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Abstract. Recently we proposed a method for a random split of Staircase-Generator codes (St-
Gen codes) to counter the weaknesses found in the previous constructions of public key schemes
using St-Gen codes. The initial proposal for the random split addressed only the encryption scheme,
and we left the problem of how to apply the random splitting on the signature scheme open. In this
work we solve that open problem and describe a digital signature scheme based on random split of
St-Gen codes.
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1 Introduction

One of the schemes believed to be quantum secure is the McEliece public key scheme [4], pub-
lished in 1978. Its security is based on the NP-hardness of the problem of decoding random
linear codes.

Recently, an encryption and signature variant of the McEliece scheme based on Staircase-
Generator codes was introduced in [2,3]. For the public keys produced with these codes a dis-
tinguisher was proposed by Sendrier and Tillich [8], and recently a very similar distinguishing
strategy was presented as a full and practical key recovery attack by Moody and Perlner [5]. In
[5] there is presented also a practical signature forgery attack based on an ISD attack.

In order to thwart the distinguishing and ISD attacks of [8,5] against the encryption scheme
defined in [2,3] we introduced the concept of “Valid Error Split” in [7]. By using that concept
we showed how to transform the St-Gen encryption scheme from [2,3] into a randomly split St-
Gen scheme. In our security analysis we showed that the probability of the attacker obtaining
conditions under which the attacks [8,5] can be mounted, becomes negligible.

The problem of transforming the St-Gen signature scheme into a randomly split St-Gen
signature scheme remained open. In this paper we solve that problem. We provide an initial
security analysis of the scheme as well as some concrete parameters and instances.

2 Definition of Staircase-Generator Codes and Random Split of Their
Generator Matrix

We repeat in brief some of the notions given in [2,3,6,7]. We denote by C ⊆ Fn2 a binary (n, k)
code of length n and dimension k. We denote the generator matrix of the code by G, and wt(x)
denotes the Hamming weight of the word x.



Definition 1. Let ki, ni ∈ N, and let k = k1 + k2 + · · · + kw and n = k + n1 + n2 + · · · + nw.
Further, let Bi be a random binary matrix of dimension

∑i
j=1 kj × ni. A linear binary (n, k)

code C with the following generator matrix in standard form:

B1
B2

Bw
. . .

. . .




IkG =

0

k1

k2

n1 n2

(1)

is called Staircase-Generator code (St-Gen code).

Definition 2. Let ` be a positive integer and let pd ∈ F2[x1, x2, . . . , x`] be a multivariate poly-
nomial of degree > 2. We say that E` is an error set if it is the solution set of pd, i.e.
E` = {e ∈ F`2 | pd(e) = 0}. We will refer to pd as the defining polynomial.

We define the density of the error set E` to be D(E`) = |E`|1/`. We will refer to the integer
` > 0 as the granulation of E`. In [2] it was proven that if two error sets E`1 ⊆ F`12 , E`2 ⊆ F`22 ,
have the same density ρ, then D(E`1 × E`2) = ρ.

The decoding of St-Gen codes relies on the technique of list decoding. The following Propo-
sition from [2] determines the parameters of a St-Gen code that provide an efficient decoding.

Proposition 1 ([2]). Let C be any binary (n, k) code and E ⊂ Fn2 be an error set of density ρ.
Let w be any word of length n, WE = {w + e | e ∈ E} and let CWE

denote the set of codewords
in WE. Suppose there exists a codeword c ∈ WE. Then the expected number of codewords in
WE \ {c} is approximately ρn2k−n for large enough n and k.

Let E` be an error set with density ρ where ` divides n and m = n/`. We recall Alg. 1 from
[2], that is an efficient algorithm for decoding a code C, that corrects errors from the set Em` .
Algorithm 1 Decoding
Input: Vector y ∈ Fn2 , and generator matrix G of the form (1).
Output: A list Lw ⊂ Fk2 of valid decodings of y.
Procedure:
Let Ki = k1 + · · · + ki. Represent x ∈ Fk2 as x = x1 ‖ x2 ‖ · · · ‖ xw where each xi has length ki. Similarly,
represent y ∈ Fn2 , as y = y0 ‖ y1 ‖ y2 ‖ · · · ‖ yw, where each yi has length ni and |y0| = k. We further identify
y0 with y0 = y0[1] ‖ y0[2] ‖ · · · ‖ y0[w], where each y0[i] is of length ki.
During decoding, we will maintain lists L1, L2, . . . , Lw of possible decoding candidates of length Ki.
Step 0: Set a temporary list T0 = L0 to contain all possible decodings of the first k1 coordinates of y:

T0 ← {x′ = y0[1] + e | e ∈ Ek1/`}.

Step 1 ≤ i ≤ w: Perform list-decoding to recover a list of valid decodings:
For each candidate x′ ∈ Ti−1 ⊂ FKi

2 , add to Li all the candidates for which x′Bi + yi ∈ Eni/`:

Li ← {x′ ∈ Ti−1 | x′Bi + yi ∈ Eni/`}. (2)

If i < w then create the temporary list Ti of candidates of length Ki+1 from Li:

Ti ← {x′ ‖ (y0[i+ 1] + e) | x′ ∈ Li, e ∈ Eki+1/`}. (3)

Return: Lw.
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A key parameter of the public-key encryption scheme where we split the staircase-generator
matrix is the number of splits s, that determines the number of summands the generator matrix
of the code is split in. This parameter further determines the nature of the error used during
encryption.

Definition 3. Let E` ⊂ F`2 be an error set of granulation ` and let s denote the number of splits.
The s-tuple ErrorSplit = (e1, . . . , es), where ei ∈ F`2, i ∈ {1, . . . , s} is called A Valid Error Split
for E` if the sum of its elements permuted with any permutation σi ∈ S` is an element of E` i.e.

it holds that e =
s∑
i=1

σi(ei) ∈ E`. The set of all valid error splits is denoted as V alidErrorSplits

and its size with V i.e. V = |V alidErrorSplits|.
Example 1. Let ` = 4, E` = {(0, 0, 0, 0), (0, 0, 1, 1), (0, 1, 0, 1), (0, 1, 1, 0), (1, 0, 1, 1), (1, 1, 0, 0),
(1, 1, 0, 1), (1, 1, 1, 0), (1, 1, 1, 1)} and s = 4. The 4-tuple ErrorSplit = ((1, 0, 0, 0), (1, 1, 1, 1),
(1, 1, 1, 1), (1, 1, 0, 1)) is a valid error split for E` because the sum of all its elements permuted
by any of all possible 4! = 24 permutations always gives an element in E`.

In [7] we gave the following parameter sets for practical use:
Parameter Set 1. l = 3, s = 2, E3 = {(0, 0, 1), (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)},

V alidErrorSplits =
{ (

(0, 0, 0), (0, 0, 1)
)
,
(
(0, 0, 0), (0, 1, 0)

)
,
(
(0, 0, 0), (0, 1, 1)

)
,
(
(0, 0, 0), (1, 0, 0)

)
,(

(0, 0, 0), (1, 0, 1)
)
,
(
(0, 0, 0), (1, 1, 0)

)
,
(
(0, 0, 1), (0, 0, 0)

)
,
(
(0, 0, 1), (1, 1, 1)

)
,
(
(0, 1, 0), (0, 0, 0)

)
,(

(0, 1, 0), (1, 1, 1)
)
,
(
(0, 1, 1), (0, 0, 0)

)
,
(
(0, 1, 1), (1, 1, 1)

)
,
(
(1, 0, 0), (0, 0, 0)

)
,
(
(1, 0, 0), (1, 1, 1)

)
,(

(1, 0, 1), (0, 0, 0)
)
,
(
(1, 0, 1), (1, 1, 1)

)
,
(
(1, 1, 0), (0, 0, 0)

)
,
(
(1, 1, 0), (1, 1, 1)

)
,
(
(1, 1, 1), (0, 0, 1)

)
,(

(1, 1, 1), (0, 1, 0)
)
,
(
(1, 1, 1), (0, 1, 1)

)
,
(
(1, 1, 1), (1, 0, 0)

)
,
(
(1, 1, 1), (1, 0, 1)

)
,
(
(1, 1, 1), (1, 1, 0)

)}
.

Note that V = |V alidErrorSplits| = 24. The defining polynomial for E3 is pd = 1 + x1 + x2 +
x3 + x1x2 + x1x3 + x2x3, and the density ρ3 = |E3|1/` = 61/3.

Parameter Set 2. l = 4, s = 2, and E4 = {(0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0), (1, 0, 0, 0),
(0, 0, 1, 1), (0, 1, 1, 0), (0, 1, 0, 1), (1, 0, 0, 1), (1, 0, 1, 0), (1, 1, 0, 0)}, V alidErrorSplits ={ (

(0, 0, 0, 0), (0, 0, 0, 1)
)
,
(
(0, 0, 0, 0), (0, 0, 1, 0)

)
,
(
(0, 0, 0, 0), (0, 0, 1, 1)

)
,
(
(0, 0, 0, 0), (0, 1, 0, 0)

)
,(

(0, 0, 0, 0), (0, 1, 0, 1)
)
,
(
(0, 0, 0, 0), (0, 1, 1, 0)

)
,
(
(0, 0, 0, 0), (1, 0, 0, 0)

)
,
(
(0, 0, 0, 0), (1, 0, 0, 1)

)
,(

(0, 0, 0, 0), (1, 0, 1, 0)
)
,
(
(0, 0, 0, 0), (1, 1, 0, 0)

)
,
(
(0, 0, 0, 1), (0, 0, 0, 0)

)
,
(
(0, 0, 1, 0), (0, 0, 0, 0)

)
,(

(0, 0, 1, 1), (0, 0, 0, 0)
)
,
(
(0, 0, 1, 1), (1, 1, 1, 1)

)
,
(
(0, 1, 0, 0), (0, 0, 0, 0)

)
,
(
(0, 1, 0, 1), (0, 0, 0, 0)

)
,(

(0, 1, 0, 1), (1, 1, 1, 1)
)
,
(
(0, 1, 1, 0), (0, 0, 0, 0)

)
,
(
(0, 1, 1, 0), (1, 1, 1, 1)

)
,
(
(0, 1, 1, 1), (1, 1, 1, 1)

)
,(

(1, 0, 0, 0), (0, 0, 0, 0)
)
,
(
(1, 0, 0, 1), (0, 0, 0, 0)

)
,
(
(1, 0, 0, 1), (1, 1, 1, 1)

)
,
(
(1, 0, 1, 0), (0, 0, 0, 0)

)
,(

(1, 0, 1, 0), (1, 1, 1, 1)
)
,
(
(1, 0, 1, 1), (1, 1, 1, 1)

)
,
(
(1, 1, 0, 0), (0, 0, 0, 0)

)
,
(
(1, 1, 0, 0), (1, 1, 1, 1)

)
,(

(1, 1, 0, 1), (1, 1, 1, 1)
)
,
(
(1, 1, 1, 0), (1, 1, 1, 1)

)
,
(
(1, 1, 1, 1), (0, 0, 1, 1)

)
,
(
(1, 1, 1, 1), (0, 1, 0, 1)

)
,(

(1, 1, 1, 1), (0, 1, 1, 0)
)
,
(
(1, 1, 1, 1), (0, 1, 1, 1)

)
,
(
(1, 1, 1, 1), (1, 0, 0, 1)

)
,
(
(1, 1, 1, 1), (1, 0, 1, 0)

)
,(

(1, 1, 1, 1), (1, 0, 1, 1)
)
,
(
(1, 1, 1, 1), (1, 1, 0, 0)

)
,
(
(1, 1, 1, 1), (1, 1, 0, 1)

)
,
(
(1, 1, 1, 1), (1, 1, 1, 0)

)}
.

Note that V = |V alidErrorSplits| = 40. The defining polynomial for E4 is pd = 1 + x1 + x2 +
x3 + x4 + x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4. Here, the density is ρ4 = |E4|1/` = 101/4.

3



Algorithm 2 Key Generation
Parameters: Let `|n, m = n/` and E ⊂ F`2 be an error set of granulation ` and density ρ. Let s be the number
of splits.
Key generation:
The following matrices make up the private key: - A generator matrix G of a binary (n, k) code of the form (1).
- An invertible matrix S ∈ Fk×k2 .
- An array of permutation matrices P1, P2, . . . , Ps created as follows:

1. Select a permutation π on {1, 2, . . . ,m}, and let P ∈ Fn×n2 be the permutation matrix induced by π, so that
for any y = y1 ‖ y2 ‖ . . . ‖ ym ∈ (F`2)m:

yP = yπ(1) ‖ yπ(2) ‖ . . . ‖ yπ(m), (4)

i.e., P only permutes the m substrings of y of length `.
2. For i := 1 to s:

– Select randomly m permutations σij ∈ S`, j ∈ {1, . . . ,m}.
– Let Pi be defined by

yPi = σi1(yπ(1)) ‖ σi2(yπ(2)) ‖ . . . ‖ σim(yπ(m)),
where σij(x) = σij(x1, x2, . . . , x`).

3. The public key is formed as follows:

– Generate uniformly at random s− 1 matrices G1, . . . , Gs−1 of size k × n over F2.
– Set Gs = G+G1 + · · ·+Gs−1.
– For all i ∈ {1, 2, . . . , s}, set Gipub = SGiPi.

Public key: G1
pub, . . . , G

s
pub.

Private key: S, G and P1, P2, . . . , Ps.

Algorithm 3 Valid Error Splits (`, E`, s)
Input: Granulation `, error set E`, number of splits s.
Output: A set V alidErrorSplits of all possible valid error splits.
1: Set V alidErrorSplits← ∅
2: for all (e1, . . . , es) ∈ (F`2)s do
3: if

∑s

i=1 σi(ei) ∈ E`,∀(σ1, . . . , σs) ∈ (S`)s then
4: Add (e1, . . . , es) to V alidErrorSplits.
5: end if
6: end for
7: Return V alidErrorSplits.

Note that Algorithm 3 is run only once at the time of the initialization of the system with
parameters `, E`, s. Even more, in practice, this set can be pre-calculated and publicly available.

A randomized decoding algorithm, Alg. 4, that is suitable for finding digital signatures was
presented in [2]. Since Alg. 4 is a randomized version of the Alg. 1 we need a condition that
guarantees that the signing process will find a signature with high probability.

Proposition 2. Algorithm 4 produces a signature with probability more than 1/2 if the following
two conditions hold:

1. ExpLimiti > (2/ρ)ni, for 1 ≤ i ≤ w − 1;
2. ρkw+nw2−nw > 1.

A formal description of the signature scheme is given through the algorithms for key gen-
eration, error set generation, decoding for signatures, signing and verification. We describe the
signing and verification procedures in detail in Alg. 5 and 6, respectively.
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Algorithm 4 Decoding for signatures
Input: A vector y ∈ Fn2 , and a generator matrix G of the form (1).

Output: A valid decoding s ∈ Fk2 of y.

Procedure:
The notation is the same as in Alg. 1, with the addition of the variables ExpLimiti ≤ ρni . The decoding proceeds
in two phases:

Phase 1: Find a valid decoding x′ of y0[1] with respect to B1 and y1. That is, find an x′ ∈ Fk1
2 so that

x′B1 + y1 ∈ En1/`, trying at most ExpLimit1 candidates. Expand x′ into at most ExpLimit2 candidates of
length k1 + k2 by appending the sum of y0[2] with random errors from Ek2/`, until you find a valid decoding
with respect to B2 and y2 (if no valid candidate can be found, start over with a new initial x′). Continue this
process for (B3,y3), (B4,y4), . . .

Phase 2: Once you have found a candidate that is valid for B1, B2, . . . , Bw−1 and y1,y2, . . . ,yw−1, switch to
the list-decoding algorithm described in Alg. 1 for the last block, i.e. for i = w − 1.

Return: s← Lw.

Algorithm 5 Signing
Input: A value z = (z1, . . . , zs) ∈ (Fn2 )s to be signed. The
private key: S, G and P1, P2, . . . , Ps.

Output: A valid signature σ ∈ Fk2 , so that
ei = σGipub + zi, i = 1, . . . , s, where ei = (e1,i, . . . , en

l
,i) and

where ∀j ∈ {1, . . . , n
l
}, (ej,1, . . . , ej,s) ∈ V alidErrorSplits.

Procedure:
1: Set yi = ziP−1

i

2: Set y =
∑s

i=1 yi
3: Decode y using Alg. 4, to get a valid decoding s.
4: Set the signature σ = sS−1.
5: Return σ

Algorithm 6 Verification
Input: A pair (z,σ) ∈ (Fn2 )s×Fk2 , and the pub-
lic key G1

pub, . . . , G
s
pub.

Output: Accept or Reject.

1: Set ei = σGipub + zi, for i = 1, . . . , s
2: if ∀j ∈ {1, . . . , n

l
},

(ej,1, . . . , ej,s) ∈ V alidErrorSplits then
3: Return Accept
4: else
5: Return Reject
6: end if

3 Security analysis

The initial proposals both for encryption and signatures that use St-Gen codes [2], are vulnerable
to an Information Set Decoding (ISD) attack [8,5]. Additionally, as it is shown in [5], the signature
scheme is vulnerable against a very efficient forgery attack. In the following two sections we
analyze the security of the signature scheme introduced in this paper against the forgeries
attacks.

3.1 Resistance against ISD forgery attacks

First we give the Alg. 7 which is an adapted ISD attack for signature forgery (given as Alg. 1
in [5]) for the original St-Gen scheme with granularity ` = 2 and the error set E = {00, 01, 10}.

Since in the original St-Gen signature scheme the error set E is such that when the first bit
is fixed to 0, there are possibilities the second bit to be either 0 or 1, by choosing e′1 = 0 in Step
3 of Alg. 7, we have that in Step 4 the computed error vector e will have valid pairs from the
error set E for `k bits. To have a successful forgery, it remains to have valid errors from the set
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Algorithm 7 Forgeries with ISD against original St-Gen scheme (adapted Alg. 1 in [5])
Input: A value z ∈ Fn2 to be signed and a k × n public key matrix Gpub.
Output: A forged signature σ ∈ Fk2 .

1. Permute the bits of z into z′ by a specially constructed random permutation matrix P ′. The permutation is
special in the way that it randomly picks k pairs of bits, and takes every first bit in those pairs and puts it
in the first k bits of z′. The permutation of the other bits of z is completely random.

2. Try to find a forged signature σ by establishing the following relation between z′ and σ:

z′ = zP ′ = (σGpub + e)P ′

= σGpubP
′ + eP ′

= σ(A|B) + (e′1|e′2)
= (σA+ e′1)|(σB + e′2),

where A and e′1 are are the first k columns of the permuted generator matrix GpubP
′ and permuted error

vector eP ′, respectively.
2: If A is not invertible, go to Step 1.
3: Set e′1 = 0 and compute

σ = (σA)A−1.

4: Compute the error vector as
e = z− σGpub.

5: If the error vector is properly formed i.e. it is composed of 2-bit substrings from the proper generalized error
set E, then return σ. Otherwise go back to Step 1 and start over with a new permutation P ′.

E on the remaining n− `k bits. The probability of that event is

Pr =
( |E|

2`
)n−`k

`

=
(
ρ

2

)n−`k
.

For the concrete value ` = 2 the probability to have a successful forgery is (
√

3
2 )n−2k i.e., for all

the practical parameters given in [2] it is very high and is around 2−8.
Let us now analyze Alg. 8 which is an analog ISD forgery attack adapted for signing and

verification with random split of the generator matrix given in Alg. 5 and 6.
There are several crucial differences between the attacks in Alg. 7 and in Alg. 8. First, the

permutation matrices P ′ in Step 1 are produced differently. In Alg. 7 the permutation is special
in the way that it randomly picks k pairs of bits, and takes every first bit in those pairs and puts
them in the first k bits of z′. This is beneficial for the attacker to do since the `-bit substrings are
never permuted internally. On the other hand, for the new signature scheme, picking some fixed
position in the `-bit substrings does not give any advantage since those substrings are permuted
locally during the key-generation phase. As a consequence of the first difference, comes the second
difference: fixing the value of e′1 = 0 in Step 3 does not give any advantage to the attacker in
Alg. 8. Thus, the value of e′1 is randomly guessed. The third difference is in Step 4 where now
instead of one error vector e we have to compute s error vectors ei, i = 1, s. The fourth and most
important difference is in Step 5 where the successful forgery has to produce n

` error s-tuples
(ej,1, . . . , ej,s) that all belong to V alidErrorSplits. By assuming that there are always elements
in the V alidErrorSplits that as first component has the values ej,1 as part of the guessed e′1,
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Algorithm 8 Forgeries with ISD against signature scheme of Alg. 5 and 6
Input: A value z = (z1, . . . , zs) ∈ (Fn2 )s to be signed and the public key of s matrices of size k×n: G1

pub, . . . , G
s
pub.

Output: A forged signature σ ∈ Fk2 .

1. Permute the bits of z1 into z′1 by a random permutation matrix P ′.
2. Try to find a forged signature σ by establishing the following relation between z′1 and σ:

z′1 = z1P
′ = (σG1

pub + e)P ′

= σG1
pubP

′ + eP ′

= σ(A|B) + (e′1|e′2)
= (σA+ e′1)|(σB + e′2),

where A and e′1 are the first k columns of the permuted generator matrix G1
pubP

′ and permuted error vector
eP ′, respectively.

2: If A is not invertible, go to Step 1.
3: Guess e′1 and compute

σ = ((σA+ e′1)− e′1)A−1.

4: For all i ∈ {1, . . . , s} compute error vectors

ei = z1 − σGipub = (e1,i, . . . , en
l
,i).

5: Check whether ∀j ∈ {1, . . . , n
l
}, (ej,1, . . . , ej,s) ∈ V alidErrorSplits. If yes, then return σ, otherwise go back

to Step 1 and start over with a new permutation P ′.

the probability of successful forgery is upper bounded by

( |V |
2`s
)n
`
−1
. (5)

3.2 Resistance against algebraic ISD forgery attacks

The attack described in the previous section does not exploit the structure of the generator
matrix, but rather the specific structure of the error set. Here, we show that such an attack, and
even a more general one, can always be modeled as a system of equations.

Recall that we have defined the error set of our scheme using a defining polynomial pd
in ` variables, whose roots are exactly the possible errors used in the encoding and decoding
algorithms of the scheme. Therefore, the set V alidErrorSplits can also be defined using the
polynomial pd as the set of all s-tuples (e1, . . . , es), that satisfy the equation

pd(
s∑
i=1

σi(ei)) = 0

for every permutation σi ∈ S`.
This means that the verification process will accept a signature (z,x) ∈ (Fn2 )s × Fk2, if for

ei = xGipub + zi,, i = 1, . . . , s

pd(
s∑
i=1

σi(ej,i)) = 0, ∀j ∈ {1, . . . , n
`
}, ∀σi ∈ S`. (6)
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Taking x = (x1, x2, . . . , xk) to be an unknown signature for a message z, (6) can be seen as a
system of equations whose solution is a valid signature.

While the modeling as a system of equations is fairly natural, if the defining polynomial is
of degree at least 2, solving the system 6 is in general a hard problem.

A good strategy to speed up the process of solving the system is to use linearization, i.e. to
add linear equations to the system that hold with some reasonably high probability. For example,
the simplest linear equation that can be added is xi = 0 or xi + 1 = 0 which corresponds to
fixing the value of some variable xi. In the case of our scheme, since the defining polynomial pd
acts on relatively small number s` of variables, it is possible to analyze it, and find the linear
equations that hold with the highest probability. Note that the lower the nonlinearity of pd is,
the higher the probability of a linear equation.

For a moment assume that the system 6 has a unique solution. Denote by p the probability
that some linear equation

P (ej+1,1, . . . , ej+1,s, ej+2,1, . . . , ej+2,s, . . . , ej+`,1, . . . , ej+`,s) = 0 (7)

on a block of s` variables holds. It can be shown that once the equations (7) for every j ∈
{1, . . . , nl } are added to the system (6), the system becomes easy to solve. However, the proba-
bility that (7) holds for every j becomes p

n
l . For large enough n, this probability is very small,

so it is very unlikely that the system will have a solution with the added linear equations. Even
if we randomly pick only k

l blocks (which could be enough to solve the system), the probability
that the system will have a solution, p

k
l , is still negligible.

The situation is very different if the system (6) has many solutions, i.e. if there exist many
valid signatures for a given message. Denote by Nvs the number of valid signatures for a given
message. Then the probability that the equations (7) for some k randomly chosen j ∈ {1, . . . , nl }
are valid for at least one of the possible signatures becomes

PrA = 1− (1− p
k
l )Nvs (8)

Using Proposition 1, we can estimate the number of valid signatures by

Nvs = |E|
n
` 2k−n, (9)

and thus the probability of a successful algebraic attack becomes

PrA = 1− (1− p
k
l )|E|

n
` 2k−n (10)

The probability (10) can be well approximated using Poisson approximation with parameter
λ = p

k
lNvs, since for realistic parameters the number of valid signatures is large enough. Thus

we have
PrA ≈ 1− e−λ = 1− e−p

k
l Nvs . (11)

The crucial parameter for success of the attack is λ, and as λ → 0, PrA → 0. In order for the
signature scheme to be secure against such attacks, λ has to be very small. Informally speaking,
this means that the number of valid signatures has to be as small as possible, or in other words
the rate of the code should be as small as possible. Clearly, this introduces a trade-off between
security and efficiency, and the parameters should be carefully chosen.
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3.3 Resistant against ISD distinguishing and key recovery attacks

In the analysis by Moody and Perlner [5] a modification of Stern’s algorithm [9] was provided,
dedicated to cryptanalysis of the scheme in [2]. We refer the reader to [5] for details, and here
we mention that the complexity of the key recovery attack is in general given by

ISDSt = Pr−1
St · CostSt

where PrSt is the probability of success, and CostSt the cost of finding the low weight codeword.
In [7] we gave a detailed security analysis how and why the random split of the generator matrix
prevents from ISD attacks.

The main logical basis for construction of a key recovery attack on the signature scheme is
the fact that nw is relatively small in comparison to n. That structural property of the generator
matrix gives a strategy for the attacker: Learn which columns of the public key belong to the
Bw part of the private key G.

For the signature scheme with a random split of G the probability of a success of the original
PrSt is decreased to the value

PrSt ·
( 1
`!

) s(kw+nw)
`

. (12)

4 Concrete parameter sets and their security

Based on Eq. (5) and (12) in this section we propose two concrete codes from the two parameter
sets given in Sec. 2, two of each set, providing security of 128 bits.

We denote by K = (k1, . . . , kw) and N = (n1, . . . , nw) the vectors of values used in the
definition of concrete generator matrices as defined in equation (1).

Parameter Set 1:

– Code (2142, 465),
w = 27, K = (75, 15, 15, . . . , 15), N = (60, 60, . . . , 60, 60, 117).

Parameter Set 2:

– Code (2244, 508).
w = 28, K = (76, 16, 16, . . . , 16), N = (60, 60, . . . , 60, 60, 116).

We have implemented both instances in Magma [1] and we can confirm that these parameter
sets are practical.

5 Conclusions

We have presented a signature scheme based on random split of St-Gen codes where we split
the generator matrix into s randomly generated matrices. The split strategy is used to thwarts
the distinguishing key recovery and ISD forgery attacks on the initial St-Gen signature scheme.
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