
1

In The Name of God

Fruit: ultra-lightweight stream cipher with shorter internal state

Vahid Aminghafari, Honggang Hu

Key Laboratory of Electromagnetic Space Information, Chinese Academy of Sciences,

University of Science and Technology of China, Hefei, China, 230027

vahidaming@mail.ustc.edu.cn, hghu2005@ustc.edu.cn

Abstract
In eSTREAM project a few lightweight stream cipher for hardware was introduced

(2008) and then in FSE 2015 Sprout was proposed. Sprout introduced a new idea,

design of stream cipher with shorter internal state by using key not only in

initialization but also in keystream generation, but it was insecure. Fruit stream

cipher is successor of Grain and Sprout stream ciphers that we show is secure and

ultra-lightweight cipher. Internal state of Fruit is only 80 bits and also length of key

and IV is 80 bits for 80-bit security. It is noticeable that internal state size is equal

to amount of security while for resistance stream cipher against Time-Memory-

Data trade-off attack, internal state should be at least twice of security level. For

compensate of this we use some new ideas in design.

Keywords: Stream ciphers, Lightweight, Grain, Sprout, dynamic initialization, Cryptographic Primitive

Introduction
Nowadays need to secure lightweight symmetric cipher is obviously more than eSTREAM project time (this

is provable by a lot of paper in design and cryptanalysis of light cipher). WSN and RFID and mobile phone

are instances lead us to accept important of design new and secure lightweight ciphers.

Three Stream ciphers have been introduced in the hardware profile of portfolio of eSTREAM project. They

are Trivium and MICKEY 2.0 and Grain-v1 [7, 8, 9]. Grain-v1 use NFSR and LFSR together, the linearity

section would guarantee good statistical properties and guarantee about period, while the nonlinearity part

would protect against attacks that can be mounted against a linear cryptosystem. Grain-128 was introduced in

2006 [10] and some attacks proposed to it [11, 12, 13, 14, 15, 16, 17]. Indeed Grain-128 was not secure as

2

expected (such as Grain-v1). Grain-128a [18] was proposed in 2011. Although some attacks have been applied

to Grain-128a [19, 20, 21], due to practicality point of view, still it is stand-up.

Sprout is stream cipher with shorter internal state that was introduced in FSE 2015 [1]. A short while after

Sprout was introduced many attacks was published against it [3, 6, 4, 23, 2, 5]. Although it has become clear

that Sprout is insecure, but it had a great new idea that help to design stream cipher with smaller area size.

The new idea is to effect secret key not only in initialization but also during key generation. Actually this idea

help to extend internal state to secret key. Due to in the most of application we should save key for reuse by

different IV, the idea help to us have bigger internal sate (therefor we can design stronger ciphers). On the

other hand, we need to save key in a fix memory in some applications (in this case one fix key is sufficient

for ever) and it is known that save fix bits need less area size in compare to save bits in temporary memory

(e.g. bourn fix key in fuse). Thus we can design stream ciphers with shorter internal state [1]. Fix key was not

used in a suitable way in the design of Sprout and in the papers about cryptanalysis of Sprout mentioned that

design of stream cipher (by the new idea) is too hard [3, 5] and in other paper, authors told it is fascinate [23]

and other authors predict very soon secure cipher will be proposed by this new idea [2].

Necessary condition for stream ciphers to be resistance against time memory data trade-off attack is internal

state size that should be at least twice of his security (while secret key only use in initialization stage). For

example in Trivium and MICKEY 2.0 and Grain-v1, portfolio of eSTREAM project, we can see this fact. But

we know that in some application (such as RFID, WSN) there are less resource and we need new stream

cipher with minimal internal sate. We think that this is new generation in design of stream cipher and we

define ciphers with less than 900 GE (gate equivalents) ultra-lightweight stream ciphers (Sprout is ultra-

lightweight stream cipher).Here we propose another reduced internal state stream cipher, Fruit, that is

successor of Grain and Sprout that we will show is secure and ultra-lightweight cipher. Really in nature after

a while grain becomes sprout and in finally we have fruit. We think that Grain and Sprout were new generation

in design of stream ciphers and now Fruit is mature in stream ciphers.

In continue of the paper, we explain about design of Fruit and next design criteria. Then we show Fruit is

resistance to known attacks. Finally we tell about hardware implementation of Fruit.

Design Details of Fruit

Internal state consists of 43-bit LFSR (𝑙𝑡 , … , 𝑙𝑡+42), 37-bit NFSR (𝑛𝑡 , … , 𝑛𝑡+36), 14-bit counter, 𝐶 (𝑐𝑡
0, … , 𝑐𝑡

13).

Inputs for cipher are 80-bit secret key, 𝐾 (𝑘𝑖 ,0 ≤ 𝑖 ≤ 79) and 80 bits public Initial Value, 𝐼𝑉 (𝑣𝑖 ,0 ≤ 𝑖 ≤

79). Note that maximum number of stream bits that can be produced from one key and IV is 2^43 bits and

3

every key should use less than 2^15 times with different IVs. It is not acceptable to reuse IV, i.e. use identical

IV with different keys.

Fig. 1: Block Diagram of Fruit

Now we explain every part of cipher in detail:

-Round key function: we separate 80 bits key to 3 strings such as follow.

First key string = 𝑘0 ,𝑘1 ,𝑘2 ,…, 𝑘15

Second key string = 𝑘16 ,𝑘17 ,𝑘18 ,…, 𝑘47

Third key string = 𝑘48 ,𝑘49 ,𝑘50 ,…, 𝑘79

We combine 3 first bits of key strings to obtain first bit of round key, i.e. 𝑘0
′ = 𝑘0 ⊕ 𝑘16 ⊕ 𝑘48. For next clock

we should consider next bit in every key string in a cycle, i.e. 𝑘1
′ = 𝑘1 ⊕ 𝑘16 ⊕ 𝑘48. We can produce round

keys as follow. We need 14 bit registers for implementation of this function.

For 𝑖 = 0 to 𝑖 = 15

 For 𝑗 = 16 to 𝑗 = 47

 For 𝑚 = 48 to 𝑚 = 79

 𝑘𝑡
′ = 𝑘𝑖⨁𝑘𝑗⨁𝑘𝑚

-g function: we use one bit from LFSR and 4 bits of the counter and 𝑘𝑡
′ and 20 bits of NFSR as a variables of

g function for clocking of NFSR.

4

𝑛𝑡+37 = (𝑘𝑡
′ ⊕ 1) . (𝑐𝑡

0 ⊕ 𝑐𝑡
2 ⊕ 𝑛𝑡+10 ⊕ 𝑛𝑡+20 ⊕ 𝑛𝑡+12. 𝑛𝑡+3)

⊕ (𝑘𝑡
′) . (𝑐𝑡

1 ⊕ 𝑐𝑡
3 ⊕ 𝑛𝑡+6 ⊕ 𝑛𝑡+21 ⊕ 𝑛𝑡+11. 𝑛𝑡+16) ⊕ 𝑙𝑡 ⊕ 𝑛𝑡 ⊕ 𝑛𝑡+14. 𝑛𝑡+25

⊕ 𝑛𝑡+8. 𝑛𝑡+18 ⊕ 𝑛𝑡+5. 𝑛𝑡+23. 𝑛𝑡+31 ⊕ 𝑛𝑡+28. 𝑛𝑡+30. 𝑛𝑡+32. 𝑛𝑡+34

-f function: feedback function in LFSR is primitive. Thus maximum string will be produced by following

function.

 𝑙𝑡+43 = 𝑙𝑡 ⊕ 𝑙𝑡+8 ⊕ 𝑙𝑡+18 ⊕ 𝑙𝑡+23 ⊕ 𝑙𝑡+28 ⊕ 𝑙𝑡+37

-h function: this function produce pre-output stream from LFSR and NLFSR sates.

 ℎ𝑡 = 𝑛𝑡 . 𝑙𝑡+15 ⊕ 𝑙𝑡+1. 𝑙𝑡+22 ⊕ 𝑛𝑡+35. 𝑙𝑡+27 ⊕ 𝑛𝑡+33. 𝑙𝑡+11 ⊕ 𝑙𝑡+6. 𝑙𝑡+33. 𝑙𝑡+42

-running key: output will be produced by 7 bits from NLFSR and 1 bit from LFSR and output of ℎ function.

 𝑧𝑡 = ℎ𝑡 ⊕ 𝑛𝑡+1 ⊕ 𝑛𝑡+7 ⊕ 𝑛𝑡+13 ⊕ 𝑛𝑡+19 ⊕ 𝑛𝑡+24 ⊕ 𝑛𝑡+29 ⊕ 𝑛𝑡+36 ⊕ 𝑙𝑡+38

-Initialization of cipher: We split bits of the key into 4-bits and XOR first 10 segment together and also

last 10 segment together. Therefor we have two 4-bits word, 𝐼 and 𝐼′ as follow (𝐼 and 𝐼′ are 4-bit digit).

𝐼 =⊕𝑖=0,4,8,12,16,20,24,28,32,36 (𝑘𝑖𝑘𝑖+1𝑘𝑖+2𝑘𝑖+3)

𝐼′ =⊕𝑖=40,44,48,52,56,60,64,68,72,76 (𝑘𝑖𝑘𝑖+1𝑘𝑖+2𝑘𝑖+3)

Now we extend 𝐼𝑉 to 𝐼 + 𝐼′ + 82 bits by concatenating two vectors to the first and last bits of 𝐼𝑉. we add one

number 1 and 𝐼 number 0 to the first of 𝐼𝑉 and 𝐼′ number 0 and one number 1 to the end of 𝐼𝑉 and we call it

𝐼𝑉′(𝑣𝑖
′,0 ≤ 𝑖 ≤ 𝐼 + 𝐼′ + 81) as follow.

𝐼𝑉′ = 10 … 00𝑣0𝑣1𝑣2 … 𝑣77𝑣78𝑣7900 … 01

In initialization round, key bits is loaded to NFSR and LFSR respectively from LSB to MSB (𝑘0 to 𝑛0 , 𝑘1 to

𝑛1 …and 𝑘37 to 𝑙0 , 𝑘38 to 𝑙41 …). We clock 𝐼 + 𝐼′ + 82 times the cipher and before each clock, XOR output

with 𝐼𝑉′ bits and also feedback output stream to NFSR and LFSR, i.e. 𝑧𝑖 ⊕ 𝑣𝑖
′, 0 ≤ 𝑖 ≤ 𝐼 + 𝐼′ + 81 (as show

in fig. 1). Now, we put 𝑙𝑡 = 1, 𝑡 = 𝐼 + 𝐼 + 82 for preventing all zeroes in LFSR. Then cipher should clock

80 times without feedback output in LFSR and NFSR (i.e. during last 80 clocks we disconnect feedback of 𝑧𝑡

to LFSR and NFSR). Thus, the cipher doesn’t produce any output stream in the 𝐼 + 𝐼′ + 162 initial clocks.

Note that for initial clocks we use 8 bits of free counter registers.

5

Design criteria
-Limitation for producing output stream: due to length of LFSR we can produce 2^43 bits in maximum in

every initialization (period of internal state is at least 2^43 bits). We think that 1 terabyte is almost sufficient

for all application because our cipher is special for hardware application (e.g. WSN and RFID).

-Round key function: we produce 214 different key from original key. Attacker can (with guessing internal

states and known output keystream) obtain some of 𝑘𝑡
′, but due to the number of initial clock is unknown

(dynamic), it is not to easy solve linear equations system.

-g function: The function that produces 𝑛𝑡+37 is in 20 variables of NFSR due to light implementation in

hardware in compare to Grain-v1 and Sprout. If we suppose 𝑘𝑡
′ = 𝑐𝑡

0 ⊕ 𝑐𝑡
2 ⊕ 𝑙𝑡 = 0, the nonlinearity of g

function will be 28 × 3760 and resiliency 2. Variables for high degree term is chosen from 𝑛𝑡 with 𝑡 > 27

that cause the degree of variables very soon hit maximum possible degree in NFSR.

-f function: feedback polynomial is primitive, so the period of produced string by LFSR with non-zero initial

is maximum. Due to after fed back output bit to LFSR we put 𝑙0=0, we are sure that period of LFSR and

NFSR is at least 2^43 bits. Some attacks was proposed to Grain and Sprout from this weakness [22, 23].

-Output function: The nonlinearity of ℎ function is 976. We add 8 linear terms in order to increase

nonlinearity to 249856 and also to make function with 7 resiliency. The best linear approximation of output

function has 8 terms with 2−5.415 bias.

Note that we use 𝑛𝑡+36 and 𝑛𝑡in output function for preventing produce keystream in next clock and previous

clock with unknown 𝑘𝑡
′.

Resistance against known attacks
Security level of fruit is 80 bits, thus here we show that computational complexity of some main attacks is

more than exhaustive search attack to 80 bits.

-Linear Approximation Attack: this attack was applied to Grain-v0 [24]. In [24] discussed that if NFSR and

output function choose with high nonlinearity and suitable resiliency, it will be strength to Linear

6

Approximations attack. We choose NFSR and output function with high nonlinearity and good resiliency and

also in Fruit a nonlinear function of key is involved on NFSR. Therefor our cipher is strength to this attack.

-Guess and determine attack: due to shorter internal sate in Sprout and Fruit, this attack is very important

to us (Sprout was weak against this attack [23]). If attacker guess all bits of internal sate in the Sprout, he can

clock 2 times forward and one time backward (with unknown key) and in every clock he can decrease the

wrong candidates of internal sate. In the next clocks attacker obtain one bit of key or decrease the wrong

candidates of internal sate. We strengthen round key function and use 𝑛𝑡+36 and 𝑛𝑡in output function for

preventing produce keystream in next clock and previous clock with unknown 𝑘𝑡
′ and we use more bits of

counter in internal state (to efficiently increase internal state size). If attacker can obtain some of 𝑘𝑡
′, due to

unknown number of initial clocks (the number of initial clocks depend on all bits of key) it is too hard attacker

can solve linear equations and obtain key. Thus, Fruit is resistant against this attack.

-Time-Memory-Data Trade-off Attack: in literature is famous that if the size of internal state is not at least

twice of security level, cipher is weak to this attack. In Fruit we use fix key as an internal state and also some

bits of counter, therefor there is no problem from this view.

-Related-key Attack: There is weakness in initialization process of Grain-128a [21] and Sprout [3]. Designers

of Sprout ruled out related key attack. They believe that due to key is fix in ultra-lightweight ciphers, this

attack is not workable on Sprout [1]. Nevertheless we propose new scheme in initialization stage to strength

against this attack. We do not load IV bits directly in internal sate and so do not combine IV and key bits

straightforward together. Also we use asymmetric padding with IV and dynamic number of clock in

initialization, thus we are sure there is not weakness to this attack.

-Cube attack: due to the dynamic number of clocks in initialization stage and suitable clock number, it is too

hard to find any low degree multiplicative expression (of some bits of IV) base on key in Boolean function of

output. Therefor our design is resistant against to all type of Cube attack.

-Algebraic attack: this attack have not been applied to Grain family but combination of this attack was

applied to Sprout [4]. Short internal state (or we can tell weak round key function) in Sprout has been caused

7

this weakness. We strengthen round key function and use more bits of counter in internal state, so we think

Fruit in more resistant.

Hardware implementation cost
Design of lightweight cipher is very important in industries while we need to light ciphers in many filed such

as communication and WSN and RFID and etc. due to stream ciphers are lighter than block ciphers and very

lighter than public ciphers, it is obvious that design of ultra-lightweight stream cipher is very important. Our

goal was design strength cipher with less than 900 GE. We use gate count for fair compare of hardware

implementation cost between Grain-v1 and Sprout and Fruit proposed in [10, 18]. Due to hardware

implementation cost is dependent on many factors such as hardware used in implementation and techniques

of implementation and etc., and also due to it is not possible in clear way to show provable results of

implementation, we compare gate count of ciphers according to Table 1 [10, 18]. Note that this compare is

not consist of all parts such as multiplexers needed in order to switch between key/IV loading, initialization,

but it consist of main parts of every ciphers. We don’t dedicate any gate to key bits, because in every cipher

should save key for reuse with different IVs.

Table 1. The gate count used for different functions

Function Gate Count

NAND2 1

NAND3 1.5

NAND4 2

XOR2 2.5

2-1 MUX 5

Flip flop 8

Table 2. The compare of estimated gate count for implementation of Grain-v1 and Sprout and Fruit

 Grain-v1 Sprout Fruit

LFSR 8*80 8*40 8*43

NFSR 8*80 8*40 8*37

8

f function 2.5*5 2.5*5 2.5*5

g function 75 56.5 49.5

Output 53 38 38

Round key function 0 85.5 117

etc. 64# 0 0

Total gate count 1484.5 832.5 857

#: Related to counter in initialization stage

Conclusion
Fruit stream cipher in compare with Grain-v1 is very lightweight in hardware implementation and due to

Grain-v1 is lightest candidate in eSTREAM project, it is known that design of secure stream ciphers such as

Fruit is very interesting. We show that Fruit unlike Sprout cipher is secure with some new idea. In most

application of symmetric cipher secret key (for reuse with other IVs) should save (in a memory) and here we

show how we can exploit it in the design. We prove that suitable use of fixed secret key as an internal state

cause to save in area size while we can design secure cipher.

Acknowledgement
This work has been supported by CAS-TWAS President’s Fellowship for International PhD students.

References
[1] Armknecht, F., Mikhalev, V.: On lightweight stream ciphers with shorter internal states. In: Leander, G.

(ed.) FSE 2015. LNCS, vol. 9054, pp. 451–470. Springer, Heidelberg (2015)

[2] Esgin, M.F., Kara, O.: Practical Cryptanalysis of Full Sprout with TMD Tradeoff Attacks.

http://eprint.iacr.org/2015/289.pdf

[3] Hao, Y.: A Related-Key Chosen-IV Distinguishing Attack on Full Sprout Stream Cipher.
http://eprint.iacr.org/2015/231.pdf

[4] Maitra, S., Sarkar, S., Baksi, A., Dey, P.: Key Recovery from State Information of Sprout: Application to

Cryptanalysis and Fault Attack. http://eprint.iacr.org/2015/236.pdf

[5] Zhang, B. ,Gong, X. : Another Tradeoff Attack on Sprout-Like Stream Ciphers, ASIACRYPT 2015, Part

II, LNCS 9453, pp. 561–585, 2015

[6] Lallemand, V., Naya-Plasencia, M.: Cryptanalysis of full sprout. In: Gennaro, R., Robshaw, M. (eds.)

Advances in Cryptology – CRYPTO 2015. LNCS, vol. 9215, pp. 663–682. Springer, Heidelberg (2015)

[7] De Canni`ere, C. Preneel, B. “Trivium - a Stream Cipher construction inspired by block cipher design

principles. estream, ecrypt Stream Cipher” Technical report, of Lecture Notes in Computer Science.

[8] Babbage, S., Dodd, M. “The Stream Cipher MICKEY 2.0” ECRYPT Stream Cipher Project Report.

http://www.ecrypt.eu.org/stream/ p3ciphers/mickey/mickey_p3.

http://eprint.iacr.org/2015/289.pdf
http://eprint.iacr.org/2015/231.pdf
http://eprint.iacr.org/2015/236.pdf
http://www.ecrypt.eu.org/stream/

9

[9] Hell, M., Johansson, T., Meier, W. “Grain—A Stream Cipher for constrained environments” New Stream

Cipher Designs, 2008 Lecture Notes in Computer Science, vol. 4986, pp. 179–190, available at

http://www.ecrypt.eu.org/stream/p3ciphers/grain/Grain_p3.pdf.

[10] Hell, M., Johansson, T., Maximov, A., Meier, W. “A Stream Cipher Proposal: Grain-128,” in

International Symposium on Information Theory—ISIT 2006. IEEE, 2006

[11] Küçük, Ö, “Slide resynchronization attack on the initialization of Grain¨1.0,” eSTREAM, ECRYPT

Stream Cipher Project, Report 2006/044, 2006, http://www.ecrypt.eu.org/stream.

[12] Dinur, I., Shamir, A. “Breaking grain-128 with dynamic cube attacks,” FSE 2011, Lyngby, Denmark,

2011, pp. 167–187.

[13] Dinur, I. ,Güneysu, T., Paar, C., Shamir, A., Zimmerman, R. “An experimentally verified attack on full

grain-128 using dedicated reconfigurable hardware,” Proc. ASIACRYPT 2011, Seoul, South Korea, 2011,

pp. 327–343.

[14] J. M. Miodrag, G. Sugata, P. Goutam, and I. Hideki, “Generic cryptographic weakness of K-normal

Boolean functions in certain stream ciphers and cryptanalysis of grain-128,” Periodica Mathematica

Hungarica, vol. 65, no. 2, pp. 205–227, Dec. 2012.

[15] J. P. Aumasson, I. Dinur, L. Henzen, W. Meier, and A. Shamir, “Efficient FPGA implementations of

high-dimensional cube testers on the stream cipher grain-128,” IACR Cryptology ePrint Archive, pp.218–

218, 2009

[16] P. Stankovski, “Greedy distinguishers and nonrandomness detectors,” INDOCRYPT 2007, Hyderabad,

India, 2010, pp. 210–226.

[17] S. Knellwolf, W. Meier, and M. Naya-Plasencia, “Conditional differential cryptanalysis of NLFSR-based

cryptosystems,” in Proc. ASIACRYPT 2010, Singapore, 2010, pp. 130–145.

[18] M. Ågren, M. Hell, T. Johansson, and W. Meier, “A new version of Grain-128 with authentication,” in

Proc. Symmetric Key Encryption Workshop, Lyngby, Denmark, Feb. 2011 [Online]. Available:

http://skew2011.mat.dtu.dk/

[19] Banik, S., Maitra, S., Sarkar, S.: A differential fault attack on Grain-128a using MACs. SPACE 2012.

LNCS, vol. 7644, pp. 111–125. Springer, Heidelberg (2012)

[20] Banik, S., Maitra, S., Sarkar, S.: A differential fault attack on the Grain family of stream ciphers CHES

2012. LNCS, vol. 7428, pp. 122–139. Springer, Heidelberg (2012).

[21] L. Ding and J. Guan, "Related Key Chosen IV Attack on Grain-128a Stream Cipher", IEEE

Trans.Inform.Forensic Secur., vol. 8, no. 5, pp. 803-809, 2013.

[22] H. Zhang and X. Wang, “Cryptanalysis of stream cipher Grain family,” Cryptology ePrint Archive,

Report 2009/109, 2009, http://eprint.iacr.org/.

[23] Banik Subhadeep., Some Results on Sprout. http://eprint.iacr.org/2015/327.pdf

[24] A. Maximov, “Cryptanalysis of the “Grain” family of stream ciphers”, in ACM Symposium on

InformAtion, Computer and Communications Security (ASIACCS’06), 2006, pp. 283–288.

http://www.ecrypt.eu.org/stream
http://eprint.iacr.org/
http://eprint.iacr.org/2015/327.pdf

