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Abstract. We introduce the high-degree indicator matrix (HDIM), an
object closely related with both the linear approximation table and the
algebraic normal form (ANF) of a permutation. We show that the HDIM
of a Feistel Network contains very specific patterns depending on the de-
gree of the Feistel functions, the number of rounds and whether the Feis-
tel functions are 1-to-1 or not. We exploit these patterns to distinguish
Feistel Networks, even if the Feistel Network is whitened using unknown
affine layers. We also present a new type of structural attack exploiting
monomials that cannot be present at round 𝑟− 1 to recover the ANF of
the last Feistel function of a 𝑟-round Feistel Network. Finally, we discuss
the relations between our findings, integral attacks, cube attacks, Todo’s
division property and the congruence modulo 4 of the Linear Approxi-
mation Table.
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1 Introduction

While the importance of attacks targeting actual primitives is obvious, structural
attacks can also lead to interesting development. In fact, the last few years have
seen the publications of several such attacks. For example, the attack targeting
the SASAS construction has been recently extended to larger constructions [1].
The ASASA structure, which might look weaker at first glance due to its lower
number of non-linear layers, has actually proved to be a challenging target; it was
even proposed as the basis for public key encryption and white-box scheme [2].
Attacking this generic structure requires sophisticated methods presented in [3]
and [4]. Feistel Networks have also been the target of generic attacks in two
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different settings. If the Feistel functions are completely secret, attacks up to
5-rounds are presented in [5]. If the Feistel functions consist in public functions
preceded by the addition of a secret key, powerful attacks with very low data
complexity are presented in [6].

As illustrated by the usage of the ASASA structure, generic constructions can
be applied in white-box cryptography where the aim is to prevent an attacker
from having access to some of the inner components of the algorithm to perform
some computations. Thus, structural attacks are important in this context. They
can also be used to reverse-engineer the secret structure of an S-Box, allowing for
example an attacker to enjoy the benefits of a lightweight implementation known
a priori only by the designer of the S-Box. The use of small Feistel Networks
for lightweight S-Box design is investigated in [7] and, in fact, a secret hardware
efficient decomposition3 was recently discovered for the S-Box of the last Russian
standards [8] using such reverse-engineering.

Our Contribution Our results are based on the high-degree indicator matrix
(HDIM), a new object we introduce. We associate to any 𝑛-bit permutation 𝐹
a 𝑛 × 𝑛 Boolean matrix �̂�(𝐹 ) which can be computed in time O(𝑛2𝑛−1) using
the full code-book and which is related all at once to the LAT/Walsh spectrum
of 𝐹 , to its algebraic normal form and to the existence of integral distinguishers.

The HDIM provides new attack directions which we illustrate by analysing
some generic constructions based on Feistel Networks. In particular, we show
the existence of some patterns in the HDIM of 2𝑛-bit Feistel Networks with 𝑟
rounds and Feistel functions with degree 𝑑 depending on 𝜃(𝑑, 𝑟) with

𝜃(𝑑, 𝑟) = 𝑑⌊𝑟/2⌋−1 + 𝑑⌈𝑟/2⌉−1.

These patterns provide efficient distinguishers for such structures. When the
round functions are bijective, such patterns always exist in Feistel Networks
with up to at least 5 round. We also show that these distinguishers can be inter-
preted as particular integral distinguishers and describe some relations between
our results and Todo’s division property [9]. Due to their integral nature, our
distinguishers are extremely memory efficient: we only need to store a block
containing the sum studied. In contrast, the impossible differential for 5-round
Feistel Network [10] and the yoyo-game [5] are the best known distinguishers for
5-rounds FN with bijective Feistel functions and require respectively O(2𝑛) and
O(22𝑛) blocks of memory.

We also present a new type of recovery attack against Feistel Networks with
secret round functions which rebuilds the last Feistel function by exploiting the
predictable absence of some monomials in the algebraic normal form of the
permutation without its last round.

Outline We first describe the definitions and notations that we shall use through-
out the paper in Section 2. Then, we investigate in Section 3 the relation between
the different rows and columns of a table containing the congruence modulo 4 of

3 Whether this hidden structure serves another purpose is still an open problem.
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R Type Power Restrictions Time Data Ref.

5

Differential Distinguisher Non bij. round func. 2𝑛 2𝑛 [11]

Imp. diff. Distinguisher Bij. round func. 22𝑛 2𝑛 [10]

SAT-based Full recovery 𝑛 ≤ 7 Practical 22𝑛 [12]

Yoyo Full recovery – 22𝑛 22𝑛 [5]

Integral Full recovery 𝑓1 or 𝑓3 bij. 22.81𝑛 22𝑛 [5]

Guess & Det. Full recovery – 2𝑛23𝑛/4

22𝑛 [5]

HDIM-based Distinguisher Bij. round func. 22𝑛−1 22𝑛−1 Sec. 6.1

Imp. monom. Full recovery Bij. round func. 23𝑛 22𝑛 Sec. 5.2

r

HDIM-based Distinguisher Bij. round func.,
𝜃(𝑑, 𝑟 − 1) < 2𝑛

22𝑛−1 22𝑛−1 Sec. 6.1

HDIM-based Distinguisher Non bij. round func.,
𝜃(𝑑, 𝑟) < 2𝑛

22𝑛−1 22𝑛−1 Sec. 6.1

Imp. monom. Full recovery 𝑑𝑟−3 < 𝑛 23𝑛 22𝑛 Sec. 5.3

Table 1: Structural attacks against Feistel Networks. 𝑛 is the branch size, 𝑑 is
the degree of the Feistel functions.

the biases in the LAT of some 𝑛-bit permutation and, in doing so, introduce and
study the high-degree indicator matrix (HDIM). Section 4 shows that the HDIM
of a Feistel Network exhibits very strong patterns depending on the number of
rounds, the algebraic degree of the Feistel functions and whether these are bi-
jective or not. We also describe attacks relying on these patterns targeting both
Feistel Networks and Feistel Networks whitened using affine layers. In fact, in
Section 5, we introduce a new kind of attack rebuilding efficiently the algebraic
normal form of secret Feistel functions which exploits the predictable absence
of some monomials in the ANF of round-reduced Feistel Networks. Finally, we
discuss in Section 6 how our findings can fit in the framework of integral attacks.

Structure Restrictions Time Data Ref.

AF4A Bij. round func. 26𝑛 24𝑛 [8]

AF𝑟A
Bij. round func., 𝜃(𝑑, 𝑟 − 1) < 2𝑛 𝑛22𝑛 22𝑛 Sec. 4.2

Non bij. round func., 𝜃(𝑑, 𝑟) < 2𝑛 𝑛22𝑛 22𝑛 Sec. 4.2

AF𝑟A−1 Bij. round func., 𝜃(𝑑, 𝑟) < 2𝑛 𝑛22𝑛 22𝑛 Sec. 4.2

Non bij. round func., 𝜃(𝑑, 𝑟 + 1) < 2𝑛 𝑛22𝑛 22𝑛 Sec. 4.2

Table 2: Structural attacks against Feistel Networks whitened with unknown
affine layers. The attacks recover parts of the unknown affine layers. 𝑛 is the
branch size, 𝑑 is the degree of the Feistel functions.
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2 Notations and Boolean Functions Basics

In this section, we introduce the notations and concepts that will be used
throughout the paper. A thorough introduction to Boolean functions can be
found in [13]. First, let us define some sets and simple operations:

– F2 denotes the finite field of size 2,
– the exclusive-OR (or XOR) is denoted ⊕,
– the logical AND is denoted ∧,
– the hamming weight hw(𝑥) of a vector 𝑥 of F𝑛

2 is the number of ones in 𝑥,
– |𝑆| and #𝑆 denote the size of a set 𝑆,
– the scalar product of two elements 𝑥 = (𝑥0, ..., 𝑥𝑛−1) and 𝑦 = (𝑦0, ..., 𝑦𝑛−1)

of F𝑛
2 is denoted “·” and is equal to 𝑥 · 𝑦 =

⨁︀𝑛−1
𝑖=0 𝑥𝑖 ∧ 𝑦𝑖,

– if 𝑥 = (𝑥0, ..., 𝑥𝑛−1) and 𝑢 = (𝑢0, ..., 𝑢𝑛−1) are two elements of F𝑛
2 then

𝑥𝑢 =
∏︀𝑛−1

𝑖=0 𝑥𝑢𝑖
𝑖 , and

– if 𝑥 = (𝑥0, ..., 𝑥𝑛−1) and 𝑢 = (𝑢0, ..., 𝑢𝑛−1) are two elements of F𝑛
2 then 𝑥 4 𝑢

is true if and only if (𝑢𝑖 = 0 =⇒ 𝑥𝑖 = 0) is true for all 𝑖 in [0, 𝑛 − 1]. We
say that 𝑢 “covers” 𝑥.

We now define some of the key components used in our analysis.

Definition 1 (Boolean Function). We call Boolean function a function map-
ping F𝑛

2 to F2. A function mapping F𝑛
2 to F𝑚

2 is a vectorial Boolean function and
its restrictions to each output bit are its coordinates. Finally, for a vectorial
Boolean function 𝐹 , the Boolean functions 𝑥 ↦→ 𝑐 · 𝐹 (𝑥) are its components.

Note that a coordinate of a Boolean function is one of its components but that the
converse is not necessarily true. Let us then introduce the concept of balanced-
ness.

Definition 2 (Balanced Boolean Function). A (vectorial) Boolean function
𝐹 mapping F𝑛

2 to F𝑚
2 is said to be balanced if the size of the preimages of all

elements of F𝑚
2 are equal.

A Boolean function is balanced if and only if all of its components are balanced.
We also recall the definition of the Algebraic Normal Form of a Boolean

function.

Definition 3 (Algebraic Normal Form (ANF)). Any Boolean function 𝑓
mapping 𝑛 bits to 1 can be decomposed into

𝑓(𝑥) =
⨁︁
𝑢∈F𝑛

2

𝑎𝑢𝑥
𝑢 with 𝑎𝑢 =

⨁︁
𝑥4𝑢

𝑓(𝑥),

in a unique fashion which is called the Algebraic Normal Form (ANF) of 𝑓 .
The coefficients 𝑎𝑢 can be obtained using the so-called Möbius transform. For
vectorial Boolean functions, the ANF is the ANF of each of the coordinates.
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Definition 4 (Algebraic Degree). The algebraic degree of a Boolean function
is the largest number of variables in a single term of its ANF, i.e. the maximum
hamming weight of all 𝑢 of F𝑛

2 such that 𝑎𝑢 ̸= 0. The algebraic degree of a
vectorial Boolean function is the maximum algebraic degree of its coordinates.
The algebraic degree of a (vectorial) Boolean function 𝑓 is denoted deg(𝐹 ).

We observe that the algebraic degree of a permutation of 𝑛 bits is at most equal
to 𝑛− 1.

Our analysis will involve the LAT or Fourier Transform (related to the Walsh
spectrum by a constant multiplication) of a Boolean function. These almost
identical concepts are introduced below.

Definition 5 (LAT, Fourier Transform, Walsh Spectrum). The Linear
Approximation Table of a function 𝑓 mapping 𝑛 bits to 𝑚 is a 2𝑛 × 2𝑚 matrix
ℒ where ℒ[𝑎, 𝑏] = #{𝑥 ∈ F𝑛

2 , 𝑎 ·𝑥 = 𝑏 · 𝑓(𝑥)}− 2𝑛−1. We note that the coefficient
ℒ[𝑎, 𝑏] can equivalently be expressed as follows:

ℒ[𝑎, 𝑏] = −
∑︁
𝑥∈F𝑛

2

(︀
𝑏 · 𝑓(𝑥)

)︀
× (−1)𝑎·𝑥 = −1

2

∑︁
𝑥∈F𝑛

2

(−1)𝑎·𝑥⊕𝑏·𝑓(𝑥),

where the first sum corresponds to the Fourier transform of 𝑥 ↦→ 𝑏 · 𝑓(𝑥) and the
second to its Walsh spectrum. Furthermore, the coefficient ℒ[𝑎, 𝑏] of a LAT ℒ
is called bias of the approximation (𝑎 𝑏).

Remark 1. If 𝐹 is an 𝑛-bit permutation then, for all (𝑎, 𝑏) in (F𝑛
2 )2, we have

ℒ[𝑎, 𝑏] ≡ 0 mod 2.

When a Boolean function 𝜇 mapping 𝑛 bits to 𝑚 is linear, we use 𝜇 to
represent both the function itself and its matrix representation. The transpose
of a matrix 𝜇 is denoted 𝜇𝑡. Finally, we state the following well-known remark
regarding the algebraic degree of a (vectorial) Boolean function.

Remark 2. If 𝐹 is a (vectorial) Boolean function and 𝒱 is a vector space of F𝑛
2

such that |𝒱| > 2deg(𝐹 ), then
⨁︀

𝑣∈𝒱 𝐹 (𝑣) = 0.

3 Patterns in Biases Modulo 4 and HDIM

Our initial goal was to identify new generic attacks against Feistel Networks. As
suggested in [12], we looked at a visual representation of the Linear Approxi-
mation Table of such permutations. We identified some patterns which turned
out to be byproducts of a strong structure in the congruence modulo 4 of the
biases. Figures 1a and 1b show the “Pollock representation” of the LAT modulo
4 of a 4- and a 5-round 6-bit Feistel Networks for some bijective Feistel functions
picked uniformly at random.

As we can see, the congruence of the biases is constant in each square of
dimensions 8 × 8 for the 4-round Feistel Networks. Furthermore, there seems to
be linear patterns for the 5-round structure: if we divide the LAT into 8 × 8
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(a) 𝑟 = 4 (b) 𝑟 = 5

Fig. 1: LAT of 𝑟-round Feistel Networks (modulo 4).

squares as before then we find that each square at position (𝑖, 𝑗) is the sum of
the squares at positions (𝑖, 0) and (0, 𝑗) and a square-wise constant.

The reason behind these patterns is two-fold. The first aspect is a generic
observation about the linearity (in some sense) of the construction of the LAT
modulo 4. Indeed, we show in this section that the function (𝑎, 𝑏) ↦→ (ℒ[𝑎, 𝑏]
mod 4) for the LAT ℒ of a permutation is a bilinear form and that its matrix
representation has interesting properties. The second aspect of the justification
for the patterns is the probability 1 presence of zeroes in some positions which
is discussed later in Section 4.

3.1 The High-Degree Indicator Matrix

We first re-write the congruence modulo 4 of the biases in the LAT of a permu-
tation using Boolean functions.

Lemma 1 (LAT modulo 4). Let 𝐹 be a permutation of 𝑛 bits (𝑛 > 2) and let

ℒ be its LAT. Then ℒ[𝑎, 𝑏] is such that ℒ[𝑎, 𝑏] ≡ 2×
(︁⨁︀

𝑥∈F𝑛
2

(︀
𝑏 · 𝐹 (𝑥)

)︀(︀
𝑎 · 𝑥

)︀)︁
mod 4 or, equivalently,

ℒ[𝑎, 𝑏]

2
≡

⨁︁
𝑥∈F𝑛

2

(︀
𝑏 · 𝐹 (𝑥)

)︀(︀
𝑎 · 𝑥

)︀
mod 2.

Proof. Since (−1)𝑧 = 1 − 2𝑧 (for 𝑧 in {0, 1}), the coefficient ℒ[𝑎, 𝑏] is equal to

ℒ[𝑎, 𝑏] = −
∑︁
𝑥∈F𝑛

2

(︀
𝑏 · 𝐹 (𝑥)

)︀
+ 2

(︁ ∑︁
𝑥∈F𝑛

2

(︀
𝑏 · 𝐹 (𝑥)

)︀(︀
𝑎 · 𝑥

)︀)︁
.

The first term in this sum is equal to 2𝑛−1 as every component of a permutation
is balanced.4 Thus, if we look at the congruence modulo 4 of ℒ[𝑎, 𝑏], we obtain
the following (for any 𝑛 > 2):

ℒ[𝑎, 𝑏] ≡ 2
(︁ ∑︁

𝑥∈F𝑛
2

(︀
𝑏 · 𝐹 (𝑥)

)︀(︀
𝑎 · 𝑥

)︀)︁
mod 4,

4 If 𝐹 is not a permutation but some function with degree at most 𝑛 − 1, then this
term a priori does not go away when taking the modulo 4 of the expression.
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from which we deduce that

ℒ[𝑎, 𝑏]

2
≡

∑︁
𝑥∈F𝑛

2

(︀
𝑏 · 𝐹 (𝑥)

)︀(︀
𝑎 · 𝑥

)︀
mod 2

As sum and XOR are equivalent modulo 2, this proves the lemma. ⊓⊔

This lemma has several consequences regarding the congruence modulo 4 of
the LAT coefficients of 𝐹 (or, alternatively, the congruence modulo 2 of their
half). First, we define ℒ4 to be a 2𝑛 × 2𝑛 matrix such that ℒ4[𝑎, 𝑏] ≡ ℒ[𝑎, 𝑏]
mod 4 and ℒ4[𝑎, 𝑏] ∈ 0, 2. Using this, we define 𝐵(ℒ) to be a 2𝑛 × 2𝑛 Boolean
matrix with 𝐵(ℒ)[𝑎, 𝑏] = ℒ4[𝑎, 𝑏]/2. This matrix has the following property:

𝐵(ℒ)[𝑎⊕ 𝑎′, 𝑏⊕ 𝑏′] = 𝐵(ℒ)[𝑎, 𝑏] ⊕𝐵(ℒ)[𝑎, 𝑏′] ⊕𝐵(ℒ)[𝑎′, 𝑏] ⊕𝐵(ℒ)[𝑎′, 𝑏′].

As consequence, the function (𝑎, 𝑏) ↦→ 𝐵(ℒ)[𝑎, 𝑏] is a bilinear form and can be
represented using an 𝑛× 𝑛 matrix �̂�(𝐹 ).

Definition 6 (High-Degree Indicator Matrix (HDIM)). Let 𝐹 be an 𝑛-
bit permutation and let 𝐵(ℒ) be the Boolean matrix representing the congruence
modulo 4 of its LAT (as described above). We define the High-Degree Indicator
Matrix �̂�(𝐹 ) of 𝐹 to be the 𝑛× 𝑛 matrix such that

�̂�(𝐹 )[𝑖, 𝑗] =
⨁︁
𝑥∈F𝑛

2

(︀
𝑒𝑖 · 𝐹 (𝑥)

)︀(︀
𝑒𝑗 · 𝑥

)︀
,

where 𝑒𝑘 is an all zero 𝑛-bit vector with a single 1 at position 𝑘. This matrix is
such that

𝐵(ℒ)[𝑎, 𝑏] = 𝑏𝑡 × �̂�(𝐹 ) × 𝑎.

Lemma 2. The coefficients of �̂�(𝐹 ) indicate the presence of the highest degree
terms in the coordinates of 𝐹 . More precisely, �̂�(𝐹 )[𝑖, 𝑗] = 1 if and only if the
ANF of 𝐹𝑖 contains the monomial

∏︀
𝑘 ̸=𝑗 𝑥𝑘 (which has degree 𝑛− 1).

Proof. Let 𝐹 be an 𝑛-bit permutation. As �̂�(𝐹 )[𝑖, 𝑗] is the sum over of space
of size 2𝑛 of the Boolean function 𝑥 ↦→

(︀
𝑒𝑖 · 𝐹 (𝑥)

)︀(︀
𝑒𝑗 · 𝑥

)︀
= 𝐹𝑖(𝑥) · 𝑥𝑗 , it is

equal to 0 unless this Boolean function has algebraic degree 𝑛. As 𝐹 has degree
𝑛− 1, this occurs if and only if 𝐹𝑖 contains

∏︀
𝑘 ̸=𝑗 𝑥𝑘. Indeed, in this case (and in

this case only), the ANF of 𝑥𝑗 · 𝐹𝑖(𝑥) contains the only possible degree 𝑛 term∏︀𝑛−1
𝑘=0 𝑥𝑘. ⊓⊔

This lemma is the reason behind the name “high-degree indicator matrix”.
Indeed, the HDIM coefficients simply state whether each of the 𝑛 possible 𝑛− 1
degree terms appear in each coordinate of 𝐹 or not.

We finally note that the HDIM of a function can be computed much more
efficiently than the LAT or the difference distribution table. Indeed, we can com-
pute a column of the HDIM by summing the function over a cube of dimension
𝑛− 1 (see Section 6.1). The complexity for all 𝑛 columns is therefore 𝑛2𝑛−1.
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3.2 Some Properties of the High-Degree Indicator Matrix

Let us investigate the effect of some simple transformations on the HDIM. First,
we point out that due to the fact that the LAT of the inverse of a permutation
𝐹 is the transpose of the LAT of 𝐹 , the HDIM of 𝐹−1 is the transpose of the
HDIM of 𝐹 .

We now show that the HDIM of 𝜂 ∘ 𝑓 ∘ 𝜇 can easily be deduced from that of
𝑓 when 𝜂 and 𝜇 are 𝑛-bit linear permutations. The corresponding theorem will
be used in Section 4.2 to attack Feistel Networks whitened using affine layers.

Theorem 1. Let 𝜇, 𝜂 be linear 𝑛-bit mappings, 𝐹 be an 𝑛-bit permutation and
let 𝐺 = 𝜂 ∘ 𝐹 ∘ 𝜇. Furthermore, let �̂�(𝐹 ) be the HDIM of 𝑓 and �̂�(𝐺) be that
of 𝐺. Then it holds that

�̂�(𝐺) = 𝜂 × �̂�(𝐹 ) × (𝜇𝑡)−1.

Proof. We prove this result in two steps. First, the fact that �̂�(𝐹 ∘𝜇) = �̂�(𝐹 )×
(𝜇−1)𝑡 can be derived as follows:

�̂�(𝐹 ∘ 𝜇)[𝑖, 𝑗] =
⨁︁
𝑥∈F𝑛

2

(︀
𝑒𝑖 · 𝐹 (𝜇(𝑥))

)︀(︀
𝑒𝑗 · 𝑥

)︀
=

⨁︁
𝑦∈F𝑛

2

(︀
𝑒𝑖 · 𝐹 (𝑦)

)︀(︀
𝑒𝑗 · 𝜇−1(𝑦)

)︀
=

⨁︁
𝑦∈F𝑛

2

(︀
𝑒𝑖 · 𝐹 (𝑦)

)︀(︀
(𝜇𝑡)−1(𝑒𝑗) · 𝑦

)︀
.

We then note that �̂�(𝜂 ∘ 𝐹 ) = �̂�(𝐹−1 ∘ 𝜂−1)𝑡 which, using what we just found,
is equal to (�̂�(𝐹−1)× 𝜂𝑡)𝑡 = (�̂�(𝐹 )𝑡 × 𝜂𝑡)𝑡, so that �̂�(𝜂 ∘𝐹 ) = 𝜂× �̂�(𝐹 ). This
concludes the proof. ⊓⊔

The ANF and the LAT of an 𝑛-bit permutation are connected in the sense
that it is possible to determine the congruence modulo 4 of the LAT ℒ of an 𝑛-
bit permutation 𝐹 given parts of its ANF. Indeed, as we describe in this section,
this congruence only depends on the terms of degree 𝑛 − 1 in the ANF of the
coordinates of 𝐹 .

4 The High-Degree Indicator Matrix of Feistel Networks

In what follows, we denote F𝑟
𝑑 an 𝑟-round FN with bijective Feistel function of

algebraic degree at most 𝑑. The structure of a sample is given Figure 2. It is
possible to use the HDIM to analyse such generic structures.

4.1 Artifacts in the HDIM of Feistel Networks

The HDIM of a Feistel Network may yield interesting patterns depending on the
degree of its Feistel functions, whether they are bijections or not and its number
of rounds. These are formalized by Theorem 2 and its corollary (Corollary 1).
These results link the maximum degree 𝑑 of the Feistel functions, the number of
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𝑓0⊕

𝑓1⊕

𝑓2⊕

Fig. 2: A sample F3
𝑑 structure, where deg(𝑓𝑖) ≤ 𝑑.

rounds 𝑟 and the presence or not of some patterns using the function 𝜃 : Z2 → Z
defined by

𝜃(𝑑, 𝑟) = 𝑑⌊𝑟/2⌋−1 + 𝑑⌈𝑟/2⌉−1,

where ⌊2𝑘⌋ = ⌊2𝑘 + 1⌋ = 2𝑘 and ⌈2𝑘⌉ = ⌈2𝑘 − 1⌉ = 2𝑘.

Theorem 2. Let 𝐹 be a 2𝑛-bit F𝑟
𝑑. Then the HDIM of 𝐹 is such that �̂�(𝐹 )[𝑖, 𝑗] =

0 if 𝑖 < 𝑛 or 𝑗 < 𝑛 under the following conditions:

– if the Feistel functions are bijections and 𝜃(𝑑, 𝑟) < 2𝑛, or
– if the Feistel functions are not bijections and 𝜃(𝑑, 𝑟 + 1) < 2𝑛.

The general idea of the proof is to express the sum corresponding to coeffi-
cient �̂�(𝐹 )[𝑖, 𝑗] using well-chosen variables (𝛼, 𝛽) located in the middle of the
encryption. The value of 𝐹 (𝑥) is then a function of degree 𝑑⌈𝑟/2⌉−1 of (𝛼, 𝛽) and
that of 𝑥 is a function of degree 𝑑⌊𝑟/2⌋−1. The coefficients can thus be written as

�̂�(𝐹 )[𝑖, 𝑗] =
⨁︁

(𝛼,𝛽)∈(F𝑛
2 )

2

(︀
𝑒𝑖 · 𝐹 (𝑥(𝛼, 𝛽))

)︀(︀
𝑒𝑗 · 𝑥(𝛼, 𝛽)

)︀
and the result is equal to 0 if 𝜃(𝑑, 𝑟) = 𝑑⌊𝑟/2⌋−1 + 𝑑⌊𝑟/2⌋−1 < 2𝑛. If the Feistel
functions are not bijective then a “trick” used to slightly decrease the degree in
(𝛼, 𝛽) of the output cannot be used, hence the small discrepancy in this case.

We will now give a complete proof of Theorem 2. This proof requires the fol-
lowing remark which is derived simply by tracking the evolution of the algebraic
degree of each branch of the FN.

Remark 3 (FN algebraic degree). Let 𝐹 : 𝑥 ↦→ 𝐹ℓ(𝑥)||𝐹𝑟(𝑥) be a 2𝑛-bit permu-
tation with structure F𝑟

𝑑 and let 𝐺 : 𝑥 ↦→ 𝐺ℓ(𝑥)||𝐺𝑟(𝑥) be a 2𝑛-bit permutation
such that deg(𝐺𝑟) = 𝑑𝐺 and deg(𝐺ℓ) ≤ 𝑑 × 𝑑𝐺. Then the degree of the left
and right words of 𝐹 ∘𝐺 are bounded as follows: deg(𝐹ℓ ∘𝐺) ≤ 𝑑𝑟+1 × 𝑑𝐺 and
deg(𝐹𝑟 ∘𝐺) ≤ 𝑑𝑟 × 𝑑𝐺.

Proof (Theorem 2). First of all, note that the inverse of a Feistel Network is
also a Feistel Network. Thus, it is sufficient to prove that �̂�(𝐹 )[𝑖, 𝑗] = 0 for
𝑖 < 𝑛. Indeed, if it is the case for any F𝑟

𝑑, then it is also the case for 𝐹−1 so that

�̂�(𝐹−1)[𝑗, 𝑖] = 0 for 𝑗 < 𝑛. As �̂�(𝐹−1)[𝑗, 𝑖] = �̂�(𝐹 )[𝑖, 𝑗], it is also sufficient that
𝑗 < 𝑛. Let us thus prove that �̂�(𝐹 )[𝑖, 𝑗] = 0 for 𝑖 < 𝑛.
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Recall that the coefficient �̂�(𝐹 )[𝑖, 𝑗] is equal to
⨁︀

𝑥∈F2𝑛
2

(︀
𝑒𝑖 ·𝐹 (𝑥)

)︀(︀
𝑒𝑗 ·𝑥

)︀
. Our

proof relies on expressing this sum using another set of variables and showing
that the Boolean functions using these variables has an algebraic degree below
2𝑛, so that it always sums to 0.

Let 𝐹 be a 2𝑛-bit F𝑟
𝑑 built using Feistel functions 𝑓0, ..., 𝑓𝑟−1

We denote 𝛾 the input of 𝑓⌊𝑟/2⌋, 𝛼 the other input of round ⌊𝑟/2⌋ and 𝛽 =
𝛼⊕ 𝑓⌊𝑟/2⌋(𝛾) the output of round ⌊𝑟/2⌋ which is not equal to 𝛾 (see Figure 3).

𝑓⌊𝑟/2⌋−1⊕

𝑓⌊𝑟/2⌋⊕

𝑓⌊𝑟/2⌋+1⊕

𝛼

𝛽
𝛾

Fig. 3: The variables 𝛼, 𝛽 and 𝛾.

Let us denote
(︀
𝑥ℓ(𝛼, 𝛽), 𝑥𝑟(𝛼, 𝛽)

)︀
the left and right side of the input of 𝐹 such

that the input of round ⌊𝑟/2⌋ is (𝛾, 𝛼) and
(︀
𝑦ℓ(𝛼, 𝛽), 𝑦𝑟(𝛼, 𝛽)

)︀
the corresponding

output. The coefficients of the HDIM of 𝐹 for 𝑖 < 𝑛 can thus be expressed as⨁︁
𝛼||𝛽∈F2𝑛

2

(︀
𝑒𝑖 · 𝑦𝑟(𝛼, 𝛽)

)︀(︀
𝑒𝑗 · 𝑥ℓ(𝛼, 𝛽) ⊕ 𝑒𝑗 · 𝑥𝑟(𝛼, 𝛽)

)︀
. (1)

It is therefore sufficient to bound the degree in (𝛼, 𝛽) of this expression is below
𝑛 to prove the theorem, which we will achieve by looking separately at the degree
of 𝑦𝑟 and that of 𝑥ℓ||𝑥𝑟.

Our starting point is different depending on whether the Feistel functions
are bijective or not. If they are not bijections, then we set 𝛽 = 𝛼 ⊕ 𝑓1(𝛾),
sum over (𝛼||𝛾) and look at functions 𝑥′

ℓ, 𝑥
′
𝑟, 𝑦

′
ℓ and 𝑦′𝑟 taking as input 𝛼 and 𝛾

instead. We define 𝐵𝑏(𝑟) = deg(𝑦𝑟) + deg(𝑥ℓ||𝑥𝑟) (bijective case) and 𝐵𝑐(𝑟) =
deg(𝑦′𝑟) + deg(𝑥′

ℓ||𝑥′
𝑟) (collisions are allowed).

For 𝑟 = 3, we have:{︃
𝑥ℓ(𝛼, 𝛽) = 𝑓0(𝛼) ⊕ 𝛾, 𝑥𝑟(𝛼, 𝛽) = 𝛼

𝑦ℓ(𝛼, 𝛽) = 𝑓1(𝛽) ⊕ 𝛾, 𝑦𝑟(𝛼, 𝛽) = 𝛽.

If the functions are bijections, we set 𝛾 = 𝑓−1
1 (𝛼 ⊕ 𝛽) so that the degrees of

𝑥ℓ, 𝑥𝑟, 𝑦ℓ, 𝑦𝑟 are upper bounded respectively by 𝑑, 1, 𝑑, 1. If 𝑟 = 2𝑘 + 1 is odd,
we add 𝑘 − 1 Feistel rounds before and after 𝑥ℓ||𝑥𝑟 and 𝑦ℓ||𝑦𝑟. In this case,
Remark 3 implies that the degrees become 𝑑𝑘, 𝑑𝑘−1, 𝑑𝑘, 𝑑𝑘−1 so that 𝐵𝑏(2𝑘+1) ≤
𝑑𝑘 + 𝑑𝑘−1 = 𝜃(𝑑, 2𝑘 + 1). If 𝑟 = 2𝑘, we add 𝑘− 2 rounds at the top and 𝑘− 1 at
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the bottom which means that the degrees become 𝑑𝑘−1, 𝑑𝑘−2, 𝑑𝑘, 𝑑𝑘−1, so that
𝐵𝑏(2𝑘) ≤ 𝑑𝑘−1 + 𝑑𝑘−1 = 𝜃(𝑑, 2𝑘).

If they are not bijections, the degrees of 𝑥′
ℓ, 𝑥

′
𝑟, 𝑦

′
ℓ, 𝑦

′
𝑟 are upper bounded

respectively by 𝑑, 1, 𝑑2, 𝑑. The same reasoning as above applies, so that if 𝑟 =
2𝑘 + 1 then we add 𝑘 − 1 rounds above and below and the degrees become
𝑑𝑘, 𝑑𝑘−1, 𝑑𝑘+1, 𝑑𝑘. We deduce that 𝐵𝑐(2𝑘+1) ≤ 𝑑𝑘 +𝑑𝑘 = 𝜃(𝑑, 2𝑘+2). Similarly,
if 𝑟 = 2𝑘 then we add 𝑘 − 1 rounds at the top and 𝑘 − 2 at the bottom which
implies that the degrees become 𝑑𝑘−1, 𝑑𝑘−2, 𝑑𝑘+1, 𝑑𝑘. In this case, we deduce
that 𝐵𝑐(2𝑘) ≤ 𝑑𝑘−1 + 𝑑𝑘 = 𝜃(𝑑, 2𝑘 + 1). ⊓⊔

Corollary 1. Let 𝐹 be a 2𝑛-bit F𝑟
𝑑. The HDIM of 𝐹 is such that �̂�(𝐹 )[𝑖, 𝑗] = 0

if 𝑖 < 𝑛 and 𝑗 < 𝑛 under the following conditions:

– if the Feistel functions are bijections and 𝜃(𝑑, 𝑟 − 1) < 2𝑛, or
– if the Feistel functions are not bijections and 𝜃(𝑑, 𝑟) < 2𝑛.

Proof. Let 𝑟 and 𝑑 be such that F𝑟−1
𝑑 fits the hypothesis of Theorem 2. The

right word of the output of a F𝑟
𝑑 structure is the left word output by a F𝑟−1

𝑑

structure. As each line of the HDIM corresponds to one output bit, the top 𝑛
rows of the HDIM of the 𝑟-round FN are equal to the bottom 𝑛 rows of the same
permutation reduced to (𝑟 − 1)-round. Because of Theorem 2, this bottom half
is such that the first 𝑛 columns are all 0. Thus, the first 𝑛 columns of the first
𝑛 rows of the HDIM of a F𝑟

𝑑 are all equal to 0. ⊓⊔

To illustrate these theorems, we give the HDIM of the 4- and 5-round Feistel
with 3-bit bijective Feistel functions picked uniformly at random whose LAT
modulo 4 were given in Figures 1a and 1b. The Feistel functions must have an
algebraic degree at most equal to 2. Since 𝜃(2, 4) = 21 +21 = 4 < 6, these HDIM
must exhibit the patterns described in the theorems above. It is the case, as we
can see below. The zeroes caused by Theorem 2 and Corrolary 1 are represented
in grey:

�̂�(F4) =

⎡⎢⎢⎢⎢⎢⎣
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 1
0 0 0 1 0 1
0 0 0 1 0 1

⎤⎥⎥⎥⎥⎥⎦ , �̂�(F5) =

⎡⎢⎢⎢⎢⎢⎣
0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 0 1 1
0 1 1 0 1 0
1 0 0 0 0 0
0 1 1 1 1 1

⎤⎥⎥⎥⎥⎥⎦ . (2)

Even though a F𝑟
𝑑 structure has an algebraic degree of 2𝑛− 1 in the conditions

of Theorem 2, the way in which this high degree is achieved is very structured:
only half of the output bits actually have a maximum degree and the monomials
of degree 2𝑛 − 1 can not contain the product of 𝑛 − 1 bits from the right side
of the input. Thus, a simple analysis of the algebraic degree can be made more
sophisticated by also investigating the possible structure of the monomials of
highest degree.

These patterns lead to the existence of distinguishers as long as the conditions
necessary for Corollary 1 are satisfied. Table 3 shows the value of the number of
rounds for which the conditions of Corollary 1 are satisfied for different values
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of 𝑑, 𝑟 and 𝑛 in both the 1-to-1 case and the case where collisions in the Feistel
functions are allowed. If real ciphers correspond to these parameters, we specify
them. Note that the rotation applied to one of the branches in the round function
of LBlock [14] does not change anything. The key-dependent linear FL layers in
MISTY1 [15] do not protect from our distinguisher as well and may be included
from any side for free.

(𝑑, 2𝑛) Feistel functions 𝑟max(𝑑, 𝑛) Instance

(2, 32)
1-to-1 10 —

collisions 9 SIMON-32 [16]

(5, 64)
1-to-1 7 —

collisions 6 DES [17]

(31, 64)
1-to-1 5 MISTY1/KASUMI [15]

collisions 4 —

(𝑛− 1, 2𝑛)
1-to-1 5 —

collisions 4 —

Table 3: If 𝑟 = 𝑟max(𝑑, 2𝑛) then the 2𝑛-bit permutation F𝑟
𝑑 exhibits an artifact

of size 𝑛2 in its HDIM.

4.2 Bypassing Affine Whitening

In the context of component reverse-engineering/white-box cryptography, it may
not be sufficient to be able to attack generic Feistel structure. Indeed, simply
whitening a generic structure with secret affine layers can prevent many attacks
from succeeding at small cost for the designer. For example, applying affine layers
before and after a 5-round Feistel Network would prevent the yoyo-game used
in [5] to be exploitable. Similarly, the recent attacks against ASASA [3,4] are
much more sophisticated than the attack against SASAS proposed by Biryukov
et al. in the first place [18]. We also note that the secret structure of the S-Box
of the last Russian standard primitives recently recovered was indeed whitened
with seemingly random linear layers [8].

As a consequence, we study the generic construction denoted AF𝑟
𝑑A consisting

in a F𝑟
𝑑 construction with secret Feistel functions preceded and followed by the

application of independent and secret linear layers5. This structure has already
been studied in [8] but our attacks are significantly more efficient. Note also that
one of the S-Box of ZUC [19] has this structure: it is a 3-round Feistel Network
composed with a bit rotation. Let us show how the HDIM and its artifacts we
identified in the previous section can be used to attack permutations with AF𝑟

𝑑A
structures.

5 We note that adding constants to make the layers affine is equivalent to replacing
the Feistel functions by other ones with identical properties.
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𝑓0

𝑓3

⊕

⊕

𝜇1,1 𝜇0,1 𝜇1,0 𝜇0,0

⊕ ⊕

𝜂1,1 𝜂0,1 𝜂1,0 𝜂0,0

⊕ ⊕

𝜇
𝐹

𝜂

(a) 𝐺 = 𝜂 ∘ 𝐹 ∘ 𝜇.

𝑓0

𝑓3

⊕

⊕

𝑎

𝑏 𝑐 𝑑

⊕

⊕

𝑎′

𝑏′ 𝑐′ 𝑑′

⊕
⊕

𝜇
𝐹 𝐹
′

𝜂

(b) 𝐺 (alt. representation).

𝑓 ′
0

𝑓 ′
3

⊕

⊕

𝑇

𝐵

(c) 𝐹 ′ (alt. representation).

Fig. 4: The target of our attack, its result and its alternative representation. In
Figure 4c, 𝑓 ′

𝑖 is affine equivalent to 𝑓𝑖.

Our attack works for a subset of all possible linear layers. We define 𝐺 =
𝜂 ∘ 𝐹 ∘ 𝜇 where 𝐹 has a F𝑟

𝑑 structure satifying the conditions of Theorem 2 and
𝜇 and 𝜂 are linear layers. The layer applied first must have a decomposition as
follows:

𝜇 =

[︂
𝜇0,0 𝜇0,1

𝜇1,0 𝜇1,1

]︂
=

[︂
𝑑 0
𝑐 𝑏

]︂
×

[︂
𝐼 𝑎
0 𝐼

]︂
=

[︂
𝑑 𝑑× 𝑎
𝑐 𝑏 + 𝑐× 𝑎

]︂
,

and the layer applied last must have a similar one:

𝜂 =

[︂
𝜂0,0 𝜂0,1
𝜂1,0 𝜂1,1

]︂
=

[︂
𝐼 𝑎′

0 𝐼

]︂
×
[︂
𝑑′ 0
𝑐′ 𝑏′

]︂
=

[︂
𝑑′ + 𝑎′ × 𝑐′ 𝑎′ × 𝑏′

𝑐′ 𝑏′

]︂
.

It is sufficient for such a decomposition of the first layer to exist that 𝜇0,0 is
invertible. Indeed, we can then simply set 𝑑 = 𝜇0,0, 𝑐 = 𝜇1,0, 𝑎 = 𝑑−1 × 𝜇0,1 and
𝑏 = 𝜇1,1 − 𝑐× 𝑎. Note that 𝑏 has to be invertible since 𝜇 is invertible. Similarly,
it is sufficient that 𝜂1,1 is invertible to decompose the final layer. We define 𝐹 ′

using these decompositions so that 𝐺 is equal to:

𝐺 =

[︂
𝐼 𝑎′

0 𝐼

]︂
∘
[︂
𝑑′ 0
𝑐′ 𝑏′

]︂
∘ 𝐹 ∘

[︂
𝑑 0
𝑐 𝑏

]︂
∘
[︂
𝐼 𝑎
0 𝐼

]︂
=

[︂
𝐼 𝑎′

0 𝐼

]︂
∘ 𝐹 ′ ∘

[︂
𝐼 𝑎
0 𝐼

]︂
.

A graphical representation of the relation between 𝐹 , 𝐹 ′ and 𝐺 is provided in
Figures 4a and 4b. As 𝐹 satisfies the condition of Theorem 2, its HDIM is such
that �̂�(𝐹 )[𝑖, 𝑗] = 0 if 𝑖 < 𝑛 or 𝑗 < 𝑛. Applying Theorem 1 gives us that the
HDIM of 𝐹 ′ is equal to

�̂�(𝐹 ′) =

[︂
𝑑′ 0
𝑐′ 𝑏′

]︂
× �̂�(𝐹 ) ×

[︂
𝑑 𝑐
0 𝑏

]︂−1

=

[︂
0 0
0 ℎ′

]︂
with ℎ′ = 𝑏′ × ℎ× 𝑏−1,

ℎ being the bottom-right part of �̂�(𝐹 ). Like in �̂�(𝐹 ), it holds that �̂�(𝐹 ′)[𝑖, 𝑗] =
0 if 𝑖 < 𝑛 or 𝑗 < 𝑛. Another way to see why this holds is shown in Figure 4c.
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Indeed, 𝐹 ′ can be written as a F𝑟
𝑑 structure, like 𝐹 , where 𝑛-bit linear permu-

tations are applied only on two branches and where the Feistel functions 𝑓 ′
𝑖 are

obtained from compositions of 𝑏, 𝑏′, 𝑑, 𝑑′ and 𝑓𝑖, as well as the addition of 𝑐 and
𝑐′ for the first and last rounds. We deduce that if 𝐺 indeed has a AF𝑟

𝑑A struc-
ture satisfying the conditions for Theorem 2, then the following equation with
unknowns the 𝑛× 𝑛 binary matrices 𝑎 and 𝑎′ must have at least one solution:[︂

𝐼 𝑎′

0 𝐼

]︂
× �̂�(𝐺) ×

[︂
𝐼 0
𝑎 𝐼

]︂
=

[︂
0 0
0 ℎ1,1

]︂
,

where ℎ1,1 is the bottom right corner of �̂�(𝐺). This system has 2𝑛2 unknowns
and 3𝑛2 equations, meaning that it is unlikely to have solutions if 𝐺 is a random
permutation. However, if it does have a solution then we deduce both that 𝐺 has
an AF𝑟

𝑑A structure and the expression of parts of the linear layers. We summarize
these results in the following attack.

Attack 1 (Partial Recovery Against AF𝑟
𝑑A) Let 𝐺 be a 2𝑛-bit permutation.

It is necessary for 𝐺 to be in AF𝑟
𝑑A for some (𝑟, 𝑑) satisfying Theorem 2 that the

equation [︂
𝐼 𝑎′

0 𝐼

]︂
× �̂�(𝐺) ×

[︂
𝐼 0
𝑎 𝐼

]︂
=

[︂
0 0
0 ℎ1,1

]︂
,

where ℎ is an unknown 𝑛 × 𝑛 matrix, has at least one solution. The unknowns
are the coefficients of the 𝑛×𝑛 matrices 𝑎 and 𝑎′, so that 2𝑛2 Boolean variables
must satisfy 3𝑛2 equations corresponding to the zeroes in the right hand side.

This distinguisher requires the full code-book and as much time as is needed to
compute the HDIM and solve a system of equations. Since the system is small,
the bottle-neck is the computation of the HDIM which can be done in time
O(𝑛22𝑛) where 𝑛 is the branch size.

We can use the exact same reasoning to attack one more round if the decom-
position of 𝜂 and 𝜇 involve the same “linear Feistel function” 𝑎. This happens in
particular if 𝜂 = 𝜇−1. In this case, we can use the distinguisher obtained from
the following attack.

Attack 2 (Partial Recovery Against A−1F𝑑
𝑟+1A) Let 𝐺 be a 2𝑛-bit permu-

tation. In order for 𝐺 to be in AF𝑟
𝑑A for some (𝑟, 𝑑) satisfying Corollary 1 in

such a way that the linear layers are the inverse of one another, it is necessary
that the equation [︂

𝐼 𝑎
0 𝐼

]︂
× �̂�(𝐺) ×

[︂
𝐼 0
𝑎 𝐼

]︂
=

[︂
0 ℎ0,1

ℎ1,0 ℎ1,1

]︂
,

where ℎ0,1, ℎ1,0 and ℎ1,1 are unknown 𝑛× 𝑛 matrices, has at least one solution.
The unknowns are the coefficients of the 𝑛 × 𝑛 matrices 𝑎, so that 𝑛2 Boolean
variables must satisfy 𝑛2 equations corresponding to the zero in the right hand
side.
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Note that if there is a single whitening affine layer applied at some side, we
have a similar system with 𝑛2 unknowns. If we consider one more round, we will
have 𝑛2 equations as well. Therefore we can attack F𝑟

𝑑A, where 𝑟 is the maximum
number of rounds satisfying Corollary 1. Another view on this attack is given in
Section 5.3.

5 The Impossible Monomials Attack

In the previous sections we used absent terms of highest degree to recover whiten-
ing linear layers from Feistel Networks. In this section we generalize this method
to terms of lower degree and, as a result, we present an attack recovering a secret
round function from a 5-round Feistel Network with bijections. Furthermore, we
generalize this attack to more rounds if the degrees of the round functions are
small.

5.1 Impossible monomials in Feistel Networks

Let 𝐹 be a 2𝑛-bit F4
𝑛−1 and let 𝐹𝑖 be the 𝑖th output bit of 𝐹 (𝐹0 is the leftmost

bit of 𝐹 ). We will denote by 𝐿 = {0, . . . , 𝑛 − 1} and 𝑅 = {𝑛, . . . , 2𝑛 − 1} the
indices from the left and right halves respectively, and 𝐹𝐿 and 𝐹𝑅 the truncations
of the function 𝐹 to the left and right half respectively. Consider the ANF of 𝐹𝑖:

𝐹𝑖(𝑥𝑙||𝑥𝑟) =
⨁︁

𝑢𝑙,𝑢𝑟∈F𝑛
2

𝑎𝐹𝑖

𝑢𝑙||𝑢𝑟
𝑥𝑢𝑙

𝑙 𝑥𝑢𝑟
𝑟 , (3)

where 𝑥𝑙 and 𝑥𝑟 are vectors of input variables from the left and right halves
respectively. We will now show that some monomials are impossible, that is,
𝑎𝐹𝑖

𝑢𝑙||𝑢𝑟
= 0 for some 𝑢𝑙, 𝑢𝑟 independently of the choice of the Feistel functions.

To prove it, we will need the following lemmas.

Lemma 3. Let 𝑎, 𝑏 ∈ F𝑛
2 be some vectors of variables and let 𝑓 : F𝑛

2 → F2 be a
Boolean function of degree at most 𝑑. Then if some term in the ANF of 𝑓(𝑎⊕ 𝑏)
has degree 𝑑𝑎 on variables from 𝑎, then it has degree at most 𝑑− 𝑑𝑎 on variables
from 𝑏. In particular, there are no terms of degree 𝑑 on 𝑎 and non-zero degree
on 𝑏.

Proof. Let 𝑠(𝑎, 𝑏) = 𝑎 ⊕ 𝑏. Then deg 𝑠 = 1 and deg (𝑓 ∘ 𝑠) ≤ 𝑑. Hence a term
containing 𝑑𝑎 variables from 𝑎 contains at most 𝑑− 𝑑𝑎 variables from 𝑏.

Lemma 4. Let 𝜋 : F𝑛
2 → F𝑛

2 be a permutation and let 𝑓 : F𝑛
2 → F2 be some

Boolean function of degree at most 𝑛− 1. Then deg (𝑓 ∘ 𝜋) ≤ 𝑛− 1.

Proof. By the Möbius transform, the term of degree 𝑛 is present in the ANF of
𝑓 ∘𝜋 if and only if the sum of 𝑓 ∘𝜋 over F𝑛

2 is equal to 1. Since 𝜋 is a permutation,
we have that

∑︀
𝑥∈F𝑛

2
𝑓(𝜋(𝑥)) =

∑︀
𝑥∈F𝑛

2
𝑓(𝑥). But this last sum is equal to zero

because deg 𝑓 ≤ 𝑛 − 1. Therefore, there is no term of degree 𝑛 in the ANF of
𝑓 ∘ 𝜋 and we conclude that deg (𝑓 ∘ 𝜋) ≤ 𝑛− 1.
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We now formally describe classes of impossible monomials using the following
theorem.

Theorem 3. Let 𝐹 and its ANF be as defined before. Then 𝑎𝐹𝑖

𝑢𝑙||𝑢𝑟
= 0 if one

of the following holds:

1. 𝑖 ∈ 𝑅 and ℎ𝑤(𝑢𝑙) = 𝑛;
2. 𝑖 ∈ 𝑅 and ℎ𝑤(𝑢𝑙) = 𝑛− 1, ℎ𝑤(𝑢𝑟) = 𝑛− 1;
3. 𝑖 ∈ 𝑅 and ℎ𝑤(𝑢𝑙) = 𝑛− 1, ℎ𝑤(𝑢𝑟) = 𝑛;
4. 𝑖 ∈ 𝐿 and ℎ𝑤(𝑢𝑙) = 𝑛, ℎ𝑤(𝑢𝑟) = 𝑛− 1.

Proof. Points 3-4 are part of Theorem 2 and are presented here for the sake of
completeness. It is left to prove points 1 and 2.

1. Consider the 4-round integral characteristic from Figure 5. Let 𝐶 be any
cube which contains the whole left part. From the integral characteristic
it follows that the sum of 𝐹 over the cube 𝐶 has zero on the right side.
Therefore by the Möbius transform the corresponding ANF coefficients are
zero.

𝑓0⊕

𝑓1⊕

𝑓2⊕

𝑓3⊕

Fig. 5: The 4-round integral characteristic: words taking all values are represented
in bold red and balanced words are represented in dashed blue.

2. Let 𝑓0, 𝑓1, 𝑓2, 𝑓3 : F𝑛
2 → F𝑛

2 be the round functions of 𝐹 . The equation for
the right half of the output is then given by:

𝐹𝑅(𝑙||𝑟) = 𝑙 ⊕ 𝑓0(𝑟) ⊕ 𝑓2(𝑟 ⊕ 𝑓1(𝑙 ⊕ 𝑓0(𝑟))). (4)

Clearly, the first two terms do not contain any monomial of degree 𝑛−1 on 𝑙
and 𝑛− 1 on 𝑟. Consider the expression 𝑓2(𝑟⊕ 𝑓1(𝑙⊕ 𝑓0(𝑟))). Assume that a
term with degree 𝑛−1 on both 𝑙 and 𝑟 is present in the ANF of the expression.
Then the term is present in the expansion of some product of at most 𝑛− 1
bits, where the bits are output bits of the expression (𝑟)⊕𝑓1(𝑙⊕𝑓0(𝑟)), i.e. in
the term each of the 𝑛−1 factors is either a bit from (𝑟) or from 𝑓1(𝑙⊕𝑓0(𝑟)).
Note that the term may not be generated by choosing bits only from (𝑟),
because in that case there will be no variables from 𝑙 in it. Therefore there
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are at most 𝑛− 2 bits taken from the outer (𝑟); 𝑛− 1 variable from 𝑙 and at
least one variable 𝑟𝑖 are taken from 𝑓1(𝑙⊕ 𝑓0(𝑟)). It means that there exists
a monomial function 𝜋 such that 𝜋 ∘ 𝑓1(𝑙 ⊕ 𝑓0(𝑟)) contains term of degree
𝑛−1 on 𝑙 and degree at least 1 on 𝑟. By Lemma 4, 𝜋 ∘ 𝑓1 has degree at most
𝑛− 1 and by Lemma 3 there can not be such term in 𝜋 ∘ 𝑓1(𝑙 ⊕ 𝑓0(𝑟)).

5.2 An Attack on 5-round Feistel Network

In this section we use the impossible monomials to attack 5-round Feistel Net-
work built from permutations. The key idea is to observe the presence of some
4-round impossible monomials in the 5-round network and extract some infor-
mation about the last round function. Consider some monomial 𝑥𝑢 which is
impossible at the right side of a 4-round Feistel Network. We now add the 5th
round. If we observe 𝑥𝑢 on the left side, then we know that this monomial has
come from the last round function. Otherwise, we know that it has not come
from the last round function and it gives us some information as well. Using
these observations we build a system of linear equations where the unknowns
are the ANF coefficients of the coordinates of the last round function. By solving
the system we recover the ANF coefficients and hence the function itself. Note
that in order to compute the ANF, we have to obtain the full codebook.

Let 𝐹 5 be a 2𝑛-bit F5
𝑑, 𝐹 4 be its first 4 rounds and 𝑓 be the last round

function. Let 𝑎𝑔𝑢 be the coefficient of term 𝑥𝑢 in the ANF of the Boolean function
𝑔. Consider the equation of the 𝑖th bit of 𝐹 5 for 𝑖 ∈ 𝐿:

𝐹 5
𝑖 (𝑥) = 𝐹 4

𝑖+𝑛(𝑥) ⊕ 𝑓𝑖(𝐹
5
𝑅(𝑥)) =

⨁︁
𝑢∈F2𝑛

2

𝑎
𝐹 4

𝑖+𝑛
𝑢 𝑥𝑢 ⊕

⨁︁
𝑢∈F2𝑛

2

𝑎𝑓𝑖𝑢 (𝐹 5
𝑅(𝑥))𝑢.

𝑎𝑢 = 0

𝑎𝑢 = 1/0 𝑎𝑢 = 1/0

𝐹5 𝐹2 𝐹1 𝐹0

𝑓0

𝑓1

𝑓2

Fig. 6: Impossible monomials in the last round of a 5-round FN with 3-bit
branches. The wire with 4-round impossible monomials is in dashed blue, the
path of the observed monomials is highlighted with bold red. 𝑎𝑢 is the ANF
coefficient of some 4-round impossible monomial.
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The ANF of 𝐹 5
𝑖 with 𝑖 ∈ 𝐿 contains some monomial from the first or the

second group from Theorem 3 if and only if the ANF of 𝑓𝑖 ∘ 𝐹 5
𝑅 does. Since

we can compute the ANF of 𝐹 5
𝑅, we can check which possible terms from the

ANF of 𝑓𝑖 generate the impossible monomial. Then from the presence of the
impossible monomial in the ANF of 𝐹 5

𝑖+𝑛 we deduce if the number of such terms
in the ANF of 𝑓𝑖 is odd or even. This gives us a linear equation over F2 where
the unknowns are the ANF coefficients of 𝑓𝑖. For an illustration see Figure 6.

Note that the 4-round impossible monomials which are still impossible in a
5-round Feistel Network do not leak any information about 𝑓 . For example, since
Feistel Network is a bijection, the monomial of degree 2𝑛 is impossible for any
number of rounds but it can not be used in the attack. However it is the only
such monomial. Therefore we can use 2𝑛−1 impossible monomials from the first
group of Theorem 3 and 𝑛2 ones from the second group. Each such monomial
yields an equation per each bit of 𝑓 . There are 2𝑛 unknown coefficients in the
ANF of 𝑓𝑖 so the number of equations will be enough to recover 𝑓𝑖 for all 𝑖 and
hence 𝑓 with high probability. Note that we can recover 𝑓 only up to xor with a
constant because the constant may propagate through the Feistel Network and
merge with other round functions (see the introduction of [5] for a more detailed
explanation of this phenomenon).

The complexity of the attack is 𝑂(23𝑛) and is dominated by generating the
equation matrix, which is the same for all output bits (the only difference is the
target vector). For each of the 2𝑛 possible terms in the ANF of 𝑓𝑖 we compute
the ANF of the term applied after 𝐹 in time 𝑂(22𝑛) and then we check if this
term generates the impossible monomials. The next step is to solve the systems.
Since the equation matrix is the same for all output bits, we can do some pre-
computation (for example the LU-decomposition) once and solve all 𝑛 systems
of equations very fast. Computing the target vectors is dominated by computing
the ANF of 𝐹 5

𝑖 for 𝑖 ∈ 𝐿 which takes total time of 𝑂(𝑛22𝑛).

As a consequence of the algebraic nature of the attack, if the round function
has lower degree, then the complexity decreases. Indeed, there are less unknowns
and therefore both steps of generating the equation matrix and solving the sys-
tems take less time. As an edge case, consider the 𝐹 5𝐴 structure where the affine
layer can be seen as the 6th round with a function of degree 1. The complexity
of recovering the affine round is 𝑂(𝑛22𝑛), as was shown in Section 4.2.

Note that the attack can be run in the reverse direction as well, so that we
recover the first round function instead of the last one.

We have implemented the attack in Sage [20]. We successfully attacked a
5-round Feistel Network with bijections and branch size of up to 9 bits and
recovered the outer secret round functions in a few minutes on a modern laptop.

5.3 A Generalization of the Attack on Feistel Networks with Low
Degree Round Functions

When the round functions in a Feistel Network have low degree, the degree
deficiency is decreasing slowly and as a result impossible monomials may exist
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for more than 5 rounds. Moreover, since there are less unknowns to recover, we
need less impossible monomials to mount the attack.

In the following theorem we give a lower bound on the maximum number
of Feistel rounds for which the large class of monomials is impossible. Namely,
this class is point 1 from Theorem 3. The size of the class is 2𝑛, which is enough
to recover a round function of full degree. Therefore this is the lower bound
on maximum number of rounds that can be attacked using the ANF recovery
technique from Section 5.2.

Theorem 4. Let 𝐹 be a 2𝑛-bit F𝑟
𝑑 with arbitrary functions and let its ANF be

as in the Equation 3. Then 𝑎𝐹𝑖

𝑢𝑙||𝑢𝑟
= 0 if 𝑑𝑟−2 < 𝑛, 𝑖 ∈ 𝑅 and ℎ𝑤(𝑢𝑙) = 𝑛.

Proof. Let 𝑙||𝑟 be the input to 𝐹 . Consider the degrees on the variables from 𝑙
at the intermediate states. Initially, the degrees are 1 on the left and 0 on the
right. After the first round the degrees are the same, because input to the round
function has no variables from 𝑙. Now if we have the respective degrees 𝑑1, 𝑑2
at some point and we add a swap and xor with the round function, the degrees
become 𝑚𝑎𝑥(𝑑2, 𝑑 · 𝑑1), 𝑑1. Then for 2 rounds the degrees are 𝑑, 1, for 3 rounds
- 𝑑2, 𝑑, and, in general, for 𝑟 rounds the degrees are 𝑑𝑟−1, 𝑑𝑟−2. Therefore, when
𝑑𝑟−2 < 𝑛, the 𝑟-round Feistel Network has no monomials with degree 𝑛 on 𝑙 in
the right branch of the output.

As a corollary of the theorem, we can attack a 2𝑛-bit F𝑟
𝑑 if 𝑑𝑟−3 < 𝑛. Note that

for the 5-round Feistel with bijections which we attacked in the previous section
this bound is not satisfied (for 𝑛 ≥ 3): 𝑑5−3 = (𝑛 − 1)2 > 𝑛, i.e. we attacked
more rounds than we could attack by Theorem 4. Though we expect that the
bound is tight for the specified class of monomials in FN with non-bijective round
functions, there are another classes of impossible monomials for Feistel Networks
with more rounds. Moreover, if the degree is low, there are less ANF coefficients
to recover and, therefore, smaller classes of impossible monomials may be enough
for attack. As an edge case, consider an additional round function of degree 1 (a
linear function). The impossible monomials of degree 2𝑛−1 from Corollary 1 can
be used to recover such round function, as was shown in attacks from Section 4.2.
The maximal number of rounds (without the last linear one) for this attack is
given by the condition 𝜃(𝑑, 𝑟) = 𝑑⌊𝑟/2⌋−1 + 𝑑⌈𝑟/2⌉−1 < 2𝑛 (or 1 more round if
the Feistel functions are bijections). In general case, if the Feistel functions are
bijections, we can attack 5 normal rounds plus 1 linear round.

6 Relationship Between Our Results and Other Attacks

6.1 Integral Attacks

The HDIM has a simple integral interpretation. Indeed, its coefficients corre-
spond to the presence or not of some monomials in the ANF of its coordinates.
They thus correspond to coefficients in said ANF which can be computed using
the Möbius transform:

�̂�(𝐹 )[𝑖, 𝑗] =
⨁︁
𝑥4𝑒𝑗

𝐹𝑖(𝑥)
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where 𝑒𝑗 is the vector where all elements are equal to 1 except in position 𝑗.
This has two consequences.

1. we can compute the HDIM of an 𝑛-bit permutation in time O(𝑛2𝑛−1), and
2. zeroes in column 𝑗 imply the existence of an integral distinguisher.

In light of this, we state the following corollary of Corollary 1.

Corollary 2 (Integral Distinguisher for F𝑟
𝑑). Let 𝐹 be a 2𝑛-bit F𝑟

𝑑 and sup-
pose that one of the following conditions holds:

– the Feistel functions are bijections and 𝜃(𝑑, 𝑟 − 1) < 2𝑛, or
– the Feistel functions are not bijections and 𝜃(𝑑, 𝑟) < 2𝑛.

Then there exists an integral distinguisher with data and time complexity 22𝑛−1

for this structure, namely ⨁︁
𝑥4𝑒𝑗

(︀
𝑒𝑖 · 𝐹 (𝑥)

)︀
= 0

for all 𝑖 < 𝑛 and 𝑗 < 𝑛. In other words, the sum of the right words of 𝐹 (𝑥) is
equal to 0 over a cube where one bit of the input right word is fixed to 0.

We notice a relation between our attacks and the so-called division property.
This tool for finding integral attacks was introduced by Todo in [9] and later
used by the same author to attack the full MISTY1 [21]. In his seminal paper,
Todo gives some integral distinguishers against Feistel Network for various block
sizes, number of rounds, degree of the Feistel functions for both bijective and
non-bijective Feistel functions. Interestingly, his results are extremely similar to
ours! Indeed, while there is no generic formula in Todo’s paper, the application
of his algorithm shows the existence of cubes of size 2𝑛−1 whose sum is equal to
0 for a number of rounds identical to the ones we predicted. In fact, results about
the division property of the output of a Feistel Network can be extracted from
its HDIM. To explain this, we first recall the definition of the division property.

Definition 7 (Division Property). Let X be a multiset of F𝑛
2 and 𝑘 be an

integer of [0, 𝑛]. We say that X has the division property 𝒟𝑛
𝑘 if, for all 𝑢 in F𝑛

2

such that hw(𝑢) ≤ 𝑘,
⨁︀

𝑥∈X 𝑥𝑢 = 0.

This property is further generalized into the vectorial division property which
we define in the particular case of a Feistel Network.

Definition 8 (Vectorial Division Property (for Feistel Networks)). Let
X be a multiset of (F𝑛

2 )2 and 𝑘𝐿, 𝑘𝑅 be integers of [0, 𝑛]. We say that X has the
collective division property 𝒟𝑛

(𝑘𝐿,𝑘𝑅) if, for all 𝑢, 𝑣 in F𝑛
2 such that hw(𝑢) ≤ 𝑘𝐿

and hw(𝑣) ≤ 𝑘𝑅,
⨁︀

(𝑥,𝑦)∈X 𝑥𝑢𝑦𝑣 = 0.

In particular, Todo applied his technique to 2𝑛-bit F𝑟
𝑑. The integral distin-

guisher against the highest number of rounds correspond to integrals over cubes
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of size 2𝑛− 1 were the constant bit has to be on the left side.6 As we have seen,
summing over such a cube is equivalent to computing half of the lines of the
HDIM of the function.

Let 𝐹 be a 2𝑛-bit F𝑟
𝑑, 𝑥 denote the left input bits, 𝑦 denote the right ones

and 𝐹𝐿 and 𝐹𝑅 denote its left and right output halves so that 𝐹 (𝑥||𝑦) =
𝐹𝐿(𝑥||𝑦)||𝐹𝑅(𝑥||𝑦). Suppose that the top left corner of the HDIM of 𝐹 is all
zero. We deduce that the following holds for any cube 𝒞𝑘 of dimension 2𝑛 − 1
where the bit at index 𝑘 ≤ 𝑛 is fixed and for any 𝑖 ≤ 𝑛:

⨁︀
𝑥∈𝒞𝑘

𝐹 (𝑥) · 𝑒𝑖(𝑥) = 0.
This can also be written as⨁︁

𝑥∈𝒞𝑘

(𝐹𝐿(𝑥))
𝑢𝑖 (𝐹𝑅(𝑥))

0
=

⨁︁
𝑥∈𝒞𝑘

(𝐹𝐿(𝑥))
𝑢𝑖 = 0,

where 𝑢𝑖 is the element of F𝑛
2 equal to 0 except at position 𝑖 where it is equal to

1. In other words, for all 𝑢 in F𝑛
2 , hw(𝑢) ≤ 1 implies that

⨁︀
𝑥∈𝒞𝑘

(𝐹𝐿(𝑥))
𝑢

= 0,
which means that the image of 𝒞𝑘 has vectorial division property 𝒟𝑛

1,0. The
HDIM of Feistel Networks can thus be interpreted as describing the vectorial
division property of each output half!

The relation between the ANF and integral attacks is further stressed by the
attack we described in Section 5. Indeed, the complexity of this attack is very
similar to that of the integral attack against 5-round FN with bijective Feistel
functions described in [5].

7 Conclusion

Investigating surprising visual patterns in the LAT of Feistel Network lead us
to interesting results. To explain them, we introduced the high-degree indica-
tor matrix (HDIM). It causes a form of linearity of the LAT modulo 4 and is
related to the presence (or lack thereof) of some monomials in the ANF of the
permutation. We identified patterns in the distribution of these monomials for
Feistel Networks and provided theorems allowing us to predict the existence of
these patterns (Theorem 2 and Corollary 1). More generally, we showed how the
predictable absence of some monomials can be leveraged to attack a Feistel Net-
work in an impossible monomial attack. We also drew some connections between
our results and integral distinguisher.
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