use random challenges. Otherwise, it is
easy to find A1 that takes as input and also outputs the correct response to a fixed audit.

Efficiency metrics (message size, prover runtime, verifier space/runtime) are defined similarly to PoTS but
now take into account both stages of the protocol.

The space-hardness definition and metric become a little tricky. Since the focus here is persistent space or
advice size, one natural definition is to require that no polynomial adversary A1 with advice size |y′| < N ′0
can convince V with non-negligible probability. Unfortunately, this space-hardness definition is not achievable
given the succinctness requirement, and here is an adversary violating it. In the setup phase, A0 behaves in
the same way as an honest P0 except that it outputs the transcript (all the messages combined) between A0

and V0 as the cheating advice y′. Due to succinctness, the transcript size |y′| = poly(k, logN) is much shorter
than any reasonable N ′0. In an audit, A1 can rerun P0 by simulating V0, using the recorded transcript y′, to
obtain the advice y that P0 would have produced, and then go on to run an honest P1 to pass the audit.

Indeed, the best space-hardness guarantee we can hope to offer is to force a cheating A1 to rerun the setup
stage P0. We would like to be explicit that such a PoPS relies on a prover’s cost of persistent space relative
to computation and transient space, and very importantly the frequency of audits. Definition 4 somewhat
captures this idea. P0 uses N space, and A1 needs N ′1 space. If (N ′0, N

′
1) are close to (N,N), the penalty for

storing less advice is large and a rational prover will choose to dedicate persistent space for y instead.

6.2 Construction

The setup phase is basically the PoTS protocol we presented in Section 5. P computes a Merkle commitment
C, and V makes sure C is “mostly correct” through a probabilistic check. At the end of the setup phase, an
honest P stores the labels of all sinks Vk and the Merkle subtree for Vk as advice. Any vertices in Vi for i < k
are no longer needed. V now can also discard C and use Ck which commits Vk from this point onward. Since
an honest P has to store the Merkle tree, it makes sense to use a different random oracle H1 with smaller
output size for the Merkle commitment. If |H(·)| is reasonably larger than |H1(·)|, then the labels in the
graph dominate, and the advice size is thus roughly n. Using the same random oracle results in an additional
factor of 2 loss in space-hardness.

In the audit phase, V asks P to open l1 randomly selected sinks. The binding property of the Merkle
tree forces P to pebble these sinks, possibly with the help of at most δn faults. But due to the red pebble
argument, we can focus on the case with no faults first and account for faults later.

There is still one last step from Theorem 4 to what we need. Theorem 4 says any subset of αn initially
unpebbled sinks are hard to pebble, but we would hope to challenge P on l1 � αn sinks. Therefore, we need
to show that a significant fraction of sinks are also hard to pebble individually.

Theorem 6. Let γ = β − 2α. Starting from any initial configuration P0 of size |P0| ≤ 1
3γn, less than αn

initially unpebbled sinks of G(n,k,α,β) can be pebbled individually using 2
3γn space in 2k moves.

Proof. Suppose for contradiction that there are at least αn such sinks. Consider a strategy that pebbles these
sinks one by one, never unpebbles P0, and restarts from P0 after pebbling each sink. This strategy pebbles
a subset of αn initially unpebbled sinks, starting with |P0| < 1

3γn < γn, using at most 1
3γn + 2

3γn = γn
pebbles in at most 2kαn moves. This contradicts Theorem 4. ut

At most 1
3γn pebbles may be initially pebbled in P0, so no more than ( 1

3γ + α)n < 1
2n individual sinks

can be pebbled using 2
3γn space in 2k moves by Theorem 6. With more than half of the sinks being hard

to pebble individually, we can set l1 = k. The probability that no hard-to-pebble sink is included in the
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Table 3: Efficiency and space-hardness of PoPS.
prover verifier space/runtime N ′0

runtime and message size N ′1

DFKP [22]
setup 3N 3δ−1k(log2N)2 ( 1

3
× 1

256×25.3
− δ) N

log2 N

audit 0 k log2N ( 2
3
× 1

256×25.3
− δ) N

log2 N

This paper
setup 2(d+ 1)kN (d+ 1)δ−1k2 log2N ( 1

3
γ − δ)N

audit 0 k log2N ( 2
3
γ − δ)N

challenge is at most 2−k. Lastly, accounting for faults, no computationally bounded P using N ′0 = ( 13γ − δ)n
advice and N ′1 = ( 2

3γ − δ)n space can pass an audit. The choice of constants 1
3 and 2

3 are arbitrary. The
theorem holds for any pair of constants that sum to 1.

6.3 Efficiency and Space-Hardness

We compare with prior work [22] based on recursively stacked linear superconcentrators [36] in Table 3.
The efficiency and (consistent) space-hardness of the setup phase are the same as PoTS. In the audit
phase, the prover sends Merkle openings for k sinks to the verifier to check. If the prover stores less than
N ′0 = ( 13γ− δ)N advice, it needs at least N ′1 = ( 23γ− δ)N space to pass an audit. This also sets a lower bound
of N ′1 −N ′0 = ( 1

3γ − δ)N on prover’s time to pass the audit, as it needs to fill its space to N ′1. Consistent
space-hardness is not well defined for audits as an honest prover needs very little time to respond to audits.

The DFKP construction [22] treats the labels of all vertices as advice. This optimizes runtime but leaves
a very large (even asymptotic) gap in space-hardness. It is possible for them to run audits only on the sinks,
essentially generating less advice using the same graph and runtime. This will improve space-hardness up to
N ′0 = N ′1 = ( 1

2 ×
1

256 − δ)N while increasing runtime by a factor of 25.3 logN . There is currently no known
way to remove the remaining gap of 512.

For completeness, we mention that DFKP [22] have a second construction with Θ(N log logN) setup time
and N ′0 = Θ(1). It is not directly comparable to our construction or the first DFKP construction because it
provides a very different space-hardness guarantee. It ensures any A1 using less than N ′0 advice runs for Ω(N)
or Ω(N2) time, but does not impose any space bound N ′1 on A1. This construction is very complicated and
we could not figure out the hidden constants. But the hidden constant in N ′0 = Θ(N) seems to be very loose.

7 Conclusion and Future Work

We derived tight space lower bounds for pebble games on stacked expanders, and showed that a lot of space is
needed not just at some point, but throughout the pebbling sequence. These results gave MHF (Balloon hash)
and PoTS with tight and consistent space-hardness. We also constructed a PoPS from stacked expanders
with much better space-hardness than prior work.

While the space-hardness gap for Balloon hash and our PoTS can be made arbitrarily small, pushing it
towards the limit would lead to very large constants for efficiency. How to further improve space-hardness for
MHF and PoS remains interesting future work. It is also interesting to look for constructions that maintain
consistent space-hardness under massive or even infinite parallelism.

At the moment, PoTS and PoPS are still far less efficient than PoW in terms of proof size and verifier
complexity. A PoW is a single hash, while a PoS consists of hundreds (or more) of Merkle paths. The challenge
remains in constructing practical PoTS/PoPS with tight and consistent space-hardness.
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