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Abstract. Inspired by Fu et al. work [12] on modeling the exclusive-or differential property of the
modulo addition as an mixed-integer programming problem, we propose a method with which any finite
automaton can be formulated as an mixed-integer programming model. Using this method, we show
how to construct a mixed integer programming model whose feasible region is the set of all differential
patterns (α, β, γ)’s, such that adp⊕(α, β → γ) = Prx,y[((x+α)⊕ (y+β))− (x⊕ y) = γ] > 0. We expect
that this may be useful in automatic differential analysis with additive difference.
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1 Introduction

An increasing number of symmetric-key cryptographic primitives are constructed with the operations addition
modulo 2n, which are very simple and efficient in software implementation while provide both diffusion and
nonlinearity. Examples include the block cipher SPECK [22], the stream cipher Salsa20 [3], as well as the SHA-
3 finalists BLAKE [13]. The differential cryptanalysis is one of the best attacks on the ARX constructions
which draws great attention of the cryptographic community. Many attacks based on differential analysis
have been conducted on ARX ciphers [16, 23, 8, 21, 26, 9, 10, 1, 4].

Without the support of computer-aided (partially) automatic tools, the differential or linear cryptanalysis
is an considerably tedious and error-prone process. Hence, there has been a dramatic increase in the devel-
opments of automatic methods for automatic differential or (linear) analysis [16, 17, 23, 2, 11, 6, 8, 19, 21, 25,
24, 27, 15, 20, 5, 12]. The mixed-integer programming based method [20, 25, 24, 12] is getting more and more
attention as it is easy to implement and highly automatic.

In the MIP based automatic differential cryptanalysis, the most important step is to construct an MIP
model such that the feasible region of the model corresponds to the set of all differential (or linear) char-
acteristics of the target cipher. In this paper, we show how to construct a mixed integer programming
model whose feasible region is the set of all differential patterns (α, β, γ)’s, such that adp⊕(α, β → γ) =
Prx,y[((x + α) ⊕ (y + β)) − (x ⊕ y) = γ] > 0. Note that almost exclusively all existing differential attacks
adopt the exclusive-or difference. We expect the work of this paper may be useful in automatic differential
analysis with additive differences.

Contribution On the theoretical side, we show that any finite automaton (FA) can be modeled by the MIP
technique, and therefore any language can be determined by an regular expression can be also modeled by the
MIP technique. We think the technique presented in this paper has the potential to be used in modeling those
cryptographic problems related to finite automaton. For example, an additive difference patterns (α, β)→ γ
for the exclusive-or operation is possible (i.e. its probability is greater than 0) if and only if a sequence
x0 · · ·xn−1 derived from the pattern (α, β) → γ is in the set described by a regular expression [18]. It is
well known that we can construct an FA such that an input sequence x0 · · ·xn−1 is matched by the regular
expression if and only if it is accepted by the FA. Consequently, we can use the technique presented in this
paper to modeling this FA and construct a mixed integer programming model whose feasible region is the set
of all differential patterns (α, β, γ)’s, such that adp⊕(α, β → γ) = Prx,y[((x+α)⊕ (y+β))− (x⊕y) = γ] > 0;
On the practical side, we have implemented the technique presented in this paper and integrated it into a
framework for automatic differential and linear cryptanalysis.
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2 Notations

In this section, we introduce the notations which will be used in the following sections.

2.1 Finite Automaton

A finite automaton (FA) [14] has a set S = {S0, . . . , Sn−1} of finitely many states, and SA ⊆ S is the set of
accepting states of the FA. The input of an FA is a string x0x1 · · ·xm−1. The finite automaton starts in state
S0, consumes one character of x0x1 · · ·xm−1 at a time (from x0 to xm−1), and the FA takes the transition
from one state to another with input xj according to a transition function δ : Si 7→ δ(Si, xj) ∈ S.

A finite automaton (FA) accepts a string if and only if, starting in S0, the sequence of characters in the
string takes the FA through a series of transitions that leaves it in an accepting state when the entire string
has been consumed.

An FA can be represented by a transition diagram, and an example is shown in Fig. 1. Given a string
x0x1x2x3x4 = 21256. The FA starts at state init. After consume the character x0 = 2, it goes to state 1.
Then the FA consume the character x1 = 1, and leaves its state unchanged. The state is still unchanged after
receiving the character x2 = 2. The FA jumps to state init upon receiving the character x3 = 5. The last
character of the string x4 = 6 make the FA stop at state init, an accepting state marked by two circles.

Fig. 1: A finite automaton (used to recognize whether an additive difference pattern with respect to XOR is
valid [18])

2.2 Regular Expression

In theoretical computer science and formal language theory, a regular expression is a sequence of characters
that define a search pattern, mainly for use in pattern matching with strings. Here, we will not introduce the
technical details of a regular expression. But only list some notations which will be used in the following. We
refer the reader to [7, 14] for more information.

- Alternation The alternation, or union of n characters, x0, · · · , xn−1, denoted x0|x1| · · · |xn−1, is a single
character x ∈ {x0, · · · , xn−1}. For example the single character 3 or 7 is matched by the regular expression
3|5|7, while 8 is not matched by this regular expression.

- Concatenation The concatenation of two regular expressions R0 and R1, denoted R0R1, matches all
strings formed by appending a string matched by R1 onto one matched by R0. For example, 98 is
matched by the regular expression (1|2|3| · · · |9)(0|8).

- Closure The Kleene closure of a character x, denoted by x∗, matches all strings formed by repeating x
zero or more times. For example aa and aaaa are matched by the regular expression a∗. The strings bbbc,
aabbbbbd are matched by the regular expression a∗b∗(a|b|c|d).

Let XR be the set of all strings which are matched by the regular expression R. It is proved that we can
construct a finite automaton FAR such that a string is accepted by the finite automaton FAR if and only if
the string belongs to XR [14].
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3 Mixed Integer Programming Model for Finite Automaton

We show how to construct an MIP model whose feasible region is the set of all sequences x0 · · ·xm−1 which
are accepted by a given finite automaton.

Step 1. Encoding the states and input characters In this step, we determine how many 0-1 variables
are required to represent the states in the automaton, and to assign a specific 0-1 sequence to each state.
We also need to determine the number of variables needed to encode the input character set, and to assign
a specific 0-1 sequence to each character.

Step 2. Tabular Description of the finite automaton Taking the FA presented in Fig. 1 for example,
if the current state of the FA is init (encoded as 0), the FA will go to state 1 (encoded as 1) upon receiving
the input character 7 (encoded as 111). This behavior of the FA is recorded as the 8th row in Table. 1. Note
that we need to enumerate all such transitions of an FA to form its tabular representation.

Step 3. From tabular Description to mixed integer programming model In this step, we construct
an MIP model by using the method of [24] such that its feasible solution corresponds the set of all possible
transitions Si → Si+1 of the FA upon receiving the input character xi.

A concrete example is given in the following section.

4 MIP Models for Additive Differential Patterns over Exclusive-Or

Definition 1. adp⊕(α, β → γ) = Prx,y[((x+ α)⊕ (y + β))− (x⊕ y) = γ]

let integers α = α0α1 · · ·αn−1, β = β0β1 · · ·βn−1 and γ = γ0γ1 · · · γn−1 are represented in binary form. Let
ω = ω0ω1 · · · , ωn−1 such that ωi = 4αi + 2βi + γi, 0 ≤ i ≤ n − 1. Then it is obvious that 0 ≤ ωi ≤ 7,
0 ≤ i ≤ n− 1.

Theorem 1. [18] The additive differential probability adp⊕(α, β, γ) is nonzero if and only if ω = ω0ω1 · · · , ωn−1
is in the language defined by the regular expression 0∗|([0..7])∗(3|5|6)0∗. That is, adp⊕ > 0 if and only if ω
is 00 . . . 0 or an octoal string starting with any octoal word followed by 3 or 5 or 6 and ending with zero or
more 0’s.

Table 1: The tabular description of the finite automaton presented in Fig. 1.
State Transation Si Si+1 αi βi γi input : ωi = 4αi + 2βi + γ

0→ 0

0 0 0 0 0 0
0 0 0 1 1 3
0 0 1 0 1 5
0 0 1 1 0 6

0→ 1

0 1 0 0 1 1
0 1 0 1 0 2
0 1 1 0 0 4
0 1 1 1 1 7

1→ 0
1 0 0 1 1 3
1 0 1 0 1 5
1 0 1 1 0 6

1→ 1

1 1 0 0 0 0
1 1 0 0 1 1
1 1 0 1 0 2
1 1 1 0 0 4
1 1 1 1 1 7
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The regular expression R = 0∗|([0..7])∗(3|5|6)0∗ corresponds to the FA presented in Fig. 1 [18], whose
tabular description is given in Table. 1.

We use a the tuple (Si, αi, βi, γi, Si+1) with 5 variables to denote the transition pattern of the FA. From
the Table. 1, there are exactly 16 possible patterns for (Si, αi, βi, γi, Si+1), which are listed in the following.

(0, 0, 0, 0, 0) (0, 0, 1, 1, 0) (0, 1, 0, 1, 0) (0, 1, 1, 0, 0)

(0, 0, 0, 1, 1) (0, 0, 1, 0, 1) (0, 1, 0, 0, 1) (0, 1, 1, 1, 1)

(1, 0, 1, 1, 0) (1, 1, 0, 1, 0) (1, 1, 1, 0, 0) (1, 0, 0, 0, 1)

(1, 0, 0, 1, 1) (1, 0, 1, 0, 1) (1, 1, 0, 0, 1) (1, 1, 1, 1, 1)

−2Si + αi + βi + γi + 2Si+1 ≥ 0
−αi + βi − γi − Si+1 ≥ −2
αi − βi − γi − Si+1 ≥ −2
−αi − βi − γi + Si+1 ≥ −2
−αi − βi + γi − Si+1 ≥ −2
−αi + βi + γi + Si+1 ≥ 0
αi − βi + γi + Si+1 ≥ 0
αi + βi − γi + Si+1 ≥ 0
Si + αi + βi + γi − Si+1 ≥ 0

(1)

An addition requirement is that the automaton starts at the state encoded as 0 and ends at the state
encoded as 1, which equivalent to S0 = 0, and Sn = 1.

5 Conclusion and Discussion

In this paper, we show how to construct a mixed integer programming model whose feasible region is the set
of all differential patterns (α, β, γ)’s, such that adp⊕(α, β → γ) = Prx,y[((x+α)⊕ (y+β))− (x⊕y) = γ] > 0.
Construction of such MIP models is the first step towards an MIP based automatic differential analysis with
additive differences.

However, the current work cannot be used directly to search for good differential characteristics since
we do not know what objective function should be used to find high probability characteristics. A possible
heuristic choice of the objective function is to minimize the overall Hamming weight of the difference patterns.
The investigation of whether this choice of objective function is effective in practice is left as future work,
and we welcome any discussion and cooperation.
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