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Abstract. Many online services adopt a password-based user authentication system because of its
usability. However, several problems have been pointed out on it, and one of the well-known problems
is that a user forgets his/her password and cannot login the services. To solve this problem, most online
services support a mechanism with which a user can reset a password. In this paper, we consider a
provable security treatment for a password reset protocol. We formalize a model and security definitions,
propose a generic construction based on a pseudorandom function and public key encryption. In addition,
we implement a prototype of our protocol to evaluate its efficiency.
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1 Introduction

1.1 Background and Motivation

User authentication is one of the fundamental research themes not only in theory but also in practice.
Although there are some unsolved problems, password-based user authentication systems are widely used in
practice because of their usability and some other advantages. One of the unsolved problems is that users
may forget their passwords, and this problem cannot be avoided as long as the user is a human. One may
expect that we can overcome this problem by alternatives such as graphical password [30], biometrics [18], etc.
However, these authentication methods also need backup authentication systems when users are unable to
perform the primary authentication due to operational errors, physical problems, etc. To make matters worse,
they have their own problems. Their problems in primary authentication may include insufficient entropy
of biometric information, wolves/lambs [12], and the initial/operational cost of additional devices. Their
problems in backup authentication can be even more complicated. For example, if an officer can attend on
users at authentication devices, some of the problems in the primary authentication may be solved promptly
(e.g. operational errors) but others may stay still hard (e.g. severe physical problems such as a burn on a
finger in biometrics). It should be noted that relying on such an officer costs a lot, and may cause some other
problems (e.g. privacy problems).

A potential advantage of password-based authentication is a clear reset scenario in backup authentication:
if a password which is valid in the next execution of the primary authentication can be securely delivered
to a user who is unable to perform the primary authentication, the user can be rescued by the delivered
password. Thus we reach our main research question in this paper: can we design a provably secure protocol
for this reset (namely, a provably secure password reset protocol)?

In existing websites which rely on password-based authentication, backup authentication for reissuing
a valid password often uses personal information (e.g. e-mail address, answers to secret questions, etc.)
which was provided by the user in the initial registration procedure. Although such backup authentication
mechanisms are convenient for users, their security relies on nothing but heuristic evaluation or intuition. Even
in the case of a provably secure primary authentication protocol such as PAKE (password-authenticated key
exchange) [5, 2, 8, 21], its provable security is meaningless in practice if it is used with a heuristic (and hence,
potentially weak) password reset protocol. Bonneau et al. [7], in fact, showed that the security of the secret
question (which is a popular backup authentication mechanism) is not enough. In order to prevent the cat-
and-mouse game between attacks and heuristic countermeasures completely, not only primary authentication
but also backup authentication should be provably secure.

Inspired by the above views, we investigate provably secure password reset protocols in this paper. In
contrast to the existing usable security papers regarding backup authentication [31, 20, 17, 24, 26, 27, 25, 19,
16], we follow the provable security approach in cryptography.



We firstly define a model, then provide security definitions of a password reset protocol, and finally show
provably secure protocols. In particular, we propose generic constructions of a provably secure password reset
protocol based on a pseudorandom function and public key encryption.

The Difficulty of Model Design In a password reset protocol, it is demanded that a user can re-register
a refreshed password under the situation that the user does not have his/her password. However, in an
authentication system that uses only user’s identity and password which are provided by the user in the initial
registration procedure, a legitimate user who forgets his/her password and an adversary are indistinguishable
because the former does not have a unique information. Therefore, when we consider a password reset
protocol, we have to adopt a different model from standard user authentication systems. We will easily be
able to construct a provably secure password reset protocol by assuming the existence of a trusted third party
(TTP) in the same way as the case of applied cryptosystems such as identity-based encryption (IBE) [28, 6].
However, as the fact that mass surveillance has been carried out by NSA becomes clear now, we would like to
avoid assuming such a big brother. A security definition should capture the real world, and be achievable by
a practical protocol (so that we need not require an unrealistic assumption such as a secure channel between
a user and a server with which a refreshed password can always be securely delivered).

1.2 Our Contribution

In this paper, we consider a provably secure password reset protocol, formalize a model and security def-
initions, propose a construction, prove its security, and show the efficiency of our protocol via prototype
implementation. Because of the difficulty that we point out in Section 1.1, we have to consider a different
model from standard user authentication systems to construct a provably secure password reset protocol. In
this paper, we propose a model that introduces a key for password reset. In our model, the system generates
a reset key in the initial registration procedure. When a user wants to register/reset his/her password, he/she
uses this key in the password registration/reset phase. We assume that the reset key is securely stored, and
the user does not lose the reset key even if the user forgets his/her password. We discuss the validity of this
assumption in Section 1.3. In our model, a user can choose both primary and refreshed passwords. More-
over, our model also captures the leakage of a password. In a standard password-based authentication, if an
adversary steals a password of a legitimate user and changes the inside states of the authentication system
(e.g. password, information for backup authentication, etc.), the legitimate user cannot take back his/her
user account. However, in our model, a user who had his/her password stolen and lost the user account can
take back it by using his/her reset key which is securely stored. To the best of our knowledge, none of the
previous user authentication protocols can realize this property.

First, in this paper, we formalize a model and security definitions of a password reset protocol. For
simplicity, first, we consider security against passive adversaries. In this security definition, an adversary is
allowed to get all the information by observing the transcripts between a user and the server. After that (in
Section 5.2), we also consider security against active adversaries that can mount man-in-the-middle attacks
and concurrent attacks by extending the security definitions for passive adversaries. Then we propose a generic
construction based on a pseudorandom function and public key encryption. The security that we require for
these building blocks is popular one, and a number of concrete schemes that satisfy our requirements have
been already known. Therefore, we can construct many efficient and simple concrete password reset protocols
from this generic construction. Finally, we evaluate the performance of our protocol by implementing a
prototype. The result shows that our protocol has good efficiency, and can be used in practice.

1.3 Introduction of Reset Key

In our model, we introduce a special key for password reset, which we call a reset key, and assume that it
is securely stored. Indeed, this is relatively a strong assumption. Here, we explain the reasons why we adopt
this methodology and how this assumption is reasonable.

1. This assumption is similar to the setting of key-insulated cryptography [13], where a secret key is up-
datable by a higher-level secret key that is assumed to be securely stored. We emphasize that this is not
only widely accepted in public-key cryptography, but its potential feasibility was pointed out in practical
security research (e.g. [23, 14]). One may think that if we allow these assumptions, then we may as well
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assume that a user does not lose his/her password. However, as considered in key-insulated cryptography,
it is (to some extent) reasonable to assume that the user does not lose the reset key because the reset
key is only required in the case of emergency and can therefore be securely stored. One may also think
that this assumption does not hold in the system where a user is forced to change his/her password
frequently. However, the assumption still holds because the user who remembers his/her password can
change his/her password in the system without using a reset key.

2. There exist security protocols in the real world which work as (a valiant of) the key-insulated setting.
For example, widely used hardware security tokens have a long-term key in itself and generate a one-time
password by using it. If this long-time key is revealed, we can compute a one-time password. We can
consider that the security of these tokens is assured in the key-insulated model.

3. Our model (to some extent) captures the implementations of password reset protocols used in the real
world. In Facebook, for example, information to reset a password is sent to a user’s email address registered
in the initial registration procedure. Here, the user’s password to log-in to the email account can be seen as
a reset key. Our model captures an intuition in such real-world protocols, and provides provable security
simultaneously.

4. The problem that we have to solve this time is the one that we do not really care in the research of
cryptography. For example, in the case of IBE, TTP receives a user’s ID (e.g. user’s email address) and
derives a corresponding secret key. However, the framework of IBE does not offer how to distinguish
whether the user really has that ID or not. In order to use IBE in practice, we have to rely on an
infrastructure other than IBE. An easygoing way to solve this problem is, for instance, to send a derived
secret key to a user’s email address. In this example, we can think of the password to log-in to the email
account as a reset key. This is almost the same case as the above example of account recovery in Facebook.

Even if we introduce a reset key in the password reset protocol, it does not mean that the construction
or security proof becomes trivial. Intuitively, we can achieve the password reset functionality by using a
symmetric key encryption (SKE). User regards a reset key as a key of SKE, encrypts a new password by
using a reset key, and sends a ciphertext to the server. However, this simple method is vulnerable to a
replay attack. Moreover, this SKE-based construction seems to fail to satisfy the security definition which is
described in Section 3.2. We will explain the reason of this in Section 4.

1.4 Paper Organization

The remainder of this paper is organized as follows. In Section 2, we review the basic notation and the
definitions of cryptographic primitives used in this paper. In Section 3, we introduce the models and security
definitions for a password reset protocol. In addition, we explain how this protocol is used in practice. In
Section 4, we present our generic construction of a password reset protocol and prove its security. In Section
5, we discuss the extension of our proposed construction. In Section 6, we show the performance evaluation
of our protocol. Section 7 is the conclusion.

2 Preliminaries

In this section, we review the basic notation, and the models and security definitions of a pseudorandom
function and public key encryption.

2.1 Notations

N denotes the set of all natural numbers. “x← y” denotes that x is chosen uniformly at random from y if y is a
finite set, x is output from y if y is a function or an algorithm. “PPT” stands for probabilistic polynomial time.
If A is a probabilistic algorithm then “y ← A(x)” denotes that A computes y as output by taking x as input.
If A is a protocol between interactive algorithms P and Q, we write “(pout, qout) ← A(P (pin) ↔ Q(qin))”
to mean that P and Q take pin and qin as input, respectively, interact with each other, and finally P and
Q locally output pout and qout, respectively. “x := y” denotes that x is defined as y. “ϕ” denotes the empty
string. “ε” denotes a negligible function. “k” always denotes the security parameter.
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2.2 Pseudorandom Function

We say that F : {0, 1}k × {0, 1}∗ → {0, 1}k is a pseudorandom function (PRF) if

1. there exists an efficient algorithm that takes a key K ∈ {0, 1}k and a string x ∈ {0, 1}∗ as input, and
outputs F (K,x).

2. for all PPT adversaries A, the advantage in the following PRF game played with the challenger B is
negligible: First, B picks the challenge bit b ∈ {0, 1} and a key K ∈ {0, 1}k uniformly at random. A can
adaptively make queries x (without loss of generality, we assume that A does not make the same query
twice). If b = 0, then B responds with F (K,x). Otherwise (that is, b = 1), B returns a random string in
the range of F . Finally, A outputs its guess bit b′ for b. We define the advantage of A in this game by
AdvPRFA (k) := |Pr[b′ = b]− 1/2|.

2.3 Public Key Encryption

A public key encryption (PKE) scheme consists of the following three PPT algorithms (PKG,PEnc,PDec).

PKG This is the key generation algorithm that takes 1k as input, and outputs a pair of public key pk and
decryption key dk. This process is written as (pk, dk)← PKG(1k).

PEnc This is the encryption algorithm that takes a public key pk and a plaintext m as input, and outputs a
ciphertext c. This process is written as c← PEnc(pk,m).

PDec This is the (deterministic) decryption algorithm that takes a decryption key dk and a ciphertext c as
input, and outputs a decryption result m (which could be the special symbol ⊥ meaning that c is invalid).
This process is written as m← PDec(dk, c).

We require the standard correctness for a PKE scheme. Namely, for any k ∈ N, any (pk, dk)← PKG(1k),
and any plaintext m, we have m = PDec(dk,PEnc(pk,m)).

Security Definition We recall the definition of indistinguishability against multi-challenge chosen ciphertext
attacks (mIND-CCA, for short) [1] of PKE, which is defined by the following game between the challenger
B and an adversary A: First, B picks the challenge bit b ∈ {0, 1}, computes (pk, dk) ← PKG(1k), and gives
pk to A. A can adaptively make encryption and decryption queries. For an encryption query (m0,m1),
where (m0,m1) is a message pair of equal length, B computes c∗ ← PEnc(pk,mb), and then returns the
ciphertext c∗ to A. For a decryption query c, B responds with m ← PDec(dk, c), except that if c is one
of the challenge ciphertexts c∗ returned to A as a response to an encryption query, then the challenger
returns ⊥ to A. Finally, A outputs a guess bit b′ for b. A wins the game if b = b′. We define the advantage
of A by AdvmINDCCA-PKE

A (k) = |Pr[b′ = b] − 1/2|. We say a PKE scheme is mIND-CCA secure, if for all
PPT adversaries A, AdvmINDCCA-PKE

A (k) is negligible. It was shown that ordinary IND-CCA security and
multi-challenge IND-CCA security are polynomially equivalent [1].

3 Password Reset Protocol

In this section, we present the model and the security definitions of a password reset protocol. The proposed
model and the security definitions (which are described in Section 3.2) are an extension of the existing model
and the security definition for identity-based identification [22, 4]. We assume that a reset key is securely
distributed to the client in some way. We also assume that the reset key is securely stored, and the client does
not lose the reset key even if the client forgets his/her password as assumed in key-insulated cryptography [13].
One may think that if we allow these assumptions, then we may as well assume that a client does not lose
his/her password. As we discussed in Section 1.3, however, it is (to some extent) reasonable to assume that
the client does not lose the reset key.
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3.1 Model

A password reset protocol consists of the following two PPT algorithms (SSetup,RKG) and two subprotocols
PRR(CP (·)↔ SP (·)) and Auth(CA(·)↔ SA(·)). Let PW denote the password space.

SSetup This is the server setup algorithm that takes 1k as input, and outputs a public parameter pp and a
secret key sk. This process is written as (pp, sk)← SSetup(1k).

RKG This is the reset key generation algorithm that takes a secret key sk and a client’s identity ID ∈ {0, 1}∗
as input, and outputs a reset key rk. This process is written as rk ← RKG(sk, ID).

PRR This is the interactive protocol for password (re-)registration between the PPT algorithms CP and SP .
Let the identity of a client that runs the algorithm CP be ID. The algorithm CP takes the identity ID,
a password pw ∈ PW, and a reset key rk as input, the algorithm SP takes the identity ID, a reset
key rk, and a secret key sk as input, and then these algorithms interact with each other. As a result of
the interaction, CP and SP locally output ϕ and pws (which could be ⊥), respectively3. This process is
written as (ϕ, pws)← PRR(CP (ID, pw, rk)↔ SP (ID, rk, sk))4.

Auth This is the interactive authentication protocol between the PPT algorithms CA and SA. Let the identity
of a client that runs the algorithm CA be ID. The algorithm CA takes the identity ID and a password
pw ∈ PW as input, the algorithm SA takes the identity ID, pws, and a secret key sk as input, and
then these algorithms interact with each other. As a result of the interaction, CA and SA locally output
ϕ and ⊤/⊥, respectively, where ⊤ (resp. ⊥) means “accept” (resp. “reject”). This process is written as
(ϕ,⊤/⊥)← Auth(CA(ID, pw)↔ SA(ID, pws, sk))

4.

Correctness We require the following correctness property for a password reset protocol. For any (pp, sk)←
SSetup(1k), any pw ∈ PW, any ID ∈ {0, 1}∗, any rk ← RKG(sk, ID), any (ϕ, pws)← PRR(CP (ID, pw, rk)↔
SP (ID, rk, sk)), we have (ϕ,⊤)← Auth(CA(ID, pw)↔ SA(ID, pws, sk)).

Remark Here, we explain how to use this protocol in practice. First, the server executes SSetup and generates
a public parameter pp and a secret key sk. In the initial registration procedure, the server runs RKG and
generates a reset key rk for each client. When a client registers an initial password, a client and the server
execute PRR interactively, and a client registers an initial password pw. In this PRR protocol, the client
executes the algorithm CP , and the server executes the algorithm SP . A client authenticates himself/herself
by using an ID and a pw in Auth protocol. In this Auth protocol, a client executes the algorithm CA, and
the server executes the algorithm SA. When a client forgets his/her password pw, a client and the server
execute PRR interactively, and the client re-registers a refreshed password pw′. In this PRR protocol, the
client executes the algorithm CP , and the server executes the algorithm SP .

3.2 Security Definitions

In this subsection, we give the formal security definitions of a password reset protocol and explain what
situations our definitions capture. First, we consider passive attacks in this section. Later (in Section 5.2),
we also consider active attacks. The passive attack captures the situation in which an adversary observes the
transactions between a client and the server from outside. In our security definitions, an adversary can get
all the information by observing the transactions between a client and the server. Here, we have to consider
the two types of security for a password reset protocol. The first one is that an adversary who does not have
a correct password cannot pass the authentication. We call it security against impersonation attacks. The
second one is that an adversary who does not have a correct reset key cannot (re-)register a password. We
call it security against illegal registration attacks. Let D be the dictionary of user’s password.

3 This pws denotes the information that is supposed to be stored in the server and is used when the user with
password pw next time requests authentication of him/her. We do not require pws = pw hold in general. (See, e.g.
the construction in Section 5.1.)

4 The algorithms SP and SA of our proposed scheme need not use a secret key sk. In general, however, SP and SA

are allowed to use sk. In our extended password reset protocol in Section 5.1, in fact, we need sk in both of the
algorithms SP and SA.
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Impersonation First, we consider security against impersonation under passive attacks (Imp-PA) for a
password reset protocol. This security is defined using the following Imp-PA game which is played by the
challenger B and an adversary A = (A1,A2). First, B executes (pp, sk) ← SSetup(1k), and generates an
empty list L into which tuples of the form (ID, pw, pws, rk, flagp, f lagr) where flagp, f lagr ∈ {0, 1} will be
stored. These flagp and flagr are used to indicate whether a client with ID is “corrupted” by A in the sense
that either pw or rk is known to A, in which case A is not allowed to use the ID for its attack. After key
generation, B gives pp to A1. Then A1 can adaptively make the following types of queries.

Client create query (CCreate): On input ID ∈ {0, 1}∗, B responds as follows. If there exists a tuple of the
form (ID, ∗, ∗, ∗, ∗, ∗) in the list L, B does nothing. Otherwise, B executes rk ← RKG(sk, ID), and stores
(ID, ϕ, ϕ, rk, 0, 1) into the list L. If A1 makes the following queries (PR,RKR,TransPRR, and TransAuth)
with an identity ID, then this ID must have appeared as a CCreate query (and thus be stored in the list
L).

Password reveal query (PR): On input ID, B finds the tuple of the form (ID, pw, ∗, ∗, ∗, ∗) in the list L,
and returns pw to A1. Then, B updates the tuple in the list L by (ID, ∗, ∗, ∗, 0, ∗).

Reset key reveal query (RKR): On input ID, B finds the tuple of the form (ID, ∗, ∗, rk, ∗, ∗) in the list
L, and returns rk to A1. Then, B updates the tuple in the list L by (ID, ∗, ∗, rk, ∗, 0).

Password (re-)registration transcript query (TransPRR): On input (ID, pw′), B responds as follows.
1. If pw′ ∈ PW, B first finds the tuple (ID, ∗, ∗, rk, ∗, ∗) in the list L, executes (ϕ, pw′

s)← PRR(CP (ID,
pw′, rk)↔ SP (ID, rk, sk)), and returns the transcript transPRR of PRR and the result of registration
⊤/⊥ to A1. Then, B updates the tuple in the list L by (ID, pw′, pw′

s, ∗, 0, ∗).
2. If pw′ = ϕ, B first chooses a random password pw′ ∈ D. Next, B finds the tuple (ID, ∗, ∗, rk, ∗, ∗) in

the list L, executes (ϕ, pw′
s) ← PRR(CP (ID, pw′, rk) ↔ SP (ID, rk, sk)), and returns the transcript

transPRR of PRR and the result of registration ⊤/⊥ to A1. Then, B updates the tuple in the list L
by (ID, pw′, pw′

s, ∗, 1, ∗).
Authentication transcript query (TransAuth): On input (ID, pw′), B responds as follows.

1. If pw′ ∈ PW, B first finds the tuple (ID, ∗, pws, ∗, ∗, ∗) in the list L, executes Auth(CA(ID, pw′)
↔ SA(ID, pws, sk)), and returns the transcript transAuth of Auth and the result of authentication
⊤/⊥ to A1.

2. If pw′ = ϕ, B first finds the tuple (ID, pw, pws, ∗, ∗, ∗) in the list L, executes Auth(CA(ID, pw) ↔
SA(ID, pws, sk)), and returns the transcript transAuth of Auth and the result of authentication ⊤/⊥
to A1.

Finally, A1 outputs (ID∗, st). To win the Imp-PA game, the tuple (ID∗, pw∗, pw∗
s , rk

∗, f lag∗p , f lag
∗
r ) must

exist in the list L and satisfy flag∗p = 1 and flag∗r = 1 (if this is satisfied, we say that ID∗ satisfies the
“winning precondition”). If these conditions are not satisfied, B decides that A has lost the Imp-PA game.
Otherwise, B gives st to A2. Then A2 and B interactively execute Auth(A2(st)↔ SA(ID

∗, pw∗
s , sk)). During

the execution of this Auth protocol, A2 can adaptively make queries in the same way as A1. However, A2 is
not allowed to use ID∗ in the PR, RKR, and TransPRR queries. Finally, A wins if the SA’s output of Auth is
⊤. We define the advantage of A by AdvImp-PA

A (k) = Pr[A wins].

Definition 1. Let qA be the number of TransAuth queries by A1. We say that a password reset protocol is
Imp-PA secure if for all PPT adversaries A, AdvImp-PA

A (k) = O(qA)/|D|+ ε(k).

Illegal Registration Second, we consider security against illegal registration under passive attacks (IR-PA)
for a password reset protocol. This security is defined using the following IR-PA game which is played by
the challenger B and an adversary A = (A1,A2). B’s initial procedure and A1’s queries of this IR-PA game
are exactly the same as the Imp-PA game. Finally, A1 outputs (ID∗, st). To win the IR-PA game, ID∗ must
satisfy the winning precondition. If these conditions are not satisfied, B decides that A has lost the IR-PA
game. Otherwise, B gives st to A2. Then A2 and B interactively execute PRR(A2(st) ↔ SP (ID

∗, rk∗, sk)).
During the execution of this PRR protocol, A2 can adaptively make the queries in the same way as A1.
However, A2 is not allowed to use ID∗ in the PR, RKR, and TransPRR queries. Finally, A wins if SP ’s output
of PRR is different from ⊥. We define the advantage of A by AdvIR-PAA (k) = Pr[A wins].

Definition 2. We say that a password reset protocol is IR-PA secure if for all PPT adversaries A, AdvIR-PAA (k)
is negligible.

6



Remark Here we explain what situations PR, RKR, TransPRR, and TransAuth queries allowed for an adversary
try to capture.

An adversary may register the authentication system as a legitimate user and learn which ID/pw is weak,
which is captured by PR and RKR queries. Furthermore, the adversary may eavesdrop the communication
between honest users and the server to obtain all the transcripts. This is captured by TransPRR and TransAuth
queries. Note that for both types of queries, the challenger behaves differently depending on whether pw′ in
the adversary’s input is ϕ or not. The former case (pw′ = ϕ) captures the situation where the protocols are
run by honest users.; The latter case (pw′ ∈ PW) has different meanings depending on the types of queries.
A TransPRR query with pw′ ∈ PW captures the situation where the adversary itself tries to learn information
from the transcript of the PRR protocol by executing it honestly, using the adversarially chosen password
pw′. We may also be able to think of it as capturing the situation where an honest user registers a password
that is known to an adversary for some reason (e.g. because of the choice of an easy-to-guess password).; A
TransAuth query with pw′ ∈ PW captures the case where again the adversary itself tries to learn information
from the transcript of Auth protocol by executing it honestly, using the (adversarially chosen) password pw′.
It also in some sense captures the situation where an honest user forgets (or mistypes) his/her password.

4 Proposed Construction

In this section, we propose a generic construction of a password reset protocol which satisfies the security
definitions in Section 3.2.

4.1 Construction

In this subsection, we show a generic construction of a password reset protocol based on a PRF and PKE.

Intuition Before showing our construction, we explain an intuition of our proposed protocol. In our protocol,
we set a reset key rk := F (K, ID). In the password reset procedure, a user encrypts a randomness (which
is sent by the server), a reset key, and a password by using a PKE scheme, and sends a ciphertext to the
server. The server decrypts the ciphertext and gets a password. The authentication procedure is very similar
to the password reset procedure. A user encrypts a randomness (which is sent by the server) and a password
by using a PKE scheme, and sends a ciphertext to the server. The server decrypts the ciphertext, and checks
whether the decryption result matches the registered password or not. The security of PKE (and the PRF)
ensures that the transcripts do not leak the information of the passwords of honest users, and hence an
adversary who wants to impersonate an uncorrupted user (with an unknown password) essentially has to
guess the password. In both PRR and Auth protocols, the randomness chosen by the server prevents “replay”
attacks.

How Straightforward SKE-based Construction May Fail Suppose we want to reduce the security of
a password reset protocol to the security of SKE. Recall that in our Imp-PA security game, an adversary
A is allowed to issue reset key reveal (RKR) queries for ID’s that are not the challenge ID∗. This means
that the reduction algorithm cannot embed its problem instance regarding SKE into the reset keys of users
who will be corrupted. Therefore, the most natural approach for designing the reduction algorithm (that
attacks the security of SKE) using an adversary A against the Imp-PA security of a considered password
reset protocol, will be to guess the index ℓ of A’s CCreate query (for which A specifies ID∗) and embed the
instance of the reduction algorithm’s problem into the challenge user’s ID∗. However, once we do this, the
number of CCreate queries appears in the numerator of the formula of the advantage, namely, what we will
be able to show is something like AdvImp-PA

A ≤ O(qCqA)/|D| + ε(k), where qC is the number of A’s CCreate

queries. However, Imp-PA security requires that AdvImp-PA
A is upper-bounded by O(qA)/|D|+ ε(k), and thus

the straightforward approach using SKE is not sufficient for proving Imp-PA security.
Although there could exist a way to avoid this problem by developing a new proof strategy, we try to

solve this problem by using PKE scheme in this paper.

Our Construction Now, we formally describe the password reset protocol. Let F : {0, 1}k×{0, 1}∗ → {0, 1}k
be a pseudorandom function and (PKG,PEnc,PDec) be a PKE scheme. Using these as building blocks, our
password reset protocol is constructed as in Fig. 1.
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SSetup(1k) :
(pk, dk)← PKG(1k)
Choose a random K ∈ {0, 1}k
pp := pk; sk := (K, dk)
return (pp, sk).

RKG(sk, ID) :
(K, dk)← sk
rk := F (K, ID)
return rk.

(ϕ, pws)← PRR(CP (ID, pw, rk)↔ SP (ID, rk, sk)) :

1. SP chooses a randomness r ∈ {0, 1}k and sends it to CP

2. CP executes c← PEnc(pk, ID∥r∥rk∥pw) and sends it to SP

3-1. SP executes ID′∥r′∥rk′∥pws ← PDec(dk, c)
3-2. If ID′ = ID, r′ = r, and rk′ = rk hold, SP returns pws

else SP returns ⊥.
(ϕ,⊤/⊥)← Auth(CA(ID, pw)↔ SA(ID, pws, sk)) :

1. SA chooses a randomness r ∈ {0, 1}k and sends it to CA

2. CA executes c← PEnc(pk, ID∥r∥pw) and sends it to SA

3-1. SA executes ID′∥r′∥pw′ ← PDec(dk, c)
3-2. If ID′ = ID, r′ = r, and pw′ = pws hold, SA returns ⊤

else SA returns ⊥.

Fig. 1. The proposed generic construction of a password reset protocol

4.2 Security Proof

In this subsection, we show security proofs of the proposed password reset protocol in Fig. 1.

Theorem 1. If F is a PRF and the PKE scheme is mIND-CCA secure5, then the proposed password reset
protocol in Fig. 1 satisfies Imp-PA security.

Proof of Theorem 1. Let A = (A1,A2) be an Imp-PA adversary of the password reset protocol, qA be the
number of TransAuth queries by A1. Here, qA is a polynomial of the security parameter k. Consider the
following sequence of games.

Game 0. This is exactly the Imp-PA game.
Game 1. This game proceeds in the same way as Game 0, except that the first messages r of SA picked

in the executions of PRR (in the response to A’s TransPRR query) and Auth (either in the response to
A’s TransAuth query or in the challenge phase), are picked from {0, 1}k\{r’s that are already used}, so
that they are all distinct and never collide. For notational convenience, in this and subsequent games,
we introduce the list R that is used to store r’s that are used in the response to the TransPRR query,
TransAuth query, and in the execution of Auth in the challenge phase, and we make the challenger choose
r uniformly at random from {0, 1}k\R every time it needs to choose r for PRR and Auth, and put the
used r into the list R.

Game 2. This game proceeds in the same way as Game 1, except that if A1 issues RKG queries on ID, then
instead of using the result of F (K, ID), B picks rk uniformly at random from the range of F , and uses
it as the reset key corresponding to ID.

Game 3. This game proceeds in the same way as Game 2, except that When B calculates the output of SA

(i.e. ⊤/⊥) only by checking pw = pws where pws is the value found in the tuple corresponding to ID in
the list L, without running PDec.

Game 4. This game proceeds in the same way as Game 3, except for the following points.
– If A1 issues a TransPRR query on ID, then instead of using the result of PEnc(pk, ID∥r∥rk∥pw), B
executes c← PEnc(pk, ID∥r∥0|rk|+|pw|), and uses r and c as the transPRR corresponding to ID.

– If A1 issues a TransAuth query on ID, then instead of using the result of PEnc(pk, ID∥r∥pw), B
executes c← PEnc(pk, ID∥r∥0|pw|), and uses r and c as the transAuth corresponding to ID.

5 Strictly speaking, multi-challenge 1-bounded CCA secure PKE [11] is enough for the security proof.
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For i ∈ {0, 1, 2, 3, 4}, we define the event Wi as the event that A wins in Game i. The advantage of A
is, by definition, AdvImp-PA

A (k) = Pr[W0]. We complete the proof by using the following inequality, and the
upper bounds in the terms in the right hand side are shown in Lemmas 1 to 5.

Pr[W0] ≤
3∑

i=0

|Pr[Wi]− Pr[Wi+1]|+ Pr[W4] (1)

Lemma 1. |Pr[W0]− Pr[W1]| is negligible.

Proof. The difference |Pr[W0]−Pr[W1]| can be upperbounded by the statistical distance between the distribu-
tions of r’s used in PRR (in the responses to A’s TransPRR queries) and Auth (in the responses to A’s TransAuth
queries and in Auth the challenge phase) in Game 0 and those in Game 1. Since the number of r’s in the
games is at most (qP +qA+1), the statistical distance between the distributions is at most (qP +qA+1)2/2k.
This completes the proof of Lemma 1. ⊓⊔

Lemma 2. If F is a PRF, |Pr[W1]− Pr[W2]| is negligible.

Proof. We show that we can construct an adversary B against the PRF F . The description of B is as follows:
First, the challenger chooses a key K ∈ {0, 1}k and the challenge bit {0, 1} uniformly at random (which

are both unknown to B). B executes (pk, dk)← PKG(1k) and generates an empty list L which will be used to
store tuples of the form (ID, pw, pws, rk, flagp, f lagr). B also generates an empty list R. After that, B gives
pp := pk to A1.

When A1 makes a CCreate query ID, B responds as follows.

1. If there exists a tuple (ID, ∗, ∗, ∗, ∗, ∗) in the list L, B does nothing.
2. Otherwise, B submits the identity ID to the challenger, and receives rk. This rk is F (K, ID) if b = 0

and is a random string in the range of F if b = 1. After that, B stores (ID, ϕ, ϕ, rk, 0, 1) into the list L.

When A1 makes a PR query ID, B finds the tuple (ID, pw, ∗, ∗, ∗, ∗) in the list L, and returns pw to A1.
Then, B updates the tuple in the list L by (ID, ∗, ∗, ∗, 0, ∗).

When A1 makes a RKR query ID, B finds the tuple (ID, ∗, ∗, rk, ∗, ∗) in the list L, and returns rk to A1.
Then, B updates the tuple in the list L by (ID, ∗, ∗, ∗, ∗, 0).

When A1 makes a TransPRR query (ID, pw′) where pw′ ∈ PW ∪{ϕ}, B responds as follows. First, B finds
the tuple (ID, ∗, ∗, rk, ∗, ∗) in the list L.

1. If pw′ ∈ PW, B chooses a randomness r ∈ {0, 1}k. Next, B executes c ← PEnc(pk, ID∥r∥rk∥pw′) and
ID′∥r′∥rk′∥pw′

s ← PDec(dk, c). Then, B returns transPRR := (r, c) and the registration result z := ⊤ to
A1. After that, B updates the tuple in the list L by (ID, pw′, pw′

s, ∗, 0, ∗) and adds r to the list R.
2. If pw′ = ϕ, B first chooses a random password pw′ ∈ D (where D is the dictionary from which an

honest user is assumed to sample his/her password) and a randomness r ∈ {0, 1}k. Next, B executes
c← PEnc(pk, ID∥r∥rk∥pw′) and ID′∥r′∥rk′∥pw′

s ← PDec(dk, c). Then, B returns transPRR := (r, c) and
the registration result z := ⊤ to A1. After that, B updates the tuple in the list L by (ID, pw′, pw′

s, ∗, 1,
∗) and adds r to the list R.

When A1 makes a TransAuth query (ID, pw′) where pw′ ∈ PW ∪{ϕ}, B responds as follows. First, B finds
the tuple (ID, pw, pws, ∗, ∗, ∗) in the list L.

1. If pw′ ∈ PW, B chooses a randomness r from {0, 1}k\R, executes c ← PEnc(pk, ID∥r∥pw′) and
ID′′∥r′′∥pw′′ ← PDec(dk, c). Next, B sets z := ⊤ if ID′′ = ID, r′′ = r, and pw′′ = pws hold. Oth-
erwise, B sets z := ⊥. Then, B returns transAuth := (r, c) and the authentication result z to A1. After
that, B adds r to the list R.

2. If pw′ = ϕ, B chooses a randomness r from {0, 1}k\R, executes c ← PEnc(pk, ID∥r∥pw) and ID′′∥r′′∥
pw′′ ← PDec(dk, c). Next, B sets z := ⊤ if ID′′ = ID,r′′ = r, and pw′′ = pws hold. Otherwise, B sets
z := ⊥. Then, B returns transAuth := (r, c) and the authentication result z to A1. After that, B adds r
to the list R.
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Finally, A1 terminates with (ID∗, st). B outputs b′ = 1 and aborts when the identity ID∗ does not satisfy
the winning precondition. Otherwise, B chooses r∗ uniformly at random from {0, 1}k\R, and gives r∗ and st
to A2. B can respond to the queries from A2 in the same way as B did for A1. However, when A2 submits
ID∗ as a RKR or TransPRR query, B returns ⊥ to A2. Finally, A2 terminates with c∗. Next, B executes
r′∗∥pw′∗ ← PDec(dk, c∗). Then, B finds the tuple (ID∗, ∗, pw∗

s , ∗, ∗, ∗) in the list L and checks whether the
conditions r′∗ = r∗ and pw′∗ = pw∗

s hold or not. If these conditions hold, B terminates with b′ = 0. Otherwise,
B terminates with b′ = 1.

The above completes the description of B. It is not hard to see that B perfectly simulates Game 1
for A when B’s challenge bit b = 0, and Game 2 when b = 1. When the challenge bit of B is 0 and B
does not abort before A terminates, B’S responses to A’s queries are performed in exactly the same way
as those in Game 1. In addition, B outputs 0 only if B does not abort and A2 succeeds in outputting a
ciphertext c∗ = PEnc(pk, ID∗∥r∗∥pw∗

s). Therefore, Pr[b
′ = 0|b = 0] = Pr[W1]. On the other hand, when

the challenge bit of B is 1, the response of the challenger of B is a random string, and this situation is the
same as Game 2. With almost the same discussion as above, we have Pr[b′ = 0|b = 1] = Pr[W2]. Therefore,
AdvPRFB (k) = |Pr[b′ = b]− 1/2| = (1/2)|Pr[b′ = 0|b = 0]− Pr[b′ = 0|b = 1]| = (1/2)|Pr[W1]− Pr[W2]|. Using
this equality, and recalling the assumption that the underlying F is a PRF, we conclude that |Pr[W1]−Pr[W2]|
is negligible. This completes the proof of Lemma 2. ⊓⊔

Lemma 3. Pr[W2] = Pr[W3].

Proof. Notice that the difference between Game 2 and Game 3 is only in how a TransAuth query is answered.
More concretely, B runs PDec, obtains pws, and returns ⊤ to A if pw = pws holds in Game 2. On the other
hand, B simply checks whether the pw = pws holds or not, and returns ⊤/⊥ to A in Game 3. Here, pws is
the value in the tuple corresponding to ID in the list L. However, the results in Game 2 and Game 3 always
agree, due to the correctness of the underlying PKE scheme. Therefore, Game 2 and Game 3 are identical.
This completes the proof of Lemma 3. ⊓⊔

Lemma 4. If the PKE scheme is mIND-CCA secure, |Pr[W3]− Pr[W4]| is negligible.

Proof. We show that we can construct a multi-challenge IND-CCA adversary B against the underlying PKE
scheme. The description of B is as follows:

First, the challenger executes (pk, dk) ← PKG(1k) and chooses the challenge bit b ∈ {0, 1} uniformly at
random. Then, the challenger gives pk to B. B chooses a random key K ∈ {0, 1}k for PRF F and generates
an empty list L which will be used to store tuples of the form (ID, pw, pws, rk, flagp, f lagr). B also generates
an empty list R. After that, B gives pp := pk to A1.

When A1 makes a CCreate query ID, B responds as follows.

1. If there exists a tuple (ID, ∗, ∗, ∗, ∗, ∗) in the list L, B does nothing.
2. Otherwise, B chooses rk ∈ {0, 1}k uniformly at random from the range of F and gives rk to A1. After

that, B stores the tuple (ID, ϕ, ϕ, rk, 0, 1) into the list L.

When A1 makes a PR query ID, B finds the tuple (ID, pw, ∗, ∗, ∗, ∗) in the list L, and returns pw to A1.
Then, B updates the tuple in the list L by (ID, ∗, ∗, ∗, 0, ∗).

When A1 makes a RKR query ID, B finds the tuple (ID, ∗, ∗, rk, ∗, ∗) in the list L, and returns rk to A1.
Then, B updates the tuple in the list L by (ID, ∗, ∗, ∗, ∗, 0).

When A1 makes a TransPRR query (ID, pw′) where pw′ ∈ PW ∪{ϕ}, B responds as follows. First, B finds
the tuple (ID, ∗, ∗, rk, ∗, ∗) in the list L.

1. If pw′ ∈ PW, B chooses a randomness r ∈ {0, 1}k, submits (ID∥r∥rk∥pw′, ID∥r∥0|rk|+|pw′|) to the
challenger, and receives c. This c is PEnc(pk, ID∥r∥rk∥pw′) if b = 0 and is PEnc(pk, ID∥r∥0|rk|+|pw′|) if
b = 1. Then, B returns transPRR := (r, c) and the registration result z := ⊤ to A1. After that, B updates
the tuple in the list L by (ID, pw′, pw′, ∗, 0, ∗) and adds r to the list R.

2. If pw′ = ϕ, B chooses a random password pw′ ∈ D (where D is the dictionary) and a random-
ness r ∈ {0, 1}k, submits (ID∥r∥rk∥pw′, ID∥r∥0|rk|+|pw′|) to the challenger, and receives c. This c is
PEnc(pk, ID∥r∥rk∥pw′) if b = 0 and is PEnc(pk, ID∥r∥0|rk|+|pw′|) if b = 1. Then, B returns transPRR :=
(r, c) and the registration result z := ⊤ to A1. After that, B updates the tuple in the list L by
(ID, pw′, pw′, ∗, 1, ∗) and adds r to the list R.
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When A1 makes a TransAuth query (ID, pw′) where pw′ ∈ PW ∪{ϕ}, B responds as follows. First, B finds
the tuple (ID, pw, pws, ∗, ∗, ∗) in the list L.

1. If pw′ ∈ PW, B chooses a randomness r from {0, 1}k\R, submits (ID∥r∥pw′, ID∥r∥0|pw′|) to the chal-
lenger, and receives c. This c is PEnc(pk, ID∥r∥pw′) if b = 0 and is PEnc(pk, ID∥r∥0|pw′|) if b = 1. Next,
B sets z := ⊤ if pw′ = pws holds. Otherwise, B sets z := ⊥. Then, B returns transAuth := (r, c) and the
authentication result z to A1. After that, B adds r to the list R.

2. If pw′ = ϕ, B chooses a randomness r from {0, 1}k\R, submits (ID∥r∥pw, ID∥r∥0|pw|) as a challenge
query to the challenger, and receives c. This c is PEnc(pk, ID∥r∥pw) if b = 0 and is PEnc(pk, ID∥r∥0|pw|) if
b = 1. Next, B sets z := ⊤ if pw = pws holds. Otherwise, B sets z := ⊥. Then, B returns transAuth := (r, c)
and the authentication result z to A1. After that, B adds r to the list R.

Finally, A1 terminates with (ID∗, st). B outputs b′ = 1 and aborts when the identity ID∗ does not satisfy
the winning precondition. Otherwise, B chooses r∗ uniformly at random from {0, 1}k\R, and gives r∗ and st
to A2. B can respond to the queries from A2 in the same way as B did for A1. However, when A2 submits
ID∗ as a RKR or TransPRR query, B returns ⊥ to A2. Finally, A2 terminates with c∗. If this c∗ is one of the
ciphertexts used as a response to the TransPRR or TransAuth queries, B stops the Imp-PA game, decides that
A has lost the Imp-PA game, and terminates with b′ = 1. Next, B submits c∗ as a decryption query6 to the
challenger, and receives ID∗∥r′∗∥pw′∗. Then, B finds the tuple (ID∗, ∗, pw∗

s , ∗, ∗, ∗) in the list L and checks
whether the conditions r′∗ = r∗ and pw′∗ = pw∗

s hold or not. If these conditions hold, B terminates with
output b′ = 0. Otherwise, B terminates with output b′ = 1.

The above completes the description of B. It is not hard to see that B perfectly simulates Game 3 when
B’s challenge bit b = 0, and Game 4 when b = 1. When the challenge bit of B is 0 and B does not abort
before A terminates, B responses to A’s queries are distributed identically to those in Game 3. In addition,
B outputs 0 only if B does not abort and A2 succeeds in outputting a ciphertext c∗ satisfying PDec(dk, c∗) =
ID∗∥r∗∥pw∗

s . Therefore, Pr[b
′ = 0|b = 0] = Pr[W3]. On the other hand, when the challenge bit of B is 1,

A2 succeeds in outputting a ciphertext c∗ satisfying PDec(dk, c∗) = ID∗∥r∥0|pw∗
s |, and this situation is the

same as Game 4. With almost the same discussion as above, we have Pr[b′ = 0|b = 1] = Pr[W4]. Therefore,
AdvmIND-CCA

B (k) = |Pr[b′ = b] − 1/2| = (1/2)|Pr[b′ = 0|b = 0] − Pr[b′ = 0|b = 1]| = (1/2)|Pr[W3] − Pr[W4]|.
Using this equality, and recalling the assumption that the underlying PKE scheme is mIND-CCA secure, we
conclude that |Pr[W3]− Pr[W4]| is negligible. This completes the proof of Lemma 4. ⊓⊔

Lemma 5. Pr[W4] ≤ (qA + 1)/|D|.

Proof. Note that in Game 4, the “transcript” part in the responses to the TransPRR and TransAuth queries
contain no information of pw. However, if an adversary makes a TransAuth query (ID, pw) with pw ̸= ϕ, the
“server’s output” part (i.e. ⊤ or ⊥) leaks whether pw = pw′. However, other than this, no information about
pw leaks. Since pw is chosen randomly from D, the probability that A wins in Game 4 is at most (qA+1)/|D|.
This completes the proof of Lemma 5. ⊓⊔

Lemmas 1 to 5 guarantee that the right hand side of the inequality (1) is upper-bounded by O(qA)/|D|+
ε(k). This completes the proof of Theorem 1. ⊓⊔

Theorem 2. If F is a PRF and the PKE scheme is mIND-CCA secure7, then the proposed password reset
protocol in Fig. 1 satisfies IR-PA security.

Proof of Theorem 2. Let A = (A1,A2) be an Imp-PA adversary of the password reset protocol. Let qP be the
number of TransPRR queries by A1. Here, qP is a polynomial of the security parameter. Consider the following
sequence of games.

Game 0. This is exactly the IR-PA game.
Game 1. This game proceeds in the same way as Game 0, except that the first messages r of SP picked

in the execution of PRR (either in the response to A’s TransPRR query or in the challenge phase) and
Auth (in the response to A’s TransAuth query), are picked from {0, 1}k\{r’s that are already used }, so

6 This is the only decryption query that B submits, which is the reason why 1-bounded CCA security [11] suffices.
7 Multi-challenge 1-bounded CCA secure PKE is enough for the security proof.
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that they are all distinct and never collide. For notational convenience, in this and subsequent games, we
introduce the list R that is used to store r’s that are used in the response to the TransPRR query or in
the execution of PRR in the challenge phase and TransAuth query, and we make the challenger choose r
uniformly at random from {0, 1}k\R every time it needs to choose r for PRR and Auth, and put the used
r into the list R.

Game 2. This game proceeds in the same way as Game 1, except that if A1 issues a TransPRR query on ID,
then instead of using the result of F (K, ID), B picks rk uniformly at random from the range of F , and
uses it as the reset key corresponding to ID.

Game 3. This game proceeds in the same way as Game 2, except that if A1 issues a TransPRR query on ID,
then instead of using the result of PEnc(pk, ID∥r∥rk∥pw), B executes c ← PEnc(pk, ID∥r∥0|rk|+|pw|),
and uses r and c as the transPRR corresponding to ID.

For i ∈ {0, 1, 2, 3}, we define the event Wi as the event that A wins in Game i. The advantage of A is,
by definition, AdvIR-PAA (k) = Pr[W0]. We complete the proof by using the following inequality, and the upper
bounds in the terms in the right hand side are shown in Lemmas 6 to 9.

Pr[W0] ≤
2∑

i=0

|Pr[Wi]− Pr[Wi+1]|+ Pr[W3] (2)

Lemma 6. |Pr[W0]− Pr[W1]| is negligible.

Proof. This proof follows closely to that of Lemma 1. Therefore, we omit it. ⊓⊔

Lemma 7. If the F is a PRF, |Pr[W1]− Pr[W2]| is negligible.

Proof. This proof follows closely to that of Lemma 2. Therefore, we omit it. ⊓⊔

Lemma 8. If the PKE scheme is mIND-CCA secure, |Pr[W2]− Pr[W3]| is negligible.

Proof. We show that we can construct a multi-challenge IND-CCA adversary B against the underlying PKE
scheme. The description of B is as follows:

First, the challenger executes (pk, dk) ← PKG(1k) and chooses the challenge bit b ∈ {0, 1} uniformly at
random. Then, the challenger gives pk to B. B chooses a random key K ∈ {0, 1}k for PRF F and generates
an empty list L which will be used to store tuples of the form (ID, pw, pws, rk, flagp, f lagr). B also generates
an empty list R. After that, B gives pp := pk to A1.

When A1 makes a CCreate query ID, B responds as follows.

1. If there exists a tuple (ID, ∗, ∗, ∗, ∗, ∗) in the list L, B does nothing.
2. Otherwise, B chooses rk ∈ {0, 1}k uniformly at random from the range of F and gives rk to A1. After

that, B stores the tuple (ID, ϕ, ϕ, rk, 0, 1) into the list L.

When A1 makes a PR query ID, B finds the tuple (ID, pw, ∗, ∗, ∗, ∗) in the list L, and returns pw to A1.
Then, B updates the tuple in the list L by (ID, ∗, ∗, ∗, 0, ∗).

When A1 makes a RKR query ID, B finds the tuple (ID, ∗, ∗, rk, ∗, ∗) in the list L, and returns rk to A1.
Then, B updates the tuple in the list L by (ID, ∗, ∗, ∗, ∗, 0).

When A1 makes a TransPRR query (ID, pw′) where pw′ ∈ PW ∪{ϕ}, B responds as follows. First, B finds
the tuple (ID, ∗, ∗, rk, ∗, ∗) in the list L.

1. If pw′ ∈ PW, B chooses a randomness r ∈ {0, 1}k\R, submits (ID∥r∥rk∥pw′, ID∥r∥0|rk|+|pw′|) to the
challenger, and receives c. This c is PEnc(pk, ID∥r∥rk∥pw′) if b = 0 and is PEnc(pk, ID∥r∥0|rk|+|pw′|) if
b = 1. Then, B returns transPRR := (r, c) and the registration result z := ⊤ to A1. After that, B updates
the tuple in the list L by (ID, pw′, pw′, ∗, 0, ∗) and adds r to the list R.

2. If pw′ = ϕ, B chooses a random password pw′ ∈ D (where D is the dictionary) and a random-
ness r ∈ {0, 1}k\R, submits (ID∥r∥rk∥pw′, ID∥r∥0|rk|+|pw′|) to the challenger, and receives c. This
c is PEnc(pk, ID∥r∥rk∥pw′) if b = 0 and is PEnc(pk, ID∥r∥0|rk|+|pw′|) if b = 1. Then, B returns
transPRR := (r, c) and the registration result z := ⊤ to A1. After that, B updates the tuple in the
list L by (ID, pw′, pw′, ∗, 1, ∗) and adds r to the list R.
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When A1 makes a TransAuth query (ID, pw′) where pw′ ∈ PW ∪ {ϕ}, B responds as follows. First, B finds
the tuple (ID, pw, pws, ∗, ∗, ∗) in the list L.

1. If pw′ ∈ PW, B chooses a randomness r from {0, 1}k and executes c ← PEnc(pk, ID∥r∥pw′). Next, B
sets z := ⊤ if pw′ = pws holds. Otherwise, B sets z := ⊥. Then, B returns transAuth := (r, c) and the
authentication result z to A1. After that, B adds r to the list R.

2. If pw′ = ϕ, B chooses a randomness r from {0, 1}k and executes c ← PEnc(pk, ID∥r∥pw). Next, B
sets z := ⊤ if pw = pws holds. Otherwise, B sets z := ⊥. Then, B returns transAuth := (r, c) and the
authentication result z to A1. After that, B adds r to the list R.

Finally, A1 terminates with (ID∗, st). B outputs b′ = 1 and aborts when the identity ID∗ does not satisfy
the winning precondition. Otherwise, B chooses r∗ uniformly at random from {0, 1}k\R, and gives r∗ and
st to A2. B responds to the queries from A2 in the same way as B did for A1. However, when A2 submits
ID∗ as a RKR or TransPRR query, B returns ⊥ to A2. Finally, A2 terminates with c∗. If this c∗ is one of
the ciphertexts as a response to the TransPRR queries, B stops the IR-PA game, decides that A has lost the
IR-PA game, and terminates with b′ = 1. Next, B submits c∗ as a decryption query8 to the challenger, and
receives ID′∗∥r′∗∥rk′∗∥pw′∗. Then, B finds the tuple (ID∗, ∗, pw∗

s , rk
∗, ∗, ∗) in the list L and checks whether

the conditions ID′∗ = ID∗, r′∗ = r∗, rk′∗ = rk∗, and pw′∗ = pw∗
s hold or not. If these conditions hold, B

terminates with b′ = 0. Otherwise, B terminates with b′ = 1.
The above completes the description of B. It is not hard to see that B perfectly simulates Game 2 when

B’s challenge bit b = 0, and Game 3 when b = 1. When the challenge bit of B is 0 and B does not abort
before A terminates, B responses to A’s queries are distributed identically to those in Game 2. In addition,
B outputs 0 only if B does not abort and A2 succeeds in outputting a ciphertext that is decrypted to the
ID∗∥r∗∥rk∗∥pw∗

s . Therefore, Pr[b
′ = 0|b = 0] = Pr[W2]. On the other hand, when the challenge bit of B is 1,

A2 succeeds in outputting a ciphertext that is decrypted to the ID∗∥r∗∥0|rk∗|+|pw∗
s |, and this situation is the

same as Game 3. With almost the same discussion as above, we have Pr[b′ = 0|b = 1] = Pr[W3]. Therefore,
AdvmIND-CCA

B (k) = |Pr[b′ = b] − 1/2| = (1/2)|Pr[b′ = 0|b = 0] − Pr[b′ = 0|b = 1]| = (1/2)|Pr[W2] − Pr[W3]|.
Using this equality, and recalling the assumption that the underlying PKE scheme is mIND-CCA secure, we
conclude that |Pr[W2]− Pr[W3]| is negligible. This completes the proof of Lemma 8. ⊓⊔

Lemma 9. Pr[W3] is negligible.

Proof. Note that in Game 3, the “transcript” part in the responses to the TransPRR queries contain no
information about rk. Therefore, the probability that A succeeds the guess of rk (that is, the probability
that A wins in Game 3) is negligible. This completes the proof of Lemma 9. ⊓⊔

Lemmas 6 to 9 guarantee that the right hand side of the inequality (2) is negligible, and thus A has
negligible advantage in the IR-PA game. This completes the proof of Theorem 2. ⊓⊔

5 Extensions

In this section, we discuss two extensions of our password reset protocol.

5.1 Password Reset Protocol with Password Salting

In practice, it is recommended not to store the client’s raw password into the server. The server stores
“processed data” instead of the client’s password itself, and uses it for the authentication. Our proposed
password reset protocol can be easily extended to a protocol with password salting. In the setup procedure,
a server chooses another key K ′. In the password re-registration procedure, the server decrypts the password
pw from a ciphertext ct, executes pws := F (K ′, pw), and stores pws. In the authentication procedure, server
checks whether the condition F (k′, pw′) = pws holds or not, and outputs ⊤/⊥. In this scheme, pws which
is stored in the server collides if different users set the same password. To prevent this situation, we modify
the scheme to compute F (K ′, ID∥pw) instead of F (K ′, pw). Although secret key size of this scheme becomes
bigger compared to the original scheme, we can avoid it by using the domain separation technique. That

8 This is the only decryption query that B submits, which is the reason why 1-bounded CCA security [11] suffices.
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SSetup(1k) :
(pk, dk)← PKG(1k)
Choose a random K ∈ {0, 1}k
pp := pk; sk := (K, dk)
return (pp, sk).

RKG(sk, ID) :
(K, dk)← sk
rk := F (K, 0∥ID)
return rk.

(ϕ, pws)← PRR(CP (ID, pw, rk)↔ SP (ID, rk, sk)) :
K ← sk

1. SP chooses a randomness r ∈ {0, 1}k and sends it to CP

2. CP executes c← PEnc(pk, ID∥r∥rk∥pw) and sends it to SP

3-1. SP executes ID′∥r′∥rk′∥pw′ ← PDec(dk, c)
3-2. SP executes pws := F (K, 1∥ID′∥pw′)
3-3. If ID′ = ID, r′ = r, and rk′ = rk hold, SP returns pws

else SP returns ⊥.
(ϕ,⊤/⊥)← Auth(CA(ID, pw)↔ SA(ID, pws, sk)) :
K ← sk

1. SA chooses a randomness r ∈ {0, 1}k and sends it to CA

2. CA executes c← PEnc(pk, ID∥r∥pw) and sends it to SA

3-1. SA executes ID′∥r′∥pw′ ← PDec(dk, c)
3-2. If ID′ = ID, r′ = r, and pws = F (K, 1∥ID∥pw′) hold, SA returns ⊤

else SA returns ⊥.

Fig. 2. The proposed generic construction of a password reset protocol with password salting

is, instead of preparing the new key K ′, the server uses a key K for two purposes by adding the prefix bit.
When the server generates a reset key rk, it executes rk := F (K, 0∥ID). When the server generates pws, it
generates pws := F (K, 1∥ID∥pw).

Our password reset protocol with password salting is constructed as in Fig. 2. The security proofs for
this extended scheme follow closely to the security proofs of original scheme. Therefore, we omit them in this
paper.

5.2 Security against Active Adversary

In Section 3.2, we only considered security against passive attacks. In this section, we give the formal security
definitions against active attacks for a password reset protocol by extending the security definitions for
passive ones, and show that our proposed protocol in Section 4 (and Section 5.1) satisfies them under the
same assumptions on the building blocks.

Impersonation First, we consider security against impersonation under active attacks (Imp-AA) for a
password reset protocol. Imp-AA security is defined using the following Imp-AA game which is played by
the challenger B and an adversary A = (A1,A2). First, B executes (pp, sk)← SSetup(1k), and generates an
empty list L into which tuples of the form (ID, pw, pws, rk, flagp, f lagr) where flagp, f lagr ∈ {0, 1} will be
stored. These flagp and flagr are used to indicate whether a client with ID is “corrupted” by A in the sense
that either pw or rk is known to A, in which case A is not allowed to use the ID for its attack. Moreover,
B generates two lists L′

P and L′
A into which tuples of the form (sid, ID, pw, stc, sts, transsid) will be stored.

Here, sid means a session ID that uniquely determined an execution of the protocol, stc (resp. sts) means
the state information stored in the client (resp. server) side during the protocol execution corresponding to
sid, and transsid means a transcript during the protocol execution corresponding to sid. After that, B gives
pp to A1. Then A1 can adaptively make the following types of queries9. We explain the meaning of SSession
and Send queries in the paragraph of the remark right after Definition 4.
9 TransPRR and TransAuth queries are not considered in the following list of queries because A can perform those
functionalities by making SendPRR and SendAuth queries, respectively.
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Client create query (CCreate): This is exactly the same as the CCreate query in the Imp-PA game. If A1

makes the following queries (RKR,PRR, SSessionPRR, SSessionAuth) with an identity ID, then this ID must
have appeared as a CCreate query (and thus be stored in the list L).

Password reveal query (PR): This is exactly the same as the PR query in the Imp-PA game.
Reset key reveal query (RKR): This is exactly the same as the RKR query in the Imp-PA game.
Start session query for password (re-)registration (SSessionPRR) On input (ID, pw ∈ PW ∪ {ϕ}), B

responds as follows. First, B generates a unique session ID sid and returns it to A. If pw ∈ PW, B stores
(sid, ID, pw, ϕ, ϕ, ϕ) into the list L′

P and updates the tuple in the list L by (ID, ∗, ∗, ∗, 0, ∗). Otherwise
(that is, pw = ϕ), B chooses a password pw′ uniformly at random from D, stores (sid, ID, pw′, ϕ, ϕ, ϕ)
into the list L′

P , and updates the tuple in the list L by (ID, ∗, ∗, ∗, 1, ∗). When A1 makes a SendPRR query
with a session ID sid, then this sid must have been generated by this SSessionPRR query previously.

Start session query for authentication (SSessionAuth) On input (ID, pw ∈ PW ∪ {ϕ}), B responds as
follows. If pw = PW, B generates a unique session ID sid and stores (sid, ID, pw, ϕ, ϕ, ϕ) into the list L′

A.
Otherwise (that is, pw = ϕ), B finds a tuple (ID, pw, ∗, ∗, ∗, ∗) in the list L, generates a unique session
ID sid, and stores (sid, ID, pw, ϕ, ϕ, ϕ) into the list L′

A. When A1 makes a SendAuth query with a session
ID sid, then this sid must have been generated by this SSessionAuth query previously.

Send query for password (re-)registration (SendPRR) On input (sid, i,M) B interprets M as an i−th
incoming message of the PRR protocol, and returns an appropriate answer specified in the protocol. (In
other words, B executes the ”next message function” of the PRR protocol and returns the answer to A.)
More concretely, see the remark right after Definition 4.

Send query for authentication (SendAuth) On input (sid, i,M) B interprets M as an i−th incoming mes-
sage of the Auth protocol, and returns an appropriate answer specified in the protocol. (In other words, B
executes the ”next message function” of the Auth protocol and returns the answer to A.) More concretely,
see the remark right after Definition 4.

Finally, A1 outputs (ID∗, st). To win the Imp-AA game, the tuple (ID∗, pw∗, pw∗
s , rk

∗, f lag∗p , f lag
∗
r ) must

exist in the list L and satisfy flag∗p = 1 and flag∗r = 1 (if this is satisfied, we say that ID∗ satisfies the
“winning precondition”). If these conditions are not satisfied, B decides that A has lost the Imp-AA game.
Otherwise, B gives st to A2. Then A2 and B interactively execute Auth(A2(st)↔ SA(ID

∗, pw∗
s , sk)). During

the execution of this Auth protocol, A2 can adaptively make the queries in the same way as A1. However, A2

is not allowed to use ID∗ in the PR, RKR, SSessionPRR and SendPRR queries. Finally, A wins if SA’s output
of Auth is ⊤. We define the advantage of A by AdvImp-AA

A (k) = Pr[A wins].

Definition 3. Let qSA
be the number of SSessionAuth queries by A1. We say that a password reset protocol

is Imp-AA secure if for all PPT adversaries A, AdvImp-AA
A (k) is O(qSA

)/|D|+ ε(k).

Illegal Registration Second, we consider security against illegal registration under active attacks (IR-AA)
for a password reset protocol. This security is defined using the following IR-AA game which is played by
the challenger B and an adversary A = (A1,A2). B’s initial procedure and A1’s queries of this IR-AA game
are exactly the same as the Imp-AA game. Finally, A1 outputs (ID∗, st). To win the IR-AA game, the
tuple (ID∗, pw∗, pw∗

s , rk
∗, f lag∗p , f lag

∗
r ) must exist in the list L and satisfy flag∗r = 1. If these conditions

are not satisfied, B decides that A has lost the IR-AA game. Otherwise, B gives st to A2. Then A2 and B
interactively execute PRR(A2(st) ↔ SP (ID

∗, rk∗, sk)). During the execution of this PRR protocol, A2 can
adaptively make the queries in the same way as A1. However, A2 is not allowed to use ID∗ in the RKR,
SSessionPRR, and SendPRR queries. Finally, A wins if SP ’s output of PRR is different from ⊥. We define the
advantage of A by AdvIR-AAA (k) = Pr[A wins].

Definition 4. We say that a password reset protocol is IR-AA secure if for all PPT adversaries A, AdvIR-AAA (k)
is negligible.

Remark

1. First, we explain the meaning of SSessionAuth query of the form (ID, pw) and SendAuth query of the form
(sid, i,M). Although the following examples are the cases of Auth, the same is true in PRR. These queries
are extension of a Send query that we can see in a security model of key exchange protocols. Before
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querying SendAuth, an adversary A has to query SSessionAuth query of the form (ID, pw) and obtain sid
previously. When this query is issued, B generates the tuple (sid, ID, pw, ϕ, ϕ, ϕ) in the list L′. If A
issues Send query of the form (sid, i,M), A can obtain the correct execution result of algorithm that is
generated by client/server. Here, M is inserted into the (i + 1)-th message. In CP and SP algorithms
of our PRR protocol (in Fig. 1), for example, a client receives a randomness r from the server, executes
c ← PEnc(pk, ID∥r∥rk∥pw), and returns c to the server. In this situation, A issues SendPRR query of
the form (sid, 2,M) and obtains PEnc(pk, ID∥M∥rk∥pw) from B. Since there exists no input message
in SendPRR of the form (sid, 1,M), this M is always ϕ. In contrast to the security definitions for a key
exchange protocol, the attack flags (flagp and flagr) may revive by resetting a password that is randomly
chosen by B. Therefore, we introduce not only a SendPRR query but also a SSessionPRR query to manage
the attack flags.

2. We require that a Send query is executed in order. For example, an adversary A is not allowed to query
(sid, 2, ·) without querying (sid, 1,M). Moreover, A is also not allowed to query (sid, 3,M) right after
querying (sid, 1,M). This is because executions of algorithms without previous steps do not occur in
practice. Moreover, we do not consider an adversary that queries (sid, 1,M) after (sid, 2,M). If the
adversary wants to issue these queries, he/she has to issue SSession queries and obtain new sid. The
formalization that captures the above situation somewhat similar to the situation considered in the
context of resettable security [10]) is a future work.

Construction and Security Proofs Even if we consider security against active adversaries, the construc-
tion is exactly the same as in Fig. 1. Here, we show the security proofs.

Theorem 3. If F is a PRF and the PKE scheme is mIND-CCA secure10, then the proposed password reset
protocol in Fig. 1 satisfies Imp-AA security.

Let A = (A1,A2) be an Imp-AA adversary of the password reset protocol. Let qPi and qAi be the numbers
of a SendPRR query of the form (sid, i,M) and SendAuth query of the form (sid, i,M) by A1, respectively. Here,
qPi and qAi are polynomials of the security parameter. In our protocol, PRR and Auth are both two-pass
protocols. Therefore, we only have to consider the following three cases for SendPRR queries.

1. r ← SendPRR(sid, 1, ϕ) : This means that A gives ϕ to the server and obtains a randomness r. If A issues
SendPRR query of the form (sid, 1, ϕ), B chooses a randomness r, returns it to B, and updates the tuple
in the list L′

P by (sid, ∗, ∗, ∗, r, r).
2. c ← SendPRR(sid, 2, r) : This means that A gives a randomness r to the client and obtains a ciphertext

c. If A issues SendPRR query of the form (sid, 2, r), B first finds the tuples (sid, ID, pw, ∗, ∗, ∗) in the list
L′
P and (ID, ∗, ∗, rk, ∗, ∗) in the list L. Then, B executes c ← PEnc(pk, ID∥r∥rk∥pw), returns c to A,

and updates the tuples in the list L′
P by (sid, ∗, ∗, ∗, ∗, ∗∥c) and in the list L by (ID, pw, ∗, ∗, ∗, ∗).

3. ⊤/⊥ ← SendPRR(sid, 3, c) : This means that A gives a ciphertext c to the server and obtains a registration
result ⊤/⊥. If A issues SendPRR query of the form (sid, 3, c), B first finds the tuples (sid, ID, pw, ∗, r, ∗) in
the list L′

P and (ID, ∗, ∗, rk, ∗, ∗) in the list L. Then, B responds as follows: B executes ID′∥r′∥rk′∥pws ←
PDec(dk, c). If this decryption result is ⊥, B returns ⊥ to A and does not execute the following steps.
Then, B sets z := ⊤ if ID = ID′, r = r′, and rk = rk′ hold. Otherwise, B sets z := ⊥. After that, B
updates the tuples in the list L by (ID, ∗, pws, ∗, ∗, ∗) and returns z to A.

Similar to the cases of SendPRR queries, we only have to consider the following three cases for SendAuth queries.

1. r ← SendAuth(sid, 1, ϕ) : This means that A gives ϕ to the server and obtains a randomness r. If A issues
SendAuth query of the form (sid, 1, ϕ), B chooses a randomness r, returns it to B, and updates the tuple
in the list L′

A by (sid, ∗, ∗, ∗, r, r).
2. c ← SendAuth(sid, 2, r) : This means that A gives a randomness r to the client and obtains a ciphertext

c. If A issues SendAuth query of the form (sid, 2, r), B first finds the tuples (sid, ID, pw, ∗, ∗, ∗) in the list
L′
A. Then, B executes c ← PEnc(pk, ID∥r∥pw), returns c to A, and updates the tuple in the list L′

A by
(sid, ∗, ∗, ∗, ∗, ∗∥c).

10 In the case of security against passive adversaries, 1-bounded CCA secure PKE is enough for the security proof. In
the case of security against active adversaries, however, we need (full) CCA secure PKE for the security proof.
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3. ⊤/⊥ ← SendAuth(sid, 3, c) : This means that A gives a ciphertext c to the server and obtains an
authentication result ⊤/⊥. If A issues SendAuth query of the form (sid, 3, c), B first finds the tuples
(sid, ID, pw, ∗, r, ∗) in the list L′

A and (ID, ∗, pws, ∗, ∗, ∗) in the list L. Then, B executes ID′∥r′∥pw′
s ←

PDec(dk, c). If the conditions ID′ = ID, r′ = r, and pw′
s = pws are satisfied, B returns z := ⊤ to A.

Otherwise, B returns z := ⊥ to A. Then, B updates the tuple in the list L′
A by (sid, ∗, ∗, ∗, ∗, ∗∥z).

Proof of Theorem 3. Consider the following sequence of games.

Game 0. This is exactly the Imp-AA game.
Game 1. This game proceeds in the same way as Game 0, except that the first messages r of SA picked

in the execution of PRR (in the response to A’s SendPRR query) and Auth (either in the response to A’s
SendAuth query, or Auth in the challenge phase), are picked from {0, 1}k\{r’s that are already used }, so
that they are all distinct and never collide. For notational convenience, in this and subsequent games, we
introduce the list R that is used to store r’s that are used in the response to a SendPRR query, SendAuth
query, or in the execution of Auth in the challenge phase, and we make the challenger choose r uniformly
at random from {0, 1}k\R every time it needs to choose r for SendPRR and SendAuth, and put the used r
into the list R.

Game 2. This game is the same as Game 1, except that as in Game 2 considered in the proof of Theorem
1, we replace the output of F (K, ·) with a random string.

Game 3. This game proceeds in the same way as Game 2, except the following points:
If A sends a SendPRR query of the form (sid, 2, r), then after calculating the response c and updating

the tuple in L′
P as in the previous game, B also stores the value r used by in the same entry in L′

P

(say, by appending r in the last of the entry). (Here, note that the value r used by A may not be
identical to the value chosen and used by B as a response to the SendPRR query (sid, 1, ϕ) previously
made by A.)

If A sends a SendPRR query of the form (sid, 3, c), then instead of decrypting c, B responds with ⊤ if
r = r̂ holds, and ⊥ otherwise, where r is the value used as a response to A’s previous SendPRR query
of the form (sid, 1, ϕ), and r̂ is the value contained in the previous A’s SendPRR query (sid, 2, r). (Note
that both of the values can be found in L′

P .)
If A sends a SendAuth query of the form (sid, 2, r), then after calculating the response c and updating

the tuple in L′
A as in the previous game, B also stores the value r in the same entry in L′

A (say, by
appending r in the last of the entry). (Here, note that the value used by A may not be identical to
the value chosen and used by B as a response to the SendAuth query (sid, 1, ϕ) previously made by
A.)

If A sends a SendAuth query of the form (sid, 3, c), then instead of decrypting c, B responds with ⊤ if
r = r̂ and pw = pws hold, and ⊥ otherwise, where r is the value used as a response to A’s previous
SendAuth query of the form (sid, 1, ϕ), and r̂ is the value contained in the previous A’s SendAuth query
of the form (sid, 2, r), both of which can be found in L′

A, pw is the value also contained in the entry
in L′

A corresponding to sid, and pws is the value stored in L such that ID in L and ID in the entry
corresponding to sid in L′

A and match.
Game 4. This game proceeds in the same way as Game 3, except the following points.

– If A1 issues SendPRR query of the form (sid, 2, r), B first finds the tuples (sid, ID, pw, ∗, ∗, ∗) in the
list L′

P and (ID, ∗, ∗, rk, ∗, ∗) in the list L. Then, B executes c∗ ← PEnc(pk, ID∥r∥0|rk|+|pw|) and
uses c∗ instead of c← PEnc(pk, ID∥r∥rk∥pw).

– If A1 issues SendAuth query of the form (sid, 2, r), B first finds the tuples (sid, ID, pw, ∗, ∗, ∗) in the
list L′

P , executes c
∗∗ ← PEnc(pk, ID∥r∥0|pw|), and uses c∗∗ instead of c← PEnc(pk, ID∥r∥pw).

For i ∈ {0, 1, 2, 3, 4}, we define the event Wi as the event that A wins in Game i. The advantage of A
is, by definition, AdvImp-AA

A (k) = Pr[W0]. We complete the proof by using the following inequality, and the
upper bounds in the terms in the right hand side are shown in Lemmas 10 to 14.

Pr[W0] ≤
3∑

i=0

|Pr[Wi]− Pr[Wi+1]|+ Pr[W4] (3)

where the above equality can be derived by the triangle inequality.
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Lemma 10. |Pr[W0]− Pr[W1]| is negligible.

Proof. The difference |Pr[W0] − Pr[W1]| can be upperbounded by the statistical distance between the dis-
tributions of r’s used in PRR and Auth (in the responses to A’s SendPRR queries, SendAuth queries, and Auth
in the challenge phase) in Game 0 and those in Game 1. Since the number of r’s in the games is at most
(qP1+qA1+1), the statistical distance between the distributions is at most (qP1+qA1+1)2/2k. This completes
the proof of Lemma 10. ⊓⊔

Lemma 11. If F is a PRF, |Pr[W1]− Pr[W2]| is negligible.

Proof. This proof follows closely to that of Lemma 2. Therefore, we omit it. ⊓⊔

Lemma 12. Pr[W2] = Pr[W3].

Proof. Notice that the difference between Game 2 and Game 3 is only in how SendPRR and SendAuth queries
are answered. More concretely, B runs PDec, obtains r′ and pws, and returns ⊤ to A if r′ = r and pw = pws

hold in Game 2. On the other hand, B simply checks whether the conditions r̂ = r (and pw = pws in the
case of SendAuth query) hold or not, and returns ⊤/⊥ to A in Game 3. Here, pws is the value in the tuple
corresponding to ID in the list L, and r, r̂, and pw are the values in the tuple corresponding to sid in the
list L′

P (or L′
A). However, the results in Game 2 and Game 3 always agree, due to the correctness of the

underlying PKE scheme. Therefore, Game 2 and Game 3 are identical. This completes the proof of Lemma
12. ⊓⊔

Lemma 13. If the PKE scheme is mIND-CCA secure, |Pr[W3]− Pr[W4]| is negligible.

Proof. We show that we can construct a multi-challenge IND-CCA adversary B against the underlying PKE
scheme. The description of B is as follows:

First, the challenger executes (pk, dk)← PKG(1k) and chooses a bit b ∈ {0, 1}. Then, the challenger gives
pk to B. B chooses a random key K ∈ {0, 1}k for PRF F and generates an empty list L which will be used
to store tuples of the form (ID, pw, pws, rk, flagp, f lagr). B also generates two empty lists L′

P and L′
A which

will be used to store tuples of the form (sid, ID, pw, stc, sts, transsid, rand). Moreover, B generates an empty
list R. After that, B gives pp := pk to A1.

When A1 makes a CCreate query ID, B responds as follows.

1. If there exists a tuple (ID, ∗, ∗, ∗, ∗, ∗) in the list L, B does nothing.
2. Otherwise, B chooses rk ∈ {0, 1}k uniformly at random from the range of F and gives rk to A1. After

that, B stores the tuple (ID, ϕ, ϕ, rk, 0, 1) into the list L.

When A1 makes a PR query ID, B finds the tuple (ID, pw, ∗, ∗, ∗, ∗) in the list L, and returns pw to A1.
Then, B updates the tuple in the list L by (ID, ∗, ∗, ∗, 0, ∗).

When A1 makes a RKR query ID, B finds the tuple (ID, ∗, ∗, rk, ∗, ∗) in the list L, and returns rk to A1.
Then, B updates the tuple in the list L by (ID, ∗, ∗, ∗, ∗, 0).

When A1 makes a SSessionPRR query (ID, pw ∈ PW ∪ {ϕ}), B responds as follows: First, B generates a
unique sid and returns it to A. If pw ∈ PW, B stores (sid, ID, pw, ϕ, ϕ, ϕ, ϕ) into the list L′

P and updates the
tuple in the list L by (ID, ∗, ∗, ∗, 0, ∗). Otherwise (that is pw = ϕ), B chooses pw′ uniformly at random from
D, stores (sid, ID, pw′, ϕ, ϕ, ϕ, ϕ) into the list L′

P , and updates the tuple in the list L by (ID, ∗, ∗, ∗, 1, ∗).
When A1 makes a SSessionAuth query (ID, pw ∈ PW ∪ {ϕ}), B responds as follows: First, B generates

a unique sid and returns it to A. If pw ∈ PW, B stores (sid, ID, pw, ϕ, ϕ, ϕ, ϕ) into the list L′
A. Otherwise,

(that is, pw = ϕ), B finds a tuple (ID, pw, ∗, ∗, ∗, ∗) in the list L, generates a unique session ID sid, and stores
(sid, ID, pw, ϕ, ϕ, ϕ, ϕ) into the list L′

A.
WhenA1 makes a SendPRR query of the form (sid, 1, ϕ), B responds as follows: B first chooses a randomness

r∗ from {0, 1}k\R and returns it to A1. Then, B updates the tuple in the list L′
P by (sid, ∗, ∗, ∗, r∗, r∗, ∗) and

adds r∗ to the list R.
When A1 makes a SendPRR query of the form (sid, 2, r), B responds as follows: First, B finds the tuples

(ID, ∗, ∗, rk, ∗, ∗) in the list L and (sid, ID, pw, ∗, ∗, ∗, ∗) in the list L′
P . Then, B submits (ID∥r∥rk∥pw,

ID∥r∥0|rk|+|pw|) to the challenger and receives c∗. This c∗ is PEnc(pk, ID∥r∥rk∥pw) if b = 0 and is PEnc(pk,
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ID∥r∥0|rk|+|pw|) if b = 1. Then, B returns c∗ to A1. After that, B updates the tuples in the list L′
P by

(sid, ∗, ∗, ∗, ∗, ∗∥c∗, r) and L by (ID, pw, ∗, ∗, ∗, ∗).
When A1 makes a SendPRR query of the form (sid, 3, c), B responds as follows: First, B finds the tuple

(sid, ID, pw, ∗, r, ∗∥c′, r̂) and in the list L′
P . If the conditions c = c′ and r = r̂ hold, B sets pws := pw, updates

the tuple (ID, ∗, pws, ∗, ∗, ∗) in the list L, and returns z := ⊤ to A. Otherwise, B returns z := ⊥ to A. After
that, B updates the tuple in the list L′

P by (sid, ∗, ∗, ∗, ∗, ∗∥z).
WhenA1 makes a SendAuth query of the form (sid, 1, ϕ), B responds as follows: B first chooses a randomness

r∗ from {0, 1}k\R and returns it to A1. Then, B updates the tuple in the list L′
A by (sid, ∗, ∗, ∗, r∗, r∗) and

adds r∗ to the list R.
When A1 makes a SendAuth query of the form (sid, 2, r), B responds as follows: First, B finds the tuple

(sid, ID, pw, ∗, ∗, ∗) in the list L′
A. Then, B submits (ID∥r∥pw, ID∥r∥0|pw|) to the challenger and receives

c∗. This c∗ is PEnc(pk, ID∥r∥pw) if b = 0 and is PEnc(pk, ID∥r∥0|pw|) if b = 1. Then, B returns c∗ to A1.
After that, B updates the tuple in the list L′

A by (sid, ∗, ∗, ∗, ∗, ∗∥c∗).
When A1 makes a SendAuth query of the form (sid, 3, c), B responds as follows: First, B finds the tuples

(ID, ∗, pws, ∗, ∗, ∗) in the list L and (sid, ID, pw, ∗, r, ∗, r̂) in the list L′
A. If the conditions r = r̂ and pw = pws

hold, B returns z := ⊤ to A1. Otherwise, B returns z := ⊥ to A1. After that, B updates the tuple in the list
L′
A by (sid, ∗, ∗, ∗, ∗, ∗∥z).
Finally, A1 terminates with (ID∗, st). B outputs b′ = 1 and aborts when the identity ID∗ does not satisfy

the winning precondition. Otherwise, B chooses r∗ uniformly at random from {0, 1}k\R, and gives r∗ and st
to A2. B can respond to the queries from A2 in the same way as B did for A1. However, when A2 submits
ID∗ as PR, RKR, SSessionPRR, and SendPRR queries, B returns ⊥ to A2. Finally, A2 terminates with c∗. If this
c∗ is one of the ciphertexts used as a response to the SendPRR or SendAuth queries, B stops the Imp-AA game,
decides that A has lost the Imp-AA game, and terminates with b′ = 1. Next, B submits c∗ as a decryption
query to the challenger, and receives ID∗∥r′∗∥pw′∗. Then, B finds the tuple (sid, ID∗, pw∗, ∗, ∗, ∗) in the list
L′
P , checks whether the conditions r

′∗ = r∗ and pw′∗ = pw∗ hold or not. If these conditions hold, B terminates
with output b′ = 0. Otherwise, B terminates with output b′ = 1.

The above completes the description of B. It is not hard to see that B perfectly simulates Game 3 when B’s
challenge bit b = 0, and Game 4 when b = 1. When the challenge bit of B is 0 and B does not abort before A
terminates, B’s responses toA’s queries are distributed identically to those in Game 3. In addition, B outputs 0
only if B does not abort and A2 succeeds in outputting a ciphertext c∗ satisfying PDec(dk, c∗) = ID∗∥r∗∥pw′∗.
Therefore, Pr[b′ = 0|b = 0] = Pr[W3]. On the other hand, when the challenge bit of B is 1, B outputs 1 only if
A2 succeeds in outputting a ciphertext c∗ satisfying PDec(dk, c∗) = ID∗∥r′∗∥0|pw′∗|, and this situation is the
same as Game 4. With almost the same discussion as above, we have Pr[b′ = 0|b = 1] = Pr[W4]. Therefore,
AdvmIND-CCA

B (k) = |Pr[b′ = b] − 1/2| = (1/2)|Pr[b′ = 0|b = 0] − Pr[b′ = 0|b = 1]| = (1/2)|Pr[W3] − Pr[W4]|.
Using this equality, and recalling the assumption that the underlying PKE scheme is mIND-CCA secure, we
conclude that |Pr[W3]− Pr[W4]| is negligible. This completes the proof of Lemma 13. ⊓⊔

Lemma 14. Pr[W4] ≤ O(qA3)/|D|+ ε(k).

Proof. Note that in Game 4, the responses to the SendPRR and SendAuth queries contain no information of
pw. However, if an adversary makes a SendAuth query of the form (sid, 3, c), the “server’s output” part (i.e.
⊤ or ⊥) leaks whether pw = pws or not. However, other than this, no information about pw leaks. Since pw
is chosen randomly from D, the probability that A wins in Game 4 is at most (qA3 + 1)/|D|. Here, qA3 is
the number of SendAuth queries of the form (sid, 3,M) by A and this is clearly equal or less than qSA . This
completes the proof of Lemma 14. ⊓⊔

Lemmas 10 to 14 guarantee that the right hand side of the inequality (3) is negligible, and thus A has
negligible advantage in the Imp-AA game. This completes the proof of Theorem 3. ⊓⊔

Theorem 4. If F is a PRF and the PKE scheme is mIND-CCA secure11, then the proposed password reset
protocol in Fig. 1 satisfies IR-AA security.

Proof of Theorem 4. Let A = (A1,A2) be an IR-AA adversary of the password reset protocol. Let qPi and
qAi be the numbers of SendPRR query of the form (sid, i,M) and SendAuth query of the form (sid, i,M) by

11 We need (full) CCA secure PKE for the security proof.
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A1, respectively. Here, qPi and qAi are polynomials of the security parameter. Same as the case of Theorem
3, we only have to consider the three cases for SendPRR and SendAuth queries, respectively. Since the response
of challenger is completely same as the case of Theorem 3, we omit them. Consider the following sequence of
games.

Game 0. This is exactly the IR-AA game.
Game 1. This game proceeds in the same way as Game 0, except that the first messages r of SA picked

in the execution of PRR (in the response to A’s SendPRR query) and Auth (either in the response to A’s
SendAuth query, or Auth in the challenge phase), are picked from {0, 1}k\{r’s that are already used }, so
that they are all distinct and never collide. As with Game 1 in Theorem 3, we introduce the list R and
use it in the same manner.

Game 2. This game proceeds in the same way as Game 1, except that except that as in Game 2 considered
in the proof of Theorem 1, we replace the output of F (K, ·) with a random string.

Game 3. This game proceeds in the same way as Game 2, except the following points:
If A sends a SendPRR query of the form (sid, 2, r), then after calculating the response c and updating

the tuple in L′
P as in the previous game, B also stores the value r used by in the same entry in L′

P

(say, by appending r in the last of the entry). (Here, note that the value r used by A may not be
identical to the value chosen and used by B as a response to the SendPRR query (sid, 1, ϕ) previously
made by A.)

If A sends a SendPRR query of the form (sid, 3, c), then instead of decrypting c, B responds with ⊤ if
r = r̂ holds, and ⊥ otherwise, where r is the value used as a response to A’s previous SendPRR query
of the form (sid, 1, ϕ), and r̂ is the value contained in the previous A’s SendPRR query (sid, 2, r). (Note
that both of the values can be found in L′

P .)
If A sends a SendAuth query of the form (sid, 2, r), then after calculating the response c and updating

the tuple in L′
A as in the previous game, B also stores the value r in the same entry in L′

A (say, by
appending r in the last of the entry). (Here, note that the value used by A may not be identical to
the value chosen and used by B as a response to the SendAuth query (sid, 1, ϕ) previously made by
A.)

If A sends a SendAuth query of the form (sid, 3, c), then instead of decrypting c, B responds with ⊤ if
r = r̂ and pw = pws hold, and ⊥ otherwise, where r is the value used as a response to A’s previous
SendAuth query of the form (sid, 1, ϕ), and r̂ is the value contained in the previous A’s SendAuth query
of the form (sid, 2, r), both of which can be found in L′

A, pw is the value also contained in the entry
in L′

A corresponding to sid, and pws is the value stored in L such that ID in L and ID in the entry
corresponding to sid in L′

A and match.
Game 4. This game proceeds in the same way as Game 3, except the following points.

– If A1 issues SendPRR(sid, 2, r) queries, B first finds the tuples (sid, ID, pw, ∗, ∗, ∗) in the list L′
P and

(ID, ∗, ∗, rk, ∗, ∗) in the list L. Then, B executes c∗ ← PEnc(pk, ID∥r∥0|rk|+|pw|) and uses c∗ instead
of c← PEnc(pk, ID∥r∥rk∥pw).]

– If A1 issues SendAuth(sid, 2, r) queries, B first finds the tuples (sid, ID, pw, ∗, ∗, ∗) in the list L′
P ,

executes c∗∗ ← PEnc(pk, ID∥r∥0|pw|), and uses c∗∗ instead of c← PEnc(pk, ID∥r∥pw).

For i ∈ {0, 1, 2, 3, 4}, we define the event Wi as the event that A wins in Game i. The advantage of A is,
by definition, AdvIR-AAA (k) = Pr[W0]. We complete the proof by using the following inequality, and the upper
bounds in the terms in the right hand side are shown in Lemmas 15 to 19.

Pr[W0] ≤
3∑

i=0

|Pr[Wi]− Pr[Wi+1]|+ Pr[W4] (4)

where the above equality can be derived by the triangle inequality.

Lemma 15. |Pr[W0]− Pr[W1]| is negligible.

Proof. This proof follows closely to that of Lemma 10. Therefore, we omit it. ⊓⊔

Lemma 16. If F is a PRF, |Pr[W1]− Pr[W2]| is negligible.
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Proof. This proof follows closely to that of Lemma 11. Therefore, we omit it. ⊓⊔
Lemma 17. Pr[W2] = Pr[W3].

Proof. This proof follows closely to that of Lemma 12. Therefore, we omit it. ⊓⊔
Lemma 18. If the PKE scheme is mIND-CCA secure, |Pr[W3]− Pr[W4]| is negligible.

Proof. The proof of this lemma follows closely to that of Lemma 13, and thus we only highlight the differences.
In the proof of Lemma 13, the mIND-CCA adversary uses its challenge query to respond to A’s SendAuth
query of the form (sid, 2, r), while the mIND-CCA adversary in this proof can simply respond with c ←
PEnc(pk, ID∥r∥pw) which is exactly what the challenger in Game 3 does. This guarantees that the mIND-
CCA adversary perfectly simulates Game 3 (resp. Game 4) for A if its challenge bit is b = 0 (resp. b = 1).
Furthermore, the mIND-CCA adversary outputs b′ = 0 only if A succeeds in registering an illegal password
(which can be detected by using the decryption oracle, as explained in the proof of Lemma 8). Put together,
the mIND-CCA adversary’s advantage is exactly |Pr[W3]− Pr[W4]|, which is negligible. This completes the
proof of Lemma 13. ⊓⊔
Lemma 19. Pr[W4] is negligible.

Proof. Note that in Game 4, the responses to the SendPRR queries contain no information of rk. Therefore,
the probability that A succeeds the guess of rk (that is, the probability that A wins in Game 4) is negligible.
This completes the proof of Lemma 19. ⊓⊔

Lemmas 15 to 19 guarantee that the right hand side of the inequality (4) is negligible, and thus A has
negligible advantage in the IR-AA game. This completes the proof of Theorem 4. ⊓⊔

6 Implementation

To show the practical feasibility and test the performance of our protocol, we implemented a prototype of our
protocol (excluding the communication part) in Python. We implemented our first scheme (Fig. 1), and all
cryptographic operations are performed using the python cryptography toolkit (Pycrypto 2.6.1). We expect
that performance can be improved by using other appropriate libraries (e.g. Number Theory Library [29]).

We implement our scheme on a laptop computer (Windows 7 (64bit), Core i7-M640 2.80GHz, 8GB RAM).
Table 1 shows the computational costs of our first protocol. We implement F (K,x) in our construction as
H(K∥x) where H is SHA-256. This means that we regard SHA-256 hash function as a random oracle.
We adopt RSA-OAEP(2048bit) as a PKE scheme. We omit to calculate the the execution time of SSetup
algorithm because this operation is executed only once and does not rely on the participation of users.
PRR1(Auth1) denotes the first server side execution, PRR2(Auth2) denotes the first client side execution,
and PRR3(Auth3) denotes the second server side execution. We set the length of ID as 10 alphanumeric
characters, randomnesses that is used in the first pass of PRR/Auth as 128bit, and passwords that is used in
the PRR/Auth as 16 alphanumeric characters. We execute each algorithm 10000 times, and show its average
time in Table 1.

Although the executions of PRR3 and Auth3 (the dominant part of these algorithms is decryption of
RSA-OAEP(2048bit)) take more time than other algorithms, even these two algorithms need less than 50ms.
Therefore, we can see that our scheme is suitable for practical use.

7 Conclusion

In this paper, we proposed a model, security definitions, and a construction of a provably secure password
reset protocol. Our generic construction is based on a PRF and PKE. We can construct a number of concrete
password reset protocols from this generic construction.

Countermeasures against server breach is one of the future works. It is interesting to introduce a server
decentralization to the password reset protocol like Camenisch et al.’s decentralized password verification
protocol [9]. Another future work is to propose another model and security definitions. In this paper, we
proposed a model that introduces a reset key and two security definitions (impersonation/illegal registration).
However, there may exist a more appropriate model and security definitions depending on the system context.
We believe that this paper opens a door to rigorous security treatment of password reset protocols and that
our proposed model/schemes can be a foundation there.
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Table 1. Performance of our scheme (computational cost)

Name of Execution
algorithms time [µs]

RKG 2.61
PRR1 2.68
PRR2 3.67× 103

PRR3 4.67× 104

Auth1 2.71
Auth2 3.62× 103

Auth3 4.67× 104
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