State recovery of RC4 and Spritz Revisited

Martin Gabri§ and Martin Stanek

Department of Computer Science
Comenius University

martin.gabris22e@egmail.com, stanek@dcs.fmph.uniba. sk

Abstract

We provide an improved complexity analysis of backtracking-based state recovery attacks
on RC4 and Spritz. Comparing new estimates with known results on Spritz, our analysis
shows a significantly lower complexity estimate for simple state recovery attack as well as
special state recovery attack. We validated the estimates by performing experiments for
selected feasible parameters.

We also propose a prefix check optimization for simple state recovery attack on Spritz.
We believe that the simple state recovery attack with this optimization and so-called “change
order” optimization inspired by Knudsen et al. attack on RC4 constitutes currently the best
state recovery attack on Spritz (when no special state is observed).

Keywords: RC4, Spritz, cryptanalysis, state recovery, complexity.

1 Introduction

RC4 is a well-known stream cipher with a simple design and implementation. It was widely used
in various cryptographic schemes and protocols. Multiple cryptographic weaknesses were found
in the design and the use of RC4, such as [1, 4, 7, 9, 10]. Hence it is advised to avoid RC4 in
practice, for example there is even a RFC proposal to prohibit RC4 in TLS [11].

A stream cipher Spritz was proposed by Rivest and Schuldt as a replacement of RC4 [12].
Spritz retains some components of RC4, such as using a permutation as the main part of its
internal state, while carefully modifying other parts in order to make the cipher resistant to
known cryptanalytic attacks.

State recovery attacks are a class of cryptanalytic attacks that use known part of a keystream
to find the internal state of the cipher. We analyze the complexity of some state recovery attacks
on RC4 and Spritz. Our contribution can be summarized as follows:

- We provide an improved complexity estimate for state recovery attack on RC4 from [6].
The difference between the original and our analysis is rather small, e.g. 277° vs. 2772
for permutation of length N = 256. However, our analysis justifies and quantifies the
improvement obtained by using “change order” optimization proposed in [6].

— We provide improved complexity estimates for state recovery attack on Spritz from [2],
and for “special-state” recovery attack from [3]. In these cases, the improved estimates are
significantly better than the original estimates. For example, when N = 256, we get the
estimate 21?2 instead of 2157 for the simple state recovery attack and 2°%” instead of 2!2%°
for special state recovery attack, in all cases without counting the expected complexity
of guessing necessary internal state variables (additional factor N? = 216 for simple state
recovery or (N/2)? = 2!* for special state recovery).

— We propose a prefix check optimization for state recovery attack on Spritz. We believe that
basic state recovery attack with a change order optimization inspired by [6] and the prefix
check optimization constitutes currently the best state recovery attack on Spritz (when no
special state is observed). The complexity of the attack with guessing necessary internal
state variables, and without the prefix check optimization can be estimated ~ 2!1%7.

We introduce the notation and state update functions of RC4 and Spritz in Section 2. In
this section we also present the idea of basic state recovery attacks using backtracking. Section
3 introduces our approach to estimating the complexity of backtracking-based state recovery
attacks and provides an analysis of state recovery attack by Knudsen et al. [6]. Section 4 focuses
on Spritz. We show the improved analysis of basic state recovery for Spritz, proposed by Ankele
et al. [2]. We also describe the change order optimization, and the prefix check optimization for
basic state recovery attack. Finally, we revise the complexity estimate for recovering the special
state of Spritz by Banik and Isobe [3].

2 Preliminaries

2.1 RC4 and Spritz - internal states and update functions

We describe the internal states of RC4 and Spritz, their update functions and how the output
is produced. Both ciphers use a permutation S over the set Zy = {0,1,...,N — 1}, where the
parameter N controls the size of the internal state. The most typical value of N is 256. RC4
uses two additional variables: i,j € Zy. Spritz uses six additional variables: i,j,k,a,w,z € Z,
although the variable a is not used in the update function.

Figure 1 shows the update functions. Let us note that all additions are computed modulo N.
Since our work is focused solely on state recovery attacks, we do not present unrelated functions,
such as key-scheduling for S initialization etc.

initialization of i, j: initialization of i, j, k, w, z:

i—0 i,w — dependent on the length of the key

je<0 Jj,k — dependent on the key
z<0

update: update:

1. i<i+1 1. i—i+w

2. j«j+S[i] 2. je«k+S[+S[i]]

3. swap(S[i],S[]) 3. k<—i+k+S[j]

4. z « S[S[i] + S[j]] 4. swap(S[i],S[j])

5. outputz 5. z« S[j+S[i+S[z+k]]]
6. outputz

RC4 Spritz

Figure 1: State update functions of RC4 and Spritz

The initialization of internal variables in RC4 is very simple — both are set to 0. The situation
is different for Spritz. The key scheduling makes j and k dependent on key. Variables i and w
depend only on the key length after initialization. Moreover, w does not change in the update
function and i is updated only by adding w, therefore we can assume they are always known to
an attacker. Similarly, the attacker knows z since it is initialized to 0 and after that z is equal to a

keystream value (the state recovery attacks assume the knowledge of the keystream). We denote
the known keystream as a sequence Z = {z;};5¢ in the description of the attacks.

2.2 State recovery using backtracking

The basic idea of the state recovery attacks is to use backtracking. First, we guess internal state
variables that are unknown. Starting with an unknown permutation S we proceed through the
update function. Each time we need some value S[x] that is unknown we make a guess — we
try all possible assignments to S[x] from values not already used in S (since S is a permutation).
Moreover, we use the known keystream to check for contradictions - the update function must
produce the correct output values. Another contradictions are detected using the fact that S cannot
contain any value twice. Using the contradictions we cut some branches in the backtracking
early. Therefore, we expect and indeed obtain lower complexity of this state search algorithm
than trying all possible permutations (i.e. a brute-force approach).

Various optimizations of the basic state recovery are possible, depending on details and
properties of particular update function. Some of them are discussed in the following sections.

The complexity of the state recovery attacks is calculated by counting the expected number
of assignments (guesses) that are made in the backtracking. Usually, we introduce variables that
count the expected number of assignments starting in a particular place of the algorithm. We
form equations relating the variables and reflecting the logic of the algorithm. The complexity of
the attack is calculated by solving these equations.

Remark. Let us note that the complexity estimates calculate the entire backtracking, from the
first guess to the last assignment, all paths that do not lead to a contradiction are explored. There
is no way to detect the correct state and “interrupt” complexity equations. In practice we stop
the backtracking when the correct state (permutation) is found. Our experiments show that this
reduces the complexity by half (on average).

Remark. Recall that the real attack must guess other variables as well. This is not the case for
RC4, assuming that we do a state recovery of the initial state (where i = j = 0). For Spritz we
must guess the variables j and k.

3 RC4

We start with an analysis of the basic state recovery attack on RC4 as outlined in Section 2.2. Let
us stress that our aim is not to show the most efficient state recovery attack on RC4 but to explain
how the complexity of an attack is estimated. Similar approach will be used in our analysis of
Spritz in Section 4. For more efficient state recovery attacks on RC4, see for example [5, 8].

3.1 Basic state recovery — simple backtracking

The backtracking follows iterations of the update function and known keystream. Starting with
completely undefined S it gradually tries to fill those values that are needed to proceed with the
update function. The guesses are made, exploring all possibilities while detecting and avoiding
contradictions, i.e. no value from Zy can appear twice in S, and the output should be consistent
with the keystream. In each iteration of the update function the backtracking needs the values
S[il, S[j1, and S[S[i] + S[j]] (in this order). Similarly to [6] we use variables c1(x), c2(x), and c3(x),
for x € Zy, denoting the expected number of assignments performed by the backtracking when
S contains exactly x known (not necessary correct) values and the algorithm starts:

c1(x) at the beginning of the backtracking, i.e. before S[i] is needed;
c2(x) just before the second value, S[j], is needed;
c3(x) just before the third value, S[S[i] + S[j]], is needed.

The overall expected complexity of the algorithm is ¢;(0). Trivial boundary conditions are
values for x = N, when the permutation S is complete, and no assignment is needed, hence
c1(N) = c2(N) = ¢5(N) = 0. If ¢1(x + 1), c2(x + 1), and c3(x + 1) are known, we can compute
c1(x), c2(x), and c3(x) using the following set of linear equations:

c1(x) = (x/N) - c2(x) + (1 = x/N) - (N = x) - (1 + c2(x + 1))
c2(x) = (x/N) - es(x) + (1 = x/N) - (N = x) - (1 + c3(x + 1))
c3(x) = (x/N) - (1/N - c1(x)) + (1 = x/N)* - (1 + e1(x + 1))

Let us explain the equations. Counting assignments in c;(x) can be split into two cases —
either S[i] is known (this happens with probability x/N) or unknown (with probability 1 — x/N).
In the first case no assignment is needed and we can proceed further, thus counting c;(x) with
the same number of known values in S. In the second case we try all N — x unused values as S[i],
i.e. for each value we perform one assignment and proceed further with increased number of
known values (1 + c2(x + 1)). The equation for c;(x) can be explained similarly.

Counting assignments in c3(x) can be split again into two cases — either S[S[i] +S[j]] is known
(probability x/N) or unknown (probability 1—x/N). In the first case we proceed with next iteration
of the update function (hence counting c; (x) assignments) if and only if the S[S[i] + S[j]] is equal
to the current keystream value z; (probability 1/N). A contradiction happens if S[S[i] + S[j]] is
not equal to z; — then no further assignments are made, i.e. this situation does not contribute
to the equation. In the second case, S[S[i] + S[j]] is unknown, we perform one assignment
S[S[i] + S[j]] « z:; and proceed with next iteration of the update function (hence counting
c1(x + 1) assignments). However, this happens if and only if z; is not already in S at some other
place (probability 1 — x/N). Otherwise we found a contradiction.

Solving the sets of equations in sequence, from x = N — 1 down to x = 0, yields the expected
complexity of this simple backtracking c;(0) ~ 277° for N = 256. Results for some other values of
N are presented in Table 1.

Remark. Estimating the probability of known value for some S[-] as x/N assumes random distri-
bution of index values or random distribution of known values in S. This approach is used for
complexity estimates in [6] for RC4, and for Spritz in [2, 3]. However, the experiments show that
the probabilities are skewed. On the other hand, the complexity estimates derived this way are
very close to the experimental results. Therefore, we use this probability estimate for the rest of
the paper.

3.2 Change order optimization

The optimization to basic state recovery proposed by Knudsen et al. [6] changes the order in
which different values in the backtracking are used. Observe that if z; is already somewhere
in S and S[i] is known, then S[j] can be computed directly: S[k] = z; = S[j] = k — S[i].
Let us describe how the “guessing steps” of the backtracking work, and simultaneously derive
corresponding complexity equations:

1. Start with S[i]: if known (probability x/N when x values in S are already known) proceed
further, otherwise (probability 1 — x/N) assign a value to S[i] and proceed further for all
N — x values.
This step is the same as in the simple backtracking, hence the equation for c;(x) is the same
as well:
c1(x) = (x/N) - c2(x) + (1 =x/N) - (N —x) - (L + co(x + 1))

2. If z; is in S (probability x/N), let z; = S[k], for some k € Zy. Let us denote [= k — S[i],

and look at S[j]:
(1) S[j]is unknown & lisnotin S assign S[j] < [and start next iteration;
(2) S[j]is unknown & lisin S contradiction;
(3) S[j]is known & S[j] =1 start next iteration of the update function;
(4) S[j] is known & S[j] # I contradiction.

Otherwise, z; is not in S (probability 1 — x/N), proceed further.
We obtain the following complexity equation, annotated for clarity:

e(x) = (x/N)-((1 = x/N)* - (1 + e1(x + 1)) + (x/N) - (1/N) - e1(x)) + (1 = x/N) -e3(x)

z; €S (1) (3) z; ¢S

3. In this step we know that z; is not in S. We have two cases: either S[j] is unknown
(probability 1 — x/N) or known (probability x/N). In the first case we try all N — x possible
values for S[j]. We have two separate sub-cases, according to what value is assigned: (1) z,
and (2) other values:

(1) if S[S[i] + SUj1] = z: (probability 1/N): start next iteration
else: contradiction
(2) if S[S[i] + S[j]] is unknown (probability 1 — (x + 1)/N):
assign S[S[i] + S[j]] « z; and start next iteration
else: contradiction

In the second case, when S[j] is known, we check that the position to place z;, i.e. S[S[i] +
S[j]1] is not occupied by some other value (probability 1 — x/N). If the position is free, we
assign the value z; and proceed to the next iteration of the update function.

Annotated complexity equation:

c3(x) = (1= x/N) -(1+ (1/N) -er(x + D+ (N—=x = 1) - (1= (x + 1)/N) - (1 + e1 (x + 2)))

S[j] unknown (1) (2)
+ (x/N) - (1-x/N) 1+ ci(x+1))
~—— —_——

S[j] known S[S[i]+S[j]] unknown

The boundary conditions are trivial: ¢;(x) = cz(x) = c3(x) = 0, for x > N. Using this change in
order of guessed variables we can save few assignments in the backtracking. Indeed, calculating
the complexity by solving above equations yields ¢;(0) ~ 2772 for N = 256. Table 1 shows results
for some other values of N.

The complexity equations provided in [6], also calculating the expected number of assignments,
are different from ours. Unfortunately, they yield unsatisfactory results:

- Complexity 277 for N = 256 is worse than the complexity of simple backtracking presented
in the previous section (similarly for N = 128 etc.). Hence the analysis from [6] does not
justify any improvement by using the change order optimization for realistic N values.

— Let N = 4 (similar argument works for other values, e.g. N = 8 or N = 16). Let us compute
the expected number of assignments when the algorithm starts with S with only a single
unknown value, i.e. 3 out of 4 values in S are already assigned (randomly). Using equations
from [6] we get 0.136. On the other hand, the backtracking starts with S[i], i.e. we make
0.25 assignments right in the first step. Hence the expected number of assignments is at
least 0.25 (note that there might be more assignment to add when S[i] is known and we
proceed further). In contrast, our equations yield c¢1(3) ~ 0.528 for simple backtracking and
¢1(3) = 0.410 for change order optimization.

Theory Experiments

N Simple Change order (6] Simple Change order

8 9.47 8.56 8.65 9.69 9.32
12 15.38 14.28 14.56 15.72 15.19
16 22.02 20.77 21.25 22.53 21.90
64 132.28 130.33 132.65 - -

128 322.85 320.55 324.76 - -
256 775.03 772.39 779.68 - -

Note 1: The numbers represent “lg” values of the complexity.
Note 2: Last two columns show average value from 1000 experiments.

Table 1: RC4 - complexity of selected state recovery algorithms

Our analyses show that the change order optimization really speed-up the backtracking. The
speed-up factor increases from approximately 2 for small N to approximately 5 for N = 128 or
6 for N = 256. Also, there is a rather small difference between our results and results obtained
using equations from [6]. Let us remind that much better state recovery attacks exist, for example
(5, 8].

Remark. In order to directly compare experimental results to theoretical estimates, we performed
the experiments as follows: the backtracking starts with empty permutation, it does not stop
after the correct state is found and continues counting guesses until every non-contradicting
assignment is tried. Our experiments show that stopping immediately when the correct state is
recovered reduces (on average) the complexity by half (i.e. the “Ig” value decreases approximately
by 1).

Improvement of change order optimization can also be observed in experimental data, see
Table 1. Differences between theoretical estimates and corresponding experimental values are
caused by the assumption of random distribution of index values in complexity equations, as
noted in Section 3.1.

4 Spritz
4.1 Basic state recovery — simple backtracking

Basic state recovery attack on Spritz is similar to attack on RC4 described in Section 3.1. The
main difference is more positions in S that must be known or guessed in order to proceed with
the update function.

First, we assume the knowledge of all internal variables of the state (guessed or calculated, see
Section 2) — the backtracking recovers the permutation S, starting with empty S. In each iteration
we need the values S[i], S[j + S[i]], S[j], S[z + k], S[i + S[z + k]] and S[j + S[i + S[z + k]]] (in
this order). The contradictions are detected and prevented as usual — by assigning values not
already in S, and by checking with the keystream values. We introduce variables c;(x),. . .,ce(x),
for x € Zy, denoting the expected number of assignments performed by the backtracking when S
contains exactly x known (not necessary correct) values and the algorithm starts: at the beginning
of the update function (c;(x)), or just before second (cz(x)), third (c3(x)), ..., and sixth (cs(x))
value from S is needed.

The overall expected complexity of the algorithm is ¢;(0). Boundary conditions are again
ci(N) =0,fori=1,...,6. The set of equations that allow to find values c;(x),..., cs(x) if ¢ (x + 1),

..., cg(x + 1) are known can be constructed analogously to the simple backtracking of RC4:

ci(x) = (x/N)-ciz1(x)+(1—=x/N)- (N —x)- (1 +cjz1(x+1)), fori=1,...,5
c6(x) = (x/N) - (1/N - ¢1(x)) + (1 = x/N)? - (1 + ¢1 (x + 1))

The expected complexity of the simple backtracking to recover the state of Spritz is obtained by
solving the sets of equations in sequence, for x = N — 1,...,0. Result for N = 256 is ¢; (0) ~ 212,
some other results are presented in Table 2.

Simple backtracking was described and analyzed in [2]. However, the analysis exhibits the
following problems:

— The complexity presented in the paper is inconsistent with the complexity equations. For
example, solving equations from [2] for N = 256 yield complexity ~ 2'°7°, while the
complexity presented there is 214%.

— Similarly to the problem identified in Section 3.2, we can deduce that the complexity
equations from [2] are incorrect. For example, set N = 4 and x = 3 (again, similar
argument works for other values N). Using equations from [2] we get 0.1083. On the
other hand, assuming random state S with 3 known values, we have ¢;(3) > 0.25 since
the backtracking makes expected 0.25 assignments in the first step by assigning S[i]. In
contrast, our equations yield ¢;(3) =~ 0.81.

4.2 Improvements for simple backtracking

In this section we present two improvements to the simple backtracking: change order of the
last two steps in the backtracking, similar to one described in Section 3.2 for RC4, and additional
verification (contradiction detection) with the prefix of keystream.

4.2.1 Change order optimization

We can apply the optimization described in Section 3.2 to Spritz. Instead of guessing (if needed)
values S[i], S[j + S[i]], S[j], S[=z + k], S[i + S[z + k]], in this order, and then verifying consistency
with the keystream value, we can do the following: we check whether z; is in S before guessing
S[i + S[z + k]]. If z; = S[m], for some m € Zy, then S[i + S[z + k]] must be m — j. We check
for contradictions and proceed to the next iteration of the update function. If z; is not in S, we
guess S[i + S[z + k]], verify consistency, assign z; to the right place in S, and proceed to the next
iteration.

We derive our complexity equations that reflect the backtracking steps with outlined opti-
mization:

1. We start with checking first four (potentially) unknown values S[i], S[j + S[i]], S[j], S[z + k]
and guessing them if needed. If the particular value is known (probability x/N as x values
are already assigned in S), proceed further. Otherwise (probability 1 — x/N) assign one by
one all N — x suitable values and proceed further to the next step.

These four steps are the same as in the simple backtracking:

ci(x) = (x/N)-cisi(x)+(1=x/N) - (N—x)- (1 +cip1(x+ 1)), fori=1,...,4.

2. If z; is in S (probability x/N), let z; = S[m], for some m € Zy. Let us denote [= m — j
and r = S[i + S[z + k]], i.e. r can be either unknown or some value from Z . Notice that

S[z + k] is already known (e.g. guessed), so the index i + S[z + k] is known. There are four
separate cases:

(1) risunknown & lisnotinS assign S[i + S[z + k]] « [and start next iteration;

(2) risunknown &lisin$S contradiction;
(3) risknown &r =1 start next iteration of the update function;
(4) risknown &r #1 contradiction.

Otherwise, z; is not in S (probability 1 — x/N), and we proceed further.
Putting all cases together we get:

es(x) = (x/N) (1= x/N)* - (1 + ¢1(x + 1)) + (x/N) - (1/N) - 1 (x)) + (1 = x/N) -¢(x)
z; €S (1) 3) z: ¢S

3. In this step we know that z; is not in S. Again, let us denote r = S[i + S[z + k]]. The value r
is either unknown (probability 1 — x/N) or known (probability x/N). In the first case we try
all N — x possible values for S[i + S[z + k]]. For this case we have two separate sub-cases,
according to what value is assigned: (1) z;, and (2) other values:

(1) ifS[j + S[i + S[z + k]]] = z; (probability 1/N): start next iteration
else: contradiction
(2) if S[j + S[i + S[z + k]]] is unknown (probability 1 — (x + 1)/N):
assign z, there and start next iteration
else: contradiction

In the second case, when r is known, we check that the position to place z;, i.e. S[j + S[i +
S[z + k]]] is unknown (probability 1 — x/N) so we can put z; there, and proceed to next
iteration of the update function.
Annotated complexity equation:

cs(x) =(1—x/N) -(1 +(1/N)-ci(x+1)+(N-x—-1)-(1—=(x+1)/N) - (1 +c1(x + 2)))

r unknown (1))
+ (x/N) - (1-x/N) (14 c1(x+1))
~—— ~——

r known S[j+S[i+S[z+k]]] unknown

Remark. Notice that the equations for cs(x) and c¢(x) are the same as equations for c;(x) and
c3(x) in the change order optimization for RC4, see Section 3.2.

The boundary conditions are again c;(x) = 0 for i € {1,...,6}, and x > N. Overall complexity
¢1(0) can be computed in similar fashion as the complexity of previous backtracking algorithms
- by solving the sets of equations. The change order optimization, as expected, reduces the
complexity of the state recovery backtracking. For example, ¢;(0) ~ 22! for N = 256, which is
marginally better than the complexity of the simple backtracking. Table 2 shows lg(c;(0)) values
for some selected parameters N and x.

4.2.2 Prefix check optimization

The idea of the prefix check optimization is to start state recovery in a shifted position of the
known keystream and using the skipped prefix to check for possible contradictions. Let us assume
we know keystream Z = {z;};50 produced from some starting state Sy. All previously described
state recovery backtracking algorithms aim to recover S;. Let S, be the permutation after p
updates, for some p > 0. The value i is known in any moment, i.e. also after p updates, since i is
updated by adding w (which is known and fixed value while iterating the update function). Let us

Theory Experiments

N x Simple (2] Change order Simple Change order All optim.
8 0 13.02 13.40 12.54 13.05 12.64 11.98
10 0 17.34 19.36 16.87 17.40 16.97 16.13
16 5 16.76 22.49 16.14 16.81 16.23 14.95
64 48 13.65 40.19 12.67 13.59 12.61 9.65
128 114 6.07 32.82 5.13 5.97 5.09 2.88
256 240 4.47 40.24 3.64 4.51 3.62 1.94
64 0 195.81 272.03 194.83 - - -
128 0 473.34 664.35 472.18 - - -

256 0 1122.34 1575.43 1121.01 - - -

Note 1: The numbers represent “lg” values of the complexity.

Note 2: Last three columns show average value from 1000 experiments.
Note 3: The last column shows results for both optimizations (Change order and Prefix check).

Table 2: Spritz — complexity of selected state recovery algorithms

assume we also know, e.g. by guessing, the values j and k after p updates. Notice that any state
recovery attack must guess these values even if it starts with S.

We start the state recovery backtracking with offset p, aiming to recover S,. Observe that
Spritz’s update function can be easily reverted if the state in known. Moreover, we can revert any
current state in the backtracking (partially-filled with x known elements) to position p, since all
necessary values from S were already assigned. The reverted state will contain exactly the same x
known elements, possibly rearranged because of swap operation in the update function. Then we
try to revert this state further and check if produced output is z,,_1, 2, etc. If the output is not
consistent with the keystream, we know that some assignments in the backtracking are incorrect
(contradiction is detected), and we can cut the current branch in the backtracking. Let us note
that reverting state from position p may need values in permutation that are still unknown - in
that case we cannot proceed with our check and no contradiction is detected, so the backtracking
continues as usual.

Remark. We don’t have to stop the prefix check when there is a need for an unknown value in
computation of z (Figure 1, line 5 of the update function). As this is merely a consistency check
and further reverting of state does not depend on this value (correct value of z is known from
prefix), we can skip this consistency check and continue with reverting, hoping there will be a
contradiction with other prefix value.

Remark. When checking for consistency with prefix, in situation S[j + S[i + S[z + k]]] is unknown
and current value z, from keystream prefix is not in S, we can assign S[j + S[i + S[z + k]]] « z,
as this is the only way the current state can be consistent, thus increasing the chance that a
contradiction will be found further down in the prefix check.

We do not estimate the complexity of this optimization by equations since our experimental
data show only a moderate improvement, in a magnitude similar to the change order optimization.

The experimental results are presented in Table 2. We performed our experiments as close to
the situation of complexity estimates as possible, so the backtracking does not stop after correct
state is found. Moreover, when starting with preselected elements, positions and values of these
elements are chosen at random, as the theoretical estimates assume uniform random positions

and values for partially filled permutations. Hence it is highly probable that these instances do
not have a solution, because the keystream is independent of partially known starting state. The
value p for our experiments was chosen p = 8, although most of prefix checks ended within the
first three values from the prefix.

Table 2 shows that the prefix check optimization yields better results when more values in S
are preselected.

4.3 Special state recovery

Banik and Isobe [3] observed several interesting properties of Spritz regarding a “special” state. A
state is called special if the following conditions are satisfied:

1. S[t] =0 (mod 2), for all odd t € Zy, and

2. S[t] =1 (mod 2), for all even t € Zy, and

3. j=0 (mod 2),and k =0 (mod 2).

Assuming even N, it can be shown that starting with the special state has following properties:

1. The state after four iterations of the update function is again a special state.

2. The parity of values in S does not change - in every iteration even and odd indexed positions
in S will continue to hold odd and even values respectively.

3. The keystream is periodic with the period 4: z; = z;44 (mod 2), for all ¢.

The last property allows easy identification of the special state. Although the probability of
the special state is small (e.g. approximately 27253-7 for N = 256), it facilitates a more efficient
backtracking if observed. The improved backtracking uses the second property to reduce the
number of assignments that are tried in particular step of the update function. The backtracking
must consider the parity of indexes used in the update function to access S - these parities depend
on the offset with respect to the length of the cycle (period 4) (period 4), see Table 3.

Offsets
Index v=0 v=1 v=2 v=3
i—i+w?” 1 0 1 0
j+S[* 0 0 0 0
jek+S[+S[]* 1 0 1 0
k — k+i+S[j] 1 0 1 0
z+k* 1 0 0 1
i+S[z+k]~ 1 1 0 0
J+S[i+S[z+k]]* 1 0 0 1
z < S[j+S[i+S[z+k]]] 0 1 1 0

Note 1: Values marked with “*” are used for trying assignments
(guessing) in the backtracking algorithm.
Note 2: We start numbering offsets with 0 instead of 1.

Table 3: special state — parities of indexes through 4 iterations [3]

10

Remark. Let us note that the backtracking with improvements from the previous section is still
the best general option for state recovery of Spritz, i.e. when no special state is detected.

The analysis of special state recovery algorithm by Banik and Isobe [3] has several problems:

- The published complexity of the backtracking ~ 2123 for N = 256, not counting guesses for
state variables j, k, is worse than the complexity ~ 21122 of the simple backtracking from
Section 4.1. Hence the result shows no improvement at all.

— Our evaluation of equations stated in [3] yields different results than published. For example,
the published complexity of the backtracking (without guessing registers j and k) is ~ 21233
for N = 256. On the other hand, the complexity obtained by our evaluation of the equations
is ~ 2123 for N = 256. Similarly, also some other values from Table 4 are visually different
from those presented in [3, Fig. 4].

— The boundary conditions ¢;(N/2 — 1) = 1, for details see [3], are incorrect — the expected
number of assignments with one odd/even value missing is strictly less than one, since
there is nonzero probability we do not need the missing value and find a contradiction with
the keystream.

Corrected analysis. We define variables ¢y (x,y), for u € {1,2,...,6}, v € Z4, and x,y €
ZN2+1- The variable c(x,y) denotes the expected number of assignments in the following
situation:

number of values in S known on even indexed positions;
number of values in S known on odd indexed positions;
starting backtracking before the u-th assignment;

v the offset in the special state cycle.

S @ X

Obviously, the complexity of the special state recovery is c?(0,0). Trivial boundary conditions:
c/(N/2,N/2) = 0,and cJ(x,N/2 +1) = cS(N/2 + 1,y) = 0forallu € {1,2,...,6}, v € Z4, and
X,y € ZN/2+1- The equations must reflect parity of the index to S, see Table 3. For brevity, let us
denote N’ = N/2. The equations use similar reasoning as the equations for simple backtracking.

Case u = 1 (guessing S[i], parity of the index: 1,0,1,0):

i (6,y) =y/N"- ¢ (x,y) + (1 —y/N') - (N" = y) - (1 + ¢; (x,y + 1)), for v € {0,2}
¢y (x,y) =x/N"-¢c5 (x,y) + (1 —=x/N") - (N" = x) - (1 + ¢5 (x + 1,y)), for v € {1,3}

Case u = 2 (guessing S[j + S[i]], parity of the index: 0,0,0,0):
¢y (x,y) =x/N"-cf(x,y) + (1 —x/N') - (N' —x) - (1 +c§(x + 1,y)), forv € Z4
Case u = 3 (guessing S[j], parity of the index: 1,0,1,0):

5 (x,y) =y/N"-cf(x,y) + (1 —y/N') - (N" = y) - (1 + ¢f (x,y + 1)), for v € {0,2}
cs(x,y) =x/N"-cf(x,y) + (1 —x/N’) - (N' = x) - (1 + ¢ (x + 1,y)), forv € {1,3}

Case u = 4 (guessing S[z + k], parity of the index: 1,0,0,1):

cf(t.y) =y/N"-c(x,y) + (1 —y/N') - (N" —y) - (1 + ¢5'(x,y + 1)), for v € {0,3}
c;(x,y) =x/N"-cd(x,y) + (1 —x/N’) - (N' = x) - (1 + ¢ (x + 1,y)), forv € {1,2}

11

Case u = 5 (guessing S[i + S[z + k]], parity of the index: 1,1,0,0):

cd(x,y) =y/N"-cd(x,y) + (1 —y/N') - (N —y) - (1 + ¢ (x,y + 1)), for v € {0,1}
cd(x,y) =x/N"-cf(x,y) + (1 —x/N') - (N —x) - (1 + ¢ (x + 1,y)), for v € {2,3}

Case u = 6 (guessing S[j + S[i + S[z + k]]], checking keystream and contradictions, parity of the

index: 1,0,0,1):
cg(x.y) = y/N' - 1/N" - ¢ (x.y) + (1 = y/N')* - (1 + ci(x,y + 1))

ci(x,y) = x/N “1/N’ -3 (x,y) + (1 = x/N")?* - (1 + ¢} (x + 1,y))

c2(x,y) = x/N /N - Sy) + (1—x/N)2 - (1+ ¢ (x + 1,y))

ca(x.y) = y/N"-1/N" - (x,y) + (1 = y/N)? - (1 + ¢} (x,y + 1))

Remark. The resulting system of linear equations is rather large, for example we get almost

400 000 equations for N = 256. Instead of solving them at once, we can solve each set of 24

equations for 24 variables ¢ (x,y) (where x and y are fixed) separately. Carefully chosen order of

parameters (x,y), i.e. order in which the equations are solved, guarantees that values ¢ (x + 1,y)

and ¢ (x,y + 1) are already computed.

Table 4 shows results of our theoretical analysis. It compares them with results computed
using equations in the original paper [3]. The table also shows some experimental data obtained
for selected parameters N, x, and y. We can estimate the complexity of special state recovery as
2°41 for N = 256, if the complexity of guessing j and k is included (i.e. (N/2)? = 2%).

Theory

N «x y Our analysis (3] Experiments

16 0 0 23.02 24.80 23.08

18 0 0 27.02 29.80 27.14

20 0 0 31.19 35.10 31.28*
64 22 22 13.99 34.50 14.07
128 50 50 15.19 59.32 15.26
256 110 110 12.37 87.60 12.13

64 0 0 152.62 194.11 -
128 0 0 381.03 500.05 -
256 0 0 927.00 1235.32 -

Note 1: The numbers represent “lg” values of the complexity.

Note 2: Last column shows average value from 1000 experiments,
except for the value with * (100 experiments average).

Table 4: Spritz — complexity of special state recovery

5 Conclusion

We analyzed the complexity of backtracking-based state recovery attacks on RC4 and Spritz. Our
estimates are significantly better than known results on Spritz. We also adapted the change order
optimization and proposed the prefix check optimization for simple state recovery attack on
Spritz.

12

All computations were performed by SageMath!. In order to allow anyone to verify or
experiment with the complexity equations, we provide the source code used for solving them? as
well as the source code used for our experiments®.

There are some interesting open problems for further research. The prefix check optimization
deserves a theoretic analysis and a more precise estimate of how it improves the complexity of
the state recovery backtracking. Another problem is to better estimate the probabilities that some
position in the internal permutation holds an already known value (or is still unknown). These
probabilities are used in the complexity equations, and therefore they influence the estimated
complexity of an attack (although the experiments show only a marginal impact on the overall
complexity).

Acknowledgment

Supported by VEGA 1/0967/16.

References

[1] AlFardan N., Bernstein D., Paterson K., Poettering B., Schuldt J.: On the Security of RC4 in
TLS and WPA, 22nd USENIX Security Symposium, pp. 305-320, 2013.
[https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/alFardan]

[2] Ankele R., Kolbl S., Rechberger C.: State-recovery analysis of Spritz, Progress in Cryptology
- LATINCRYPT 2015, Springer, LNCS 9230, pp. 204-221, 2015.
Cryptology ePrint Archive, Report 2015/828, [https://eprint.iacr.org/2015/828]

[3] Banik S., Isobe T.: Cryptanalysis of the Full Spritz Stream Cipher, Fast Software Encryption
2016, [to appear].
Cryptology ePrint Archive, Report 2016/092, [https://eprint.iacr.org/2016/092]

[4] Fluhrer S., Mantin I, Shamir A.: Weaknesses in the Key Scheduling Algorithm of RC4,
Selected Areas of Cryptography: SAC 2001, Springer, LNCS 2259, pp. 1-24, 2001.

[5] Goli¢]J., Morgari G.: Iterative Probabilistic Reconstruction of RC4 Internal States, Cryptology
ePrint Archive, Report 2008/348, 2008. [https://eprint.iacr.org/2008/348]

[6] KnudsenLR., Meier W., Preneel B., Rijmen V., Verdoolaege S.: Analysis Methods for (Alleged)
RC4, Advances in Cryptology — ASTACRYPT 98, LNCS 1514, Springer, pp. 327-341, 1998.
[https://securewww.esat.kuleuven.be/cosic/publications/article-68.pdf]

[7] Mantin I, Shamir A.: A Practical Attack on Broadcast RC4, Fast Software Encryption: FSE
2001, Springer, LNCS 2355, pp. 152-164, 2002.

[8] Maximov A., Khovratovich D.: New State Recovery Attack on RC4, Advances in Cryptology
- CRYPTO 2008, LNCS 5157, Springer, pp. 297316, 2008.
Cryptology ePrint Archive, Report 2008/017, [https://eprint.iacr.org/2008/017]

[9] Ohigashi T, Isobe T., Watanabe Y., Morii M.: How to Recover Any Byte of Plaintext on RC4,
In Selected Areas in Cryptography 2013, LNCS, Vol. 8282, pp. 155-173, 2013.

1Sage Mathematics Software (Version 7.0), 2016, [http://www.sagemath.org].
Zhttps://github.com/mgabris/state-recovery-equations
Shttps://github.com/mgabris/state-recovery-backtrack

13

[10] Paul G, Maitra S.: Permutation after RC4 Key Scheduling Reveals the Secret Key, Selected
Areas of Cryptography: SAC 2007, Springer, LNCS 4876, pp. 360-377, 2007.

[11] Popov A.: Prohibiting RC4 Cipher Suites, RFC 7465, DOI 10.17487/RFC7465, February 2015.
[https://www.rfc-editor.org/rfc/rfc7465.txt]

[12] Rivest R,, Schuldt J.: Spritz — a spongy RC4-like stream cipher and hash function, 2014.
p pongy p
[https://people.csail. mit.edu/rivest/pubs/RS14.pdf]

14

