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Abstract

The Kalray MPPA-256 processor is based on a recent low-energy manycore architec-
ture. In this article, we investigate its performance in multiprecision arithmetic for number-
theoretic applications. We have developed a library for modular arithmetic that takes full
advantage of the particularities of this architecture. This is in turn used in an implementa-
tion of the ECM, an algorithm for integer factorization using elliptic curves. For parameters
corresponding to a cryptanalytic context, our implementation compares well to state-of-the-
art implementations on GPU, while using much less energy.

Keywords: Kalray MPPA-256 manycore processor; Multiprecision modular arithmetic; In-
teger factorization; Elliptic curve method

1 Introduction

Invented in 1985 by Lenstra [15], the elliptic curve method (ECM) is an integer factoring
algorithm that is today considered the best one when one wants to extract prime factors of
moderate size in a large number. It is therefore the method of choice when one wants to check
if a number is smooth (i.e., if all its prime factors are below a certain bound). It is also used
as one of the steps in the factorization toolchain in general-purpose computer algebra systems
such as Sage, GP/Pari, Magma or Maple. The widespread GMP-ECM [19] is a reference
implementation in this context; more recent libraries like EECM-MPFQ [5] make use of the
faster elliptic curve arithmetic provided by the so-called twisted Edwards curves, instead of the
traditional Montgomery model.

As a smoothness test, ECM is also an important subroutine for more general algorithms.
We focus here on ECM parameters that are relevant in the context of the number field sieve
(NFS) for integer factorization or for computing discrete logarithms in large-characteristic finite
fields [14]. In NFS, a large proportion of the time is spent looking for relations, which can be
done by sieving or by ECM, and more generally with a combination of these two strategies.
In NFS variants that yield the best asymptotical complexities, namely Coppersmith’s multiple
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polynomial NFS [8], or batch NFS [6], the role of ECM in the relation collection step is even
more important. For a 768-bit integer handled with NFS, ECM is run on inputs that have
typically around 200 bits, and the smoothness bound has about 35 bits.

Apart from the relation collection step, ECM is also important in the final step of NFS for
discrete logarithms, called the individual logarithm step, where a descent phase is initialized
using a smoothness test. Here, the input can have up to 500 bits, and the smoothness bound is
also larger, but there are still too few published data on the topic to be precise. In a LogJam-
type attack [2], assuming the large precomputation has been done, this smoothing step with
ECM is the bottleneck.

In those two contexts related to NFS, the quantity of numbers to be tested for smoothness
is huge, but this is a task that can be parallelized in a straightforward way. This is the reason
why a lot of effort has been put in decreasing the cost of ECM for numbers of moderate sizes, in
particular using non-general-purpose coprocessors. In [7], Bos and Kleinjung optimized ECM
using twisted Edwards curves on GPU. This was further improved in [16] and provides the most
efficient implementation so far for the NFS context, using algorithmic improvements to fit the
memory constraints of a GPU environment.

In this paper, we want to explore the potential of the MPPA-256 processor developed by
Kalray [1] as an ECM coprocessor. This is a recently designed, lightweight manycore processor,
where each of the 256 cores is an independent 32-bit VLIW architecture. In the ECM algorithm,
most of the time is spent in the elliptic curve group law, that must be performed modulo
the integer that is being factored. Therefore, in the end, most of the time is spent doing
multiprecision modular arithmetic, in particular modular multiplications, and this operation
must be optimized as much as possible.

We propose a library for multiprecision arithmetic for numbers of fixed sizes correspond-
ing to our target in the NFS context, where all critical parts are written in assembly, taking
full advantage of the VLIW architecture to explicitly schedule the operations in all available
pipelines. On top of it we implemented the ECM algorithm, following the algorithmic ideas
of [16], that we slightly improved. The memory constraints of a GPU and of the MPPA-256 are
rather different, but the same strategies behave pretty well.

The results are quite satisfactory: in terms of number of curves tried per second on the
whole chip, the GPU is faster than the MPPA-256 by a factor around 3, but this must be put
in a larger perspective since the peak power consumption of the MPPA-256 is only 16 W, while
the GPU needs a bit less than 250 W. So, in terms of number of curves tried per joule, the
count is in favor of the MPPA-256 by a factor ranging from 5 to 7, depending on the context.

The source code written for all our experiments is distributed under a free-software license
and can be downloaded from https://gforge.inria.fr/projects/kalray-ecm. Although
the ECM part is admittedly quite specialized, the multiprecision modular arithmetic library
can be used in other contexts.

The paper is organized as follows. In the next section, we start with a description of the
MPPA-256 processor, where we insist in particular on the architecture of the individual cores.
Then, in Section 3, we explain our low-level implementation of the multiprecision modular arith-
metic library. Finally, Section 4 contains details about the ECM applications, with benchmarks
and a comparison with the literature.
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2 The Kalray MPPA-256 manycore processor

2.1 Global overview

Launched in 2012, the Kalray MPPA-256 processor (codenamed Andey) is a single 28 nm CMOS
chip, clocked at 400 MHz, which integrates a 4 × 4 array of 16-core compute clusters (CCs),
along with 4 quad-core I/O subsystems located on the north, south, east and west ends of the
chip, all connected by means of two toric networks-on-chip (NoCs), as depicted in Figure 1.
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Figure 1: Global architecture of the Kalray MPPA-256 [10].

Each compute cluster is composed of 16 cores, or processing engines (PEs), along with an
extra core, the resource manager (RM), reserved for system use, and a 2 MB memory bank,
shared by the 17 cores. A schematic view of a compute cluster is given in Figure 2.
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Figure 2: Details of a compute cluster [10].

Each core of the I/O subsystems runs under the RTEMS1 real-time operating system, while
the RM of each compute cluster runs under NodeOS, a specific operating system developed by

1Real-Time Executive for Multiprocessor Systems, https://www.rtems.org/.
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Kalray. Both RTEMS and NodeOS implement POSIX-compatible APIs. MPPA-256 applica-
tions are then designed as POSIX-like processes deployed on the I/O subsystems and on the
compute clusters, communicating together through the NoCs using network operations similar
to reads and writes on UNIX sockets. Finally, a Pthreads-like interface allows one to run up
to 16 threads in parallel on each compute cluster, thanks to their multi-core architecture.

2.2 Core architecture

The cores in the MPPA-256 are all based on the Kalray-1 (or K1) microarchitecture. It is an
in-order, fully-pipelined, 32-bit, VLIW (Very Long Instruction Word) processor, which embeds
five execution units: two Arithmetic & Logic Units (ALU0 and ALU1), a Multiply–Accumulate
Unit (MAU), a Load/Store Unit (LSU), and a Branch & Control Unit (BCU). The MAU can
also serve as Floating-Point Unit (FPU), and both the MAU and the LSU also support a subset
of the ALU instruction set (referred to as ALUtiny).

These execution units communicate by means of a shared register file (RF) of 64 32-bit
general-purpose registers, which supports up to 11 read and 4 write accesses per cycle. In case
of read-after-write dependencies, the register file can by bypassed, and the output of one unit
directly used as the input of another one, so as to save one clock cycle between consecutive
dependent instructions.

Finally, each K1 core has dedicated instruction and data caches of 8 kB each, along with a
64-byte write buffer.

The microarchitecture, along with a schematic representation of the pipeline stages, are
depicted in Figure 3.

PF ID RR E1 E2 E3 E4

MAU

LSU
Streaming FIFO

(4 entries)

BCU

MUL–ACC

FPU

ALU0

ALU1

ALUtiny

ALUtiny

RF
32 bits
64 regs
11 RD
4 WR

Fetch

Align

Decode

Dispatch

PFB

128 bits
3 entries

H
W
L

+

ITC
16 lines

EVC
192 lines

RTC
2 timers
1 watchdog

OCE

MMU

I-cache 8 kB
2-way set associative
64 B lines

D-cache 8 kB
2-way set associative
32 B lines

WB 64 B
8-way fully associative
8 B entries

Figure 3: VLIW pipeline of the K1 architecture [9].

2.3 The Kalray-1 instruction set

The ALUtiny instruction set, which is supported by both ALUs, along with the MAU and the
LSU, covers most of the simple 32-bit integer operations, such as addition, subtraction and
bitwise logic. The main ALUs also support a few extra integer instructions (such as shifts), and
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can even be combined to support 64-bit instructions, operating on pairs of registers. All these
ALU instructions have a 1-cycle latency.

The MAU supports a fully pipelined 32× 32→ 64-bit integer multiplication, with a 2-cycle
latency and a 1-cycle inverse throughput. It is also possible to couple this multiplication with
a 64-bit accumulation into a register pair at no additional cost.

The FPU, which shares its logic with the MAU, supports IEEE-754-compliant single-precision
floating-point arithmetic, along with a few double-precision operations as well. However, we do
not consider those in this work.

The LSU, in charge of all memory accesses, supports both 32- and 64-bit loads and stores.
When the data is available in the cache, read instructions have a latency of only 2 cycles. A
cache miss incurs a pipeline stall of approximately 10 cycles.

The BCU supports branches and function calls, which come at the cost of only a few cycles
thanks to the low pipeline depth. The BCU also offers support for hardware loops, in which
successive loop iterations are chained without any branching penalty.

Finally, since the Kalray-1 is a VLIW microarchitecture, it is possible to explicitly group
instructions into instruction bundles which are to be issued at the same clock cycle and executed
in parallel, as long as they are processed by different execution units. For instance, one can very
well schedule in a single bundle a 64-bit addition (on the two ALUs), a 32-bit multiplication
(on the MAU), a 64-bit load (on the LSU), and a conditional branch (on the BCU). Even if
this puts higher pressure on the compiler to extract parallelism from the code, this allows one
to finely tune and optimize critical parts of an application at the assembly level.

3 Multiprecision modular arithmetic

In this section, we present a flexible library for fast multiprecision modular arithmetic on the
Kalray MPPA-256 processor. Even though C bindings are available for easy integration into
larger projects, most of it is written in pure assembly code for efficiency purposes.

After detailing the data representation and algorithmic choices made in this library for the
central operations, we present a few benchmark results in Section 3.7.

3.1 Representation

In the proposed library, integers are assumed to be unsigned (i.e., non-negative), and are repre-
sented in radix 232 using arrays of 32-bit words. For instance, the nW -word array (x0, . . . , xnW−1)
represents the (32nW )-bit integer

X =

nW−1∑
i=0

xi · 232i.

In the usual context of ECM, the size of the integers N we want to factor is known in advance.
Consequently, for the sake of efficiency, the parameter nW is fixed at compile time using a
preprocessor macro. Supported values for nW range from 2 to 16, inclusive, which corresponds
to moduli N of size from 64 to 512 bits.

Note that, given the MPPA-256 two-level hierarchy of compute clusters and processing en-
gines, it is perfectly possible to compile separate binaries with different values for nW and have
them run simultaneously on distinct compute clusters. This would allow an ECM implemen-
tation to schedule incoming numbers N on different clusters, according to their size, and even
to dynamically reallocate compute resources to match the size distribution of these numbers.
This is however not explored in this work.
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3.2 Basic integer operations

Most of the basic arithmetic operations, such as integer addition, subtraction, comparison,
assignment, and so on, were implemented in the proposed library. As can be expected, their
latency Top(nW ) is linear in nW , and most of our optimization efforts concentrated on minimizing
the ratio Top(nW )/nW . We illustrate this by detailing the case of the addition in the following
paragraphs.

Suppose then that we are given the address in memory of two nW -word integers X =
(x0, . . . , xnW−1) and Y = (y0, . . . , ynW−1), and that we want to compute their sum as the
nW -word integer R = (r0, . . . , rnW−1) along with the carry-out bit c:

X + Y = R+ c · 232nW .

Since the K1 microarchitecture supports a 32-bit add-with-carry instruction (denoted by
addc here) using a dedicated carry flag, a straightforward implementation would thus look
something like the following pseudo-code (in which we denote by X, Y, and R the registers
containing the memory addresses of the corresponding multiprecision integers):

addc 0, 0 (Clear carry flag)
i ← 0 (Initialize index)
repeat nW times (Hardware loop)

x ← load [X+4i] (Load i-th word xi)
y ← load [Y+4i] (Load i-th word yi)
r ← addc x, y (Add with carry)
[R+4i] ← store r (Store i-th word ri)
i ← add i, 1 (Increment index)

c ← addc 0, 0 (Save carry flag)

Assuming the operands are already in the L1 cache, each load has a latency of 2 cycles. How-
ever, the two load’s of each iteration can be pipelined and issued in two consecutive clock cycles.
The add-with-carry, store, and increment instructions then require 1 cycle each, which gives a
total of 6 cycles per iteration. Note that the use of a hardware loop allows us to completely avoid
branching penalties after each iteration. We thus obtain a latency of Tadd(nW ) = 6nW + O(1)
cycles for the complete addition.

In fact, as mentioned earlier, the K1 instruction set includes 64-bit memory accesses, and
the two main ALUs can be combined to support a 64-bit add-with-carry instruction. As these
instructions have the same latency as their 32-bit counterparts, they can then be used to process
the operands and compute the result two words at a time.

Furthermore, since the store and increment instructions are executed on different execution
units (the LSU for the former, and one of the ALUs for the latter), both can be executed in
parallel in the same clock cycle, thanks to the VLIW capabilities of the K1 microarchitecture,
by explicitly writing these two instructions in the same instruction bundle at the assembly level.

These two improvements yield an addition having latency Tadd(nW ) = 5dnW /2e+O(1), as
shown in the following pseudo-code (where the dotted horizontal lines delimitate the different
instruction bundles and, for the sake of simplicity, restricted to the case where nW is even):
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addc 0, 0 (Clear carry flag)
i ← 0 (Initialize index)

repeat nW /2 times (Hardware loop)
x:x′ ← load64 [X+8i] (Load i-th dword)
y:y′ ← load64 [Y+8i] (Load i-th dword)
r:r′ ← addc64 x:x′, y:y′ (Add with carry)
[R+8i] ← store64 r:r′ (Store i-th dword)
i ← add i, 1 (Increment index)

c ← addc 0, 0 (Save carry flag)

This is still not optimal, however: software pipelining techniques can be used to carefully
rearrange and interleave the instructions of consecutive loop iterations, so as to maximize the
instruction-level parallelism. For instance, one can schedule the addition-with-carry of the two
(i − 1)-st double-words (x2i−2, x2i−1) and (y2i−2, y2i−1) in parallel with the load of the next
double-word (x2i, x2i+1):

x:x′ ← load64 [X ] (Load first dword)
addc 0, 0 (Clear carry flag)

y:y′ ← load64 [Y ] (Load first dword)
i ← 1 (Initialize load index)
j ← 0 (Initialize store index)

repeat nW /2 times (Hardware loop)
x:x′ ← load64 [X+8i] (Load i-th dword)
r:r′ ← addc64 x:x′, y:y′ (Add with carry)
y:y′ ← load64 [Y+8i] (Load i-th dword)
i ← add i, 1 (Increment load index)
[R+8j] ← store64 r:r′ (Store j-th dword)
j ← add j, 1 (Increment store index)

r:r′ ← addc64 x:x′, y:y′ (Add with carry)

[R+8j] ← store64 r:r′ (Store last dword)
c ← addc 0, 0 (Save carry flag)

The resulting instruction scheduling on the various execution units for two consecutive
iterations of the loop is given in the following table. Instructions corresponding to the same
double-words of the operands and of the result are shown in the same color.

Cycle LSU ALU0 & ALU1

. . . . . . . . .
t x:x′ ← load64 [X+8i] r:r′ ← addc64 x:x′, y:y′

t+ 1 y:y′ ← load64 [Y+8i] i ← add i, 1
t+ 2 [R+8j] ← store64 r:r′ j ← add j, 1
t+ 3 x:x′ ← load64 [X+8i] r:r′ ← addc64 x:x′, y:y′

t+ 4 y:y′ ← load64 [Y+8i] i ← add i, 1
t+ 5 [R+8j] ← store64 r:r′ j ← add j, 1
. . . . . . . . .

One can see from this scheduling that, even though the latency required to load, add, then
store a pair of double-words is 6 clock cycles, each iteration now has a latency of only 3 cycles.
Therefore, the total latency for this operation is Tadd(nW ) = 3dnW /2e+O(1) cycles.

This can be shown to be optimal, as the bottleneck for the addition lies in the Load/Store
Unit, which has to load the 2dnW /2e double-words of the operands X and Y , and store the
dnW /2e double-words of the result R, thus requiring at least 3dnW /2e clock cycles.
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Finally, note that, when nW is small, a few cycles can be saved in the O(1) part of the latency
by fully unrolling the main loop. This avoids the constant-time overhead of the hardware loop,
at the expense of an increase in code size, whose complexity jumps from O(1) to O(nW ).

3.3 Basic modular arithmetic

Basic modular operations such as negation, addition or subtraction directly rely on their integer
counterparts on nW -word operands described in the previous section. Operands are assumed
to be already reduced with respect to the modulus N .

After the main operation, a final reduction step compares the result to the modulus N and
conditionally subtracts or adds it (in the case of a modular addition or subtraction, respectively).
This comparison is performed most-significant digits first, so as to return an answer as quickly
as possible. Thus, it has an average latency of only a few cycles, even though its worst-case
complexity (in the case of equality) is still linear in nW .

3.4 Integer multiplication

Given two nW -word multiprecision integers X and Y , their 2nW -word product R = X · Y is
computed using a quadratic parallel–serial algorithm: the nW words of the multiplicand X are
first all loaded into registers, then, for i ranging from 0 to nW − 1, each partial product X · yi
is computed, shifted left by i words, and accumulated into the partial result:

R← 0
for i← 0 to nW − 1 do

R← R+X · yi · 232i

return R

Note that each partial product X · yi fits on nW + 1 words, and that, before the i-th partial
product is accumulated, the most-significant words rnW +i to r2nW−1 of the partial result are all
0. Furthermore, because of the left shift by i words, this means that the accumulation into R
will only modify words ri to rnW +i, and the carry need not be propagated further. Also, after
accumulating the i-th partial product, the i-th word ri will have reached its final value, and
may then be written back to memory. Consequently, at any point in the algorithm, only nW +1
words of the partial result (from ri to rnW +i) need to be kept in the register file. Hence, the
total number of registers required for the multiplication is 2nW +O(1).

In order to simplify the carry propagation when accumulating each partial product X · yi
into R, the words xj of the multiplicand X are processed separately according to the parity of
their index j: we write X = X0 +X1 · 232, with

X0 =

dnW /2e−1∑
k=0

x2k · 264k, and

X1 =

bnW /2c−1∑
k=0

x2k+1 · 264k.

This way, we first compute the sub-product S
(i)
0 = X0 · yi, whose individual products x2k · yi ·

264k are contiguous but do not overlap, and directly accumulate it into R. We then compute

the second sub-product S
(i)
1 = X1 · yi, which is also contiguous and overlap-free, and finally

accumulate it into R as well.
The Multiply–Accumulate Unit (MAU) of the K1 microarchitecture supports a 32×32→ 64-

bit integer multiplication, which has a latency of 2 cycles and an inverse throughput of 1 cycle,
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meaning that one such instruction can be issued at every clock cycle. As this matches the inverse
throughput of the 64-bit add-with-carry instructions, we can therefore efficiently pipeline each

individual product of S
(i)
0 , and then of S

(i)
1 , with its accumulation into R, using only two extra

64-bit registers (denoted by u:u′ and v:v′) as buffers for the products.

The following scheduling illustrates this for the computation and accumulation of S
(i)
0 then

of S
(i)
1 into R, for nW = 8, where we assume that the registers x0 to xnW−1 contain the nW

words of X, that y contains yi, and that r0 to rnW contain the nW + 1 “active” words ri to
rnW +i of the partial result:

Cycle MAU ALU0 & ALU1

0 u:u′ ← mul x0, y
1 v:v′ ← mul x2, y
2 u:u′ ← mul x4, y r0:r1 ← addci64 r0:r1, u:u′

3 v:v′ ← mul x6, y r2:r3 ← addc64 r2:r3, v:v′

4 r4:r5 ← addc64 r4:r5, u:u′

5 u:u′ ← mul x1, y r6:r7 ← addc64 r6:r7, v:v′

6 v:v′ ← mul x3, y r8 ← addc 0, 0
7 u:u′ ← mul x5, y r0:r1 ← addci64 r1:r2, u:u′

8 v:v′ ← mul x7, y r2:r3 ← addc64 r3:r4, v:v′

9 r4:r5 ← addc64 r5:r6, u:u′

10 r6:r7 ← addc64 r7:r8, v:v′

In the above scheduling, the addci64 instructions clear the carry flag before performing an
addition-with-carry. This avoids having to use an extra instruction to do so. Also note that
the indices of the output registers of the second sequence of addci64/addc64’s are always one
less than the indices of the corresponding input registers: this allows us to implement at no
extra cost a sliding window for the nW + 1 “active” words of R, so that this pattern can be
repeated in a loop to iterate through the words of Y . As a direct consequence, the register r0

gets overwritten at cycle 7: the contents of r0 should therefore be stored back to memory as
word ri between cycles 3 and 7. Finally, one can verify that the final addition at cycle 10 will
never generate an output carry.

We should also mention at this point that the K1 MAU supports a multiply-and-accumulate-
with-carry instruction, which serves the same purpose as the combination of mul and addc64

we use here, only with a latency of only 2 cycles instead of 3. However, this instruction has
extra constraints regarding which pairs of 32-bit registers can be used as the accumulator: it
turns out that these constraints are incompatible with the shift by one word that happens when

accumulating S
(i)
1 into R (see cycles 7 to 10 in the previous scheduling). This is why we decided

not to use this instruction.
Hence, using this method, each partial product X · yi can be computed and accumulated

into R in nW + 3 clock cycles. However, when iterating through the partial products, we can
slightly overlap consecutive iteration by 2 cycles, thus reducing the cost to nW + 1 cycles per
iteration, as depicted in the following “high-level” scheduling, for nW = 8, in which one can see
the iteration pattern repeating every 9 cycles.

Cycle
−2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13

LSUCpy Ldy++Y Str ++R Cpy Ldy++Y Str

MAUMul1 Mul0 Mul1 Mul0

ALU0/1Acc1 Acc0 Acc1 Acc0
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In this scheduling, the tasks Mulk and Acck represent the computation and the accumulation

of S
(i)
k , respectively. At each iteration, the multiplier word yi, which was preloaded into a buffer

register y′ by the task Ldy in the previous iteration, is copied into the actual register y by task
Cpy. Once computed, the result word ri, contained in register r0, is then stored back to memory
by task Str. Finally, tasks ++Y and ++R are in charge of incrementing the read pointer on Y
and the write pointer on R, respectively.

One can show that this scheduling is optimal, as the two main ALUs have to accumulate
and propagate carries through a total of nW + 1 words at each iteration (this would be also the
case if the multiply-and-accumulate-with-carry instruction were used).

Therefore, all in all, our implementation computes a product of two nW -word integers in
Tmul(nW ) = nW (nW + 1) + O(1) clock cycles, which is only slightly more than 1 cycle per
individual word-by-word product.

Finally, note that subquadratic algorithms such as Karatsuba might be more efficient for
larger values of nW , but this is not the case for the sizes considered in this work.

3.5 Montgomery reduction

Given an odd nW -word modulus N along with the constant R = 232nW , the Montgomery
reduction [17] of a 2nW -word integer X < N ·R with respect to N is defined as REDCN (X) =
X·R−1 mod N . AsN < R, using the Montgomery representation of integers moduloN , in which
the elements X ∈ Z/NZ are represented by X̃ = X ·R mod N , the product Z = X · Y mod N
of two such residues X and Y ∈ Z/NZ can then be computed as Z̃ = X · Y · R mod N =
REDCN (X̃ · Ỹ ).

Given the precomputed constant R̃ = R2 mod N , conversions to and from this representation
can be computed using only nW -word integer multiplications and Montgomery reductions, as
X̃ = REDCN (X · R̃) and X = REDCN (X̃), respectively.

Finally, as it is also compatible with addition, subtraction and negation modulo N , we can
perform all the computations required for ECM in Montgomery representation in order to avoid
conversions before and after each modular multiplication.

In [17], Montgomery gives an efficient algorithm requiring only multiplications for computing
REDCN (X), provided that the 1-word constant n′ = (−N)−1 mod 232 is known (thanks to a
precomputation, for instance):

T ← (x0, . . . , xnW−1) (i.e., T ← X mod 232nW )
for i← 0 to nW − 1 do

q ← t0 · n′ mod 232

T ← xnW +i · 232(nW−1) + (T + q ·N)/232

if T ≥ N then
T ← T −N

return T

The partial result T is first initialized with the nW least significant words of X. Then, at
each iteration, a multiple of N is added to it so as to make it divisible by 232. The value of T
is then shifted right by one word, and the next word of X is loaded and added (with carry) to
tnW−1. A single final subtraction of N might be necessary to keep the result below N .

At any point in the algorithm, T is an nW -word integer along with a delayed carry bit, and
thus occupies nW + 1 registers denoted by t0 to tnW . As the nW -word modulus N is also kept
in the register file (n0 to nnW−1), the total number of registers required for this algorithm is
then 2nW +O(1).
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In fact, this algorithm is in many ways quite similar to that of the parallel–serial multiplica-
tion described in the previous section. In particular, by considering the odd- and even-indexed
words of N and by writing N = N0 +N1 · 232 as we did for X in the multiplication, we can also
split the computation of the partial product q·N into two sub-products S0 = q·N0 and S1 = q·N1

and accumulate them separately into T . The only difference is that both accumulations into T
might generate output carries.

The proposed scheduling, which resembles that of the multiplication, thus requires two extra
cycles to compute the quotient q at the beginning of each iteration, and one extra cycle because
of the longer carry chains. An example for nW = 8 words is given below.

Cycle MAU ALU0 & ALU1

0 q ← mul t0, n′

1
2 u:u′ ← mul q, n0

3 v:v′ ← mul q, n2

4 u:u′ ← mul q, n4 0:t0 ← addci64 t0:t1, u:u′

5 v:v′ ← mul q, n6 t1:t2 ← addc64 t2:t3, v:v′

6 u:u′ ← mul q, n1 t3:t4 ← addc64 t4:t5, u:u′

7 v:v′ ← mul q, n3 t5:t6 ← addc64 t6:t7, v:v′

8 w:w′ ← mul q, n5 t7:t8 ← addc64 t8:0, x:0
9 u:u′ ← mul q, n7 t0:t1 ← addci64 t0:t1, u:u′

10 t2:t3 ← addc64 t2:t3, v:v′

11 t4:t5 ← addc64 t4:t5, w:w′

12 t6:t7 ← addc64 t6:t7, u:u′

13 t8 ← addc t8, 0

In the above scheduling, we assume that the current word xnW +i of X was loaded into
register x before cycle 8. Also note how the division of T + q ·N by 232 is handled transparently
when accumulating S0 into T (cycles 4 to 8).

Even though each iteration has a latency of nW + 6 cycles, we can overlap consecutive
iterations by 4 cycles, resulting in an actual cost of nW + 2 cycles per iteration, as illustrated
below in the case nW = 8 (in which Mq represents the computation of q as t0 ·n′, Ldx and ++X

the loading of xnW +i followed by incrementing the corresponding pointer, and Mulk and Acck
the computation and accumulation of Sk, respectively):

Cycle
−1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

LSULdx++X

MAUMul1 Mq Mul0 Mul1 Mq Mul0

ALU0/1Acc1 Acc0 Acc1 Acc0

Therefore, the main loop of this algorithm requires nW (nW + 2) +O(1) cycles, to which we
need to add dnW /2e cycles for loading N into the register file, and possibly another dnW /2e
cycles for subtracting N from T . The comparison between T and N is assumed to have
a constant average cost of a few cycles only. All in all, this gives a total average cost of
TREDC(nW ) = nW (nW + 3) + O(1) clock cycles for the Montgomery reduction, just slightly
above the cost of the integer multiplication.

Finally, as mentioned at the beginning of this section, the REDCN function can be used
to efficiently reduce a 2nW -word product modulo N , and it is therefore called after each such
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multiplication. Variants of this Montgomery multiplication have been proposed where the com-
putations of the product and of the reduction are interleaved [11, 13]. However, it turns out that
our implementation would not benefit from such variants: the number of carry propagations to
perform would change only marginally and, more importantly, the higher number of registers
required would rapidly exhaust the register file and limit us to smaller values of nW .

3.6 GCD and modular inversion

Our library also supports a few higher-level functions, which are implemented in C, on top of
the low-level arithmetic primitives described previously. This is the case for a multiprecision
GCD and for a multiprecision modular inversion (in Montgomery representation), as they are
required in ECM. Both were implemented using the extended binary GCD algorithm.

3.7 Benchmark results

We report in Table 1 the latency of several functions of our multiprecision library, as measured
for different operand sizes on the target MPPA-256 processor. These benchmarks assume that
all data is already present in the L1 cache, so that no spurious cache-miss occurs. Due to the
in-order nature of the K1 microarchitecture, these timings are extremely stable.

Note that almost all timings are given for fully unrolled versions of the low-level arithmetic
functions (i.e., without hardware loops). The only low-level functions which were not unrolled
are the integer multiplication and the Montgomery reduction for operand sizes above 256 bits
(nW > 8).

Timings for the modular functions (addition, Montgomery reduction and multiplication) are
given as an interval, as the actual latency depends on whether final corrections (such as sub-
tracting the modulus) have to be performed or not. However, these intervals do not include the
worst-case latencies, which happen when the comparisons between the result and the modulus
take linear time, as these occur only but rarely.

Finally, timings for the GCD are given as the average for a hundred runs on random nW -word
inputs.

Table 1: Measured latencies (in clock cycles) of various functions for several operand sizes.

Latency according to operand sizes

192 bits 256 bits 384 bits 512 bits
Function Complexity (nW = 6) (nW = 8) (nW = 12) (nW = 16)

Integer addition 3nW /2 +O(1) 16 19 25 31
Integer multiplication nW (nW + 1) +O(1) 51 81 171 287

Modular addition 9nW /4 +O(1) 33–45 36–51 42–63 48–75
Montgomery reduction nW (nW + 3) +O(1) 68–74 95–102 191–200 314–325
Montgomery multiplication 2nW (nW + 2) +O(1) 121–127 178–185 364–373 603–614

GCD O(nW
2) 12070 17745 30920 47560

Point addition (ext. coordinates) A = 8m + 10a 1321 1823 3402 5405
Point doubling (ext. coordinates) D = 4m + 4s + 6a 1184 1668 3212 5174

4 The Elliptic Curve Method

There are many good descriptions of ECM in the literature [19] and we will not recall it in
details. The general idea is the following. Let N be an integer to be tested for smoothness, and
let p be an (as-yet-unknown) prime factor of N . An elliptic curve E defined over Q is chosen,
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together with a non-torsion point P on E. Hoping to create a point whose reduction modulo p
is the point at infinity on the reduced elliptic curve, we multiply P by a large integer made of all
prime factors up to a given bound. If the group order of the reduced curve modulo p is smooth,
we will then indeed get the neutral element. All the computations can not be made modulo p
since this factor is unknown, but by reducing all coordinates modulo N , we avoid coefficient
expansion, while still having compatible operations. And in the end, if the group order was
indeed smooth, then some non-invertible element modulo N will pop up, usually revealing p.

4.1 Curve arithmetic

Most of the time is spent in the elliptic curve group law, where coordinates are integers modulo
N . Hence having fast modular arithmetic is crucial for efficiency. At a higher level, it is im-
portant to choose an appropriate coordinate system for the elliptic curve, reducing the number
of operations in Z/NZ, and also appropriate addition chains to reduce the number of additions
and doublings on the elliptic curve. Since the Kalray MMPA-256 processor has similar charac-
teristics as GPUs—namely, a lot of computing power but limited or slow memory access—we
followed the same strategy as the one used in the state-of-the-art implementations of ECM on
GPUs [16, 7]. Therefore, we used the so-called extended coordinates on twisted Edwards curves
with a = −1 [3, 12].

The costs in terms of modular multiplications (m), squarings (s) and additions / subtractions
(a) of point addition (A) and doubling (D) in this coordinate system are recalled in Table 1,
along with average latencies benchmarked for various sizes of the modulus N . When only
projective coordinates are required for the result, a modular multiplication can be saved in
both operations (which are then denoted by A′ and D′, respectively).

Classically, we used a two-stage scalar multiplication, where stage 1 is performed using
no-storage addition chains as developed in [7], while stage 2 relies on a baby-step/giant-step
approach, again following [16]. In the following, we give a few more details on these two stages,
since we slightly modified them compared to [7, 16].

4.2 Addition chains for stage 1

The textbook stage 1 of ECM consist in multiplying P by a scalar of the form
∏
πe≤B1

πe for a
given bound B1. The idea of [7] is to group primes π occurring in this product in batches having
low Hamming-weight, so that a scalar multiplication by those batches involves less additions
than we would have with the original scalar. Finding the best chains based on this idea would
imply a fully exponential search; however, using a massive precomputation it is still possible to
find very good chains with a simple greedy heuristic.

We have implemented the method presented in [7] and searched for no-storage addition
chains, only with a slight modification of the initial ordering of the available addition chains si:
instead of using the ratio r(si) = dbl(si)/add(si) as in [7, Algorithm 1], we used the quantity

κ(si) =
log2(si)

dbl(si) + (8/7) · add(si)− log2(si)
,

where the constant 8/7 comes from the approximate cost ratio between an addition in extended
coordinates (A ≈ 8m) and a doubling in projective coordinates (D′ ≈ 3m + 4 s).

We chose this metric as it better takes into account the number of bits actually contributed
by each addition chain. For instance, while r(1665) = r(863) = 10/3, as both chains can be
computed in 10 doublings and 3 additions, we have κ(1665) ≈ 3.92 and κ(863) ≈ 2.65, as the
former is almost the double of the latter.
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The addition chains we found matched the results of [7], only with a very minor improvement.
Their costs are given in Table 2 for various values of B1, along with the corresponding timings.

4.3 Stage 2 based on baby-step/giant-step

The idea of the stage 2 strategy is to test, for all primes π between B1 and another bound B2,
whether π times the point Q coming out from stage 1 is the neutral element. This is achieved in
a batch way, where the number of curve operations grows only like the square root of B2 −B1.
Let w be the value taken for the giant-steps: we write all the primes B1 < π ≤ B2 as π = vw±u,
where

u ∈ U =
{
u ∈ Z

∣∣∣ 1 ≤ u ≤ w

2
, gcd(u,w) = 1

}
, and

v ∈ V =

{
v ∈ Z

∣∣∣∣ ⌈B1

w
− 1

2

⌉
≤ v ≤

⌊
B2

w
+

1

2

⌋ }
.

The algorithm then computes all the points [u]Q and [vw]Q for u ∈ U and v ∈ V . Finally,
by constructing appropriate products of scalar based on the coordinates of these points, it is
possible to test whether one among all the points is indeed the neutral element with only one
GCD with N . This final construction is very similar to the one used in Montgomery’s batch
inversion, and we refer to [18, 16] for details.

In this setting, it is interesting to take for w a smooth number so that the set U has a small
number of elements, which reduces the running time and the memory storage. Furthermore,
this number should be around the square root of B2 − B1. In [16], they choose B2 = 16384,
and w = 2 · 3 · 5 · 7 = 210. However, we found that, for this value of B2, it is better to choose
w = 420, yielding a total cost of 2538 multiplications in Z/NZ instead of 2690 with w = 210.
Similarly, when B2 increases, it is better to choose larger multiples of 210 for w.

Choices of w for several values of B1 and B2 are given in Table 3, along with the corre-
sponding costs and timings.

4.4 Benchmark results

In Tables 2 and 3, we report the number of operations and the measured latency for the two
stages of ECM, for a few typical modulus sizes and B1, B2 parameters. These benchmarks were
run on a single core of a single cluster, so that all the required data fit easily in memory.

For the stage 1, the measured latencies include the cost of a final GCD. This operation
and the numerous additions account for the difference observed between the latency of the full
stage 1 and the naive estimate obtained by multiplying the number of modular multiplications
by the latency of a single modular multiplication as reported in Table 1. According to our
measures there seems to be no other significant overhead for the stage 1.

For the stage 2, the reported latencies also include a final GCD. For each B1, the value of B2

has been chosen as an integer multiple of 214 such that the number of multiplications required
is about the same as in the stage 1. This step is however more memory intensive. This becomes
particularly visible in the last two lines of the table. For instance, in the case of B1 = 8192 and
B2 = 80 · 214, the arithmetic cost of the stage 2 is very similar to that of the stage 1 (around
90 k multiplications and as many additions for each stage). However, the measured latency of
the stage 2 is about 10 % higher than that of the stage 1. We interpret this as the cost of the
cache-misses that must be more frequent with such large values of B2.

In Table 4, we finally provide benchmarks that are close to what we would have in an NFS
context, during the cofactorization step of the relation collection, or during the initialization of
a discrete logarithm descent (for the large modulus sizes and values of B1 and B2). The 256
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Table 2: Cost and measured latencies (in clock cycles) for the stage 1 of ECM.

Cost Average latency according to size of modulus N

Number of operations Total # Difference 192 bits 256 bits 384 bits 512 bits
B1 (curve ops. and mults.) of mults. with [7] (nW = 6) (nW = 8) (nW = 12) (nW = 16)

256 361D′ + 38A + 12m = 2843m −1m 444 k 621 k 1.18 M 1.90 M
512 739D′ + 74A + 21m = 5786m −20m 894 k 1.25 M 2.39 M 3.83 M

1024 1473D′ + 140A + 37m = 11468m −40m 1.77 M 2.47 M 4.71 M 7.55 M
8192 11774D′ + 1015A + 192m = 90730m −344m 13.9 M 19.4 M 37.1 M 59.6 M

32768 47158D′ + 3899A + 647m = 361945m —— 55.3 M 77.5 M 148 M 237 M

Table 3: Cost and measured latencies (in clock cycles) for the stage 2 of ECM.

Cost Average latency according to size of modulus N

Number of operations Total # 192 bits 256 bits 384 bits 512 bits
B1 B2 w (curve ops. and mults.) of mults. (nW = 6) (nW = 8) (nW = 12) (nW = 16)

256 214 2 · 210 23D + 69A + 1802m = 2538m 400 k 561 k 1.07 M 1.72 M
512 3 · 214 3 · 210 43D + 112A + 4572m = 5812m 913 k 1.28 M 2.44 M 3.93 M

1024 7 · 214 5 · 210 58D + 176A + 9538m = 11410m 1.80 M 2.52 M 4.79 M 7.71 M
8192 80 · 214 22 · 210 147D + 624A + 84954m = 91122m 15.4 M 21.1 M 40.1 M 64.1 M

32768 360 · 214 33 · 210 430D + 1148A + 343716m = 356340m 61.8 M 83.7 M 158 M 252 M

cores of the processor are working in parallel, each core working independently of the others on
a particular modulus. The benchmark also includes the time for the data transfer between the
I/O subsystems and the compute clusters. The costs for the initialization of the curve and the
Montgomery constants for the given modulus are included as well. Not much effort has been
put in optimizing these functionalities, and this explains the overhead of about 20 % for the
smallest cases (B1 = 256 for 192- and 256-bit moduli) compared to what we would expect by
just taking the latencies of Tables 2 and 3 and deducing a lower bound for the throughput. For
all the other cases, the overhead compared to the lower bound remains below 10 %. For the
largest examples that require a lot of memory, the 16 cores of each cluster are divided into 8
pairs: in each pair, the first core only does stage-1’s while the second one only does stage-2’s.
Since the parameters were chosen so that the two stages take about the same time, we can
pipeline a modulus through the two cores of a pair while keeping the additional overhead due
to thread synchronization quite low.

During these full benchmarks, the average power consumption reported by the monitoring
tools of the MPPA-256 card was 16 W. The “throughput per joule” estimates given in Table 4
are based on this value.

Table 4: Measured throughput (in curves per second and curves per joule) for the full imple-
mentation of ECM.

Average number of curves per second and per joule according to size of modulus N

B1 B2 192 bits (nW = 6) 256 bits (nW = 8) 384 bits (nW = 12) 512 bits (nW = 16)

256 214 105 k/s 6.56 k/J 76.6 k/s 4.79 k/J 41.4 k/s 2.59 k/J 25.9 k/s 1.62 k/J
512 3 · 214 52.9 k/s 3.31 k/J 38.1 k/s 2.38 k/J 20.2 k/s 1.26 k/J 12.6 k/s 788 /J

1024 7 · 214 27.6 k/s 1.73 k/J 19.9 k/s 1.24 k/J 10.5 k/s 656 /J 6.53 k/s 408 /J
8192 80 · 214 3.49 k/s 218 /J 2.47 k/s 154 /J 1.22 k/s 76.3 /J 761 /s 47.6 /J

32768 360 · 214 795 /s 49.7 /J 572 /s 35.8 /J ——— ———
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4.5 Comparison with other ECM implementations

We have compared our implementation with the ones previously reported in the literature,
using two criteria: the number of curves processed per second and the number of curves per
joule. Since there is no official price for the MPPA-256 processor, comparisons based on curves
per dollar, as done in some articles, were not possible. The results are given in Table 5.
For comparing to general-purpose hardware, we used the EECM-MPFQ software which is an
adaptation of GMP-ECM targetting specially the sizes considered in the present article. This
experiment was run on a machine with two Intel E5-2650 processors, each having 8 cores, with
an announced TDP of 95 W each. Thanks to hyperthreading, the best throughput was obtained
by running 32 threads in parallel. Due to a different stage-2 strategy, it was not possible to
obtain exactly the same value of B2 as in our implementation, so we set the parameters to get
a close enough value.

For GPU-based implementations, we did not run the experiments ourselves but copied the
data given in [7, 16] which are the best published results so far for ECM on graphics cards.
The implementation of [7] contains only a stage 1, so we extrapolated the throughput of our
implementation for such a setting using the data of the line B1 = 1024 and B1 = 8192 of Table 2.
This is not very precise but is anyway considered rather obsolete since a stage-2 implementation
finds many more prime factors.

From the results in Table 5, it is clear that the general-purpose processors are not well
suited: even in terms of pure throughput, modern Intel processors can hardly compete with the
MPPA-256 processor, and if the power consumption is taken into account, they are far behind.

The comparison with the GPU implementation is more balanced: a single GPU chip can
process 2 to 3 times as many curves per second, depending on the size of the modulus. On the
other hand it requires a lot of energy and, in terms of curves per joule, the advantage is clearly
on the MPPA-256 side. It must also be noted that our implementation is much more versatile:
it is possible to handle much larger B1, B2 and sizes of moduli with only a moderate penalty.

5 Conclusion

In this article we have shown how to implement a multiprecision modular arithmetic library for
the Kalray MPPA-256 processor for moduli of up to 512 bits, where quadratic multiplication
algorithms are well suited. The architecture of the processing engines (the cores) at the heart of
this processor proved to be convenient for the task, since in our implementation, the pipelines
of all the main execution units remain always busy: no obvious bottleneck could be found that
would penalize the efficiency.

On top of this library, we have implemented the ECM algorithm for factoring integers with
parameters that are useful for its application in the Number Field Sieve. In this setting, the
latency is not an issue and the throughput is the main criterion for comparison. The results
are quite satisfactory, with a throughput obtained with the Kalray MPPA-256 processor that is
only slightly smaller than for a graphics card, but with a much lower power consumption. Also,
the amount of fast memory available for each core is large enough to handle sizes that were not
reachable in graphics cards.
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