No Bot Expects the DeepCAPTCHA!
Introducing Immutable Adversarial Examples with Applications to CAPTCHA

Margarita Osadchy
Department of Computer Science, University of Haifa, Mount Carmel, Haifa 31905, Israel
rita@cs.haifa.ac.il

Julio Hernandez-Castro
School of Computing, University of Kent, Canterbury CT2 7NF, Kent, UK
J.C.Hernandez-Castro@kent.ac.uk

Stuart Gibson
School of Physical Sciences, University of Kent, Canterbury CT2 7NF, Kent, UK
s.j.gibson@kent.ac.uk

Orr Dunkelman
Department of Computer Science, University of Haifa, Mount Carmel, Haifa 31905, Israel
orrd@cs.haifa.ac.il

Daniel Pérez-Cabo
Gradiant, Campus Universitario de Vigo, 36310 Pontevedra, Spain
dpcabo@gradiant.org

Abstract

Recent advances in Deep Learning (DL) allow for solv-
ing complex Al problems that used to be very hard.
While this progress has advanced many fields, it is con-
sidered to be bad news for CAPTCHAs (Completely Au-
tomated Public Turing tests to tell Computers and Hu-
mans Apart), the security of which is based on the hard-
ness of learning problems.

In this paper we introduce DeepCAPTCHA, a new and
secure CAPTCHA scheme based on adversarial exam-
ples, an inherit limitation of the current Deep Learning
networks.! These adversarial examples are constructed
inputs, computed by adding a small and specific per-
turbation called adversarial noise to correctly classified
items, causing the targeted DL network to misclassify
them. We show that plain adversarial noise is insufficient
to achieve secure CAPTCHA schemes, which leads us to
introduce immutable adversarial noise — an adversarial

'We just became aware of a recent paper [28] speculating about
the possibility of using adversarial examples for CAPTCHAs. We have
developed the idea independently throughout 2015, building the theory,
implementing a proof of concept system, and running experiments. Our
work was submitted to USENIX Security in February 2016, before [28]
was made public.

noise resistant to removal attempts.

We implement a proof of concept system and its anal-
ysis shows that the scheme offers high security and good
usability compared to the best existing CAPTCHAs.

1 Introduction

CAPTCHAs are traditionally defined as automatically
constructed problems, very difficult to solve for artificial
intelligence (AI) algorithms, but easy for humans. Due
to progress in Al, an increasing number of CAPTCHA
designs have become ineffective, as the underlying Al
problems became solvable by algorithmic tools. Specif-
ically, recent advances in Deep Learning (DL) reduced
the gap between human and machine ability in solving
problems that have been typically used in CAPTCHAs.
This breakthrough in Al led some researches to believe
that DL would lead to the “end” of CAPTCHAs [4, 14].

Despite having achieved human-competitive accuracy
in complex tasks such as speech processing and image
recognition, DL still has some important shortcomings
with regards to human ability. Our proposal exploits
these shortcomings to reliably distinguish between hu-



mans and bots in a way that is secure, user-friendly, and
scalable.

Our scheme is based on an interesting and unexpected
limitation of Deep Learning, discovered recently in [30],
called adversarial examples. These are constructed in-
puts computed by adding a small and specific pertur-
bation, called adversarial noise, to correctly classified
items. The aim is to cause the network to misclassify
these perturbed examples, with high confidence. Al-
though discovered in the context of Deep Learning, this
phenomenon was observed also in other classifiers and
it was shown to be related to an inherit property of low-
capacity classifiers (which are classifiers with low flex-
ibility, e.g., linear classifiers) to be overconfident when
extrapolating away from the separation boundary [11].
Existing DL networks are piecewise linear, which is the
most likely reason for their vulnerability to adversarial
examples, according to [15]. We note (and later discuss)
that high-capacity models (such as RBF) are more robust
to adversarial examples, but they are unable to cope with
large-scale tasks, for example those involving more than
1000 categories.

We propose to use adversarial examples for
CAPTCHA generation within an object classifica-
tion framework, involving a large number of classes.
Adversarial examples are appealing for CAPTCHA
applications as they are very difficult for DL and easy for
humans (adversarial noise tends to be small). However,
to be useful in CAPTCHA settings, the adversarial noise
should have an additional property that has not been
addressed yet. The noise should be resistant to filtering
or any other attacks that attempt to remove it.

We introduce the notion of immutable adversarial
noise, an adversarial noise that cannot be removed by
a preprocessing algorithm. We analyze existing meth-
ods for adversarial noise generation and demonstrate that
they do not posses this important property. We then de-
velop a new method for creating immutable adversarial
noise. We also analyze various attacks that attempt to
cancel this noise, and show that their success rate is very
low.

In particularly, in the context of CAPTCHASs, one
needs to maintain usability, i.e., the adversarial noise
should be small, to keep the image recognizable by hu-
mans. This makes the problem of designing an im-
mutable adversarial noise even more challenging, as
small magnitude noise (due to this usability requirement)
is harder to protect against removal attacks (security re-
quirement). Note that for other cyber security applica-
tions, not involving human evaluation of the input, im-
mutability could be achieved more easily by increasing
the magnitude of the adversarial noise.

1.1 Our Contribution

This paper proposes DeepCAPTCHA — a new concept
of CAPTCHA generation that employs specifically de-
signed adversarial noise to deceive Deep Learning classi-
fication tools. The noise is kept small to not significantly
affect the recognition ability of humans, but is made re-
sistant to removal attacks.

Previous methods for adversarial noise generation lack
the robustness to filtering or any other attacks that at-
tempt to remove the adversarial noise. We are the first to
address this problem and we solve it by generating an im-
mutable adversarial noise with emphasis on image filter-
ing. We analyze the security of our construction against
a number of complementary attacks and show that it is
highly robust to all of them.

Finally, we introduce the first proof-of-concept imple-
mentation of DeepCAPTCHA. Our results show that the
approach has merit in terms of both security and usabil-

1ty.

2 Related Work

We start our discussion with reviewing the most promi-
nent work in CAPTCHA generation and then we turn to
the Deep Learning area, focusing on methods for creat-
ing adversarial examples.

2.1 A brief introduction to CAPTCHASs

Since their introduction as a method of distinguishing hu-
mans from machines [33], CAPTCHAs (also called in-
verse Turing tests [22]) have been widely used in Internet
security for various tasks. Their chief uses are mitigating
the impact of Distributed Denial of Service (DDoS) at-
tacks, slowing down automatic registration of free email
addresses or spam posting to forums, and also as a de-
fense against automatic scraping of web contents [33].

Despite their utility, current CAPTCHA schemes are
often loathed by humans as they present an additional
obstacle to accessing internet services and many schemes
suffer from very poor usability [5, 37].

2.1.1 Text Based Schemes

The first generation of CAPTCHAS used deformations of
written text. This approach has now became less popu-
lar due to its susceptibility to segmentation attacks [36].
In response, some developers increased distortion levels,
using methods such as character overlapping, which in-
creases security [7]. Unfortunately, such measures have
also resulted in schemes that are frequently unreadable
by humans. We note that some text-based implementa-
tions are susceptible to general purpose tools [4].



2.1.2 Image Based Schemes

Motivated by the vulnerability of text based schemes, im-
age based CAPTCHAs have been developed, following
the belief that these were more resilient to automated at-
tacks [9, 10, 13, 39]. For example, early text based ver-
sions of the reCAPTCHA [34] system were superseded
by a combined text and image based approach. However,
the new scheme was also subsequently attacked in [14].
The most recent version of the system is NoOCAPTCHA,
shown with its predecessors in Figure 1.

An alternative approach is CORTCHA (Context-based
Object Recognition to Tell Computers and Humans
Apart) that claims resilience to machine learning at-
tacks [39]. This system uses the contextual relation-
ships between objects in an image, in which users are
required to re-position objects to form meaningful group-
ings. This task requires a higher level reasoning in addi-
tion to simple object recognition.

2.1.3 Alternative Schemes

Considerable effort is currently being invested in novel
ways of implementing secure and usable CAPTCHAs.
Two of the most popular research themes are video-based
CAPTCHAs such as NuCAPTCHA [24], and game-
based CAPTCHAs [21]. The former have generally
shown inadequate security levels so far [3, 35]. The lat-
ter designs are in general inspired by the Are YouHuman
CAPTCHA [1]. One of the most interesting proposals
in this group is [21], an example of a DGC (Dynamic
Cognitive Game) CAPTCHA that has the additional ad-
vantage of offering some resistance to relay attacks, and
a high usability. Unfortunately, in its current form, it is
vulnerable to automated dictionary attacks. One can also
argue that recent developments in game playing by com-
puters, that match or improve human abilities by using
deep reinforcement learning [20], question the prospects
of future game based proposals. Finally, a number of
puzzle-based CAPTCHAs that seemingly offered some
promise have recently been subjected to devastating at-
tacks [16].

2.1.4 Deep Learning Attacks

The general consensus within the cyber security com-
munity is that CAPTCHAs that simultaneously combine
good usability and security are becoming increasingly
hard to design, due to potential threats from bots armed
with Deep Learning [4, 14] capabilities. This has led to
the popularity of Google’s NoOCAPTCHA re-CAPTCHA
despite its violation of a number of important CAPTCHA
and general security principles.’

2For example, the P in CAPTCHA stands for Public, and No-
CAPTCHA inner functioning is not public, based on the time-

2.2 Deep Learning and Adversarial Exam-
ples

Deep Learning networks are designed to learn multi-
ple levels of representation and abstraction for different
types of data such as images, video, text, and speech.
Convolutional Neural Networks (CNNs) are DL algo-
rithms that have been successfully applied to image clas-
sification tasks since 1989 [18].

The development of AlexNet [17] introduced a num-
ber of improvements to the classical architecture of
CNN’s (notably “dropout” and the ReLu activation func-
tion [8]) that have been used to train the CNN on GPU’s.
This seminal work triggered the return of CNNs to the
forefront of machine learning research, and their exten-
sive use in current leading work within the field. Many
modifications of the basic concept have been proposed
in recent years, allowing classification improvements for
increasingly larger sets (e.g., [6, 12, 27, 29, 31, 38])

Hereafter, we will use the terms CNN (convolutional
neural network) and DL (deep learning) network inter-
changeably.

2.2.1 Adversarial Examples — Foundations

Adversarial examples were introduced in [30] as inputs,
constructed by adding a small tailored noise component
to correctly classified items that cause the DL network to
misclassify them, with high confidence. The existence of
such unexpected phenomenon was explained in [30] by
shortcomings in the generalization abilities of DL algo-
rithms.

A more theoretical explanation of this instability phe-
nomenon was suggested in [11]. Namely, they showed
a fundamental limit on the robustness of low-capacity
classifiers (e.g., linear, quadratic) to adversarial perturba-
tions. They suggested expressing this limitation in terms
of a distinguishability measure between classes, which
depends on the chosen family of classifiers. Specifically,
for linear classifiers the distinguishability is defined as
the distance between the means of the two classes. For
quadratic classifiers, it is defined as the distance between
the second order moments of the classes [11]. Other clas-
sification models or multi-class settings have not been
addressed yet, but it was noted that higher capacity mod-
els with highly non-linear decision boundaries are signif-
icantly more robust to adversarial inputs.

Neural Networks can learn different capacity models,
ranging from linear to highly non-linear. DL architec-
tures are considered to have very large capacity, allow-
ing highly non-linear functions to be learned. However,
training such DL networks is hard and doing it efficiently

dishonored concept of “security by obscurity” by employing heavily
obfuscated Javascript code.
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Figure 1: Example of reCAPTCHA evolution through time, from the initial designs (a) to increasingly more complex
and robust ones (b), including some incorporating images (c), and ending with the current (d) NoCAPTCHA version.

remains an open problem. The only architectures (and
activation functions) that are currently practical to train
over complex problems have a piecewise linear nature
which is the most likely reason for their vulnerability to
adversarial examples [15].

It is important to note that the recently derived upper
bound on the robustness to adversarial perturbations [11]
is valid for all classifiers of the class (e.g., all linear clas-
sifiers), independently of the training procedure. A sim-
ilar conclusion was derived empirically in [15], for dif-
ferent variants of DL networks and verified also in our
experiments (see Section 5).

Previous work [11, 15] outlined a number of solutions
for adversarial instability. One of them was to switch
to highly non-linear models, for instance, RBF Neural
Networks or RBF Support Vector Machines. These are
shown to be significantly more robust to adversarial sam-
ples but are extremely hard to train and slow to run and
are currently considered impractical for large-scale prob-
lems. Another proposition was to train DL networks
on adversarial examples. This made the network robust
against the examples in the training set and improved the
overall generalization abilities of the network [11, 15].
However, it did not resolve the problem as other adver-
sarial samples could be efficiently found for the new net-
work, especially in large-scale problems.

2.2.2 Adversarial Examples — Constructions

On the practical side, different types and techniques for
constructing adversarial inputs have been proposed in re-
cent works [15, 23, 25, 30]. The approach in [23] causes
a neural network to classify an input as a legitimate ob-
ject with high confidence, even though it is perceived as
random noise or a simple geometric pattern by a human.
The method in [25] focuses on making the adversarial
noise affect only a small portion of the image. Such noise
has little effect on the recognition by humans, but is ad-
versarial to a DL network. Unfortunately, both of these

methods are not suitable for CAPTCHA design. The for-
mer will obviously suffer from poor usability, while the
latter will offer very poor security. Localized noise, par-
ticularly in images of white digits on a black background
(as exemplified in [25]) can be easily removed by a num-
ber of simple image processing algorithms, notably spa-
tial filters.

The techniques proposed in [15, 30] compute an
image-dependent and small-magnitude noise component
such that, when added to the original image, results in a
perturbation that is not perceptible to the human eye but
causes the DL network to completely misclassify the im-
age with high confidence. Consequently, these methods
have a great potential to be useful in CAPTCHA genera-
tion.

2.2.3 Adversarial Examples — Immutability

The question of robustness of adversarial noise to the at-
tacks that remove the adversarial effect has not been ad-
dressed yet. The main reason for this, is that the phe-
nomenon was discovered in machine learning commu-
nity with the goal of demonstrating that DL tools do not
fully understand the classification task at hand, but rather
follow an instruction based approach [15].

In order to use adversarial noise in CAPTCHAs or
other security applications, it should be immutable to re-
moval attacks which can employ alternative tools and,
in particular, image processing methods. We show here
that none of the existing methods for adversarial example
construction are sufficiently robust to such attacks. Even
though the approach in [25] proposed a construction of
adversarial examples in a computer security context, it
also lacks this necessary property.

2.2.4 Adversarial Examples in CAPTCHA

The current state of technology does not offer a solution
for a large scale (+1000 categories) multi-class recog-



nition problem that is robust to adversarial examples.
There is also some evidence supporting the additional de-
sirable property (for our purposes) that adversarial exam-
ples generalize well, and are consistently difficult to clas-
sify across different network architectures and even for
dissimilar initialization values and sizes [30]. Moreover,
for some types of classifiers, the adversarial instability is
an inherit limitation. These limitations, combined with
the fact that adversarial noise could be made almost im-
perceptible to the human eye, render the idea of using ad-
versarial examples as the basis for new CAPTCHA chal-
lenges very appealing.

3 Immutable Adversarial Noise Genera-
tion

Adversarial noise is designed to deceive DL networks.
However, one can preprocess the network inputs in a at-
tempt to remove the adversarial perturbation. Hence, in
a computer security setting, adversarial noise must with-
stand any preprocessing that cancels the adversarial ef-
fect. We show in the following that previous methods for
generating adversarial examples do not provide a suffi-
cient security in this respect.

We introduce the concept of Immutable Adversarial
Noise (IAN), as an adversarial perturbation that with-
stands cancellation attempts. Since the nature of the can-
cellation attempts depends on the security target, we in-
stantiate the concept of IAN for CAPTCHAs. In par-
ticular, we explicitly define the requirements for creating
IAN for CAPTCHA generation, then we analyze the pre-
vious algorithms for adversarial examples and show that
they do not meet these requirements. Finally, we present
our new algorithm for generation of IANs that satisfy the
new requirements.

3.1 Requirements for IAN in CAPTCHA

An algorithm for an immutable adversarial noise con-
struction for CAPTCHA needs to meet the following re-
quirements:

1. Adversarial: The added noise should be successful
in deceiving the targeted system in 100% of cases.?

2. Robust: The added noise should be very difficult to
remove by any computationally efficient means; for
example by filtering or by ML approaches.

3. Perceptually Small: The added noise should be
small enough to not interfere with a successful
recognition of the image contents by humans.

3The 100% requirement could be slightly relaxed in large systems.

4. Efficient: The algorithm should be computationally
efficient, to allow for the generation of possibly mil-
lions of challenges per second, with adequate but
moderate hardware resources.

A basic requirement for CAPTCHAs is that challenges
do not repeat and are not predictable (i.e., guessing one
out of m possible answers should succeed with probabil-
ity 1/m). Hence, the source of , used for generating ad-
versarial examples, should be bottomless and uniform.
An algorithm that can create an adversarial example out
of an arbitrary image, together with such a bottomless
and uniform source can generate a bottomless and uni-
form set of challenges.

3.2 Test Bed Details

In all our experiments throughout the paper, we based
the creation of adversarial examples on the CNN-F deep
network from [6], implemented in MatConvNet [32].
We used the ILSVRC-2012 database [26], containing
1000 categories of natural images. The DL network was
trained on the training set of the ILSVRC-2012 database,
and the adversarial examples were created using its vali-
dation set.

Using non-overlapping sets for CNN training and ad-
versarial example generation is dictated by security rea-
sons. The training set of a network is assumed to be
known by the attacker or can otherwise be deduced from
the network parameters (such methods are not within the
scope of this paper) and used to learn the adversarial
noise for the training images and each other class. If this
was the case, the attacker would have the mapping from
adversarial images to the true label.

All experiments were conducted on a Linux 3.13.0
Ubuntu machine with an Intel(R) QuadCore(TM) i3-
4160 CPU @ 3.60GHz, 32GB RAM, with two GTX 970
GPU cards, using MATLAB 8.3.0.532 (R2014a).

3.3 Previous Methodologies for Generating
Adversarial Examples

We briefly introduce in the following the previously
known methods for adversarial noise generation, and dis-
cuss why they do not meet the above requirements.

Our idea is to use images that are easily recognized
by humans but are adversarial to DL algorithms. Con-
sequently, methods that cause a DL network to classify
images of noise or geometric patterns as objects [23] are
not adequate for our goal. We also rule out the method
from [25] due to its obvious lack of robustness to simple
local image filtering.



The Optimization Method Szegedy et al. [30] intro-
duced the concept of adversarial examples in the context
of DL networks and proposed a straightforward way of
computing them using the following optimization prob-
lem:
argmin||A/||? s.t. Net(I+A;) = C, ()
Ar

where [ is the original input from class C;, A; is the adver-
sarial noise, Net is the DL classification algorithm, and
C, is the deceiving class, such that C; # C;. Once the
adversarial noise is found, the corresponding adversarial
image is constructed as adv(I,Cy,p) = I+ A;, where p
is the target confidence level of the Net in misclassifying
adv(l,Cy, p) as coming from C;.

We implemented and tested this optimization method
as shown in Eq. (1), over a set of 1000 images. Fast com-
putation of adversarial examples is an essential require-
ment for any viable CAPTCHA deployment, since it will
need to generate millions of challenges per second. The
optimization method described here is too slow, hence
for practical purposes we limited the number of iterations
to a fixed threshold (it stops when this limit is reached).
This, however, resulted in a failure to produce the de-
sired class or confidence level (of 80%) in some cases.
The time statistics of the experiment and the success rate
are shown in Table 1.

Based on these results, we can conclude that the op-
timization algorithm is not suitable for our needs: it is
computationally expensive and it does not converge in
some cases. The inefficiency of this generation method
has been reported before, and is explicitly mentioned
in [15, 30].

The computation of adversarial examples needs to be
fast and immutable. In this context, immutable refers to
the difficulty of inverting the noise addition to the origi-
nal image. We tested the immutability of the adversarial
examples created by the optimization method to a simple
filtering attack. We tried various filters (and parameters),
and found that the median filter of size 5x5 was the most
successful in reverting the noise. After applying it to
1000 adversarial images created by the optimization al-
gorithm, it was possible to correctly classify 16.2% of the
examples, as reported in Table 1. Thus, the immutability
of this method to a removal attack is low and it fails by
quite some margin to provide the required security level.*

The Fast Gradient Sign Method A much faster
method for generating adversarial examples was pro-
posed in [15]. The approach is called the fast gradient

“Different authors claim different security levels as the minimal
standard for new CAPTCHA designs. In the literature we can find
figures ranging from 0.6% to around 5%. Our security objective in this
work is to propose a scheme that can only be successfully passed by
bots 1% of the time, or less.

sign method and it computes the adversarial noise as fol-
lows:

Ar=¢€- Sign(VIJ(W,I,Cd))

where ViJ(W,1,C,) is the gradient of the cost function J
(used to train the network) with respect to the input I, W
are the trained network parameters, and € is a constant
which controls the amount of noise inserted.

The fast gradient sign method computes the gradient
of the target class with respect to the input image, and
adds its sign multiplied by some constant to the original
image. The bigger this constant is, the larger the adver-
sarial effect and the degradation of the image are. In our
implementation, we observed that the best approach to
get an adversarial image with high confidence rates while
keeping the noise minimal is by running a noise genera-
tion step with a small €, in several iterations. The price
of this approach is a small increase in the running time.

We tested the fast gradient sign method, and verified
that all images reached the desired label with the desired
confidence level (p > 0.8). The fast gradient method was
significantly faster than the optimization one (and an it-
erative implementation increased its adversarial abilities
from 98% to 100%) as shown in Table 1. Unfortunately,
the median filter (of size 5x5) was able to remove the ad-
versarial noise in 15% of the adversarial examples, hence
the method is not secure enough.

3.4 IAN: Our New Approach to Adversar-
ial Noise

In order to introduce a minimal perturbation to the orig-
inal image, the fast gradient sign method [15] keeps the
noise magnitude € very small, thus compromising its
robustness to removal attacks using filters. To resolve
this problem, we suggest repeatedly applying the gradi-
ent sign method by gradually increasing the noise mag-
nitude, until it cannot be removed by filtering. Hence,
we aim to achieve an optimal trade-off between usability
and security.

Our construction for the generation of immutable ad-
versarial noise starts with an adversarial image, produced
by the fast gradient sign method with a small noise con-
stant €. It then filters the adversarial image and tries to
recognize it. If it succeeds then we increase the noise
and iterate until the noise cannot be removed (the filtered
image is recognized by the target network as the class of
our choice). We detail the construction in the pseudocode
shown in Algorithm 1.

A median filter of size 5x5 was used in our construc-
tion, as it experimentally showed the highest success in
removing the adversarial noise generated by the fast gra-
dient sign method when compared with other standard
filters such as the average, Gaussian lowpass and Lapla-



Method Average Time Std Time Adversarial Success Immutability Level
Optimization [30] 120.94s 98.19s 85.2% 16.2%
Our iterative implementation
of Fast Gradient Sign [15] 0.81s 0.30s 100% 15%
Our method for IAN generation 1.01s 0.80s 100% 0%

Table 1: Comparison between adversarial noise generation methods. Reported times show the efficiency of the gen-
eration algorithm; Adversarial Success indicates the percentage of examples that succeeded to deceive the target DL
network to classify the adversarial example with the chosen target category (chosen at random); Immutability level
indicates the percentage of adversarial inputs (out of 1000) that were reverted to their original category by the means

of median filter of size 5x5.

Algorithm 1 IAN_Generation

Require: Ner a trained DL network; I a source image; C; is the true class of I; C; a deceiving class; p a confidence

level of the network; My a Median filter.
Begin:
adv(l,Cy,p) < I;
A<+ 0;
while Net(My(adv(I,Cy,p))) =C; do

while Nez(adv(1,Cy4, p)) # C, or confidence < p do

{adv(I,Cy, p) the adversarial example}

A <+ run gradient sign method with noise magnitude €;

adv(l,Cy,p) < adv(I,Cy,p) +A;
end while
e=¢€+6;
end while
Output: A

{Increase the noise constant; }

cian, and was faster than more complex filters such as
non-local means [2] and wavelet denoising [19].

We tested the proposed method on the same set of
1000 images. The evaluation results, shown in Table 1,
prove that our method for IAN generation satisfies all the
requirements, as defined in Section 3.1. It is important
to note that the additional checks to ensure robustness
against the median filter My do not slow down the gener-
ation process significantly.

Figure 2c shows an example of an adversarial image,
created by adding the TAN (Figure 2b), produced by our
novel algorithm, to the original image (Figure 2a). Fig-
ure 2d depicts the result of applying the median filter to
the adversarial image. The resulting image is not recog-
nized correctly by a DL network. Moreover, the filtering
moved the classification to a category, which is further
away (in terms of the distance between the class positions
in the score vector) from the true one. The distance be-
tween the true and deceived classes is 214, and between
the true class and the class of the image after filtering (a
removal attack) is 259. At the same time, while being
more noticeable than in the previous algorithms, the rel-
atively small amount of added noise still allows a human

to easily recognize the image contents.

4 DeepCAPTCHA

We now propose a novel CAPTCHA scheme that we call
DeepCAPTCHA, which is based on a large-scale recog-
nition task, involving at least 1000 different categories.
The scheme utilizes a DL network, trained to recognize
these categories with high accuracy. DeepCAPTCHA
presents an adversarial example as a recognition chal-
lenge. The adversarial example is obtained by creating
and adding an IAN to its source image. The deceiv-
ing class in IAN must differ from the true class of the
source image (both classes are from the categories, in-
volved in the recognition task). The source image is cho-
sen at random from a very large (bottomless) source of
images with uniform distribution over classes and dis-
carded once the adversarial image is created.

Contrarily to previous CAPTCHAS that use letters or
digits, we use objects in order to make the classification
task larger and to provide enough variability in the image
to make it robust to attacks that aim to remove the ad-
versarial noise. Using object recognition as a challenge
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Figure 2: An example of the IAN generation algorithm. Image (a) is the original image, correctly classified as a
Shetland sheepdog with a high confidence of 0.6731 (b) is the computed immutable adversarial noise, (c) is the
adversarial image (the sum of the image in (a) and the IAN in (b)), classified as a tandem or bicycle-built-for-two with
a0.9771 confidence and (d) the result of applying My, classified as a chainlink fence with confidence 0.1452.

poses two usability issues: 1) object names are some-
times ambiguous, 2) typing in the challenge solution re-
quires adapting the system to user’s language. We pro-
pose to solve these issues by providing a set of pictorial
answers, i.e., a set of images, each representing a dif-
ferent class. Obviously, the answers contain the correct
class, as well as random classes (excluding the deceiving
class).

The task for the user is to choose (click on) the im-
age from the supplied set of answers that belongs to the
same class as the object in the test image — the adversar-
ial example. Since we keep the adversarial noise small, a
human could easily recognize the object in the adversar-
ial example and choose the correct class as the answer.
The only possible Al tool that can solve such a large-
scale image recognition problem is a DL network. The
adversarial noise used to create the adversarial example
is designed to deceive the DL tools into recognizing the
adversarial image as a different category. Hence, the pro-
posed challenge is easy for humans and very difficult for
automatic tools.

4.1 The Proposed Model

In this section we provide a formal description of our
proposed design. Let Net be a DL network trained
to classify n (n > 1000) classes with high (human-
competitive) classification accuracy. Let C = {Cy,...,C, }
be a set of labels for these n classes. Let I be an image
of class C; € C. Let C; = C\{C;},® and let C, be a de-
ceiving label which is chosen at random from C;. The
DeepCAPTCHA challenge comprises the following ele-
ments:

e An adversarial image adv(Il,C4,p), constructed
from I by the addition of an immutable adversarial
noise component (constructed by Algorithm 1) that
changes the classification by the DL Net to class Cy

5We note that in some cases, depending on the variability of the data
set, it is suggested to remove classes similar to C; from C;'.

with confidence at least p.5

e m — 1 answers, which can be fixed images corre-
sponding to m — 1 labels chosen at random and with-
out repetition from C;\{Cy};

o A fixed image with label C;, different from .

The m — 1 suggestions and the true answer are shown in
a random order. The challenge for the user is to choose
the image from the answers that belongs to C;. The orig-
inal image I could be randomly picked from any num-
ber of databases and/or online social networks and other
sources, and it is discarded after creating the adversarial
example.

The pseudocode for the DeepCAPTCHA challenge
generation is shown in Algorithm 2 and an example, gen-
erated by our proof-of-concept implementation (detailed
in Section 6), is depicted in Figure 3.

S Security Analysis

In the following we analyze several completely different
but complementary approaches that potential attackers
could use against the DeepCAPTCHA system. We start
the analysis by discussing a straightforward guessing at-
tack, we then continue to evaluate attacks that use image
processing techniques, aiming to revert the adversarial
image to its original class by applying image processing
filters. Finally, we turn to more sophisticated attacks that
employ machine learning tools. We set the security re-
quirement for the success of an attack to 1%.

5.1 Random Guessing Attack

Using m answers per challenge provides a theoretical

bound of ()" for the probability that a bot will suc-

7 _ —logp
n= logm

cessfully pass n challenges.” Therefore, are

®In our experiments we have used p = 0.8.
7 Assuming independence between tests.



Figure 3: An example of a DeepCAPTCHA challenge. The large image above is the computed adversarial example,

and the smaller ones are the set of possible answers.

Algorithm 2 Compute a DeepCAPTCHA challenge

Require: [C},Cy,...,C,] a set of n classes; {I j}?:l fixed representative images of the n classes (used as answers);
i+ [1,2,...,n] the index of a random class C;, and I € C; a random element; m the number of possible answers;
p the desired misclassification confidence; Net a trained DL network; My a Median filter.

Begin:
Randomly pick a destination class Cy,d # i;

Set A = IAN_Generation(Net, I, C;, Cq, p, My);
adv(l,Cq,p) =1+A;

{The immutable adversarial example}

Randomly select m — 1 different indexes ji,..., ju—1 from [1,...,n]\{i,d};
Choose the representative images [/;,,...,/;, ] of the corresponding classes;
Output: The CAPTCHA challenge is formed by the adversarial image adv(I,Cy, p), and a random permutation of

the set of m possible answers {1,1;,,...,I;, }.

required for achieving a False Acceptance Rate (FAR)?
of p. As we show later (in Section 6.1), m = 12 offers
sufficient usability (low False Rejection Rate (FRR) and
fast solution), hence for our target FAR of at most 1%, n
should be greater than 1.85, e.g., n = 2 (resulting in an
FAR of 0.7%).

One can alternatively combine challenges with differ-
ent numbers of answers in consecutive rounds or increase
n. These allow a better tailoring of the FAR or the FRR
(both can be computed following the figures of Table 3).
The latter approach offers a finer balance between secu-
rity and usability.

5.2 Filtering Attacks

We examined the robustness of our IAN generating al-
gorithm to a set of image filters particularly aimed to re-
move the noise addition. Any of these attacks will suc-
ceed if they are able to remove sufficient noise to cor-

8In our context, FAR stands for the probability that a bot succeeds
to pass the DeepCAPTCHA whereas FRR stands for the probability
that a human fails to pass the DeepCAPTCHA.

rectly classify an adversarial example into the class of its
original image.

Consequently, we tested seven filters with a wide
range of parameters on a set of 1000 adversarial exam-
ples, created with the generation algorithm presented in
Algorithm 1. This set of filters included the median filter,
averaging filter, circular averaging filter, Gaussian low-
pass filter, a filter approximating the shape of the two-
dimensional Laplacian operator, non-local means [2],
and wavelet denoising [19]. Table 2 shows the success
rates of the different filters (along with the optimal pa-
rameter choice for the filter). The success rates of all
filters are significantly below the security requirement of
1%.

5.3 Machine Learning Based Attacks

Two variants of machine learning attacks were applied
to DeepCAPTCHA. Before this analysis, we define the
attacker model:



Median | Averaging | Circular Gaussian | Laplacian Non-local Means Wavelet
Averaging | Lowpass (1/2 Patch size = 3, Denoising
(Size 5x5) | (Size 5x5) | (Radius 5) | (Size 5x5, | (Size 3x3, | 1/2 Window size = 2, (o0 =3,
std =0.5) a=02) Weighting = 0.1) Num. levels = 3)
0% 0% 0.1% 0.1% 0.2% 0.2%

0.3% ‘

Table 2: Filters employed in the filter attack, and their respective success rates (out of 1000 trials). Note that the
median filter was used in the generation process, thus the challenge is robust to the median filter by construction.

5.3.1 The Attacker Model

Knowledge of the algorithm and its internal parameters:

The attacker has a full knowledge of the CNN (its
architecture and parameters or knowledge of the
training set that allows training of a similar CNN),
used in the adversarial noise generation algorithm
and of the generation algorithm itself, including its
internal parameters.

Access to DeepCAPTCHA challenges: The attacker
has access to all generated adversarial examples
(but not to their source) as well as to the images
which serve as the representatives of the classes
(one or more per class).

No Access to the Source Images: The source images
(used to generate the adversarial examples) are cho-
sen at random from crawling a number of high vol-
ume online social media and similar sites, thus the
size of the source image pool can be considered in-
finite for all practical purposes. Once the adversar-
ial image is created, the corresponding original im-
age is discarded instantly and never reused. Even
though the attacker has theoretically equal access to
all images that could be employed by the genera-
tor, he has no knowledge about the particular image
used for generating the presented adversarial exam-
ple.

Access to other machine learning tools: The attacker
has the ability to use any other classifier in an at-
tempt to classify the adversarial examples or to train
the same or other DL networks on them. This is
done with the aim of finding alternative networks
with similar accuracy over the baseline classifica-
tion problem, but having more robustness against
adversarial examples.

Despite the above assumptions, that are very strong
and extremely conservative, we are still able to develop
a secure and usable DeepCAPTCHA.
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5.3.2 Alternative Classifier Attack

The most straightforward attack on DeepCAPTCHA is
probably the one that tries to use other classifiers, in an
attempt to correctly recognize the adversarial example.

A machine learning algorithm, to be used successfully
in such an attack, should be 1) robust to adversarial ex-
amples in general or at least to those used in the Deep-
CAPTCHA; 2) scalable to a large number of categories
(+1000).

Highly non-linear models such as RBF SVM or RBF
networks are known to be more robust to this adversarial
phenomenon [11, 15], but these classifiers are not scal-
able to cover +1000 categories. Thus they do not present
a practical method for breaking DeepCAPTCHA or fu-
ture similar schemes.

Since the adversarial generation algorithm uses a spe-
cific network, one can consider a potential attack using
another DL network with a different architecture and/or
parameterization. However, it was previously shown that
adversarial examples generalize well to different archi-
tectures and initializations [15, 30].

To verify the robustness of our construction against at-
tacks that use alternative DL algorithms, we tested sev-
eral publicly available DL networks on DeepCAPTCHA.
Specifically, we used the CNN-F network from [6] to
generate the CAPTCHA and we tested the ability to rec-
ognize the adversarial examples using three other deep
learning networks. Two of these networks have a dif-
ferent architecture: CNN-M is similar to Zeiler and Fer-
gus [38] and CNN-S is similar to OverFeat [27]. The
third network — AlexNet from [17], has an architecture
similar to CNN-F, with the difference that CNN-F has
a reduced number of convolutional layers and a denser
connectivity between convolutional layers. The CNN-M
and CNN-S networks were only able to recognize cor-
rectly one out of the 1000 images in our test set, while
AlexNet failed to classify any adversarial examples cor-
rectly. Consequently, none of these tools reached the 1%
threshold.



5.3.3 Noise Approximation Attack

Given that the challenges were generated by adding ad-
versarial noise, the attacker may hope to approximate
this noise (to remove it) using DL. We show next that for
suitably chosen image sources, this attack is successful
less than 1% of the time. Recall that the images belong
to known classes. Therefore, the attacker can try and ex-
plore the similarity between images of the same class in
order to approximate the noise that changes the classifi-
cation from the true category (C;) to the deceiving one
(Cg). Averaging or devising a “class” noise for all in-
stances of the class does not seem practical, as the noise
is subtle and averaging it over all images will most likely
destroy it. A better idea is to collect representative sam-
ples of a category and learn a noise per each sample in
that class and for each other category in the system.

For the attack to be effective, the adversarial noise that
takes an element from C; and “transforms” it into an ele-
ment in Cy, should be relatively independent. This holds
for classes with small intra-class variation, for example a
category comprising images of the letter ‘A’ printed with
a similar font.

For the attack to be effective, the variation between the
instances of the same class should be small, for exam-
ple a category comprising images of the letter ‘A’ printed
with a similar font. In other words, the adversarial noise
that takes an element from C; and “transforms” it into an
element in C,, should be relatively independent of the
actual element.

Fortunately, this property rarely holds for general ob-
jects categories like the ones we are using. In fact, this
is what causes the baseline classification to be difficult
in the first place, requiring a sophisticated feature extrac-
tion process (such as CNN) to overcome the very high
intra-class variation.

Along these lines, we implemented and tested an at-
tack we have named the noise approximation attack.
Consider a working example with the following settings:
a thousand image categories, where each category is rep-
resented by 1200 images® and the CAPTCHA is set to
12 answers.

If the images used for answers are static, then their la-
bels could be pre-computed by running the network over
all classes only once. Then, for each challenge, the labels
of the answers could be retrieved very efficiently.

In the pre-computation step, the attacker can compute
the adversarial noises that transform every image in the
dataset into every other category. This implies a total of
1,200% 999 = 1,198,800 adversarial noises (i.e., a rep-
resentative image I’ € C; and a target category d compute
all its A;{J. =1I'—adv(1,C,, p) values).

9To make the CAPTCHA more secure, we chose classes with large
variability between the categories.
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In the online phase of the attack, the attacker is pre-
sented with the challenge, including the adversarial ex-
ample'® adv(I,Cy, p) and a random permutation of 12
possible answers {/;,/},,...,1;,} (where i is the label
of the correct class, and d is the decoy label of the ad-
versarial example). Then, the attacker runs the network
over adv(I,Cy, p) and retrieves the decoy label d. As the
attacker knows that the noise caused the image I to be
classified in C; (rather than one of the 12 classes rep-
resented by the set of answers), he tries to remove the
adversarial noise that transforms I’ € C; into C; from
adv(I,C4,p). Specifically, for each class j of the 12
answers, and for each representative image I’ € Cj, the
attacker computes the estimation of the original image
as: I* = adv(I,Cy,p) — A;, ;» and then runs the network
on the estimate I*, which results in 1200 % 12 = 14400
attempts per challenge (as the representative sets are of
size 1200 images, and there are 12 candidate sets). This
is a large number, but if the images in the same category
are very similar (e.g., same digit), then even the first at-
tempt could be successful. To prevent such security is-
sues one should exclusively use natural images of real
objects with moderate to high intra-class variation as a
source for CAPTCHA generation.

We ran an instance of the noise approximation attack,
where the true category was lion (that exhibits moderate
intra-class variation) and the target category was rooster.
A total of 3 out of 1200 challenges were broken using
this approach. This implies that the noise approximation
attack is interesting and relevant, and despite its low suc-
cess rate of 0.25%, needs to be taken into account and
considered in future implementations to ensure it stays
below the 1% threshold.

6 PoC:
System

DeepCAPTCHA-ILSVRC-2012

We implemented a proof-of-concept system using CNN-
F deep network from [6], trained on ILSVRC-2012
database [26]. This set contains 1000 categories of natu-
ral images from ImageNet. The DL network was trained
on the training set of the ILSVRC-2012 database, and we
used the validation set that contains 50,000 images as a
pool for source images. For each challenge we picked an
image at random and produced an adversarial example
for it using the IAN generation method, detailed in Al-
gorithm 1. We selected one representative image per cat-
egory from the training set (to guarantee that the answers
do not contain the image, used to generate adversarial
examples) for the answers.

10We remind the reader that I is not available to the adversary as per
our assumptions.



The PoC system was implemented as a web applica-
tion in order to conduct a usability test. In our implemen-
tation we varied the number of answers to test the best
trade-off between usability and security (more choices
increase the security, but are harder for users and the so-
lution takes more time). The number of challenges per
session was set to 10, in order to run the usability statis-
tics (note that our security analysis suggests that 2—3 an-
swers are enough to reach the desired security level). An
example of a challenge from the PoC system is shown in
Figure 3.

6.1 Usability Analysis of the PoC System

We tested a proof-of-concept implementation of our
DeepCAPTCHA using 472 participants contacted using
the Microworkers.com online micro crowd sourcing ser-
vice. Each participant was requested to provide anony-
mous statistical data about their age, gender and familiar-
ity with computers before starting the test. Participants
were next presented with 10 DeepCAPTCHA challenges
of varying difficulties and gave feedback on usability
once they had completed the challenges. This provided
us with 4720 answered tests, of which we removed 182
(approx. a 3,85%) to avoid outliers. In particular, we
removed tests or sessions if they fall into any of these
three categories'!': 1. Sessions with average time per test
higher than 40 seconds, 2. Tests with answer times above
45 seconds, and 3. Sessions with a success rate of 10%
or lower.

We tried to get some insights into the best trade-off
between usability and security by testing different num-
bers of answers, in the range 8 +4k,k € {0,...,3}, so
users were randomly assigned variants of the tests with
different number of answers for studying the impact
of this change. The most relevant usability results are
shown in Table 3. The participants reported high sat-
isfaction with DeepCAPTCHA usability (see Figure 4).
The data shown in Figure 4 is an average across all
variants, from 8 to 20 answers. As expected, the per-
ceived user-friendliness and difficulty (see Figure 5) of
the CAPTCHA deteriorated steadily from the versions
with 8 answers to those with 20.

It is interesting to note that participants who declared
their gender as female performed significantly better than
the males, across all variants, the gap becoming wider
with the increasing difficulty of the CAPTCHA task, as
seen in Figure 6. Consistent with this finding is the addi-
tional fact that females not only achieved better accuracy
but also did it using less time on average than males.

"We assume that high solving times are due to users that were inter-
rupted during the tests, and the low success rates are due to users that
did not follow the instructions, or chose their answers at random.
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Figure 4: Self reported user friendliness of Deep-
CAPTCHA. Answers in the range 1-10, 10 being best.
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Figure 5: Self reported DeepCAPTCHA difficulty, com-
pared with existing CAPTCHAS, for variants from 8 to
20 answers.

We define a secure CAPTCHA as one that has a less
than 1% chance of being successfully attacked by a bot,
and a usable CAPTCHA as one with a challenge pass rate
above 75% when attempted by a human within an aver-
age time of 15s. These thresholds are in line with those
previously reported and with other CAPTCHA schemes.

Based on the results collected so far in our prelim-
inary tests, and the security analysis in Section 5, we
conclude that the best trade-off between security and
usability is met by the version of our test with 12 an-
swers per challenge and two challenges in a CAPTCHA
session. This configuration meets the accepted secu-
rity and usability requisites. Namely, humans showed
a success rate of 86.67% per challenge, hence the over-
all success probability is (assuming independence) about
0.8667> = 0.751. The average time for the session was
about 2-7.66s = 15.32s (the median is significantly faster
— 10.4s). The security analysis showed that a probabil-
ity of a bot bypassing the scheme is not higher than 0.7%
(by random guessing).

We expect that users will become more familiar with
the task and the system in general as it gains popular-
ity. This would result in higher success rates and faster
solution times.



Overall Results 8 answers 12 answers 16 answers 20 answers
Total test count 4538 1257 990 1144 1147
Success rate 82,57 % 89,18 % 86,67 % 79,98 % 74,37 %
Average time 7,89s 6,04s 7,668 8,368 9,66s
Median time 5,49s 4,24s 5,18s 5,89s 7,34s

Table 3: Usability results for the DeepCAPTCHA proof of concept implementation, with different number of answers.

Accuracy and gender

—
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Figure 6: Accuracy across self-reported gender for vari-
ants from 8 to 20 answers.

6.2 Discussion of the PoC System

The best candidates for image source in DeepCAPTCHA
are natural images of objects. Such images have large
enough variation in color and intra-class variability. An-
other important property (related to security) that exists
in such images is that they belong to a large variety of
classes, allowing to run a recognition with 1000 or more
categories.

We based the PoC system on the ILSVRC-2012
database [26] which constitutes the best available option
at the moment. However, this database is suboptimal,
as it contains many categories that are culturally influ-
enced (i.e., bird species only existent in certain parts of
the world) or similar to each other (i.e., different breeds
of dog that are almost identical). These shortcomings
certainly have an effect on usability, security, and scala-
bility of the system, which we specify in the following
discussion.

Usability: Unfamiliar or too similar objects make hu-
man recognition harder. Comparing the test image to a
relatively small set of answers partially resolves the prob-
lem, as the probability of similar categories to appear in
the set of possible answers is not very high, though it is
still non zero.

Another usability problem is related to images depict-
ing complex scenes containing several objects. There is
a possibility that more than one of the displayed objects
will appear among the answers, making the test ambigu-
ous. This can be solved by analyzing the top recognition
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scores of the network for the original image and remov-
ing the categories corresponding to the top scores from
the pool of answers (not implemented in PoC system).

Scalability: Due to the similarity between some of the
classes in ILSVRC-2012, the state-of-the-art networks
show only about 60% top 1 rank classification on the
original images from the validation set. The top 5 rank
classification accuracy is significantly higher, reaching
81-85% (depending on the architecture).

A low top 1 rank classification accuracy introduces
scalability problems. As we require to produce a large
number of CAPTCHA challenges per second, we need
an automatic way of obtaining the labels. A 40% mis-
classification rate makes it impossible to fully automate
the process, as the true label of the source image I is
required by our algorithm. Merging similar classes is
not viable as it decreases the number of classes, thereby
directly reducing the underlying problem difficulty and,
hence, security.

The average time for generating IAN is reported for
a Matlab implementation (including CNN). We expect it
to improve significantly in more optimized environment.

Security: A low top 1 rank classification accuracy ad-
versely affects the security of the system. Our empiri-
cal study showed that 2.4% of the adversarial examples,
created from the validation set of ILSVRC-2012, include
the true class in their top 5 rank classification (but not the
top 1). Moreover, 21.6% of the filtered adversarial im-
ages (with a median filter) include the true class in their
top 5 rank classification. A simple attack would then be
to look at the intersection between the top 5 classification
of the adversarial examples in the CAPTCHA and the set
of its answers. In the case where the intersection contains
a single class, the true label has been determined. This
problem arises only when the network fails to classify
the original image correctly in the top 1 rank and the true
class appears in the next 2-5 scores.

Note that improving the network classification accu-
racy will improve both scalability (for automatic label-
ing) and security (a scoring function that has a sharp peak
at the true category will eliminate the security problem
observed for the top 5 rank in the ILSVRC-2012 data
set). We stress that the issues discussed above are strictly
linked to the data set, not to our proposal. For deploying



a real system, one should consider collecting a data set
with 1000 or more categories, with high inter class vari-
ability, discarding complex multi-object scenes, in par-
ticular those including a number of objects featured in
the database.

7 Conclusions and Future Work

In this work, we introduced DeepCAPTCHA, a se-
cure new CAPTCHA mechanism based on immutable
adversarial noise that deceives DL tools and cannot
be removed using preprocessing. DeepCAPTCHA of-
fers a playful and friendly interface for performing one
of the most loathed Internet-related tasks — solving
CAPTCHAs. We also implemented a first proof-of-
concept system and examined it in great detail.'?

We are the first to pose the question of adversarial
examples’ immutability, in particular to techniques that
attempt to remove the adversarial noise. Our analysis
showed that previous methods are not robust to such at-
tacks. To this end, we proposed a new construction for
generating immutable adversarial examples which is sig-
nificantly more robust to attacks attempting to remove
this noise than existing methods.

There are two orthogonal directions for future
CAPTCHA research 1) Design a new large-scale clas-
sification task for DeepCAPTCHA that contains a new
data set of at least 1000 dissimilar categories of ob-
jects. This task also includes collecting (and labelling)
a new data set for training of the CNN. 2) Introduction
of CAPTCHAs based on different modalities, such as
sound/speech processing (e.g., to address users with vi-
sual impairments).

Finally, we believe that IAN has a wide range of ap-
plications in computer security. IANs may be used to
bypass current ML-based security mechanisms such as
spam filters and behavior based anti-malware tools. Ad-
ditionally, our proposed attacks on adversarial noise may
be of independent interest.
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