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Abstract. Secure communications between mobile subscribers and their
associated operator networks require mutual authentication and key deri-
vation protocols. The 3GPP standard provides the AKA protocol for just
this purpose. Its structure is generic, to be instantiated with a set of seven
cryptographic algorithms. The currently-used proposal instantiates these
by means of a set of AES-based algorithms called MILENAGE; as an al-
ternative, the ETSI SAGE committee submitted the TUAK algorithms,
which rely on a truncation of the internal permutation of Keccak.
In this paper, we provide a formal security analysis of the AKA pro-
tocol in its complete three-party setting. We formulate requirements
with respect to both Man-in-the-Middle (MiM) adversaries, i.e. key-
indistinguishability and impersonation security, and to local untrusted
serving networks, denoted “servers”, namely state-confidentiality and
soundness. We prove that the unmodified AKA protocol attains these
properties as long as servers cannot be corrupted. Furthermore, adding
a unique server identifier suffices to guarantee all the security statements
even in in the presence of corrupted servers. We use a modular proof ap-
proach: the first step is to prove the security of (modified and unmodified)
AKA with generic cryptographic algorithms that can be represented as
a unitary pseudorandom function –PRF– keyed either with the client’s
secret key or with the operator key. A second step proceeds to show that
TUAK and MILENAGE guarantee this type of pseudorandomness, though
the guarantee for MILENAGE requires a stronger assumption. Our paper
provides (to our knowledge) the first complete, rigorous analysis of the
original AKA protocol and these two instantiations. We stress that such
an analysis is important for any protocol deployed in real-life scenarios.
Keywords: security proof, AKA protocol, TUAK, MILENAGE.

1 Introduction

Transmitting confidential and authenticated data between two parties across
an insecure channel is a fundamental goal in cryptography. Secure channels are
usually obtained by means of an authenticated key-exchange (AKE) protocol.

AKE protocols generally consist of two phases. During the first phase, the
parties authenticate each other and exchange data that enables them to compute
a master key. The latter is then used to derive one or several secret keys, as well as



other useful values. In a second phase, the derived keys are used to construct the
secure channel between the parties, guaranteeing the confidentiality, integrity,
and authentication of the data they exchange.

In this paper, we focus on the Authentication and Key Agreement protocol
(AKA) used in 3G and 4G networks, more specifically the 3G UMTS AKA (Uni-
versal Mobile Telecommunications System) and 4G EPS AKA (Evolved Packet
System) protocol1. The AKA protocol is used in a greater context in the 3rd Gen-
eration Partnership Project (3GPP), which aims to develop the specifications for
the next generation mobile systems. The security of the system is covered by
Technical Specifications 33 (TS 33) and 35 (TS 35)2, from both an architectural
and a security-algorithm standpoint.

The AKA protocol. Initially developed in the 1990s, AKA uses symmetric keys
exclusively, in a mobile-network context which imposes a peculiar architecture.
In this setup, mobile clients subscribe to a single operator, which provides them
with mobile services (messaging, calls, Internet use, etc.). Services are provided
across a secure channel, not by the operator, but by an intermediate local network
operator (which we call server to avoid confusion). The server and operator are
affiliated together for domestic use. However, if the client is abroad, service is
provided by a server affiliated with a different operator. Thus, servers are only
trusted to provide services, but they must not learn the client’s long-term secrets
(known only to the client and the operator); by contrast, servers do learn short-
term secret values, such as session keys, which are necessary for the transmission
of the required service. Consequently, unlike the classical two-party AKE setting,
the AKA protocol requires three participants.

One specificity of the subscriber-operator architecture is that clients are as-
sociated both with a unique client-key and with their operator’s key, which is
shared with all the other clients (a potentially very large number) of that oper-
ator. Clients minimize the risk of compromising the shared key by only storing
a (one-way) function of that, and the client key, never the operator key in clear.

The design of the AKA protocol is influenced by three important constraints.
One is that (current and older) SIM cards, cannot generate (pseudo)random
numbers. Thus, freshness has to be guaranteed without client randomness. The
second constraint is that the (necessary) communication3 between servers and
operators in the roaming scenario is usually expensive. In the AKA protocol, op-
erators generate batches of authentication vectors for the server, thus minimizing
costs. Finally, mobile channels are notoriously noisy, requiring the protocol to be
robust with respect to noise. As a result of these constraints, the AKA protocol
is stateful, with the authentication depending on an updatable sequence number,
which is accepted within a tolerance interval.

1 We stress that while AKA is an instance of authenticated key-exchange, AKE denotes
a larger class of protocols, including e.g. TLS/SSL, PACE/EAC, etc.

2 See http://www.3gpp.org/DynaReport/33-series.htm and http://www.3gpp.

org/DynaReport/35-series.htm.
3 Notably, since the server is not trusted, it needs information from the client’s oper-

ator to provide service to the client.
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TUAK and MILENAGE. In this paper we focus on the provable security of AKA.
The latter is constructed using symmetric-key primitives, namely a set of seven
cryptographic functions, denoted F1, . . . ,F5,F∗1 ,F∗5 . We closely follow the de-
sign of these algorithms, as well as that of the protocol, in our analysis.

Originally, 3GPP put forward a proposal for an AES-encryption-based algo-
rithm set, called MILENAGE [1]. As an alternative to MILENAGE, the ETSI SAGE
committee proposed another set of algorithms called TUAK [2], which relies on
a truncation of Keccak’s internal permutation. The winner of the SHA-3 hash
function competition, Keccak offers both higher performance, in hardware and
software, than AES, and resistance to many generic attacks. While the TUAK
algorithms inherit Keccak’s superior performance, they do not use the Keccak
permutation in a usual, black-box way, but rather rely on something akin to a
Merkle-Damg̊ard construction. Instead, the internal permutation is truncated,
then used in a cascade, which makes previous results harder to use. We can-
not simply use the same assumptions for the truncated version as we would for
the original permutation, either. Our analysis of the key indistinguishability, as
well as client- and respectively server-impersonation resistance of the protocol
concerns both the classical MILENAGE-based version, and the one using TUAK.

Related Work. At its core, the AKA protocol provides authenticated key ex-
change (AKE), a primitive first modelled by Bellare and Rogaway [14]. We use
the Bellare-Pointcheval-Rogaway (BPR) extension of this framework [13] in our
definitions; however, the three-party setting and lack of randomness on the prover
side do not allow us to simply “import” their model, as we explain in more detail
below.

Few papers give a security proof for AKA, especially when instantiated with
MILENAGE. Gilbert provides an out-of-context security proof for MILENAGE [12],
showing it operates as a kind of counter mode in deriving key materials. It is un-
clear whether this suffices to guarantee security for AKA at large; indeed, as we
show in this paper, the AES-based design is not quite as versatile as TUAK. The
closest results to a security proof of AKA (see below) use automated (formal)
verification.

In 2003, Zhang [16] described an important server-corruption attack against
AKA and advised against the use of sequence numbers as state. He also presented
a stateless modification of the protocol called AP-AKA Server corruptions are a
highly relevant threat in a post-Snowden cryptographic era, in which intelligence
agencies have been known to substitute and backdoor algorithms, and store
massive amounts of data. We take such attacks into account, and define security
in a game-based framework akin to the BPR model, allowing for easier proofs
and more nuances in the definitions. We also extend a countermeasure from
Zhang [16], which features the addition, in the authentication string, of a unique
server-specific identifier, and we show how to incorporate it within the existent
MILENAGE and TUAK specifications.

The cryptographic analysis of Lee et al. [15] is complementary to ours as
they focus in detail on the LTE (Long-term Evolution) protocol, used in 4G
networks (similar to AKA, but using different identifiers and key-management),
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rather than the handshake itself. Lee et al. analyse the privacy of LTE, rather
than the security of AKA (as is the case in our paper). Their main result is that
in the absence of server corruptions, LTE attains a weak degree of untraceability
against an active MiM adversary. The notion is modelled in terms of real/ideal
world indistinguishability, in which the adversary must trace a client using mul-
tiple temporary identifiers (denoted TMSI as opposed to IMSI, which denotes
permanent user identifiers) across different sessions. Though this is not made
explicit, Lee et al.’s result implies the impersonation resistance of LTE (else, the
adversary can force desynchronizations); some guarantee is also implicit for the
security of the derived session keys (else, this affects the TMSI reallocation).
However, their results hold for an important modification of AKA. A surprising
problem is that [15] cannot capture IMSI-catcher attacks (which directly impact
privacy without server corruptions); this is because they assume that once a
TMSI is allocated, the IMSI will never again appear in clear. However, in the
real AKA scheme, an active attacker can replace a sent TMSI with a random mes-
sage and thus force the server to request the client’s IMSI. Lee et al. also do not
model re-synchronizations, which are problematic in privacy analyses. The two-
party model they consider (client–server, rather than client–server–operator) is
justified in the absence of corruptions, but incomplete with respect to real-world
circumstances. Whereas they consider client-specific secrets, there is no mention
of the shared operator key. Finally, their proofs reduce the privacy of AKA to
some assumptions on the functions which are akin to the unitary function G that
we use; however, they do not analyse TUAK and MILENAGE to verify whether
these suites actually guarantee those required properties.

Arapinis et al. [6] focus on the client privacy of the AKA protocol by means
of automated verification using ProVerif [7]; however, they only assess a modified
version, which randomizes the sequence number. This fundamental modification
makes their results inapplicable to the original protocol. Our attempts to extend
this analysis to that of the true protocol by using StatVerif [18]4 were not fruitful,
as we discuss in Appendix F.1.

Our contributions. We present four main contributions: (a) fully-formalized
definitions for the security of AKA in the three party setting; (b) security proofs
indicating that the current AKA protocol does not attain full security in the
presence of server corruptions (due to the attack of Zhang [16]); (c) we show
how to attain full security by simply adding a unique server identifier in the
authentication; (d) we prove that our security statements hold for both protocol
instantiations (TUAK and MILENAGE). In particular, we analyse two somewhat-
similar versions of the protocol: the original AKA scheme and a slight variation
of it of our own design, which we also analyse. We detail our contributions below.
Security Model. We first define a threat model and five game-based security
notions for the 3-party AKA protocol, two with respect to a Man-in-the-Middle
adversary (akin to BPR security, but with three parties, and allowing the option

4 This is an extension of ProVerif proposed by Arapinis et al. to handle automatic
verification for protocols with global state.
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of server corruptions in the Strong, as opposed to the Weak property), and two
with respect to malicious servers. These properties are:

1. key-indistinguishability: i.e. the derived session keys are indistinguishable
from random by a Man-in-the-Middle (MiM) attacker acting between the
client and a server, and which has black-box access to all operators.

2. client- and server-impersonation: i.e. a MiM attacker cannot imperson-
ate honest servers (to the client), or clients (to an honest server). Due to the
identification phase, the AKA protocol resists client-impersonation better
than server-impersonation.

3. state-confidentiality: i.e. (malicious) servers do not learn the client’s secret
key, nor state, nor the operator’s secret key. We assume that the server
interacts with both operators and clients, but we only address the AKA
handshake (not the secure-channel primitives).

4. soundness: i.e. (malicious) servers cannot make the client accept the server’s
authentication (thus completing the key derivation process), unless they are
explicitly given authenticating information by a legitimate operator.

Security Proofs. We analyse the security of two versions of AKA: the current
one, and our modification of it. In the full version, we also show that the AP-
AKA version of the protocol, due to Zhang, is vulnerable to a replay attack. We
prove that, under the assumption that the seven cryptographic functions behave
as a unitary function G that is pseudorandom when keyed with the client key,
the current AKA version guarantees: weak key-indistinguishability; weak server-
impersonation resistance; strong client-impersonation resistance; and soundness.
If furthermore the algorithms behave as a PRF called G∗, when keyed with the
operator key, AKA also guarantees state confidentiality. For our modification of
the AKA protocol, we prove, under the same assumptions: state-indistinguishabi-
lity, soundness, as well as strong key-indistinguishability, server- and client-
impersonation security. This first proof step, reducing protocol security to that
of a unitary function, allows us to define a sufficient security requirement for the
underlying sub-algorithms.
TUAK and MILENAGE. The second step of the proof is to show that both
TUAK and MILENAGE behave as the required functions G and G∗. This can
be proved for TUAK under the standard assumption that the (un-)truncated
Keccak permutation is a good PRF [8,10]. By contrast, proving that MILENAGE
can be modelled as a unitary PRF when keyed with the operator key requires the
pseudorandomness of a keyed AES-version of a classic Davies-Meyer construc-
tion for MILENAGE, which seems a stronger assumption than just assuming the
pseudorandomness of the underlying AES permutation.

AKA privacy. Several papers indicate privacy problems for AKA, e.g. [9,19,6,5].
The last of these is a recent result, indicating that privacy can be attacked at a
lower level than the protocol layer (by leakage at a physical layer). Since AKA
is known not to provide strong privacy, and it is moreover unclear whether it
can even hope to provide it considering such leaks at lower layers, we choose to
restrict ourselves to the subject of AKA security, rather than its privacy.
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2 The AKA protocol

2.1 Notations

Notation. Throughout the rest of the document, we will consider for a bitstring
x, |x| for the bit-size of x and bxci..j for the bitstring from position i to j of
the initial bitstring x. If f is a function, then y ← f(x) means that the y is the

output of f when run on input x. Therefore, y
$← {0, 1}n means that the value y

is chosen uniformly in the set {0, 1}n. For bit strings x and y, we denote x‖y the
concatenation between x and y. We denote ⊕ the bitwise exclusive-or operation.
For one bit b, we write bn to denote a n-bit string composed of a concatenation
of n bits b. Therefore, we denote λ the empty message. Finally, we denote ∗ the
value suggesting that the entity sends no messages and λ the value suggesting
that the entity receives no messages.

2.2 Description of the AKA protocol

Mobile 3G networks use the variant of AKA fully depicted in Figure 6, allowing
the client and the server to output session keys (CK, IK), which are then used
to secure future message-exchanges. The same protocol is the backbone of the
4G LTE protocol; however, for LTE the client is associated with an identifier
called GUTI (see 3GPP TS 23.003, release 13), as opposed to the tuple of per-
manent and temporary identifiers we describe below. The use of GUTIs make
no difference for our analysis. More significantly, the session keys CK, IK from
the 3G protocol are only used as key material for a key derivation function KDF,
which outputs the true session key.5 Our proofs work similarly for this new key
derivation, but we would need an additional reduction to KDF security.

This protocol features two main active actors: the client (in 3GPP terminol-
ogy ME/USIM) and the server (denoted VLR). The third, only selectively-active
party is the operator (denoted HLR). The tripartite setup of AKA was meant
for roaming, for which the server providing mobile coverage is not the client’s
operator, and may be subject to different legislation and vulnerabilities than the
latter. Thus, although the server is trusted to provide services across a secure
channel, it must not learn long-term sensitive information about either clients
or their home operators. Using the server as a mere proxy would ideal; however,
the server/operator communication is (financially) expensive.

Section 3 describes in detail the setup of the three parties. Clients C and
operators Op use both the client’s secret key skC and the operator’s secret
key skOp

6. The client and operator also keep track of sequence numbers SqnC

(resp. SqnOp,C), updated after each successful authentication (by a simple, pre-
dictable procedure, e.g. incrementing them by a fixed value). If the states are

5 This key, denoted Kasme, is computed as: Kasme = KDF(CK‖IK, IDSN, Sqn ⊕ AK, const),
with IDSN the serving operator network identity.

6 Technically speaking, the client never stores this value in clear; instead it uses a
pseudorandom value TopC computed from the client and operator keys.
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too far apart, the client prompts a re-synchronization. The three parties: clients,
servers, and operators, also know the client’s permanent identifier IMSI. Clients
and servers must keep track of tuples (IMSI, TMSI, LAI), the last two values
forming a unique temporary identifier, which is updated at every session.

Client Server Operator
(skC, skOp, SqnC) (skC, skOp, SqnOp,C)

User identity request

←−−−−−−−−−−−−
User identity answer

−−−−−−−−−−−−→
Auth. vectors request

−−−−−−−−−−−−→

1©
Auth. vectors

{AV{i}}ni=1

←−−−−−−−−−−−−
2©

Auth challenge

R{i}‖Autn{i}

←−−−−−−−−−−−−

3©
Auth response

Res
−−−−−−−−−−−−→

4©
Instructions:

Client Server Operator

3©: Compute AK using R{i}.

Recover Sqn{i} (from AK).
Check MacS value.

If Sqn{i} ∈ (SqnC, SqnC +∆):
Compute:
CK← F3(skC, skOp,R

{i}),
IK← F4(skC, skOp,R

{i}),
Set Res := F2(skC, skOp,R

{i}).
Update SqnC := Sqn{i}.

Else re-synchronization

———————————–
2©: Store {AV{i}}ni=1.

Choose AV{i} one by one in
order.
Then it sends the related
challenge.
———————————–
4©: Res

?
= MacC.

1©: For each i = 1, . . . , n, compute:

Generate R{i}. Compute: Sqn{i} ← inc(SqnOp,C)

Mac
{i}
S ← F1(skC, skOp,R

{i}, Sqn{i},AMF),

Mac
{i}
C ← F2(skC, skOp,R

{i}),
CK{i} ← F3(skC, skOp,R

{i}),
IK{i} ← F4(skC, skOp,R

{i}),
AK{i} ← F5(skC, skOp,R

{i}),

Autn{i} ← (Sqn{i} ⊕ AK{i}),AMF,Mac
{i}
S .

AV{i} := R{i},CK{i}, IK{i},Autn{i},Mac
{i}
C , with

SqnOp,C = Sqn{i}.
End For.

Fig. 1. The AKA Procedure.

The AKA protocol, depicted in Figure 6, proceeds in several subparts. The
first two protocol exchanges are between the client C and the server S over an
insecure channel and they make up the user identification step. At the end of
this phase, the server will associate C with an identifier, either the permanent
International Mobile Subscriber Identity IMSI or the tuple of a Temporary Mobile
Subscriber Identity TMSI and the Local Area Identifier LAI of the server issuing
the latest TMSI. The identification procedure is vital to the client’s privacy;
however, as we focus here only on the security of AKA, we just associate each
client with a unique user ID UID (as we explain at the end of this section). Once
the server associates the client with an identifier UID, it proceeds either to the
authentication vector generation step (detailed in the set 1© of instructions in
Fig. 6), or to the authenticated key-exchange part (detailed in instruction sets
2©- 4©). The former of these is run by the server and the operator of the client
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C over a secure channel, and it provides the server S with authentication and
key-exchange material for a batch of AKA sessions with C; whenever S runs out
of AKE material, it re-runs the vector generation step. For each session, Op
prepares an authentication vector AV consisting of: a fresh random value R; a
server-authentication string MacS (authenticating R and the value SqnOp,C); a
client-authentication string MacC (authenticating R only); the session keys CK
and IK; and a one-time-pad encryption of SqnOp,C with a pseudorandom string
AK. The values MacS,MacC,CK, IK,AK are output by cryptographic algorithms
denoted F1, . . . ,F5 respectively. The AKA protocol also features the algorithms
F∗1 ,F∗5 for re-synchronization. All algorithms take as input the client key skC, the
operator key skOp, and the random value R; in addition, F1 and F∗1 also use the
operator’s and resp. the client’s sequence number. The server is given a batch of
vectors of the form: AV = (R,CK, IK,MacS,MacC,AMF,AK⊕ SqnOp,C), in which
AMF is a public authentication management field managed by the operator.

The authenticated-key-exchange step allows clients and servers to mutually
authenticate and compute session keys over an insecure channel. The server
chooses the next AV from the latest batch, using the random R and the string
Autn = (SqnOp,C⊕AK)‖AMF‖MacS as a challenge. The client uses R to compute
AK and recover SqnOp,C. If the received MacS verifies and SqnOp,C is within a
predefined distance ∆ of SqnC, then C computes (CK, IK) and the value MacC,
sending this last value to S. If the two sequence numbers are too far apart, then
C forces a re-synchronization, described below. Else, the client updates SqnC to
SqnOp,C, and S verifies the received authentication value with respect to the MacC

sent by Op. If MacC verifies, then S sends an acknowledgement to Op and runs a
TMSI re-allocation. During the optional re-synchronization, the client uses SqnC

to compute values Mac∗S and AK∗ ⊕ SqnC as Op did, using the session R, but
algorithms F∗1 and F∗5 (not F1 and F5). If Mac∗S verifies, Op resets SqnOp,C to
SqnC and sends to S another batch of AV as before. The protocol restarts.

Following successful key exchange, the client and server run the TMSI re-
allocation. The server sends an (unauthenticated) encryption of a new, randomly
chosen TMSI (which is unique per server) to the client C, using the agreed-upon
key CK. Encryption is done by means of the A5/3 algorithm (see 3GPP TS
43.020, release 12), run in cipher mode. The new TMSI value, called TMSInew, is
only permanently saved by S if acknowledged by the client; else, both TMSInew

and TMSIold are retained and can be used in the next protocol run.

Identities and reallocation. Though in this paper we stick close to the AKA
protocol, one simplification we make throughout is associating each client with a
single, unique UID, which we consider public. In practice, UID is the user’s IMSI,
which is used in case a TMSI value is not traceable to an IMSI. From the point of
view of security, any attack initiated by mismatching TMSI values (i.e. replacing
one value by another) is equivalent to doing the same with IMSI values.

Another important feature of AKA that we abstract in this analysis is the
TMSI reallocation. If the TMSI system were flawless (a newly-allocated TMSI is
reliable and non-modifiable by an active MiM), then we could prove a stronger
degree of server impersonation than we currently do. As discussed in Section 3,
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an active MiM can inject false TMSI values, which make servers request an IMSI
value; if the MiM reuses this value, it can impersonate servers by offline relays.
The use of the TMSI in AKA is undone by using IMSIs as a backup for TMSIs;
also, insecurities in using TMSIs translate to the identification by IMSI.

3 Security model

3.1 Key-indistinguishability and impersonation

The security goals of the AKA protocol are: the secrecy of the established sessions
keys against both passive and active MiM adversaries, as well as mutual authen-
tication. In particular, this protocol cannot guarantee (perfect) strong secrecy, as
it uses symmetric long-term keys, which, once compromised, can also endanger
past session keys. We formalize these goals in terms of three properties: key-
indistinguishability, client-impersonation resistance, and server-impersonation
resistance.

As mentioned in Section 1, these notions cannot be trivially proved in the
Bellare-Rogaway model variations, e.g. [14,13]. Indeed, we need to propose a
new model to take into account sequence numbers, resynchronizations, and a
possible Man-in-the-Middle server-impersonation attack. Note that, even if this
implies an imperfect mutual authentication, it has no impact on the secrecy
(indistinguishability from random) of the sessions keys.

We split the guarantee of mutual authentication, which implies client and
server impersonation resistance, into two properties. This is because the AKA
protocol offers different degrees of security with respect to impersonation attacks
for clients and for servers.

Setup and participants. We consider a set P of honest participants, which
are either mobile clients C of the type ME/USIM subscribing to operators Op,
or servers S. A participant is generically denoted as P. In all security games,
the operators Op are black-box algorithms within the server S. We assume the
existence of nC clients, nS servers and nOp operators. If the operators are con-
tained within the servers, we assume that all copies of the same operator are
synchronized at all times.

Each client C is associated with a unique identifier UID, two long term static
secret keys skUID (subscriber key), and skOp (operator key) which is common to
all clients subscribing to a specific operator, and a long-term state stUID

7. In
particular, we consider multiple operators, with the restriction that each user
may only be registered to a single operator8. In our model, we also assume for
simplicity that the key space of all operators is identical, noting that neither the

7 The latter consists in practice of a sequence number SqnUID, which is updated at
each successful authenticated key exchange.

8 We note that this seems to extend naturally to a case in which a single client may
be registered with multiple operators, as long as the key-generation process for each
operator is such that the registration of a single client to two operators is equivalent
to representing a two-operator-client as two independent clients.
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key-indistinguishability, nor the mutual authentication properties are affected
by the way operators choose their keys (the security of both the key exchange
and the authentication properties rely just on the key length); the variation in
the key space does, however, affect user privacy. Each operator is assumed to
contain skUID included in a database of tuples (UID, skUID, skOp, stOp,UID), each
tuple corresponding to a single user of this operator. The last entry stOp,UID of
each tuple denotes the long term state of the operator associated with that user
– which may in fact differ from the state of the user itself. For the AKA protocol,
the state is in fact a sequence number, associated with each client. Moreover, the
servers do not contain any secret information of the operator or the subscriber.

In our model, each participant may run concurrent key-agreement executions
of the protocol Π. We denote the j-th execution of the protocol by the party P
as Pj . We tacitly associate each instance Pi with a session ID sid, a partner ID
pid (consisting either of one or of multiple elements), and an accept/reject bit
accept. As explained more in detail in Section 4, the partner ID is set to either
the server or to a user identifier UID, whereas the session ID includes three
values: the user ID given by the client (thus tacitly also the key associated with
that UID), the randomness generated by the server, and the sequence number
used for the authentication. Finally, the accept/reject bit is initialized to 0 and
turns to 1 at the successful termination of the key-agreement protocol. We call
this “terminating in an accepting state”. In the absence of an adversary, the
protocol is always run between a client C and a server S. For the AKA protocol,
it is the server which begins the protocol by means of an ID request, and can thus
be called its initiator, whereas the mobile client is the respondent. A successful
termination of the protocol yields, for each party, a session key K (which for the
AKA protocol consists of two keys), the session identifier sid, and the partner
identifier pid of the party identified as the interlocutor. In AKA the client is
authenticated by means of a challenge-response type of query, where the response
is computed as a pseudo-random function of the key and (a part of) the challenge.
The server is equally authenticated by means of an authentication string, also a
pseudo-random function of the key, the challenge, and the long-term state that
the server associates with that client. In particular, the challenge strings sent by
the server are authenticated.

The notion of key-indistinguishability refers to the session keys calculated as
a result of the key-exchange protocol (rather than to the long-term keys held by
each party), requiring that they be indistinguishable from random bitstrings of
equal length. The adversary MiM A can access instances of honest parties by
means of oracles acting as interfaces; furthermore, A can schedule message deliv-
eries, send tampered messages, or interact arbitrarily with any party, by means
of the oracles below. We note that in the key-indistinguishability model the ad-
versary may also know the long-term state (in our case, the sequence number) of
both users and the server. This will also be the case in the impersonation games.
Since the state is updated in a probabilistic way, we give the adversary a means
of always learning the updated state of a party without necessarily corrupting
it (the latter may rule out certain interactions due to notions of freshness, see
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below). Corruption is allowed and implied the related party is considered as ad-
versarially controlled. We use the same fundamental model, with similar oracles,
also for the definitions of client and server impersonation.

We consider a finite (and public) list of nOp operators Op1, . . .OpnOp
, for

which the keys skOp1
, . . . skOpnOp

are generated independently and uniformly at

random Sop.

Oracles. The adversary interacts with the system by means of the following
oracles, in addition to a function G, which we model as a PRF.

– CreateCl(Op)→ (UID, stUID): This oracle creates a client with unique identi-
fier UID. Then the client’s secret key skUID and the sequence number SqnUID.
The tuples (UID, skUID, skOp,SqnUID) are associated with the client UID and
with the corresponding operator Op (i.e. each “copy” of Op in each server
does this). The operator sets stOp,UID := SqnUID and then keeps track of
stOp,UID. The adversary is given UID and stUID.

– NewInstance(P) → (Pj ,m): this oracle instantiates the new instance Pj , of
party P, which is either a client or a server. Furthermore, the oracle also
outputs a message m, which is either the first message in an honest protocol
session (if P is a server) or ⊥ (if P is a client). The state st of this party
is initiated to be the current state of P, and it is initiated with the current
value of TMSI, LAI.

– Execute(P, i,P′, j)→ τ : creates (fresh) instances Pi of a server P and P′j of a
client, then runs the protocol between them. The adversary A receives the
transcript of the protocol.

– Send(P, i,m) → m′: simulates sending message m to instance Pi of P. The
output is a response message m′ (which is set to ⊥ in case of an error or an
abort).

– Reveal(P,i) → {K,⊥}: if the party has not terminated in an accepting state,
this oracle outputs ⊥; else, it outputs the session keys computed by instance
Pi.

– Corrupt(P)→ skP: if P is a client, this oracle returns the long-term client key
skP, but not skOp (in this we keep faithful to the implementation of the pro-
tocol, which protects the key even from the user himself)9. If P is corrupted,
then this party (and all its instances, past, present, or future), are considered
to be adversarially controlled. If P is a server, then this oracle returns the
identifier Si, giving the adversary access to a special oracle OpAccess.

– OpAccess(S,C) → m: for a corrupted server S, this oracle gives the adver-
sary one access to the server’s local copy of all the operators, in particular

9 In this we keep faithful to the implementation of AKA, which protects skOp from
the user by storing a 1-way function of skOp and skC in the SIM card. Another
approach would be to reveal an intermediate, AKA-specific value denoted TopC upon
corruption. In the interest of generality, we keep the model at a higher level of
abstraction than the peculiarities of AKA. We also note that in our proofs, a common
first step is to give the adversary access to a broader corruption oracle, which also
reveals skOp, with no security loss.
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returning the message that the operator Op would have output to the server
on input a client C.

– StReveal(C, i, bitS) → x: for a client P, if bitS = 0, then this oracle reveals
the current state of Ci; else, if bitS = 1, then the oracle returns the state the
operator stores for C.

– TestK.Sec(P,i)→ K̂: this oracle is initialized with a secret random bit b. It re-
turns ⊥ if the instance Pi is unfresh or if it has not terminated in an accepting
state (with a session key K). If b = 0, then the oracle returns K̂ := K, else it

returns K̂ := K′, which is a value drawn uniformly at random from the same
space as K. We assume that the adversary makes a single TestK.Sec query (a
standard hybrid argument can extend the notion to multiple queries). We
may assume that the adversary makes only a single TestK.Sec() query since
we can extend our model to the multi-query scenario by a standard hybrid
argument.

We allow the adversaries to learn whether instances have terminated and
whether they have accepted or rejected their partners. Indeed, the adversary
can always use Send queries to verify the status of a session. Though we do not
model the precise error messages received by the two parties on abort, this seems
to have no effect on the key-indistinguishability and impersonation properties
of the two parties respectively. We also assume that the adversary will learn
the session and partner identifiers for any session in which the instance has
terminated in an accepting state.

Correctness and Partners. Each instance of each party keeps track of a ses-
sion ID string, denoted sid. For the AKA protocol, this value consists of a triple
of values: a user ID UID (corresponding to a single client C), a session-specific
random value, and the sequence number used for the authentication step. We
describe this in more detail in Section 4. We define partners as party instances
that share the same session ID 10. More formally:

Definition 1. [Partners.] Two instances Pi and P′j are partnered if the fol-
lowing statements hold:

(i) One of the parties is a user and the other is the server.
(ii) The two instances terminate in an accepting state.
(iii) The instances share the same sid.

In this case, the partner ID of some party P denotes its (intended) partner.

We define the correctness of the protocol as follows.

Definition 2. [Correctness.] An execution of the protocol Π between two in-
stances is correct if the execution is untampered with and if the following condi-
tions hold:

10 The choice of pid and sid makes our security guarantee non-composable; however,
the design of AKA makes it hard to define pids based only on publicly-known values.
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(i) The two conversing instances share the same sid, i.e. they are partnered.
(ii) The both instances output the same session key(s) K.
(iii) The partner identifiers pid of the instances are correct, i.e they corre-
sponds to the both conversing entities.

We consider two classes of adversaries, weak and strong, depending on whether
the adversary may corrupt servers or not. We model three requirements with re-
spect to MiM adversaries.

Key-indistinguishability. For the property of key-indistinguishability, i.e. the
guarantee that the session keys of honest sessions are indistinguishable from
random, we could consider two types of models. The simpler of these gives the
adversary the ability of recovering the secret key of the operator, which consid-
erably eases the simulation in our proof. However, we note that the operator
keys are not easy to recovery by a client in real-world implementations, as they
are never stored on the SIM card11. Thus, a more realistic model is the one we
present above, in which only the client key is recovered upon corruption. We
give the alternative security model in the Appendix.

The key-indistinguishability game is played as follows. First the challenger
generates the keys of all the nOp operators and gives black-box access to the
server S. The adversary is then allowed to query any of the oracles above. We
implicitly assume that the TestK.Sec oracle keeps state and, once it is queried
a first time, it will return ⊥ on all subsequent queries (we only allow a single
query). However, we do allow the adversary to interact with other oracles after
the TestK.Sec query as well.

Eventually, the adversary A outputs a bit d, which is a guess for the bit b used
internally in the TestK.Sec oracle. The adversary wins if and only if: b = d and
A has queried a fresh instance to the TestK.Sec oracle. We consider the following
definition of a fresh instance for the key-indistinguishability. We note that this
notion is classical in symmetric-key protocols.

Definition 3. [Freshness: Key-indistinguishability.] An instance Pi is fresh
if neither this instance, nor a partner of Pi is adversarially-controlled, i.e has
not been corrupted, and the following queries were not previously executed:

(i) Reveal(.), either on the instance Pi, or on of its partners.
(ii) Corrupt(.) on any instance, either of P, or of their partners.

The advantage of A in winning the key-indistinguishability game is defined
as:

AdvK.Ind
Π (A) := |Pr[A wins]− 1/2|.

We quantify the adversary’s maximal advantage as a function of her resources
which are the running time t, the number qexec of instantiated party instances,
and the maximum number of allowed resynchronization attempts qres per instan-
tiated instance.
11 Instead, what is stored in the SIM card is an intermediate value, obtained after a

first Keccak truncated permutation; thus the operator key is easy to use, but hard
to recover.
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Definition 4. [Weak/Strong Key-Indistinguishability.] A key-agreement
protocol Π is (t, qexec, qres, qG , ε)-weakly key-indistinguishable (resp. (t, qexec, qres,
qs, qOp, qG , ε)-strongly-key-indistinguishable) if no adversary running in time t,
creating at most qexec party instances with at most qres resynchronizations per
instance, (corrupting at most qs servers and making at most qOp OpAccess queries
per operator per corrupted server for strong security), and making at most qG

queries to function G, has an advantage AdvK.Ind
Π (A) > ε.

Client impersonation resistance. Though the AKA protocol claims to pro-
vide mutual authentication, its design introduces a vulnerability, leading to
a subtle difference between the degree of client-impersonation resistance and
server -impersonation resistance. In fact, as detailed in the paragraph below, the
protocol allows the adversary to do a type of Man-in-the-Middle attack which
resembles, but is not quite the same as, a relay attack.

We have two choices in modeling the client and server impersonation guaran-
tees. The classical Bellare-Rogaway model, using the notion of freshness, cannot
differentiate well between client- and server-impersonation resistance. A conse-
quence is that we would only be able to prove a weaker client-impersonation
guarantee than the one provided by the protocol. In our full version we also
outline these notions and the respective proofs, see the Appendix.

The alternative is to give a more acurate model, which features time and can
capture the difference between online and offline relays. This is the strategy we
use here. In a style akin to the distance-bounding model of Dürholz et al. [20],
we introduce a time variable with positive integer values, denoted clock, which
increments by 1 both when a Send query is sent by the adversary, and when
an honest party responds to this query. Running the Execute query increments
clock by 1 for each implicit Send and for each implicit response step. For client
impersonation, the only attacks we rule out are online relay attacks, which are
(somewhat simplistically) depicted in Figure 2. In particular, we need to propose
a more subtle definition of a fresh instance as follows:

Definition 5. [Freshness: C.Imp resistance.] An instance Si, with session ID
sid and partner ID pid, is fresh if: neither this instance nor a partner of Si is
adversarially-controlled; and there exists no instance Cj sharing session sid with
the partner pid = Si (the related transcript is denoted as (m,m′,m′′)) such that
the following events occur::

(i) The message m is sent by the adversary A to Si via a Send(m) query at
time clock = k, yielding message m′ at time clock = k + 1.
(ii) The message m′ is sent by A to Cj via a Send(m′) query at time clock =
k′ > k + 1, yielding message m′′ at time clock = k′ + 1.
(iii) The message m′′ is sent by A to Si via a Send(m′′) query at time clock =
k′′ > k′ + 1.

We note that the messages need not be exactly sequential (i.e. the adversary
could query other oracles in different sessions before returning to session sid).
Furthermore, the notion of freshness only refers to relays with respect to the
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partner client pid. We do not restrict the adversary from forwarding received
messages to other server or client instances.

S A C S A C S A C
Send(m)
←−−−−−−−−

Send(m)
←−−−−−−−−

Send(m)
←−−−−−−−−

m′−−−−−−−−→ m′−−−−−−−−→ m′−−−−−−−−→
Send(m′)
−−−−−−−−→

Send(m∗)
−−−−−−−−→

Send(m̂)
−−−−−−−−→

m′′←−−−−−−−− m′′←−−−−−−−− m←−−−−−−−−
Send(m′′)
←−−−−−−−− m′′←−−−−−−−−

Send(m′)
−−−−−−−−→

online relay no relay offline relay
(pure relays) (different messages) (out of order)

Fig. 2. Examples of Online and Offline relays. For the AKA protocol, the message m
is the client’s UID, which the adversary can learn. The message m′ is a valid authenti-
cation challenge, and the message m′′ is the authentication response. The message m̂
is the UID request message, whereas m∗ is a random message.

The goal of a client-impersonation adversary is to make a fresh server instance
terminate in an accepting state. In this case, the Test oracle is not used. More
formally, the game begins by generating the operator keys as before; then the
adversary A gains access to all the oracles except TestK.Sec. When A stops, she
wins if there exists an instance Si that ends in an accepting state and is fresh
as described above. The advantage of the adversary is defined as her success
probability, i.e.

AdvC.Imp
Π (A) := Pr[A wins].

Definition 6. [Weak/Strong Client-Impersonation security.]
A key-agreement protocol Π is (t, qexec, qres, qG , ε)-weak-client-impersonation-secure
(resp. (t, qexec, qres, qs, qOp, qG , ε)-strong-client-impersonation secure) if no adver-
sary running in time t, creating at most qexec party instances with at most
qres resynchronizations per instance, (corrupting at most qs servers and mak-
ing at most qOp OpAccess queries per operator per corrupted server for strong
security), and making at most qG queries to the function G, has an advantage

AdvC.Imp
Π (A) ≥ ε.

Server impersonation resistance. As we explain in more detail in Section 6, it
is possible to impersonate a server even if we rule out online relays. In particular,
an adversary performs an offline (out of order) relay, as described in the third
scenario of Figure 2. This is because the client’s first message is the user id,
which is always sent in clear (thus known to adversaries). This enables A to
obtain, in a first session with the server, the server’s authenticated challenge
for a particular client UID, which it can replay to UID, in a separate (later)
session. In essence, the adversary is relaying the messages, but this happens in
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two different, non-concurrent executions. This indicates a gap between the client
impersonation and the server impersonation guarantees for the AKA protocol.

Our server-impersonation model rules out both offline and online relays, re-
defining freshness as follows:

Definition 7. [Freshness: S.Imp resistance.] An instance Ci, with session
ID sid and partner ID pid, is fresh if: neither this instance nor a partner of Ci
is adversarially-controlled; and there exists no instance Sj with session sid and
partner pid = Ci (the transcript of sid is denoted as (m,m′,m′′)) such that the
following events occur:

(i) The message m is sent by A to Sj via a Send(m) query yielding message
m′.
(ii) The message m′ is sent by A to Ci via a Send(m′) query yielding message
m′′.
(iii) The message m′′ is sent by A to Sj via a Send(m′′) query.

The game is played as in the client impersonation case. When the adversary
A stops, she wins if there exists a fresh instance Ci that ends in an accepting
state. The advantage of the adversary is defined as its success probability, i.e.

AdvS.Imp
Π (A) := Pr[A wins].

Definition 8. [Weak/Strong Server-Impersonation security.]
A key-agreement protocol Π is (t, qexec, qres, qG , ε)-weak-server-impersonation-secure
(resp. (t, qexec, qres, qs, qOp, qG , ε)-strong-server-impersonation secure) if no adver-
sary running in time t, creating at most qexec party instances with at most
qres resynchronizations per instance, (corrupting at most qs servers and mak-
ing at most qOp OpAccess queries per operator per corrupted server for strong
security), and making at most qG queries to the function G, has an advantage

AdvS.Imp
Π (A) ≥ ε.

3.2 Security w.r.t servers.

In this section, we consider a new adversary where she is a malicious but legit-
imate server S. Indeed, a such context requires that (malicious) server cannot
learn any secret data of the subscriber or operator, i.e the subscriber key skC,
operator key skOp and the two related internal states. Moreover, the server must
not be able to make a client accept the server’s authentication (thus complet-
ing the key-derivation process), unless they are explicitly given authenticating
information by a legitimate operator. We formalize these goals in terms of two
new properties: state-confidentiality and soundness. This model is really simi-
lar as the previous one, and is based on the same participants which includes
the adversary. For both properties, the adversary uses the UReg,NewInstance,
Execute, Send, Reveal, StReveal oracles as described in the previous model. We
additionally add two new oracles (including a new Corrupt oracle) as noted below:
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– Corrupt(P)→ S: if P is a client, behave as before in the previous model. If P is
an operator, returns skOp and the list of tuples S = (UID, skUID, stUID, stOp,C)
for all clients C subscribing with that operator.

– OpAccess(C)→ m: this oracle gives the adversary one access to the server’s
local copy of all the operators, in particular returning the message m that
the operator Op would have output to the server on input a client C.

Unlike key-indistinguishability, which guarantees that session keys are in-
distinguishable from random with respect to MiM adversaries, the property of
state confidentiality demands that long-term client keys remain confidential with
respect to malicious servers

This game begins by generating the material for nOp operators and nC clients.
The adversary can then interact arbitrarily with these entities by using the
oracles above. At the end of the game, the adversary must output a tuple:
(Pi, sk∗UID, sk∗Op, st∗UID, st∗Op,UID) such that UID is the long-term identifier of P and
Pi is a fresh instance of P in the sense formalized below. The adversary wins
if at least one of the values: sk∗UID, sk∗Op, st∗UID, st∗Op,UID is respectively equal to
skUID, skOp, stUID, stOp,UID, the real secret values of the fresh instance Pi.

Definition 9. [Freshness: St.Conf] An instance Pi is fresh if neither this in-
stance, nor a partner of Pi is adversarially-controlled (its long-term key skP has
not been corrupted) and the following queries were not previously executed:

(i) StReveal(.) on any instance of P.
(ii) Corrupt(.) on any instance of P or on the operator Op to which P sub-
scribes.

The advantage of the adversary is defined as:

AdvSt.Conf
Π (A) := Pr[A wins].

Definition 10. [State-confidentiality.] A key-agreement protocol Π is (t, qexec,
qres, qOp, qG , ε)-state-confidential if no adversary running in time t, creating at
most qexec party instances with at most qres resynchronizations per instance,
making at most qOp OpAccess queries and qG queries to G, has an advantage

AdvSt.Conf
Π (A) ≥ ε.

In the Soundness game, we demand that no server is able to make a fresh
client instance terminate in an accepting state without help from the operator.
This game resembles impersonation-security; however, this time the adversary
is a legitimate server (not a MiM) and it has access to operators. The adversary
may interact with oracles in the soundness game arbitrarily, but we only allow
a maximum number of qOp queries to the OpAccess oracle per client.

The adversary wins if there exist (qOp + 1) fresh client instances of a given
client which terminated in an accepting state. Freshness is defined similarly as
in the impersonation game with the same restriction due to the offline replays
attacks:
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Definition 11. [Freshness: soundness resistance.] An instance Ci, with
session ID sid and partner ID pid, is fresh if: neither this instance, a partner of
Ci nor their related operator Op is adversarially-controlled ;and there exists no
instance Sj with session sid and partner pid = Ci (the transcript of sid is denoted
as (m,m′,m′′)) such that the following events occur:

(i) The message m is sent by A to Sj via a Send(m) query yielding message
m′.
(ii) The message m′ is sent by A to Ci via a Send(m′) query yielding message
m′′.
(iii) The message m′′ is sent by A to Sj via a Send(m′′) query.

The advantage of the adversary is defined as:

AdvSound
Π (A) := Pr[A wins].

Definition 12. [Soundness.] A key-agreement protocol Π is (t, qexec, qres, qOp,
qG , ε)-server-sound if no adversary running in time t, creating at most qexec party
instances with at most qres resynchronizations per instance, making at most qOp

queries to any operator Op and at most qG queries to the function G, has an
advantage AdvSound

Π (A) ≥ ε.

4 Security of the AKA protocol

In this section, we focus on the current, unmodified version of the AKA protocol
with respect to the five properties formalized in Section 3.

In particular, parties P (clients C and servers S) run sessions of the protocol,
thus creating party instances denoted Pi. An instance is said to finish in an
accepting state if and only if it auhenticates its partner. Each instance keeps
track of a partner- and a session-ID.

The partner ID pid of an accepting client instance Ci is S (this reflects the lack
of server identifiers); server instances Si, have a pid corresponding to a unique
UID. The session ID sid of each instance consists of: UID, R, and the value Sqn
that is agreed upon during the session. In the absence of resynchronization, the
session ID is (UID,R,SqnOp,C). During re-synchronization, the operator updates
SqnOp,C to the client’s SqnC; this update is taken into account in the sid. Any
two partners (same sid) with accepting states compute session keys (CK‖IK).

A Unitary Function G. We analyse the security of AKA in two steps. First,
we reduce it to the pseudorandomness of an intermediate, unitary function G.
This function models the suite of seven algorithms used in AKA; each algorithm
is a specific call to G. For the state-confidentiality property we must also assume
the pseudorandomness of the related unitary function G∗, which is the same as
G, but we key it with the operator key skOp rather than the client key skC. This
first step gives a sufficient condition to provide AKA security for any suite of
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algorithms intended to be used within it. As a second step (showed in the full
version), we prove that both TUAK and MILENAGE, guarantee this property.

We note that the pseudorandomness of G implies the pseudorandomness of
each sub-algorithm, but is a strictly stronger property, which is necessary since
the session keys CK and IK, computed by two different algorithms on the same
input, must be independent.

4.1 Provable Security Guarantees

The existing AKA protocol only attains the weaker versions of key-indistinguisha-
bility, client-, and server-impersonation resistance. The protocol also guarantees
state-confidentiality and soundness with respect to malicious servers.

Denote by Π the AKA protocol described in Section 2.2, but in which the
calls to the internal cryptographic functions F1, . . . ,F5,F∗1 ,F∗5 are replaced by
calls to the function G : {0, 1}κ × {0, 1}d × {0, 1}t × {0, 1}t → {0, 1}n, in which
κ is a security parameter, d is a positive integer strictly larger than the size of
the operator key, and t indicates the block size of an underlying pseudo-random
permutation. As we detail in the full paper, the exact values of d, t, and n differ
for TUAK and MILENAGE; however, the construction of G is somewhat similar.

We denote by SC := {0, 1}κ the key-space for the client keys and by SOp :=
{0, 1}e, the key space for operator keys, for some specified e < d (in practice
e = 256). Our system features nC clients, nS servers and nOp operators.

Security statements. We group the five security statements that we prove for
the AKA protocol into two theorems. The first groups the properties of: weak
key-indistinguishability, strong client- and weak server-impersonation resistance,
and soundness with respect to servers. The second theorem is that for state-
confidentiality, which requires an additional assumption. We only include proof
sketches in this section and the complete proofs are moved in Appendix D.
Indeed, we sketch below the proof of each of these properties. For every proof,
we will require several reductions, which we formulate in game hops, starting
from an original game G0 which is the original security game for that property,
as defined in Section 3. Our security statements are phrased with respect to an

adversary A trying to break (in some way) the security of Π, which runs in time
t, creates at most qexec party instances with at most qres resynchronizations per
instance, and makes at most qG queries to the function G. Furthermore, in the
case of strong MiM adversary, it can also corrupt at most qs servers and make at
most qOp OpAccess queries per operator per corrupted server. For the legitimate-
and-malicious adversary, we quantify A in terms of the maximal number qOp of
queries to the oracle OpAccess, and the similar qexec, qres and qG queries.

The function G is defined as above.

Theorem 1. [W.K.Ind-resistance] For the protocol Π using the unitary func-
tion G described above, for any (t, qexec, qres, qG)-adversary A against the W.K.Ind-
security of Π winning with advantage AdvW.K.Ind

Π (A) there exists a (t′ ≈ O(t), q′ =
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qG + qexec(2 + qres))-adversary A′ against the pseudorandomness of G with:

AdvW.K.Ind
Π (A) ≤ nC ·

(
q2exec

2|R|
+ Advprf

G (A′)
)
.

Proof. We use the following game hops:

G0: The adversary in this game is an active MiM, whose goal is to distinguish
the session keys of a fresh party instance Pi ending in an accepted state from
random keys of the same length. No server corruptions are allowed.

G0 ⇒ G1: We modify the original game G0 as follows: we extend the corruption
oracle such that the adversary can request to corrupt the operator key skOp.
We argue that given any adversary A playing the game G1 and winning
w.p. εA, the same adversary wins the game G0 w.p. at least εA (this is
trivial since in game G1, A has more information).

G1 ⇒ G2: In G2, A can only interact with a single client. This is equivalent to
guessing the challenge client and our security loss is a factor 1

nC
.

G2 ⇒ G3: In G3, we abort if two honest server instances output the same ran-

dom value R. The two games are equivalent up to a collision term
q2exec

2|R|
.

G3 ⇒ G4: In G4, we replace the output of G by truly random, but consistent
values. The security loss here is precisely the advantage of a distinguisher A′
for the pseudorandomness of G.

G4: In this game, A plays against a single client C, using unique R values. Its
goal is to distinguish random session keys from truly random, real, fresh
keys. The adversary can thus do no better than guess.

Theorem 2. [S.C.Imp-resistance] For the protocol Π using the unitary func-
tion G described above, for any (t, qexec, qres, qs, qOp, qG)-adversary A against the

S.C.Imp-security of Π, winning with advantage AdvS.C.Imp
Π (A), there exists a (t′ ≈

O(t), q′ = 5 · qs · qOp + qG + qexec(qres + 2))-adversary A′ against the pseudoran-
domness of G such that:

AdvS.C.Imp
Π (A) ≤ nC ·

(
2 · Advprf

G (A′) +
(qexec + qs · qOp)2

2|R|
+
qexec · qres

2|Res| +
1

2κ

)
.

Proof. We use the following game hops:

G0: In this game, the adversary is again an active MiM, whose goal is to make
an honest server instance Si end in an accepting state with partner id UID
and session sid if we exclude online relays for sid. Up to qs server corruptions
are allowed.

G0 ⇒ G3: We use the same game hops from the previous proof to reach to G3,
in which: A can interact with a single client and there are no R collisions.
However, as we can now corrupt servers, the security loss from G2 to G3 is

a term
(qexec+qs·qOp)

2

2|R|
.
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G3 ⇒ G4: We modify G3 by only allowing the adversary to interact with a single
server (which cannot be corrupted). In particular, the adversary cannot reuse
authentication vectors from corrupted servers to provide a response to the
uncorrupted server S. However, the server’s challenge in any new session is
associated with a fresh, unique random value R, which enters into each G
computation, including the authentication challenge and response. Thus, our
security loss is a term Advprf

G (A′) (collision of G output for 2 different inputs
implies distinguishing the output of G from random).

G4 ⇒ G5: We modify G4 by replacing the pseudorandom output of G by consis-
tent, but truly random output and we lose the advantage of the distinguisher
A′ against the pseudorandomness of G.

G5: At this point, the adversary plays the impersonation game against a single
client and server, with only truly random, but consistent values, for unique
R values. The adversary is left with three options: (1) re-using a value al-
ready received from the honest client; (2) guessing the key skC; (3) guessing
the response Res in each of the at most qexec · qres sessions with S. Option
(1) requires online relays and is thus ruled out. Option (2) succeeds with
probability 2−|skC|. Option (3) succeeds w.p. 2−|Res| per guessing attempt,
yielding a total term qexec · qres · 2−|Res|.

Theorem 3. [W.S.Imp-resistance] For the protocol Π using the unitary func-
tion G described above, for any (t, qexec, qres, qG)-adversary A against the W.S.Imp-

security of Π, winning with advantage AdvW.S.Imp
Π (A), there exists a (t′ ≈ t, q =

qexec · (qres +2)+qG)-adversary A′ against the pseudorandomness of G such that:

AdvW.S.Imp
Π (A) ≤ nC ·

(
Advprf

G (A′) +
qexec · qres

2|MacS|
+

1

2κ

)
.

Proof. We use the following game hops:

G0: In this game, the adversary is an active MiM, whose goal is to make an hon-
est client instance Ci end in an accepting state with partner ID S and session
ID sid such that there are no offline or online relays. No server corruptions
are allowed.

G0 ⇒ G2: We use the same game hops from the previous proof to reach to G2,
in which: A can interact with a single client.

G2 ⇒ G3: We modify G2 by replacing the pseudorandom output of G by consis-
tent, but truly random output and we lose the advantage of the distinguisher
A′ against the pseudorandomness of G.

G3: At this point, the adversary plays the impersonation game against a single
client and server, with only truly random, but consistent values. The adver-
sary’s goal is to generate a correct authentication challenge, in particular
the value Autn for a correct sequence number. The adversary is left with
three options: (1) re-using a value already received from the honest server;
(2) guessing the key skC; (3) guessing a consistent value Autn in each of the
at most qexec · qres sessions with C. Option (1) requires an offline or online
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relay and is thus excluded. Option (2) succeeds with probability 2−|skC|. Op-
tion (3) succeeds w.p. 2−|MacS| per guessing attempt, yielding a total term
qexec · qres · 2−|MacS|.

Theorem 4. [Sound-resistance] For the protocol Π using the unitary func-
tion G described above, for any (t, qexec, qres, qOp, qG , ε)-adversary A against the

soundness of Π, winning with advantage AdvSound
Π (A), there exists a (t′ ≈ t, q′ =

5 · qOp + qG + nC · qexec(2 + qres))-adversary A′ against the pseudorandomness of
G such that:

AdvSound
Π (A) ≤ nC ·

(
2 · Advprf

G (A′) +
qexec · qres

2|MacS|
+

1

2κ

)
.

Proof. We use the following game hops:

G0: This game is similar to that of S.S.Imp, except that S.S.Imp is defined with
respect to an active MiM and soundness, with respect to a malicious server.
This server receives qOp authentication vectors and must authenticate to the
client qOp times. Apart from the original malicious server, no other server is
corrupted.

G0 ⇒ G1: We define game G1 as the modification of the S.S.Imp game in which
A also has access to operator corruptions and can get up to qOp authen-
tication vectors; the adversary’s goal is to authenticate qOp + 1 times. We
show that for every adversary winning game G0 with some probability, there
exists an adversary winning game G1 with the same probability. Intuitively
this is why the qOp + 1-st authentication challenge cannot be produced by
the adversary except by impersonating the server as a MiM would.

G1: We look at the probability that A wins game G1, in particular with respect
to the qOp + 1-st session, for which it has no authentication challenges. The
adversary’s attack is then reduced to a W.S.Imp model, for which it can ask
no additional authentication vector. This yields a total success probability
equal to the W.S.Imp bound.

Theorem 5. [St.Conf-resistance] For the protocol Π using the unitary func-
tions G,G∗, for any (t, qexec, qres, qOp, qG , qG∗)-adversary A against the St.Conf-

security of Π, winning with advantage AdvSt.Conf
Π (A), there exist: a (t′ ≈ O(t), q′ =

qG+qexec(5+qres))-prf-adversary A1 on G and (t′ ≈ O(t), q′ = qG∗)-prf-adversary
A2 on G∗ such that:

AdvSt.Conf
Π (A) ≤ nC ·

(
1

2|skC|
+

1

2|skOp|
+

2

2|Sqn| + Advprf
G (A1) + Advprf

G∗(A2)

)
.

Proof. We use several game hops for this proof, as follows:

G0: As in the soundness game, the adversary is a malicious server, whose goal is
to predict at least one of four values for any client UID: skUID, skOp,SqnUID,
SqnOp,UID, the latter two values taken at the time of the adversary’s output.
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G0 ⇒ G1: We modify the original game G0 so as to include only a single oper-
ator. We construct a black-box reduction that yields no security loss at this
game hop. Intuitively, this is because we consider G as a PRF keyed with
the secret key skUID.

G1 ⇒ G2: In G2, A can only interact with a single client. In this game hop, an
interesting difficulty is simulating queries for clients other than the target
client, which are affiliated to the same operator. We can do this by requiring
that we model the AKA algorithms behave as a PRF when keyed with the
operator key (this is the PRF property of the function we call G∗). Thus,
the adversary requires two oracles of the functions G∗ and G.

G2 ⇒ G3: In G3, we replace the output of G and G∗ by truly random, but
consistent values. The security loss here is precisely the advantage of a dis-
tinguisher A′ for the pseudorandomness of G or G∗.

G4: In this game, A plays the game against a single client C, using truly ran-
dom values. Her goal is to output at least one correct long-term secret for
the remaining client UID. Since all exchanged values are truly random, the
adversary has only a guessing probability of at most 1

2|skC|
+ 1

2|skOp|
+ 2

2|Sqn| .

MILENAGE and TUAK. Our second step is to prove that TUAK and MILENAGE
can both be represented as the generic function G. Due to space constraints,
we only propose two theorems of the pseudorandomness of these functions and
leave all the details to the proofs in Appendix F. Notably, as opposed to TUAK
(whose symmetric design allows a lot more leeway), the MILENAGE algorithms
require a stronger assumption to prove the PRF property for G∗ (which is keyed
with skOp).

Theorem 6. [prf-security for TUAK algorithms] For the generalization of
the TUAK algorithms Gtuak (resp. G∗tuak) keyed with the subscriber key (resp. the
operator key) and the functions f and f∗ two different truncated keyed internal
permutation of Keccak, for any (t, q)-adversary A against the pseudorandomness
of the function f (resp. f∗), then there exists a (t′ ≈ t, q′ = q)-adversary A’ such
that:

Advprf
Gtuak

(A) = Advprf
f (A′) Advprf

G∗tuak
(A) = Advprf

f∗(A
′).

Theorem 7. [prf-security for MILENAGE algorithms] For the generalization
of the MILENAGE algorithms Gmil1 and Gmil2 (resp. G∗mil1 and G∗mil2) keyed with
the subscriber key (resp. the operator key) and the function f (resp. f∗) the
AES algorithm (resp. a keyed version of a classic Davies-Meyer), for any (t, q)-
adversary A against the pseudorandomness of the function f (resp. f∗), then
there exists a (t′ ≈ 3 · t, q′ = 3 · q)-adversary A’ such that:

Advprf
Gmil1

(A) = Advprf
f (A′)(= Advprf

Gmil2
(A)),Advprf

G∗mil1
(A) = Advprf

f∗(A
′)(= Advprf

G∗mil2
(A)).
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4.2 Vulnerabilities of the AKA protocol

In the three-party mobile setting, the server is authenticated by the client if it
presents credentials (authentication vectors) generated by the client’s operator.
The properties of state-confidentiality and soundness, which the AKA protocol
guarantees, indicate that servers cannot learn the client’s long-term data, and
that they cannot authenticate without the operator-generated data.

However, Zhang [16] and Zhang and Fang [17] pointed out that once a server
is corrupted, it can obtain legitimate authentication data from the client’s op-
erator, and then use this data to set up a False Base Station (FBS), which can
lead to a malicious, unauthorised server authenticating to the client. As a result,
the AKA protocol does not guarantee strong key-indistinguishability, nor strong
server-impersonation resistance.

C A S C S∗ Op
AV1, . . . , AVn←−−−−−−−−−−−−−

Use k auth. vectors (k < n).
←−−−−−−−−−−−−−−−−−−−−−−→

User Identity request←−−−−−−−−−−−−−−−−−−−−−−−−−−−
User Identity answer−−−−−−−−−−−−−→

Auth. vector Request−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
AVk+1, . . . , AVn←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Use AVk+1←−−−−−−−−−−−−−
Respk+1−−−−−−−−−−−−−→

Fig. 3. The attack of Zhang and Fang. On the right hand side, the client is in the
vulnerable network, interacting with the server S∗. The server uses up authentication
vectors AV1, . . .AKk. Then, the server S∗ is corrupted, and the adversary A learns
AVk+1, . . . ,AVn, which it uses in a second attack phase (on the left).

The main attack strategy is also depicted in Figure 3. In a first step, the client
C is assumed to be in the LAI corresponding to a server S∗, which will later be
corrupted. The server receives a batch of authentication vectors (AV1, . . . ,AVn),
using some of them (vectors AV1, . . . ,AVk) to provide service to that client (and
learn what services this client has provided, etc.). Subsequently, the client moves
to a different LAI, outside the corrupted network’s area. The adversary A has
corrupted the server S∗ and learned the remaining vectors AVk+1, . . . ,AVn; this
adversary then uses this authentication data to authenticate to the client, in
its new location. This immediately breaks the server-impersonation guarantee.
Moreover, since authentication vectors also contain the short-term session keys,
key-indistinguishability is breached, too. This attack is particularly dangerous
since a single server corruption can affect a very large number of clients. More-
over, server corruption is easily practiced in totalitarian regimes, in which mobile
providers are subject to the state, and partial data is furthermore likely to be
leaked upon using backdoored algorithms.
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Such attack do not, however, affect client-impersonation resistance, since
the server cannot use an authentication vector from the server to respond to
a freshly-generated authentication challenge (the random value for the two au-
thentication vectors is different).

5 Additional Security with few modifications

The main reason server-corruption attacks are effective is that servers associ-
ated with a specific geographic area (like a country, a region, etc.) can re-use
authentication vectors given by the operator in a different geographic area, im-
personating the legitimate server associated with that area. This vulnerability,
however, is easily fixed as long as the client’s device is aware of its geographical
location. Our solution is to add a unique server identifier, denoted IdS, to the
input of each of the cryptographic functions, thus making any leftover authenti-
cation challenges un-replayable in the wrong area. We stress that this is a minor
modification to the protocol, as servers are already associated with a unique LAI
identifier. We present our modified protocol in Figure 4.

Instructions:

Client Server Operator

3©: Compute AK using R{i}.

Recover Sqn{i} (from AK).
Check MacS value.

If Sqn{i} ∈ (SqnC, SqnC +∆):
Compute:

CK← Upd F3(skC, skOp,R
{i}, IdS) ,

IK← Upd F4(skC, skOp,R
{i}, IdS) ,

Set Res := Upd F2(skC, skOp,R
{i}, IdS) .

Update SqnC := Sqn{i}.
Else re-synchronization

———————————–
2©: Store {AV{i}}ni=1.

Choose AV{i} one by one in
order.
Then, it forges and sends
the related challenge.
———————————–
4©: Res

?
= MacC.

1©: For each i = 1, . . . , n, compute:

Generate R{i}. Compute: Sqn{i} ← inc(SqnOp,C)

Mac
{i}
S ← Upd F1(skC, skOp,R

{i}, Sqn{i},AMF, IdS) ,

Mac
{i}
C ← Upd F2(skC, skOp,R

{i}, IdS) ,

CK{i} ← Upd F3(skC, skOp,R
{i}, IdS) ,

IK{i} ← Upd F4(skC, skOp,R
{i}, IdS) ,

AK{i} ← Upd F5(skC, skOp,R
{i}, IdS) ,

Autn{i} ← (Sqn{i} ⊕ AK),AMF,MacS.

AV{i} := (R{i},CK{i}, IK{i},Autn{i},Mac
{i}
C , with

SqnOp,C = Sqn{i}.
End For.

Fig. 4. The modified instructions of our variant.

Security of the modified AKA protocol. This modification still (trivially)
preserves the properties of strong client-impersonation resistance, soundness,
and state confidentiality. However, the modification yields in addition strong
key-indistinguishability and server-impersonation resistance, as we detail below.
As the previous theorems, we only include proof sketches and the complete proofs
are moved in appendix D.

Theorem 8. [S.K.Ind-resistance] For the modified protocol Π using the unitary
function G described in Section 4, for any (t, qexec, qres, qs, qOp, qG)-adversary A
against the S.K.Ind-security of Π winning with advantage AdvS.K.Ind

Π (A) there
exists a (t′ ≈ O(t), q′ = 5 · qs · qOp + qG + qexec(qres + 2))-adversary A′ against the
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pseudorandomness of G with:

AdvS.K.Ind
Π (A) ≤ nC ·

(
(qexec + qs · qOp)2

2|R|
+ 2 · Advprf

G (A′)
)
.

Proof. We use the following game hops:

G0: The adversary in this game is an active MiM, whose goal is to distinguish
the session keys of a fresh party instance Pi ending in an accepted state from
random keys of the same length. We allow server corruptions.

G0 ⇒ G2: We use the same reductions as in the weak key-indistinguishability
game, until we only interact with one client.

G2 ⇒ G3: In G3, we abort if two honest server instances, or a server-corruption/
operator access output the same random value R. The two games are equiv-

alent up to a collision term
(qexec+qs·qOp)

2

2|R|
.

G3 ⇒ G4: In G4, we modify the game to only play against one server. The se-
curity loss here comes from the adversary’s no longer being able to corrupt
servers. However, corruptions only give authentication vectors with a differ-
ent server identifier. Thus, we bound the security loss by the advantage of a
best distinguisher against the pseudorandomness of G.

G4 ⇒ G5: In this game hop, we replace the pseudorandom outputs of G by truly
random values, thus losing the advantage of a best distinguisher against the
PRF-security of G.

G5: In this game, A plays against a single client C and a single server S, using
unique R values. Its goal is to distinguish random session keys from truly
random, consistent, fresh keys. The adversary can thus do no better than
guess.

Theorem 9. [S.S.Imp-resistance] For the modified protocol Π using the unitary
function G described in Section 4, for any (t, qexec, qres, qs, qOp, qG)-adversary A
against the S.S.Imp-security of Π, winning with advantage AdvS.S.Imp

Π (A), there
exists a (t′ ≈ O(t), q′ = 5 · qs · qOp + qG + qexec(2 + qres))-adversary A′ against
the pseudorandomness of G such that:

AdvS.S.Imp
Π (AG0

) ≤ nC ·
(
qexec · qres

2|MacS|
+

1

2κ
+ 2 · Advprf

G (A′)
)
.

Proof. We use the following game hops:

G0: The adversary in this game is an active MiM, whose goal is to impersonate
the server to a client instance Ci, with no online relays. We allow server
corruptions.

G0 ⇒ G2: We use the same first reductions as in the strong key-indistinguishability
game, until we only interact with one client.

G2 ⇒ G4: We use the reductions G3 ⇒ G5 from the strong key-indistinguishability
game. Now A interacts with a single client, a single server, and the output
of G is replaced by consistent, truly random output.
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G5: By a similar result to the W.S.Imp game, we now conclude that the adversary
may at most guess either MacS or skC.

Each of the two bounds above depend linearly on the number of clients nC;
while this number can be as large as, potentially, six billion, the size of the
secret keys (128 or 256 bits) and of the random value (128 bits) can still make
the bound negligible. The linear factor nC, however, highlights the importance
of using authentication strings longer than 128 bits for authentication.

6 Impact

The AKA protocol was designed for 3G networks, and is currently used to se-
curely provide service to mobile clients on 3G/4G networks (the latter is done
by using AKA together with the LTE protocol). As a standardized, and highly
used protocol, AKA is likely to become one of the main building blocks securing
5G communications. Despite its significance, the security of the AKA protocol is
not well-understood to date. Several previous results indicate privacy flaws and
propose quite radical modifications which are claimed to provide better privacy.
In this paper, we have focused on the actual security guarantees of the unmod-
ified AKA protocol, and we showed that a small modification which is easily
incorporated in the design of AKA can provide much stronger security (i.e. with
respect to corruptions).

Since it is used in 3G and 4G communications, the AKA protocol is subject to
constraints dictated by its usage (in a three-party environment, rather than two
parties, as usually featured in typical AKE scenarios) and by hardware restric-
tions (e.g. the inability of SIM cards to generate randomness). The three-party
scenario makes usual cryptographic models such as BPR hard to use, since secu-
rity must also be defined with respect to the semi-trusted servers. The somewhat
unorthodox and counter-intuitive design of AKA (from a cryptographic point of
view) makes the analysis of its security difficult in that known results on AKE
cannot be applied in a straightforward way.

Our analysis follows the design of AKA closely, and we analyse security in
a strong model, which allows corruptions of both clients and servers. We show
that the small modification of introducing a server-specific identifier in the cryp-
tographic functions mitigates the consequences of server corruptions as detailed
by Zhang [16]. We also show how to incorporate this modification in TUAK and
MILENAGE. We prove security by relying on a classical assumption (pseudo-
randomness) of a unitary function G, and we show that both the TUAK and
MILENAGE algorithm-suites can be proved to behave as such a function. This
gives, for any suite of algorithms with appropriate input/output domains, a suf-
ficient condition to ensure the security of AKA.

A limitation of our analysis is that we consider only the security of AKA,
rather than its privacy. This is partly because existing results already show that
AKA does not guarantee a very strong degree of privacy. Moreover, as we show
in this paper, the security of this protocol (with respect to key-establishment,
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authentication, and trust with respect to servers) is a vast topic, which has not
been previous studied. An interesting direction for future research would be a
thorough privacy analysis of AKA and modifying this protocol such that it is
still implementable in current conditions, while providing better privacy.
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A Security notions

A.1 Security notions

The security notions can be proved under known or chosen message attacks,
denoted respectively kma and cma. In this paper, we define all the security
notions under the chosen messages attacks.

Pseudo-random function. A pseudo-random function (prf) is a family of func-
tions with the property that the input-output behavior of a random instance of
the family is computationally indistinguishable from that of a random function.
This property is defined in terms of the following security game Gprf :

1. The challenger Cprf
f chooses a bit b ∈ {0, 1}. If b = 0, it assigns f to a random

function Rand : {0, 1}d → {0, 1}n. Else if b = 1, it chooses a key K ∈ {0, 1}κ
and assigns f to the function f(K, .).

2. The adversary A sends one by one q messages xi ∈ {0, 1}d to the challenger
and receives f(xi).

3. Finally, A outputs a guess d of the bit b to the Cprf
f .

We can evaluate the prf-advantage of an adversary against f, denoted Advprf
f (A)

as follows, for a random function denoted Rand : {0, 1}d → {0, 1}n:

Advprf
f (A) =

∣∣Pr[A → 1|f $← F (K, .),K
$← {0, 1}κ]

−Pr[A → 1|f $← Rand]
∣∣,
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Definition 13. ([Pseudo-Random Function.]) A family f of functions from
{0, 1}κ × {0, 1}d to {0, 1}n is said to be (t, q)-prf-secure if any adversary A
running in time t and making at most q queries to its challenger Cprf

f , cannot
distinguish f from a random function Rand with a non-negligible advantage.

B The AP-AKA variant [16]

Protocol description. In 2003, Zhang proposed a variant of AKA he called AP-
AKA, which we depict in Figure 5 (although we use a syntax closer to our own
variant, to facilitate a comparison). Instead of the suite of seven cryptographic
algorithms specified for the AKA protocol, Zhang only uses three independent
functions F,G,H, which are all keyed with a key K. The authors do not specify
what this key is in the AKA scenario, but considering the design of this protocol,
it must be a function of the two keys skC and skOp. We assume K = skC||skOp in
this case. For the security of the protocol, G must be a pseudorandom function
(PRF), while F and H must be unforgeable MACs.

We first describe this protocol. The procedure begins by the same identifi-
cation phase as the regular AKA procedure shown in Section 2.2. Namely, the
server sends an identification request, to which the client responds with either the
permanent identifier IMSI or with a tuple consisting of the temporary identifier
TMSI and the local area identifier LAI of the server that issued the TMSI.

The first modification made with respect to the classical AKA is extending
the authentication vector request phase, which takes place between two parties
in the original scheme, to three parties. The server/client communication takes
place across an insecure channel, wheras the channel between the server and the
operator is secure. Zhang [16] adds a message-exchange to the protocol every
time the server needs fresh authentication vectors. This exchange is a typical
challenge-response authentication: the server sends a fresh nonce Rfresh, and the
client generates a fresh RC, computing a MAC (namely the function F ) keyed
with the key K, on input the concatenation of Rfresh, RC, and a unique server
identifier IdS. The authentication vectors are similar to those in the original AKA,
but they implicitly rely on the client’s random value RC and on fresh randomness
R{i} generated by the operator for i = 1, . . . , n (here n is the batch size). An

initial step is to generate numbers R
{i}
C for i = 1, . . . , n; these are generated by

using the MAC function H on input i and RC. The server authentication string
MacS is computed as the function F on input the operator’s randomness R{i},

the current index i, and a nonce R
{i}
C generated from RC. The values i, R

{i}
C ,

and MacS are grouped as Autn{i} for each i. Each authentication vector AV{i}

consists of: the randomness R{i}, the authentication string Autn{i}, the session
keys (CK, IK) which are derived as a result of the PRF G, keyed with K, on
input the randomness R{i}, and the expected client-authentication string MacC.
Finally, a batch of n authentication vectors are sent to the server.

The remainder of the protocol proceeds analogously to the original AKA pro-
cedure, with the modifications imposed by the way the authentication vectors
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Client Server Operator
(K) (K)

User identity request

←−−−−−−−−−−−−
User identity answer

−−−−−−−−−−−−→
Rfresh

←−−−−−−−−−−−−
RC,Mac2=FK(Rfresh||RC||IdS)

−−−−−−−−−−−−→
Auth response

UID,Rfresh,RC,Mac2
−−−−−−−−−−−−→

1©
Auth. vectors

{AV{i}}ni=1

←−−−−−−−−−−−−
2©

Auth challenge

R{i}‖Autn{i}

←−−−−−−−−−−−−

3©
Auth response

Res
−−−−−−−−−−−−→

4©
Instructions:

Client Server Operator

3©: Recover R{i}, and Autn{i}.

If R
{i}
C was used before by S: abort.

Else: Find 1 ≤ i ≤ n s.t. R
{i}
C = HK(i‖RC)

If no such i exists: abort;
Else: check MacS for i,R{i}, R

{i}
C (or abort)

Compute Res = FK(R{i})
Compute: (CK‖IK) = GK(R{i}).

——————————
2©: Store {AV{i}}ni=1.

Choose next AV{i}, send
related challenge

——————————
4©: Res

?
= MacC.

1©: Check Mac2 w.r.t. Rfresh, RC.
If failure, send reject notice to S and abort;
Else: for i = 1, . . . , n, compute:
MacC = FK(R{i})
(CK‖IK) = GK(R{i})

R
{i}
C = HK(i‖RC)

MacS = FK(R{i}‖i‖R{i}C )

Autn{i} ← i‖R{i}C ‖MacS.
AV{i} := (R{i},CK, IK,Autn{i},MacC).
End For.

Fig. 5. The AP-AKA Variant.

are generated. In particular, upon receiving the randomness R{i} and the authen-

tication string Autn{i}, the client verifies, in order: (1) that it has never received

the same string R
{i}
C ; (2) that this value is consistent with the randomness RC;

(3) that the authentication MacS is correct with respect to this randomness. If
any of these verifications fail, the client aborts. Else, it computes the session
keys and its own authentication string Res, sending the latter to the server.

Stateful vs. Stateless. Zhang presented his variant as eliminating “dynamic
states”. We note that, while his work ensured that no sequence number is nec-
essary, the protocol is not entirely stateless. In particular, the client must keep

track of a list, which is dynamically updated, of already seen randomness R
{i}
C

for a given nonce RC. Although this makes the protocol stateful, it does eliminate
the need to resynchronize the state of the two parties.

Security Problems. A first problem is the fact that the three functions F ,

G, and H use the same key. In particular, the values MacS, MacC, and R
{i}
C ,
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which are computed using the key K, are sent across an insecure channel. Since
F and H are MACs, the confidentiality of the key K is not fully guaranteed;
thus the guarantee of pseudorandomness of G is not sufficient to guarantee the
indistinguishability from random of the keys CK, IK. This weakness is remedied
if all three functions are assumed to have pseudorandom output.

A more serious problem is a network-corruption attack, which is harder to
prevent, and which originates in these two facts: (1) the new procedure to request
authentication vectors originates from the server, not from the client (indeed,
the client is not aware of whether the server still has pertinent authentication
vectors or not); (2) the network-specific identifier IdS is only used in the Mac2
value. In particular, the attack proceeds as follows:

1. The client C arrives in a vulnerable area (for which the server S∗ will be cor-
rupted). This server is authorized to request authentication vectors from the
operator and does so. Then, S∗ may use several such vectors with the client
(but not all). We assume that there will be at least a single authentication
vector AV which was not used. The adversary A then corrupts the server S∗,
thereby also retrieving the vector AV.

2. The client leaves the vulnerable area to enter a non-vulnerable one (with
an honest server S). The adversary A acts as a Man-in-the-Middle (MiM)
between C and S. It blocks the message Rfresh and any other message sent
by S, sending instead R,Autn from the authentication vector AV.

3. The verifications on the client side pass as long as the client still retains its
past value RC. This is not specified exactly in the original paper [16], but
considering that it is the server that initiates this exchange, it is likely that
the client will not automatically replace RC unless prompted by the server.

A possible countermeasure to this vulnerability is to ensure that once the
client is aware of having moved from the area associated with S∗, it discards the
old RC and aborts unless it is asked to generate a new one.

Practical Aspects. The protocol presented by Zhang [16] is not fully speci-
fied, but it does not follow closely the practical constraints of mobile networks.
The protocol forces a lot of complexity on the client, which has to verify the

uniqueness of the nonce R
{i}
C , to search exhaustively for the correct index which

gives an (honestly generated) R
{i}
C , and to generate the randomness RC. Since

R
{i}
C is generated given the secret key K, it must be computed securely: it is not

possible to delegate this computation to the phone (which is a more powerful,
but untrusted tool). We reiterate that the rationale of the initial AKA design
was that the client’s SIM card could not generate its own randomness.

Another concern is the lack of specificity with respect to the client and op-
erator keys, which are replaced by the generic key K. The fact that this key is
used in MAC functions exposes the keys to attackers, as explained in the first
attack above. In our results, we prove that for both TUAK and MILENAGE the
seven cryptographic algorithms are PRFs with respect to both the client and
the operator keys; this is a much stronger result. The same lack of specificity
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affects the keys CK, IK, which are generically denoted as a secret key SK in the
paper of Zhang. We note that the latter is a more sounder cryptographic design,
since in the AKA protocol, the two keys are output by different PRFs, but on
the same input. In particular, a stronger property is required than merely the
pseudorandomness of the two concerned algorithms: the two values must be in-
dependent even for adversarially-controlled input. We show that this is the case
for MILENAGE and TUAK, nonetheless.

C Full protocol description

In the AKA protocol [3,4], mutual client-backend authentication is provided us-
ing Message Authentication Codes (MAC) computed by three of the internal
cryptographic algorithms, while the secret keys are derived from a random value
and a shared secret key with a key derivation function (KDF), by means of the
rest of these functions.

In 3G networks, the basic framework is a challenge-response stateful pro-
tocol between two main actors: the HLR (Home Location Register) and the
ME/USIM (Mobile Equipment/User Subscriber Identity Module). This proto-
col needs an intermediate entity, the VLR (Visited Location Register). Both the
ME/USIM and the HLR keep track of counters, denoted respectively SqnC and
SqnOp,C; these sequence numbers are meant to provide entropy and enable net-
work authentication (from HLR to ME/USIM). Technically, one can view the
user’s sequence number as an increasing counter, while the latter keeps track of
the highest authenticated counter the user has accepted.

The AKA protocol uses a set of seven functions: F1, F2, F3, F4, F5, F∗1 ,
F∗5 . The first two are used to authenticate a MAC answer, proving that both
participants know the same subscriber key skC and the same operator key skOp.
Algorithm F1 is called the network authentication function. As its name implies,
it allows the subscriber to authenticate the network. Furthermore, this function
provides the data integrity used to derive keys (in particular authenticating the
random, session-specific value R). Algorithm F2 is called the subscriber authen-
tication function, and it allows the network to authenticate the subscriber C by
proving that the entity owns the subscriber key skC and the operator key skOp.

The following three algorithms, F3, . . . ,F5, are used as key derivation func-
tions, outputting respectively a cipher key (CK), an integrity key (IK), and an
anonymity key (AK), all derived on input the subscriber key skC, the operator
key skOp, and the session-specific random value R. Notice that the master key
skC is only known by HLR and ME/USIM, but not by the intermediate entity
VLR.

The last key, AK, is used to mask the sequence number Sqn, but it is not part
of the session keys. Its function is to blind the value of Sqn since the latter may
leak some information about the subscriber. In order to ensure that no long-
term desynchronization occurs, the AKA protocol provides a re-synchronization
procedure between the two participants, in which the user forces a new sequence
number on the backend server, using the F∗1 and F∗5 to authenticate this value
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much in the same way that the terminal has authenticated its own sequence
number and random value. Figure 6 details the challenge-response of AKA pro-
cedure.

The operator key. Subscribers to the same operator all share the operator’s
own secret key, in practice a 256-bit integer. This value is not directly stored on
the phone, but rather an intermediate value, obtained by deriving the operator
key, the subscriber key and several constants, is embedded in the SIM card. Thus,
whereas this value enters in all future runs of the cryptographic algorithms, it
is never stored in clear on the user’s mobile.

ME/USIM VLR HLR
(skC, skOp, stC = SqnC) (skC, skOp, stS,C = SqnHLR)

UID Request

←−−−−−−−−−−−−−
UID

−−−−−−−−−−−−−−→
IMSI

−−−−−−−−−→
Generate (R{1}, ...,R{n}).
Denote: keys := skC‖skOp.
For each i = 1, . . . , n, compute:

MacS ← F1(keys,R{i}, Sqn{i},AMF),
MacC ← F2(keys,R{i}),
CK← F3(keys,R{i}),
IK← F4(keys,R{i}),
AK← F5(keys,R{i}),
Autn{i} ← (Sqn{i} ⊕ AK)‖AMF‖MacS,

Sqn{i} ←
{
SqnHLR if i = 1

Sqn{i−1} + + else

Set AV{i} := (R{i},CK, IK,Autn{i},MacC).
End for.

{AV{i}}ni=1

←−−−−−−−−−−
Store {AV{i}}ni=1

Choose AV{i}.

R{i}‖Autn{i}

←−−−−−−−−−−−−−
Compute AK using R{i}.
Recover Sqn{i} (from AK).
Check MacS value.
Check validity of Sqn{i}.

If Sqn{i} in range:
Compute: IK,CK;
Set Res := F2(skOp, skC,R

{i}).
Update stC := Sqn{i}.

Else re-synchronization
Res

−−−−−−−−−−−−−→
Res

?
= MacC

Generate authen-
tication response

ARsp
ARsp

−−−−−−−−−−−−−→
Update: SqnHLR ← Sqn{n}.

Fig. 6. The AKA Procedure.

IMSI, TMSI, UID. Globally, the procedure starts when the user equipment
switches on. To identify the ME/USIM to the VLR, the mobile equipment receives
a user equipment request and responds to the VLR, in clear text, with a UID. This
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value can be either an IMSI (International Mobile Subscriber Identify) or a TMSI
(Temporary Mobile Subscriber Identity) which is a value exchanged between
the VLR and the subscriber during a previous session where both entities are
mutually authenticated.

These TMSI are exchanged in order to guarantee the uniqueness of the user
equipment request during following sessions. In practice, the IMSI is used either
for the first session or when the serving network cannot retrieve the IMSI from
the temporary identity. Then, the VLR forwards the IMSI of the subscriber to
the HLR.

Challenge-Response. After receiving the IMSI, the HLR generates a fresh se-
quence number Sqn and an unpredictable variable R. By using the subscriber’s
key skC and the corresponding operator key skOp, it then generates a list of n
unique authentication vectors AV composed of five strings: R, MacC, CK, IK,
Autn. For every authentication vector, the sequence number is updated. The up-
date procedure depends on the chosen method. The specifications feature a first
method which does not take into account the notion of time, and which basi-
cally increments by 1 the most significant 32-first value of the sequence number.
A second and third subsequent methods feature a time-based sequence number
update based on a clock giving universal time [4]. The authentication vector is
generated as follows:

MacS ← F1(skC, skOp,R,Sqn,AMF),

MacC ← F2(skC, skOp,R),

CK← F3(skC, skOp,R),

IK← F4(skC, skOp,R),

AK← F5(skC, skOp,R),

Autn← (Sqn ⊕ AK)‖AMF‖MacS,

where MacS is the message authentication code of the network by the subscriber,
MacC is the message authentication code of the subscriber by the network and
AMF the authentication and key management field (which is a known, public
constant).

The HLR sends the list of the authentication vectors AV to the VLR. This
list may also contain only a single authentication vector. Upon the reception
and storage of these vectors, when the VLR initiates an authentication and key
agreement, it selects the next authentication vector from the ordered array and
stores MacC and the session keys CK and IK. Then, it forwards (R, Autn) to
ME/USIM.

The ME/USIM verifies the freshness of the received authentication challenge.
To this end, it recovers the sequence number by computing the anonymity key
AK which in its own turn depends on three values: skC , skOp, and the received
R. Then, the user verifies the received MacS computing F1(skC , skOp, R, Sqn
, AMF) with the received value R and the Sqn. If they are different, the user
sends authentication failure message back to the VLR and the user abandons
the procedure. In case the execution is not aborted, the ME/USIM verifies if the
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received Sqn value is in a correct range relatively to a stored value SqnC
12. If

the Sqn is out of range, the user sends a synchronization failure message back
to the VLR, which triggers a re-synchronization procedure, depicted further in
Figure 7.

The MacS value does not only ensure integrity, but also the authentication of
the network by ME/USIM. If the two previous verifications are successful i.e if the
received authentication challenge is fresh, the network is authenticated by the
ME/USIM. Then, the ME/USIM computes CK, IK and Res← F2(skC, skOp,R). To
improve efficiency, Res, CK, and IK could also be computed earlier, at the same
time that AK is computed. Finally, the user sends Res to VLR. If Res = MacC, the
VLR successfully authenticates the ME/USIM. Otherwise, the VLR will initiate an
authentication failure report procedure with the HLR. Note that the verification
of the sequence number by the ME/USIM will cause the rejection of any attempt
to re-use an authentication challenge more than once.

Re-synchronizing. The re-synchronization procedure is used when the sub-
scriber detects that the received sequence number is not in the correct range, but
that it has been correctly authenticated. The single goal of this procedure is the
re-initialization of the sequence number, and does not imply immediately any
mutual authentication or key agreement (rather it triggers a new authentication
attempt).

Indeed, the ME/USIM sends an synchronization failure message, consisting
of a parameter Auts, with

Auts = (SqnC ⊕ AK∗)‖Mac∗

where the key is computed as Mac∗ = F∗1 (skOp, skC,R,SqnC,AMF) and AK∗ =
F∗5 (skOp, skC,R) .

The F∗1 algorithm is a MAC function with the additional property that no
valuable information can be inferred from Mac∗ (in particular this function acts
as a PRF). Though similar to F1, the F∗1 algorithm is designed so that the
value Auts cannot be replayed relying on the output of F1. Furthermore, the
anonymity key generated by the client in the resynchronization is obtained via
the F∗5 algorithm rather than by F5, even if the same random value R is used.

Upon receiving a synchronization failure message, the VLR does not immedi-
ately send a new user authentication request to the ME/USIM, but rather noti-
fies the HLR of the synchronization failure, sending the parameter Auts and the
session-specific R. When the HLR receives this answer, it creates a new batch of
authentication vectors. Depending on whether the retrieved, authenticated Sqn
indicates that the HLR’s sequence number is out of range or not, the backend
server either starts from the last authenticated sequence number, or updates the
latter to the user’s sequence number.

More precisely, the HLR retrieves the SqnC by computing F∗5 (skC, skOp,R)⊕
bAutsc48. Then, it verifies if the incremented SqnOp,C is in the correct range
relatively to SqnC. If the SqnOp,C verifies this property, it sends a new list of

12 The sequence number Sqn is considered to be in the correct range relatively to SqnC

if and only if Sqn ∈ (SqnC, SqnC +∆), where ∆ is defined by the operator.
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authentication data vectors initiated with SqnOp,C else HLR verifies the value of

Mac∗İf this step is successful, it resets the value of SqnOp,C to SqnHLR := SqnC

and sends a new list of authentication data vectors initiated with this updated
SqnHLR. This list may also contain only a single authentication vector. Figure 7
details this re-synchronization procedure.

ME/USIM VLR HLR

R‖Autn

←−−−−−−−
– Compute the value AK with the value R.
– Recover Sqn with AK.
– Check if the received MacS is correct.
– Check if Sqn is in the correct range related to the

stored SqnC.
– Re-synchronization Procedure:
• Compute AK∗ ← F∗5 (skOp, skC,R) and

Mac∗ ← F∗1 (skOp, skC,R, SqnC,AMF).
• Forge Auts = (SqnC ⊕ AK∗)‖Mac∗).

Auts

−−−−−−−→
Add the R value.

R‖Auts

−−−−−−−−−−→
– Compute the value AK∗ with the

value R.
– Recover SqnC with AK∗.
– Check if the incremented SqnHLR

is in the correct range related to
SqnC.

– If it is not the case and if only
the received Mac∗ is correct, then
SqnHLR ← SqnC. Otherwise, it
aborts the procedure.

– It sends a new list of authenti-
cation data vectors initiated with
SqnHLR.

R{i}‖Autn{i}

←−−−−−−−−−−

Fig. 7. The re-synchronization procedure of AKA protocol.

C.1 The TUAK algorithms

TUAK [2] is a set of algorithms based on a truncation of the internal permutation
function of Keccak; however, for efficiency reasons, only one or two iterations of
the internal TUAK permutation are used. The goal of the TUAK functions is to
provide secure authentication and key-exchange in the AKA protocol. In partic-
ular the TUAK functions F1 (respectively F∗1 ) and F2 must provide authentica-
tion, while F3, F4, and F5 (respectively F∗5 ) are used to derive the session keys
used to attain confidentiality, integrity, and anonymity.

The seven functions are parametrized by:

– Inputs: skOp a 256-bit long term operator key, a 128-bit random value R, a
48-bit sequence number Sqn, and a 16-bit authentication field management
string AMF chosen by the operator (the last two values are only used for the
MAC generation). Note that all subscribers to the same operator will share
that operator’s key skOp.
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– A subscriber key skC shared out of band between the HLR and ME/USIM
allows to initialize the value Key:

• If |skC| = 128 bits, then Key← skC[127..0]‖0128.
• If |skC| = 256 bits, then Key← skC[255..0].

– Several public constants:
• AN: a fixed 56-bit value 0x5455414B312E30.
• Inst and Inst’ are fixed binary variables of 8 bits, specified in [2], which

depend on the functions and the output sizes.

The generation of MAC’s or derived key starts similarly by initializing a value
TopC . To do so, one applies a first fKeccak permutation on a 1600-bit state Val1
as follows:

Val1 = skOp‖Inst‖AN‖0192‖Key‖Pad‖1‖0512,

where Pad is a bitstring output by a padding function. The value TopC corre-
sponds to the first 256 bits of this output.

At this point, the behavior of the functions F1 and F∗1 diverges from that of
the other functions. To generate the MAC value of F1 and F∗1 , we take as input
Sqn, AMF and R, three values chosen by the operator, and some constants. After
the generation of TopC , we initialize a second state, namely,

Val2 = TopC‖Inst′‖AN‖R‖AMF‖Sqn‖Key‖Pad‖1‖0512.

Then, one applies the TUAK permutation on Val2, using only the first 64
bits to compute MacS. To generate the session keys and run F2, one initializes
a second state for this function, namely,

Val2 = TopC‖Inst′‖AN‖R‖063‖Key‖Pad‖1‖0512.

Then, the TUAK permutation is applied on Val2 yielding Out, which in turn
is used to compute the response MacC and the session keys:

MacC = bOutc|`|−1..0, ` ∈ {16, 32, 64, 128},
CK = bOutc256..384 and |CK| = 128,

IK = bOutc512..640 and |IK| = 128,

AK = bOutc768..816 and |AK| = 48.

This is also depicted in Figure 8.
The way the output of the functions is truncated and used is the reason why

TUAK is called a multi-output function. This is one of TUAK’s chief differences
from MILENAGE and has a no-negligible impact on its efficiency, as it saves a
few calls of the internal function. However, this multi-output property can be
an issue for the security of the master key, since during one session we can have
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Fig. 8. TUAK diagram.

as many as four calls to the same function with similar inputs (and a different
truncation). Having different chunks of the same 1600-bit state (called Out in
our description) can lead to recovering the long-term key skC by the reversibility
of the TUAK permutation. The concatenation of all the different chunks used per
session totals at most only 432 out of the 1600 output bits. Thus, though having
multiple outputs can be hazardous in general, the Keccak-based construction of
TUAK allows this without compromising the long-term parameters.

C.2 MILENAGE Algorithms

MILENAGE [1] is a set of algorithms which aims to achieve authentication and key
generation properties. As opposed to TUAK which is based on Keccak’s internal
permutation, the MILENAGE algorithms are based on the Advanced Standard
Protocol (AES).

The functions F∗1 and F∗2 must provide authentication while the functions
F∗3 , F∗4 and F∗5 are used to derive key material in order to achieve confidentiality,
integrity and anonymity. The different parameters of these functions are:

– Inputs: skOp a 128-bit long term credential key that is fixed by the operator,
a 128-bit random value R , a 48-bit sequence number Sqn and a 16-bit
authentication field management AMF chosen by the operator (the last two
values are only used for the MAC generation). We denote that the subscriber
key skOp is a private key shared by all the subscriber of the same operator.
Consequently, we do not consider skOp as a private key.

– A 128-bit subscriber key skC shared out of band between the HLR and
ME/USIM.

– Five 128-bit constants c1,c2,c3,c4,c5 which are Xored onto intermediate vari-
ables and are defined as follows:
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• c1[i] = 0,∀i ∈ {0, 127}.
• c2[i] = 0,∀i ∈ {0, 127}, except that c2[127] = 1.
• c3[i] = 0,∀i ∈ {0, 127}, except that c3[126] = 1.
• c4[i] = 0,∀i ∈ {0, 127}, except that c4[125] = 1.
• c5[i] = 0,∀i ∈ {0, 127}, except that c5[124] = 1.

– Five integers r1,r2,r3,r4,r5 in the range {0, 127} which define amounts by
which intermediate variables are cyclically rotated and are defined as follows:
r1 = 64; r2 = 0; r3 = 32; r4 = 64; r5 = 96.

The generation of MAC’s or derived key starts similarly by initializing a
value TopC . To do so, one applies a first called of the well-known function AES
on inputs the operator and subscriber keys such as:

TopC = skOp ⊕ AESskC
(skOp)

. We recall that, AESK(M) denotes the result of applying the Advanced Encryp-
tion Standard encryption algorithm to the 128-bit value M under the 128-bit key
K. Then, we compute the following values taking as input Sqn, R, AMF and oth-
ers constants:

– Temp = AESskC
(R ⊕ TopC),

– Out1 = AESskC
(Temp⊕ Rotr1(Sqn‖AMF‖Sqn‖AMF)⊕ c1)⊕ TopC ,

– Out2 = AESskC
(Rotr2(Temp⊕ TopC)⊕ c2)⊕ TopC ,

– Out3 = AESskC
(Rotr3(Temp⊕ TopC)⊕ c3)⊕ TopC ,

– Out4 = AESskC
(Rotr4(Temp⊕ TopC)⊕ c4)⊕ TopC ,

– Out5 = AESskC
(Rotr5(Temp⊕ TopC , r5)⊕ c5)⊕ TopC .

All the outputs of the MILENAGE algorithms are computed as follows:

– Output F1: MacC = bOut1c0..63,
– Output F∗1 : Mac∗ = bOut1c64..127,
– Output F2: MacS = bOut2c64..127,
– Output F3: CK = Out3,
– Output F4: IK = Out4,
– Output F5: AK = bOut2c0..47,
– Output F∗5 : AK∗ = bOut5c0..47,

This is also described in figure 9

D Full Proofs

Full proof of the theorem 1: W.K.Ind-resistance.
Our proof has the following hops.

Game G0: This game works as the W.K.Ind-game stipulated in our security
model 3. The goal of the adversary AG0

is to distinguish, for a fresh instance
that ends in an accepting state, the fresh session keys from random ones.

Game G1: We modify G0 to only consider the new query Corrupt(P, type)
but keeping the same goal. We note that this new query permits to consider the
corruption of the key operator independently to the corruption of the subscriber
keys. This new query behaves as follows:
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Fig. 9. MILENAGE diagram.

Corrupt(P, type): yields to the adversary the long-term keys of party P 6= S
(else, if the oracle takes as input P = S, then it behaves as usual calling the
oracle OpAccess). The output of the oracle depends on the value type ∈
{sub, op, all}. If type = sub, then the returned value is skP. If type = op,
then the oracle returns skOp. Then, for type = all, we return the both values
skP, skOp. If type ∈ {sub, all}, then P (and all its instances, past, present, or
future), are considered to be adversarially controlled.

We argue that given any adversary A playing the game G1 and winning
w.p. εA, the same adversary wins the game G0 w.p. at least εA (this is trivial
since in game G1, A has more information).

Pr[A wins G0] ≤ Pr[A wins G1].

Game G2: We modify G1 to only allow interactions with a single client
(any future CreateCl calls for a client would be answered with an error symbol ⊥).
The challenger generates only a single operator key, which is associated with the
operator chosen for the registered client and chooses a bit b ∈ {0, 1}. We process
as follows: for any adversary AG1

winning the game G1 with a no-negligible
success probability εAG1

. we propose to construct an adversary AG2
winning the

game G2 with a black-box access to the adversary AG1
.

Adversary AG2 begins by choosing a single client C. For every user registra-
tion request that AG1 sends to its challenger, AG2 responds as follows: if the
registered client is C, then it forwards the exact CreateCl query that AG1

makes
to its own CreateCl oracle. Else, if AG1

registers any client C∗ 6= C, AG2
sim-

ulates the registration, generating skC∗ and SqnC∗ , returning the latter value.
Adversary AG2

also generates nOp − 1 operator keys, and associates them with
the clients as follows: the target client C is associated with the same operator
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given as input by AG1
to the CreateCl query (thus with the operator key skOp

generated by the challenger of game G2). Let this target operator be denoted as
Op. Adversary AG2 queries Corrupt(C, op) and stores skOp.

We distinguish between two types of other clients. For all other clients C∗

which are registered by AG1
with an operator Op∗ 6= Op, adversary AG2

asso-
ciates Op∗ with one of its generated keys rskOp∗ . Recall that, since adversary AG1

plays the game in the presence of nOp operators, there are nOp − 1 keys which
will be used this way. We call all clients C∗ 6= C registered by AG0

with the
target operator Op the brothers of the target client C. Adversary AG2

associates
each brother of C with the corrupted key skOp it learns from its challenger.

In the rest of the simulation, whenever AG1 makes a query to an instance
of some party C∗, not a brother of C, the adversary AG2

simulates the response
using the values skC∗ , rskOp∗ , and the current value of Sqn. For the brothers of
C, the simulation is done with skC∗ , skOp, and the current Sqn. For the target
client C, any queries are forwarded by AG2 to its challenger.

Any corruption or reveal queries are dealt with in a similar way. Note that
AG2

cannot query Corrupt to its adversary (this is a condition of freshness). The
simulation is thus perfect up to the Test query.

In the Test query, AG1
chooses a fresh session and sends it to AG2

(acting as
a challenger). Note that AG2

will be able to test whether this instance is fresh,
as freshness is defined in terms of AG1

’s queries. If AG1
queries Test with a client

other than the target client C, then AG2 aborts the simulation, tests a random,
fresh instance of the client C (creating one if necessary), and guesses the bit
d, winning with probability at least 1

2 . Else, if AG1 queried a fresh instance of
C, AG2 forwards this choice to its challenger and receives the challenger’s input.
The adversary AG2

forwards the input of the challenger to AG1
and then receives

A’s output d, which will be AG2
’s own response to its own challenger.

Denote by E1 the event that adversary tests C in game G1, while Ē1 denotes
the event that AG1

chooses to test C∗ 6= C.
It holds that:

Pr[AG2
wins] = Pr[AG2

wins | E1] · Pr[E1] + Pr[AG2
wins | Ē1] · Pr[Ē1]

≥ 1

nC
Pr[AG1wins] +

1

2
·
(
1− 1

nC

)
≥ 1

nC
Pr[AG0

wins] +
1

2
·
(
1− 1

nC

)
.

Note that adversary AG2
makes one extra query with respect to AG1

, since
we need to learn the key of the target operator.

Game G3: We modify G2 to ensure that the random values sampled by
honest server instances are always unique.

This gives us a security loss (related to the respective collisions between the
R in two different instances) of

∣∣Pr[AG2
wins]− Pr[AG3

wins]
∣∣ ≤ q2exec

2|R|
.
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Game G4: We modify G3 to replace outputs of the internal cryptographic
functions by truly random, but consistent values (they are independent of the
input, but the same input gives the same output). We argue that the security
loss is precisely the advantage of the adversary A against the pseudorandomness
of function G. Note that the total number of queries to the related functions are
at most 2 G per honest instance(thus totaling at most qG +qexec(2+qres) queries
to the function G).

∣∣Pr[AG3wins]− Pr[AG4wins]
∣∣ ≤ Advprf

G (A).

Winning G4: At this point, the adversary plays a game in the presence of
a single client C. The goal of this adversary is to distinguish a random session
key to a fresh session key. But, in game G4, queries to G return truly random,
consistent values. In this case, the adversary can do no better than guessing.
Thus, we have:

Pr[AG4
wins] =

1

2
.

Security statement: This yields the following result:

1

nC
· Pr[AG0wins] +

1

2
· (1− 1

nC
) ≤ q2exec

2|R|
+ Advprf

G (A)

⇔ 1

nC
· AdvW.K.Ind

Π (AG0
) ≤ q2exec

2|R|
+ Advprf

G (A)

⇔ AdvW.K.Ind
Π (AG0

) ≤ nC · (
q2exec

2|R|
+ Advprf

G (A′)).

This concludes the proof. ut

Full proof of the theorem 2: S.C.Imp-resistance.

Game G0: This game works as the S.C.Imp-game: When the adversary A
stops, it is said to win if there exists an instance Si that ends in an accepting state
with session and partner ID sid and pid such that: (a) pid is not adversarially
controlled (its long-term key skpid has not been corrupted), (b) no other instance
Ci exists for pid = Si that ends in an accepting state, such that the both entities
have the same session ID sid.

Game G1: This game works as the previous game G0 but including the
new query Corrupt(P, type), i.e with the presence of operator keys corruption (as
detailed in the previous proof). The reduction from the game G0 to the game
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G1 is the as 8. As before, it holds that:

Pr[AG0wins] ≤ Pr[AG1wins].

Game G2: We modify G1 to only interact with a single client (any future
CreateCl calls for a client would be answered with an error symbol ⊥). The
challenger only generates a single operator key, which is associated with the
operator chosen for the registered client. As indicated before, the security loss is
given by:

Pr[AG1
wins] ≤ nC · Pr[AG2

wins].

Game G3: We modify G2 to ensure that the random values sampled by any
authentication challenge are always unique.

This gives us a security loss (related to the collisions between the R in two
different instances) of∣∣Pr[AG2wins]− Pr[AG3wins]

∣∣ ≤ (qexec + qs · qOp)2

2|R|
.

Game G4: This game behaves as the game G3 with the restriction to only
interact with only one server. The benefices lost is the ability to obtain some
authentication challenges from corrupted servers. We recall that the challenge
is split in five parts: a random value, a masked version of the fresh sequence
number (an one-time-pad based on an anonymity key generated by the function
G), two mac computed with the function G and both session keys. Moreover,
we note that all the call of the function G take in input a specific value of the
related server, denoted IdS. Corrupted servers permit to obtain challenges based
on the fresh sequence number but different random and server identifier values.
So the related security loss is given by the collision on two outputs of the same
function G with two different inputs (the only differences between both inputs
are at least the value of the network identifier) and by the indistinguishability of
the function G which are guaranteed by the pseudorandomness of G. We recall
that the Test Phase of the game can be only focus on a fresh server which is or
was never corrupted. This give us a security loss∣∣Pr[AG4

wins]− Pr[AG3
wins]

∣∣ ≤ Advprf
G (A).

Game G5: We modify G4 to replace outputs to calls to all the internal
cryptographic functions by truly random, but consistent values (they are inde-
pendent of the input, but the same input gives the same output). As detailed in
the key-secrecy, we obtain:

∣∣Pr[AG4wins]− Pr[AG5wins]
∣∣ ≤ Advprf

G (A).

Winning G5: At this point, the adversary plays a game with a single
client. A server instance Si only accepts AG5

, if this latter can generate a fresh
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an authentication response Res for some session sid. Assume that this happens
against accepting instance Si of the server, for some target session sid. Note
that the value Res computed by Ci is purely random, but consistent. Thus,
the adversary has three options for each of these values: (a) forwarding a value
already received from the honest client for the same input values of which skC

is unknown; (b) guessing the key skC; or (c) guessing the value. The first option
yields no result, since it implies there exists a previous client instance with the
same session id sid as the client.

The second option happens with a probability of 2−|skC|. The third option oc-
curs with a probability of 2−|Res| per session (with or without resynchronization)
per client, thus a total of qexec · 2−|Res|. Thus,

Pr[AG5
wins] = 2−|skC| + qexec · qres · (2−|Res|).

Security statement: This yields the following result:

AdvS.C.Imp
Π (AG0

) ≤ nC · (2 · Advprf
G (A′) +

(qexec + qs · qOp)2

2|R|
+
qexec · qres

2|Res| +
1

2|skC|
).

ut
Full proof of the theorem 3: W.S.Imp-resistance.
We prove this statement in three steps, similarly to the previous W.K.Ind

proof. We recall that the adversary cannot corrupt the server.

Game G0: This game works as the S.Imp-game stipulated in section 3.

Game G1: This game works as the previous game G0 but including the
new query Corrupt(P, type). This game is the same as the game G0 in the proof
of the weak key-indistinguishability theorem. As before, it holds that:

Pr[AG0wins] ≤ Pr[AG1wins].

Note that adversary AG1 makes no extra query.
Game G2: We modify G1 to only allow interactions with a single client.

The challenger generates only a single operator key, which is associated with the
operator chosen for the registered client.

As indicated before the security loss is given by:

Pr[AG1wins] ≤ nC · Pr[AG2wins].

Game G3: We modify G2 to replace outputs to calls to the function G by
truly random, but consistent values (they are independent of the input, but the
same input gives the same output). As before, it holds that:∣∣Pr[AG2wins]− Pr[AG3wins]

∣∣ ≤ Advprf
G (A′).
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Winning G3: At this point, the adversary plays a game against a sin-
gle client C, which only accepts AG3

, if MacS is verified for some session sid.
Assume that this happens against accepting instance Ci of the target client,
for some target session sid. Note that the MAC value MacS computed by Ci
is purely random, but consistent. Thus, the adversary has three options: (a)
forwarding a value already received from the honest server for the same input
values R,Sqn, skOp, skC, of which skC is unknown; (b) guessing the key skC; or
(c) guessing the vector. The former option yields no result, since it implies a
server instance with the same session id sid as the client. The second option
happens with a probability of 2−|skC|. The third option occurs with a probability
of 2−|MacS| per session (which is to say per instance and per re-synchronization),
thus a total of qexec · qres2

−|MacS|.
Thus,

Pr[AG3wins] = 2−|skC| + qexec · qres · 2−|MacS|.

Security statement: This yields the following result:

AdvW.S.Imp
Π (AG0

) ≤ nC ·
(
2−|skC| + qexec · qres · 2−|MacS| + Advprf

G (A′)
)
.

ut

Full proof of the theorem 4: Sound-resistance.
Game G0: This game works as the game Sound-game stipulated in our

security model. The goal of this adversary AG0
is similar as the S.Imp-game but

with a different adversary; indeed in the S.Imp-game is a MiM adversary and in
the Sound-game, we have a legitimate-but-malicious server-adversary.

Game G1: We consider the game G1 as the S.S.Imp-game (as previously
detailed) but including the specific query Corrupt(P, type), i.e with the presence
of operator keys corruption. We have used a such query in some previous security
proofs. We proceed to show that, for any adversary AG0

winning the game G0

with an advantage AdvSound
Π (AG0

), there exists an adversary AG1
with black-box

access to the adversary AG0
wins game G1. Both adversaries play her related

game with oracles. The following oracles are similar in the two games: Send,
CreateCl, Init, Execute, Reveal, and StReveal. So for each query related to these
oracles from the adversary AG0

, the adversary AG1
forwards these queries to its

own challenger and sends to AG0
the related answers. Now focus on the two last

oracles which can be used by the adversary AG0
: OpAccess and Corrupt.

At first, we recall that the OpAccess in the game G0 takes in input a client
identifier and outputs, for our protocol, an authentication vector composed by
the tuple AV = (R,Autn,MacC,CK, IK). To simulate the answer of the oracle
OpAccess(Ci), the AG1

uses the query Execute(S,Ci) (with the server related to
the legitimate-but-malicious adversary) and Reveal(C, i).

Now, focus on the simulation of the Corrupt answer. We recall that we have
two possible inputs: a client or an operator. In the Corrupt oracle takes in input a
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client, the adversaryAG1
uses its own Corrupt oracle to obtain the related answer.

If the input is an operator, AG1
needs to forge the following values: the operator

key skOp, and for each client of this operator the tuple (UID, skUID, stOp,C). To
simulate a such answer, AG1 uses its specific Corrupt(C) and StReveal(C, i, 1) for
each client Cof this operator.

So at this point, the adversaryAG1
can simulate any query from the adversary

AG0
. At the end of the simulation, the adversary AG1

replays the impersonation’s
attempt from the adversary AG0 . Thus, we have:

Pr[AG0
wins] = Pr[AG1

wins].

Winning game G1: This game follows the game G1 described in the reduction
proof of the theorem S.S.Imp. Thus, we have :

AdvS.S.Imp
Π (AG1

) ≤ nC · (2 · Advprf
G (A′) +

qexec · qres

2|MacS|
+

1

2κ
).

ut

Full proof of the theorem 5: St.Conf-resistance.
Our proof has the following hops.

Game G0: This game works as the St.Conf-game stipulated in our security
model. The goal of the adversary AG0

is to recover at least one secret value, i.e
the subscriber key skC, my operator key skOp or the subscriber sequence number
SqnC for a fresh instance.

Game G1: We modify G0 to only allow interactions with one operator. The
challenger related to the game G1 only generates a single operator key, which
is associated with the operator chosen for the registered client. We proceed as
follows: for any adversary AG0

winning the game G0 with a no-negligible success
probability εAG0

. we propose to construct an adversary AG1
winning the game

G1 with a black-box access to the adversary AG0 .
Adversary AG1 begins by choosing a single operator Op. It generates nOp− 1

operator keys, denoted rskOp∗ . Then, for every user registration request that AG0

sends to its challenger, AG1
responds as follows: if the request CreateCl(.) takes in

input the operator Op, then it forwards the same query to its own oracle. Else, if
AG0 sends a registration request based on any operator Op∗ 6= Op, AG1 simulates
the registration, generating a subscriber key skC∗ and a sequence number SqnC∗ ,
returning the latter value. Moreover, each new client registered with the operator
Op (resp. any Op∗) is associated with the related operator key skOp(resp. rskOp∗).

We distinguish between two types of clients: we denote C∗ the clients which
are registered with an operator Op∗ 6= Op, and C the ones with the operator Op.

In the rest of the simulation, whenever AG0 makes a query to an instance of
some party C∗ (from any operator except Op), the adversary AG1 simulates the
response using the values skC∗ , rskOp∗ , and the current value of SqnC∗ . For the
other clients, the query is forwarded by AG1

to its own challenger.
Any corruption or reveal queries are dealt with in a similar way. Note that

AG1 cannot query Corrupt to its adversary (this is a condition of freshness). The
simulation is thus perfect up to the Test query.
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In the Test query, AG0
chooses a fresh instance and sends it to AG1

(acting as
a challenger). Note that AG1

will be able to test whether this instance is fresh, as
freshness is defined in terms of AG0 ’s queries. If AG0 queries an instance C∗i for
the Test query ,then AG1 aborts the simulation, tests a random tuple about any
fresh instance of the client C (creating one if necessary), winning with probability

1
2|skC|

+ 1
2|skOp|

+ 1
2|SqnC|

+ 1
2|SqnOp,C|

. Else, if AG0
sends a tuple of a fresh instance

of Ci, AG1 forwards this choice to its challenger and receives the challenger’s
output which contains the result of this game.

Denote by E1 the event that adversary AG0
tests an instance Ci (from the

chosen operator Op), while Ē1 denotes the event that AG0
chooses to test C∗i .

It holds that:

Pr[AG1
wins] = Pr[AG1

wins | E1] · Pr[E1] +

Pr[AG1
wins | Ē1] · Pr[Ē1]

≥ 1

nOp
Pr[AG0wins] +

(
1− 1

nOp

)
·

(
1

2|skC|
+

1

2|skOp|
+

2

2|Sqn|
).

That implies:

Pr[AG0wins] ≤ nOp · Pr[AG1wins].

Game G2: We modify G1 to only allow interactions with a single client (any
future CreateCl(Op) calls for a client would be answered with an error symbol
⊥). We recall that the two adversaries AG1

and AG2
interact with clients from

a single operator key, denoted Op, which is associated with the operator key
skOp. We proceed as follows: for any adversary AG1 winning the game G2 with
a no-negligible success probability εAG1

. we propose to construct an adversary
AG2

winning the game G2 with a black-box access to the adversary AG1
.

Adversary AG2 begins by choosing a single client C. For every user registra-
tion request that AG1 sends to its challenger, AG2 responds as follows: for a new
client C∗ 6= C it generates skC∗ and SqnC∗ , returning the latter value.

In the rest of the simulation, whenever AG1
makes a query to an instance of

some party C∗, the adversary AG2
simulates the response using the oracle of the

function G∗ and the values skC∗ and the current value of SqnC∗ . For the target
client C, any queries are forwarded by AG2 to its challenger. Any corruption
or reveal queries are dealt with in a similar way. Note that AG2

cannot query
Corrupt to its adversary (this is a condition of freshness). The simulation is thus
perfect up to the Test query.

In the Test query, AG1 chooses a fresh instance and sends it to AG2 (acting as
a challenger). Note that AG2

will be able to test whether this instance is fresh,
as freshness is defined in terms of AG1

’s queries. If AG1
queries Test with a client

other than the target client C, then AG2
aborts the simulation, tests a random

tuple as the previous reduction. Else, if AG1
queried a fresh instance of C, AG2

forwards this choice to its challenger and receives the challenger’s which contains
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the result of this game. It holds that:

Pr[AG1
wins] ≤ nC,Op · Pr[AG2

wins].

, with at most nC,Op clients by operator.
Game G3: We modify G2 to replace outputs of the internal cryptographic

functions by truly random, but consistent values (they are independent of the
input, but the same input gives the same output). We argue that the security
loss is precisely the advantage of the adversary A against the pseudorandomness
of functions G and G∗. Note that the total number of queries to the related
functions are at most qG + qexec(5 + qres) queries to the function G.∣∣Pr[AG3

wins]− Pr[AG2
wins]

∣∣ ≤ Advprf
G (A) + Advprf

G∗(A).

Winning Game G3: At this point, the adversary plays a game with an
uncorruptible single client Ci in a protocol including truly but consistent values.
She wins if she can output a tuple (Ci, sk∗C, sk∗Op,SqnC

∗,SqnOp,C
∗) such as at least

one of these values corresponds to the real related secret value of the instance Ci.
Thus, the adversary has only one choice to win this game: guessing each value.
So the probability that the adversary AG3 wins is as follows:

Pr[AG3
wins] =

1

2|skC|
+

1

2|skOp|
+

2

2|Sqn| .

ut
Full proof of the theorem 9: S.S.Imp-resistance.

Game G0: This game works as the S.S.Imp-game detailed in the section 3.
Game G1: This game works as the previous game G0 but including the

new query Corrupt(P, type), i.e with the presence of operator keys corruption.
The reduction from the game G0 to the game G1 is the same as the security
proof of the theorem 8. As before, it holds that:

Pr[AG0wins] ≤ Pr[AG1wins].

Note that adversary AG1 makes no extra query.
Game G2: We modify G1 to only interact with a single client (any future

CreateCl calls would be answered with an error symbol ⊥). The challenger only
generates a single operator key, which is associated with the operator chosen for
the registered client. As indicated before, the security loss is given by:

Pr[AG1
wins] ≤ nC · Pr[AG2

wins].

Game G3: This game behaves as the game G2 with the restriction to only
interact with only one server. The benefices loss is the ability to obtain some
authentication challenges from uncorrupted servers. As detailed in the proof
of the strong key-indistinguishability, the related security loss is given by the
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pseudorandomness of the function G. We recall that the Test Phase of the game
can be only focus on a network which is or was never corrupted. This give us a
security loss ∣∣Pr[AG2

wins]− Pr[AG3
wins]

∣∣ ≤ Advprf
G (A).

Game G4: We modify G3 to replace outputs to calls to all the internal
cryptographic functions by truly random, but consistent values (they are inde-
pendent of the input, but the same input gives the same output). As detailed in
the key-secrecy, we obtain:

∣∣Pr[AG3
wins]− Pr[AG4

wins]
∣∣ ≤ Advprf

G (A).

Winning G4: At this point, the adversary plays a game with a single
client Ci, which only accepts AG4

, if the authentication challenge is verified for
some session sid. Assume that this happens against accepting instance Ci of
the target client, for some target session sid. Note that the MAC value MacS

computed by Ci is purely random, but consistent. Thus, the adversary has three
options: (a) forwarding a value already received from a honest server for the
same input values R; IdS; Sqn; skOp; skC, of which skC is unknown; (b) guessing
the key skC; or (c) guessing the response. The first option yields no result since
there are no collision between the transcript of two different servers since all the
servers have a different server identifier IdS. The second option happens with a
probability of 2−|skC|. The third option occurs with a probability of 2−|MacS| per
session (which is to say per instance and per re-synchronization), thus a total of
qexec · qres · 2−|MacS|. Thus,

Pr[AG4wins] = 2−|skC| + qexec · qres · 2−|MacS|.

Security statement: This yields the following result:

AdvS.S.Imp
Π (AG0

) ≤ nC ·
(
qexec · qres

2|MacS|
+

1

2κ
+ 2 · Advprf

G (A′)
)
.

Full proof of the theorem 8: S.K.Ind-resistance.
Our proof has the following hops.

Game G0: This game works as the S.K.Ind-game stipulated in our security
model 3.

Game G1: We modify G0 to only consider the new query Corrupt(P, type)
but keeping the same goal. We note that this new query permits to consider the
corruption of the key operator independently to the corruption of the subscriber
keys. This new query behaves as follows:

Corrupt(P, type): yields to the adversary the long-term keys of party P 6= S
(else, if the oracle takes as input P = S, then it behaves as usual calling the
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oracle OpAccess). The output of the oracle depends on the value type ∈
{sub, op, all}. If type = sub, then the returned value is skP. If type = op,
then the oracle returns skOp. Then, for type = all, we return the both values
skP, skOp. If type ∈ {sub, all}, then P (and all its instances, past, present, or
future), are considered to be adversarially controlled.

We argue that given any adversary A playing the game G1 and winning
w.p. εA, the same adversary wins the game G0 w.p. at least εA (this is trivial
since in game G1, A has more information).

Pr[A wins G0] ≤ Pr[A wins G1].

Game G2: We modify G1 to only allow interactions with a single client.
The challenger generates only a single operator key, which is associated with the
operator chosen for the registered client. As indicated before, the security loss is
given by:

Pr[AG2
wins] ≥ 1

nC
Pr[AG0wins] +

1

2
·
(
1− 1

nC

)
.

Game G3: We modify G2 to ensure that the random value sampled by
honest server instances is always unique.

This gives us a security loss (related to the respective collisions between the
R in two different instances) of

∣∣Pr[AG2
wins]− Pr[AG3

wins]
∣∣ ≤ (qexec + qs · qOp)2

2|R|
.

Game G4: This game behaves as the game G3 with the restriction to
only interact with only one server. The benefices loss is the ability to obtain
some authentication challenges from uncorrupted servers. Such authentication
challenges can be either to give information about the used sequence number
and the long term keys or to forge a fresh challenge replaying some parts of
these challenges. We recall that the challenge is split in five parts: a random
value, a masked version of the fresh sequence number (an one-time-pad based
on an anonymity key generated by the function G), two mac computed with
the function G and both session keys. Moreover, we note that all the call of the
function G takes in input a specific value of the related server IdS. Thus, the two
session keys can not directly reuse since the random value Rand is never reuse
(see previous reduction). So, except when we obtain a collision, the session keys
will be always different in each session.

So the related security loss is given by the collision on two outputs of the
same function G with two different inputs (the only differences between the both
inputs are at least the value of the network identifier) and by the indistinguisha-
bility of the function G which are both guaranteed by the pseudorandomness of
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G. We recall that the Test Phase of the game can be only focus on a network
which is or was never corrupted. This give us a security loss∣∣Pr[AG4wins]− Pr[AG3wins]

∣∣ ≤ Advprf
G (A).

Game G5: We modify G4 to replace outputs of the internal cryptographic
functions by truly random, but consistent values (they are independent of the
input, but the same input gives the same output). As indicated before, the
security loss is given by:

∣∣Pr[AG4
wins]− Pr[AG5

wins]
∣∣ ≤ Advprf

G (A).

Winning G5: At this point, the adversary plays a game in the presence of
a single client C. The goal of this adversary is to distinguish a random session
key to a fresh session key. But, in game G5, queries to G return truly random,
consistent values. In this case, the adversary can do no better than guessing.
Thus, we have:

Pr[AG5wins] =
1

2
.

Security statement: This yields the following result:

AdvS.K.Ind
Π (AG0) ≤ nC ·

(
(qexec + qs · qOp)2

2|R|
+ 2 · Advprf

G (A)

)
.

This concludes the proof. ut

E Updated TUAK and MILENAGE

In our variant, we modified the inputs of the internal cryptographic algorithms
to include the new value IdS. Thus, we need to provide an update of these algo-
rithms. As specified previously, the AKA protocol can be based on two different
sets of algorithms: TUAK and MILENAGE. To preserve backwards compatibility,
we propose to keep and update these two sets.

The seven internal cryptographic functions used in the AKA protocol takes
in inputs the following values:

– keys: the couple of 128-bit (or 256-bit) keys: the subscriber key skC and the
operator key skOp.

– Sqn (for the functions Upd F1 and Upd F∗1): a 48-bit sequence number.
– AMF (except for the functions Upd F1 and Upd F∗1): a 16-bit authentication

field management.
– R: a 128-bit random value.
– IdS: a 128-bit (public) value characterizing the visited network.
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We note that the functions Upd F1 and Upd F∗1 behave differently because
they consider the sequence number in inputs.

Update of the MILENAGE algorithms: MILENAGE is the original set of
algorithms which is currently implemented as detailed the specification 35.206
[1].

Fig. 10. Updated MILENAGE.

In order to ensure a stronger degree of security, we also modify the MILENAGE
algorithms to output 128-bit MAC and session keys CK and IK.

Based on the Advanced Encryption Standard (AES), these functions compute
firstly both values TopC and Temp as follows:

TopC = skOp ⊕ AESskC
(skOp),Temp = AESskC

(R ⊕ TopC ⊕ IdS).

The outputs of the MILENAGE algorithms are computed as follows:

– Output Upd F1: MacC = AESskC
(Temp ⊕ Rotr1(Sqn‖AMF‖Sqn‖AMF) ⊕

c1)⊕ TopC ,
– Output Upd F∗1: Mac∗ = AESskC

(Temp⊕Rotr6(Sqn‖AMF‖Sqn‖AMF)⊕c6)⊕
TopC ,

– Output Upd F2: MacS = AESskC
(Rotr2(Temp⊕ TopC)⊕ c2)⊕ TopC

– Output Upd F3: CK = AESskC
(Rotr3(Temp⊕ TopC)⊕ c3)⊕ TopC ,

– Output Upd F4: IK = AESskC
(Rotr4(Temp⊕ TopC)⊕ c4)⊕ TopC ,

– Output Upd F5: AK = bAESskC
(Rotr5(Temp⊕TopC , r5)⊕ c5)⊕TopCc0..47,

– Output Upd F∗5: AK∗ = bAESskC
(Rotr5(Temp⊕TopC , r5)⊕c5)⊕TopCc80..127,

with the five integers r1 = 0, r2 = 16, r3 = 32, r4 = 64, r5 = 80 and r6 = 96 in the
range {0, 127}, which define the number of positions the intermediate variables
are cyclically rotated by the right, and the five 128-bit constants ci such as:
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– c1[i] = 0,∀i ∈ {0, 127}.
– c2[i] = 0,∀i ∈ {0, 127}, except that c2[127] = 1.
– c3[i] = 0,∀i ∈ {0, 127}, except that c3[126] = 1.
– c4[i] = 0,∀i ∈ {0, 127}, except that c4[125] = 1.
– c5[i] = 0,∀i ∈ {0, 127}, except that c5[124] = 1.
– c6[i] = 0,∀i ∈ {0, 127}, except that c6[123] = 1.

This is also described in Figure 10.

Update of the TUAK algorithms: TUAK is an alternative set of algo-
rithms to MILENAGE based on the internal permutation of Keccak [11]. The
specification TS 35.231 [2] details the internal algorithms of this set. We up-
date these algorithms by only modifying the inputs of the second permutation.
We recall that in this instantiation, the functions Upd F∗1 and Upd F∗5, used
for the resynchronization procedure, behave in the same way but use different
values Inst’, Inst.

We first compute the value TopC as follows:

TopC = bfKeccak(skOp‖Inst ‖AN‖0192‖Key‖Pad‖1‖0512)c1..256.

We note that the values AN, Inst’, Inst, Pad are the same as used in the original
TUAK algorithms and Key the (padded) subscriber key.

At this point, the behavior of the functions Upd F1 (resp. Upd F∗1) diverges
from the other functions. Generating the related output, we compute the value
Val1 and for the others ones, we compute the value Val2 which differ including
the 128-bit value IdS and the smaller paging value Pad.

Val1 = fKeccak(TopC‖Inst
′‖AN‖R‖064‖Key‖IdS‖Pad‖10512),

Val2 = fKeccak(TopC‖Inst
′‖AN‖R‖AMF‖Sqn‖Key‖IdS‖Pad‖10512).

Then, we obtain the output of the seven functions truncating the related value
as follows:

– Output Upd F1: MacS = bVal2c0..127,
– Output Upd F2: MacC = bVal1c0..127,
– Output Upd F3: CK = bVal1c256..383,
– Output Upd F4: IK = bVal1c512..639,
– Output Upd F5: AK = bVal1c768..815.

This is also depicted in Figure 11.
We note that the multi-output property is, as in the original version, not an

issue for the security of the master key, since during one session we can have
as many as four calls to the same function with similar inputs (and a different
truncation).

F Security of TUAK and MILENAGE

In this section, we prove the pseudorandomness of both versions (classic and
updated) of TUAK and MILENAGE algorithms.

The security of (classic and updated) TUAK. In order to prove the prf-
security of the (classic and updated) TUAK algorithms, we assume that the

54



Fig. 11. Updated TUAK.

truncated keyed internal Keccak permutation is a good pseudorandom function.
We propose two generic constructions to model the TUAK algorithms: a first
one, denoted Gtuak when the secret is based on the subscriber key skC and a
second one, denoted G∗tuak when is only based on the operator key.

It is worth noting that the construction of the TUAK functions is reminiscent
of the Merkle-Damg̊ard construction, where the output of the function f is an
input of the next iteration of the function f. This is in contradiction with the
Sponge construction used in the hash function Keccak given the internal permu-
tation fKeccak. So we precise that this security proof does not directly imply an
innovation on the Keccak construction.

We model the truncated keyed internal permutation of Keccak by the function
f and f∗:

f(K,x‖y, i, j) = bfKeccak(x‖K‖y)ci..j ,
f∗(K∗, x∗‖y∗, i, j) = bfKeccak(K∗‖x∗‖y∗)ci..j ,

with x ∈ {0, 1}512, K,K∗ ∈ {0, 1}κ, y ∈ {0, 1}1088−κ, x∗ ∈ {0, 1}512+κ, y∗ ∈
{0, 1}1088 and i, j ∈ {0, 1}t with log2(t − 1) < 1600 ≤ log2(t). We note that
∀K,x, x∗, y, y∗, i, j such as x = K∗‖x∗ and y∗ = K‖y, we have f(K,x‖y, i, j) =
f∗(K∗, x∗‖y∗, i, j). The input x (resp. x∗) can be viewed as the chaining vari-
able of the cascade construction of Gtuak given f (resp. f∗), y (resp. y∗) is an
auxiliary input of the function, and i and j define the size of the truncation.
The construction Gtuak and G∗tuak act as a generalization of the specific TUAK
algorithms:

F1(skOp, skC,R,Sqn,AMF) = Gtuak(skC, inp1, 0, 127) = G∗tuak(skOp, inp∗1, 0, 127),

F∗1 (skOp, skC,R,Sqn,AMF) = Gtuak(skC, inp2, 0, 127) = G∗tuak(skOp, inp∗2, 0, 127),

F2(skOp, skC,R) = Gtuak(skC, inp3, 0, 127) = G∗tuak(skOp, inp∗3, 0, 127),

F3(skOp, skC,R) = Gtuak(skC, inp3, 256, 383) = G∗tuak(skOp, inp∗3, 256, 383),

F4(skOp, skC,R) = Gtuak(skC, inp3, 512, 639) = G∗tuak(skOp, inp∗3, 512, 639),

F5(skOp, skC,R) = Gtuak(skC, inp3, 768, 815) = G∗tuak(skOp, inp∗3, 768, 815),

F∗5 (skOp, skC,R) = Gtuak(skC, inp4, 768, 815) = G∗tuak(skOp, inp∗4, 768, 815),
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with:
inp1 = skOp‖cst1‖cst5,, inp2 = skOp‖cst1‖cst5,
inp3 = skOp‖cst3‖cst5,, inp4 = skOp‖cst4‖cst5,
inp∗1 = cst1‖keys‖cst5,, inp∗2 = cst1‖keys‖cst5,
inp∗3 = cst3‖keys‖cst5,, inp∗4 = cst4‖keys‖cst5,
cst1 = Inst‖AN‖0192‖(Inst′‖AN‖R‖AMF‖Sqn),

cst2 = Inst‖AN‖0192‖(Inst(2)‖AN‖R‖AMF‖Sqn),
cst3 = Inst‖AN‖0192‖(Inst′‖AN‖R‖064),

cst4 = Inst‖AN‖0192‖(Inst(3)‖AN‖R‖064),
cst5 = Pad‖1‖0192,
We define the cascade construction Gtuak based on the function f as follows:

Gtuak(K, val, i, j) = f(K, f(K, val1‖val3, 0, 256)‖val2‖val3, i, j),

G∗tuak(K∗, val∗, i, j) = f∗(f∗, val∗1‖val∗3, 0, 256), val∗2‖val∗3, i, j),

with Gtuak and G∗tuak from {0, 1}κ × {0, 1}d × {0, 1}t × {0, 1}t to {0, 1}n, val =
(val1‖val2)‖val3 ∈ {0, 1}512 × {0, 1}256 × {0, 1}(832−κ), val∗ = (val∗1‖val∗2)‖val∗3 ∈
{0, 1}256×{0, 1}256×{0, 1}(1088−κ) two known values with n = j−i, d = 1600−κ,
κ = |K| and log2(t−1) < 1600 ≤ log2(t), K a secret value and 0 ≤ i ≤ j ≤ 1600.
The updated TUAK algorithms are generalized as the same way including the
value cst5 = IdS‖Pad‖1‖0192, We express the required security properties of the
generalization Gtuak (resp. G∗tuak) under the prf-security of the function f (resp.
f∗). Since the construction of the two functions, while we cannot prove the latter
property, we can conjecture that the advantage of a prf-adversary would be of
the form:

Advprf
f∗(A) = Advprf

f (A) ≤ c1 ·
t/Tf
2|K|

+ c2 ·
q · t/Tf
21600−m

,

for any adversary A running in time t and making at most q queries at its
challenger. Here, m is the output’s size of our function f and Tf is the time to
do one f computation on the fixed RAM model of computation and c1 and c2

are two constants depending only on this model. In other words, we assume that
the best attacks are either a exhaustive key search or a specific attack on this
construction. This attack uses the fact that the permutation is public and can
be easily inverted. Even if the protocol truncates the permutation, if the output
values are large, and an exhaustive search on the missing bits is performed, it
is possible to invert the permutation and recover the inputs. Since the secret
keys is one of the inputs as well as some known values are also inputs, it is then
possible to determine which guesses of the exhaustive search are correct guess
or incorrect ones. Finally, if the known inputs are shorter than the truncation,
false positives can happen due to collisions and we have to filter the bad guesses.
However, if the number of queries is large enough, it is possible to filter these
bad guesses and uniquely recover the keys.

Pseudorandomness of TUAK algorithms. We begin by reducing the prf-
security of Gtuak to the prf-security of the function f. This implies the prf-security
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of each TUAK algorithm. Recall that our main assumption is that the function
f is prf-secure if the Keccak permutation is a good random permutation.

Theorem 10. [prf-security for G∗tuak.] Let G∗tuak : {0, 1}κ×{0, 1}e×{0, 1}d−e×
{0, 1}t×{0, 1}t → {0, 1}n and f∗ : {0, 1}κ×{0, 1}e×{0, 1}d×{0, 1}t×{0, 1}t →
{0, 1}m be the two functions specified above. Consider a (t, q)-adversary A against
the prf-security of the function G∗tuak, running in time t and making at most q

queries to its challenger. Denote the advantage of this adversary as Advprf
G∗tuak

(A).

Then there exists a (t′ ≈ O(t), q′ = q)-adversary A’ with an advantage Advprf
f∗(A′)

of winning against the pseudorandomness of f∗ such that:

Advprf
G∗tuak

(A) = Advprf
f∗(A

′),

Theorem 11. [prf-security for Gtuak.] Let Gtuak : {0, 1}κ×{0, 1}e×{0, 1}d−e×
{0, 1}t×{0, 1}t → {0, 1}n and f : {0, 1}κ×{0, 1}e×{0, 1}d×{0, 1}t×{0, 1}t →
{0, 1}m be the two functions specified above. Consider a (t, q)-adversary A against
the prf-security of the function Gtuak, running in time t and making at most q
queries to its challenger. Denote the advantage of this adversary as Advprf

Gtuak
(A).

Then there exist a (t′ ≈ 2·t, q′ = 2·q)-adversary A’ with an advantage Advprf
f (A′)

of winning against the pseudorandomness of f such that:

Advprf
Gtuak

(A) = Advprf
f (A′).

The security of (classic and updated) MILENAGE.
In order to prove the prf-security of the MILENAGE algorithms, we assume

that the AES permutation is a good pseudo-random function.
We model the AES algorithm by the function f and a keyed version of a

classic Davies-Meyer by the function f∗:

f(K,x) = AESK(x), f∗(K,x) = K ⊕ AESx(K),

with x ∈ {0, 1}128, K ∈ {0, 1}κ. Contrary to the TUAK algorithms, the
MILENAGE algorithms have not the same behavior. Let the construction Gmil1

(resp. G∗mil1), the generalization of the functions F1 and F∗1 and Gmil2 (resp.
G∗mil2) the generalization of the functions F2, F3, F4, F5, F∗5 which are keyed
with the subscriber key skC (resp. with the operator key skOp):

F1(skOp, skC,R,Sqn,AMF) = Gmil1(skC, inp1, 0, 63) = G∗mil1(skOp, inp∗1, 0, 63),

F∗1 (skOp, skC,R,Sqn,AMF) = Gmil1(skC, inp2, 64, 127) = G∗mil1(skOp, inp∗2, 64, 127),

F2(skOp, skC,R) = Gmil2(skC, inp2, 64, 127) = G∗mil2(skOp, inp∗2, 64, 127),

F3(skOp, skC,R) = Gmil2(skC, inp3, 0, 127) = G∗mil2(skOp, inp∗3, 0, 127),

F4(skOp, skC,R) = Gmil2(skC, inp4, 0, 127) = G∗mil2(skOp, inp∗4, 0, 127),

F5(skOp, skC,R) = Gmil2(skC, inp2, 0, 47) = G∗mil2(skOp, inp∗2, 0, 47),

F∗5 (skOp, skC,R) = Gmil2(skC, inp5, 0, 47) = G∗mil2(skOp, inp∗5, 0, 47),
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with:
inp1 = skOp‖R‖(Sqn‖AMF)‖c1‖r1‖0128, inp∗1 = skC‖R‖(Sqn‖AMF)‖c1‖r1‖0128,
∀i ∈ {2, ..., 5}, inpi = skOp‖R‖ci‖ri‖0128, inp∗i = skC‖R‖ci‖ri‖0128.

For the updated MILENAGE algorithms, we use the same constructions Gmil1

and Gmil2 as follows:

Upd F1(skOp, skC,R,Sqn,AMF) = Gmil1(skC, inp1, 0, 127) = G∗mil1(skOp, inp∗1, 0, 127),

Upd F∗1(skOp, skC,R,Sqn,AMF) = Gmil1(skC, inp6, 0, 127) = G∗mil1(skOp, inp∗6, 0, 127),

Upd F2(skOp, skC,R) = Gmil2(skC, inp2, 0, 127) = G∗mil2(skOp, inp∗2, 0, 127),

Upd F3(skOp, skC,R) = Gmil2(skC, inp3, 0, 127) = G∗mil2(skOp, inp∗3, 0, 127),

Upd F4(skOp, skC,R) = Gmil2(skC, inp4, 0, 127) = G∗mil2(skOp, inp∗4, 0, 127),

Upd F5(skOp, skC,R) = Gmil2(skC, inp5, 0, 47) = G∗mil2(skOp, inp∗5, 0, 47),

Upd F∗5(skOp, skC,R) = Gmil2(skC, inp5, 80, 47) = G∗mil2(skOp, inp∗5, 80, 47),

with:
inp1 = skOp‖R‖(Sqn‖AMF)‖c1‖r1‖IdS, inp∗1 = skC‖R‖(Sqn‖AMF)‖c1‖r1‖IdS,
∀i ∈ {2, ..., 6}, inpi = skOp‖R‖ci‖ri‖IdS, inp∗i = skC‖R‖ci‖ri‖IdS.

Then, these both constructions are constructed as follows:

Gmil1(K, val(1), a, b) = bTopC ⊕ f(K, val4 ⊕ f(K,TopC ⊕ val2 ⊕ val6)⊕
Rotval5

(TopC ⊕ (val3‖val3)))ca..b,
Gmil2(K, val(2), a, b) = bTopC ⊕ f(K, val4⊕

Rotval5
(TopC ⊕ f(K,TopC ⊕ val2 ⊕ val6)))ca..b,

G∗mil1(K∗, val∗(1), a, b) = bTopC ⊕ f(val∗1, val∗4 ⊕ f(val∗1,TopC ⊕ val∗2 ⊕ val∗6)⊕
Rotval∗5

(TopC ⊕ (val∗3‖val∗3)))ca..b,
G∗mil2(K∗, val∗(2), a, b) = bTopC ⊕ f(val∗1, val∗4⊕

Rotval∗5
(TopC ⊕ f(val∗1,TopC ⊕ val∗2 ⊕ val∗6)))ca..b,

with Gmil1 (resp. G∗mil1): {0, 1}κ × {0, 1}d1 × {0, 1}t × {0, 1}t → {0, 1}n, Gmil2

(resp. G∗mil2): {0, 1}κ × {0, 1}d2 × {0, 1}t × {0, 1}t → {0, 1}n, val(1) = val1‖ val2‖
val3‖ val4‖ val5‖|val6, val(2) = val1‖ val2‖ val4‖ val5‖val6, val1,val2, val4, val6 ∈
{0, 1}128,val3 ∈ {0, 1}64, val5 ∈ {0, 1}7, and val∗(1) = val∗1‖ val∗2‖ val∗3‖ val∗4‖ val∗5
‖val∗6, val(2)∗ = val∗1‖ val∗2‖ val∗4‖ val∗5 ‖val∗6, val∗1,val∗2, val∗4, val∗6 ∈ {0, 1}128,val∗3 ∈
{0, 1}64, val∗5 ∈ {0, 1}7 and TopC = val1 ⊕ f(K, val1) = K∗ ⊕ f∗(val∗1,K

∗).

We express the security property of the generalizations Gmil1 and Gmil2 (resp.
G∗mil1 and G∗mil2) under the prf-security of the function f (resp. f∗). While we
cannot prove the latter property, we can conjecture that the advantage of a
prf-adversary would be of the form:

Advprf
f (A) ≤ c1 ·

t/Tf
2128

+ c2 ·
q2

2128
,
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for any adversary A running in time t and making at most q queries at its
challenger. Here, m is the output’s size of our function f and Tf is the time to
do one f computation on the fixed RAM model of computation and c1 and c2

are two constants depending only on this model. In other words, we assume that
the best attacks are either a exhaustive key search or a linear cryptanalysis. We
also conjecture that the advantage of a prf-adversary on f∗ is negligible.

Pseudorandomness of MILENAGE algorithms. We begin by reducing the
prf-security of Gmil1 and Gmil2 to the prf-security of the function f. This implies
the prf-security of each MILENAGE algorithm.

Theorem 12. [prf-security for Gmil1 and Gmil2]
Let Gmil1 (resp. Gmil2): {0, 1}κ × {0, 1}d × {0, 1}t × {0, 1}t → {0, 1}n and f :
{0, 1}κ × {0, 1}128 → {0, 1}128 be the two functions specified above. Consider
a (t, q)-adversary A against the prf-security of the function Gmil1 (resp. Gmil2),
running in time t and making at most q queries to its challenger. Denote the ad-
vantage of this adversary as Advprf

Gmil1
(A). Then there exists a (t′ ≈ 3 ·t, q′ = 3 ·q)-

adversary A’ with an advantage Advprf
f (A′) of winning against the pseudoran-

domness of f such that:

Advprf
Gmil1

(A) = Advprf
f (A′)(= Advprf

Gmil2
(A)).

Theorem 13. [prf-security for G∗mil1 and G∗mil2]
Let G∗mil1 (resp G∗mil2): {0, 1}κ × {0, 1}d × {0, 1}t × {0, 1}t → {0, 1}n and f∗ :
{0, 1}κ × {0, 1}128 → {0, 1}128 be the two functions specified above. Consider
a (t, q)-adversary A against the prf-security of the function G∗mil1 (resp. G∗mil2),
running in time t and making at most q queries to its challenger. Denote the
advantage of this adversary as Advprf

G∗mil1
(A) (resp. Advprf

G∗mil2
(A)). Then there exists

a (t′ ≈ O(t), q′ = q)-adversary A’ with an advantage Advprf
f∗(A′) of winning

against the pseudorandomness of f∗ such that:

Advprf
G∗mil1

(A) = Advprf
f∗(A

′)(= Advprf
G∗mil2

(A)).

F.1 Formal Analysis of the AKA Protocol

ProVerif is an automatic protocol verifier in the Dolev-Yao formal model; it han-
dles protocols represented by Horn clauses and can prove that they have various
security properties (including key secrecy, indistinguability, and (mutual) au-
thentication). ProVerif can analyze a wide range of asymmetric and symmetric
stateless protocols, and can run an unbounded number of sessions of an AKE
protocol with an unbounded message space, thanks to some well-chosen approx-
imations.

As a consequence, while it can also give some false negatives (attacks which do
not always translate to our model), if the verifier outputs a security proof, then
the latter carries over automatically. When such a proof cannot be generated, the
tool tries to propose an execution trace, i.e. a specific attack, which “breaks” the
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desired property. Cryptographic primitives are modeled as generic functions and
reduction rules. Indeed, for example, the symmetric encryption algorithms are
modeled by func senc \ 2 and the reduction reduc sdec(k, senc(k, m)), where
senc and sdec are respectively symmetric encryption and decryption, models
the property that the plaintext m can be retrieved from the ciphertext and the
private key k.

The syntax of the ProVerif calculus processes is given by the following gram-
mar:

P, Q, R ::= plain processes

0 null process

P|Q parallel composition

!P replication

new n; P name restriction

if M = N then P else Q conditional

in(M, x); P message input

out(M, N); P message output.

The null process signifies inaction, while P|Q represents the parallel execution of
P and Q. The replication !P of a process P behaves as the parallel execution of an
unbounded number of copies of P. The restriction new n; P creates a new name n

whose scope is restricted to the process P, and it then runs P. The message input
in(M, x); P (respectively the message output out(M, x); P)) describes a process that
receives (respectively sends) a message x from the channel M and after behaves
as P. The conditional checks the equality between N and M and behaves as P if
the answer is true; otherwise Q is executed. See [7] for more details. We used
the ProVerif tool to analyze the mutual authentication and the key derivation
security of the real AKA protocol. This analysis is clearly different to the stateless
feature of the variant studied by Arapinis and al. [6]. Indeed, the latter swaps
the sequence number of AKA protocol for a random value. Usually, the stateful
feature of AKA protocol is incompatible with ProVerif13.

Despite its restriction to stateless protocols, we nonetheless try to adapt the
behavior of the ProVerif calculus to obtain some results on AKA. ProVerif does
not keep any trace between several sessions. Thus, we have implemented (by
duplication) the code of each session in each process for as many as sessions
as there are, hardcoding the sequence number. Since we cannot duplicate an
unbounded number of sessions, we have to restrict the verifier to bound this
number. This leaves us unable to apply the replication of the process. While both
security notions (authentication and key derivation) are modelled by different
injective correspondence properties, they are always proved under a replication.
So, ProVerif cannot give any efficient result about AKA protocol.

As an alternative, we used a verifier of stateful processes, called StatVerif.
The latter is an extension of the ProVerif process calculus constructed for explicit
state; its goal is to bridge the gap, and handle stateful protocols. We report the
most relevant parts of the StatVerif scripts used for the verification of the AKA

13 This could explain the stateless consideration of [6].
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protocol. We omit the declaration of constants, functions, and restriction rules,
and report only the code of the both process.

Mobile Client Process: Server process:
1: let processA= 1: let processB=
2: out(c, UID); 2: lock(state);
3: lock(state); 3: read state as xState;
4: read state as xState; 4: let next = incr(xState) in

5: let next = incr(xState) in 5: unlock(state);
6: unlock(state); 6: in(c,= UID);
7: in(c, (rand, m2, m3)); 7:new rb;
8: let f3a = prf1(Kab, rand) in 8: let f3 = prf1(Kab, rb) in

9: let f5a = prf3(Kab, rand) in 9: let f5 = prf3(Kab, rb) in

10: let xxstate = sdec(m2, f5a) in 10: let chiff = senc(next, f5) in

11: if xxstate = next then 11: let mac = mac1((rb, next), Kab) in

12: let (= rand,= next) = checkmac1(m3, Kab) in 12: out(c, (rb, chiff, mac));
13: let Ks = f3a in 13: in(c, res);
14: out(c, mac2(rand, Kab)); 14: if res = mac2(rb, Kab) then

15: 0. 15: let Ks = f3in

——————————— 16: lock(state);
Global Process: 17: state := next;
1: process 18: unlock(state);
2: (!(processA)|!(processB)) 19: 0.

Fig. 12. AKA Procedure in StatVerif:

Unfortunately, for unknown reasons, the sequence is incremented ad infini-
tum. So, StatVerif does not give some exploitable results.
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