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Abstract. We observe that the conventional classification of pairings into Types 1, 2, 3
and 4 is not applicable to pairings from elliptic curves with embedding degree one. We
define three kinds of pairings from these elliptic curves, and discuss some subtleties with
using them to implement pairing-based protocols.

1. Introduction

Let G1, G2 and GT be groups of prime order n. A cryptographic pairing e : G1×G2 → GT

is a map that is bilinear, non-degenerate and efficiently computable. Since 2000, when Boneh
and Franklin proposed their identity-based encryption scheme [11], cryptographic pairings
have been used extensively to design a wide variety of cryptographic protocols.

Cryptographic pairings are constructed from elliptic curves of small embedding degree.
More precisely, let E be an elliptic curve defined over the finite field Fq. Let n be a prime
divisor of #E(Fq) with gcd(n, q) = 1, and let k be the smallest positive integer such that
n | qk − 1; the number k is called the embedding degree of E (with respect to n). Then G1

is an order-n subgroup of E(Fq), G2 is an order-n subgroup of E(Fqk), GT is the order-n
subgroup of F∗qk , and the map e is derived from the classical Weil and Tate pairings. Among
the elliptic curves that have been used to implement pairings are supersingular curves of
embedding degree 4 over finite fields of characteristic two (see [7]), supersingular curves
of embedding degree 6 over finite fields of characteristic three (see [7]), supersingular and
ordinary curves of embedding degree 2 over finite fields of prime order (see [44]), and Barreto-
Naehrig (BN) ordinary curves of embedding degree 12 over finite fields of prime order [9].

A necessary condition for the security of pairing-based protocols is that the discrete log-
arithm problem (DLP) in Fqk is intractable. Until recently, the assumption was that the
fastest algorithm for computing logarithms in small-characteristic finite fields Fq was Cop-
persmith’s algorithm [19] with running time Lq[

1
3
, (32

9
)1/3] ≈ Lq[

1
3
, 1.526], and the fastest

algorithm for computing logarithms in large-characteristic finite fields Fq was the Number
Field Sieve (NFS) [25, 41] with running time Lq[

1
3
, (64

9
)1/3] ≈ Lq[

1
3
, 1.923]. Here, LQ[α, c]

with 0 < α < 1 and c > 0 denotes the expression
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that is subexponential in logQ. However, recent work has shown that these assumptions
were overly optimistic. Most dramatically, in 2013 a quasi-polynomial time algorithm (with
running time Lq[ε, c] for any ε > 0) was devised for computing discrete logarithms in small-
characteristic finite fields Fq [6], effectively breaking all pairings derived from supersingular
elliptic curves over small-characteristic finite fields (see [1, 26]). In 2015, Kim and Bar-
bulescu [35] devised a variant of the NFS that computes logarithms in Fq = Fpk in time

Lq[
1
3
, (48

9
)1/3] ≈ Lq[

1
3
, 1.759] when p is a medium-sized prime (more precisely, p = Lq[α, c]

with 1
3
< α < 2

3
). Kim and Barbulescu state that their algorithm can be applied to com-

puting logarithms in the fields Fp12 that arise in BN pairings. Moreover, if p has a special
form, as is the case with BN pairings, a further refinement of their algorithm has running
time Lq[

1
3
, (32

9
)1/3]. Also in 2015, experiments conducted by Barbulescu et al. [5] illustrated

that the DLP is significantly easier in Fp2 than in prime-order fields Fp.
The aforementioned improvements in algorithms for computing discrete logarithms cast

some suspicions on the true intractability of the DLP in extension fields Fpk , especially
if the characteristic p is of a special form. On the other hand, these improvements do
not apply to the DLP in prime-order fields Fp provided that the prime p does not have
a special form; thus, the fastest general-purpose algorithm known for the DLP in Fp has
running time Lp[

1
3
, (64

9
)1/3]. Consequently, elliptic curves with embedding degree k = 1

would appear to be a conservative choice for implementing pairing-based protocols. The
group GT in these pairings is the order-n subgroup of the multiplicative group of a prime
field F∗p, whence security is not directly affected by advances in algorithms for computing
logarithms in extension fields.

Remark 1. (DLP in Fp versus DLP in Fpk) Since Fp is a subfield of Fpk for any k ≥ 2, the
DLP in Fp can be reduced to the DLP in Fpk . Hence, advances in algorithms for the DLP
in Fpk might be effective for solving the DLP in Fp. For example, an Lpk [α, c] algorithm
for solving the DLP in Fpk (where k > 1 is a constant) yields an Lp[α, ck

α] algorithm for

the DLP in Fp. Hence, an Lp2 [
1
3
, c] algorithm with c < (32

9
)1/3 for the DLP in Fp2 yields a

DLP algorithm for Fp that is faster than the best currently known algorithm. Similarly, an
Lp12 [

1
3
, c] algorithm with c < (16

27
)1/3 for the DLP in Fp12 yields a faster DLP algorithm for

Fp.
Elliptic curves with embedding degree one were first mentioned in [31, 32, 50] and further

studied in [36, 30, 53]. These papers consider methods for generating suitable elliptic curves,
and study the efficiency of the Weil and Tate pairings. However, none of these papers
examine the implementation of pairing-based protocols with these pairings. In this paper
we observe that the often-cited classification of pairings into Types 1, 2, 3 and 4 [22] is
not applicable to pairings from elliptic curves with embedding degree one. We define three
kinds of pairings from these elliptic curves, and discuss some subtleties with using them to
implement pairing-based protocols.

The remainder of the paper is organized as follows. The classical Weil and Tate pairings
are reviewed in §2. The salient features of elliptic curves with embedding degree one are
presented in §3. Three kinds of pairings from elliptic curves with embedding degree one
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are introduced in §§4–6. The efficiency of these pairings is considered in §7. We draw our
conclusions in §8.

2. Pairings

Let p > 3 be a prime, and let E be an elliptic curve defined over the finite field Fp. Let
π : (x, y) 7→ (xp, yp) be the p-th power Frobenius endomorphism. The trace of the Frobenius
is t = p+ 1−#E(Fp). Let n 6= p be a prime with n | #E(Fp). The embedding degree is the
smallest positive integer k satisfying n | (pk − 1). We will assume that E[n], the group of all
n-torsion points in E(Fp), is contained in E(Fpk); this is indeed the case whenever k > 1 [4].

2.1. Miller functions. Let R ∈ E(Fpk) and let s be a non-negative integer. A Miller
function fs,R [37] of length s is a function in Fpk(E) with divisor (fs,R) = s(R)− (sR)− (s−
1)(∞). Let u∞ be an Fp-rational uniformizing parameter for ∞. A function f ∈ Fpk(E) is
said to be normalized if lc∞(f) = 1, where lc∞(f) = (u−t∞f)(∞) and t is the order of f at
∞.

Let P,Q ∈ E[n]\{∞}. Miller [37] described Algorithm 1 for evaluating a normalized Miller
function fn,P at the point Q. In the algorithm, the line functions ` and v are normalized.

Algorithm 1 Miller’s algorithm

Input: P,Q ∈ E[n] \ {∞}.
Output: fn,P (Q).

1: Write n in binary: n =
∑L−1

i=0 ni2
i

2: f ← 1, g ← 1, T ← P
3: for i← L− 2 downto 0 do
4: Compute the tangent line ` through T and the vertical line v through 2T
5: T ← 2T
6: f ← f 2 · `(Q)
7: g ← g2 · v(Q)
8: if ni = 1 then
9: Compute the line ` through T and P and the vertical line v through T + P

10: T ← T + P
11: f ← f · `(Q)
12: g ← g · v(Q)
13: end if
14: end for
15: return f/g

Remark 2. (failure of a Miller function computation) When Miller’s algorithm is used to
compute fn,P (Q), one might obtain a value of 0 in the numerator or denominator. This
occurs only if Q happens to be a root of one of the line functions `, v encountered in the
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computation. Since the roots of ` and v must lie in 〈P 〉, we conclude that a Miller function
computation can only fail if Q ∈ 〈P 〉.

2.2. Weil and Tate pairings. Let GT be the order-n subgroup of F∗pk . The Weil pairing
wn can be defined as follows.

Definition 3 ([37]). Let P,Q ∈ E[n] \ {∞} with P 6= Q. Then the Weil pairing is

(1) wn(P,Q) = (−1)n
fn,P (Q)

fn,Q(P )
,

where fn,P and fn,Q are normalized Miller functions. Furthermore, wn(P,∞) = wn(∞, P ) =
wn(P, P ) = 1 for all P ∈ E[n].

The (reduced) Tate pairing tn can be defined as follows.

Definition 4 ([49]). Let P,Q ∈ E[n]. Let R ∈ E(Fpk) with R 6∈ {∞, P,−Q,P −Q}. Then
the Tate pairing is

(2) tn(P,Q) =

(
fn,P (Q+R)

fn,P (R)

)(pk−1)/n

.

If fn,P is normalized, then

(3) tn(P,Q) = (fn,P (Q))(p
k−1)/n

for all P,Q ∈ E[n] \ {∞} with P 6= Q.

2.3. Type 1, 2, 3 and 4 pairings. In cryptographic applications, one generally considers
the restrictions of the Weil and Tate pairings to a domain G1 × G2, where G1 and G2 are
fixed order-n subgroups of E[n].

Suppose now that the embedding degree k is even. Galbraith, Paterson and Smart [22]
defined three kinds of pairings e : G1 × G2 → GT . The pairing e is of Type 1 (symmetric)
if G1 = G2. Now, let G1 = E(Fp)[n]. Let d be the order of the automorphism group of

E, and suppose that d | k. Let e = k/d. Then there is a unique degree-d twist Ẽ of E
over Fpe with n | #Ẽ(Fpe) [29]; let µ : Ẽ → E be the associated twisting isomorphism. Let

Q̃ ∈ Ẽ(Fpe) be a point of order n, and let G2 = 〈Q〉 where Q = µ(Q̃). The group G2 is
called the Trace-0 subgroup of E[n] since it is comprised of all points P ∈ E[n] for which

Tr(P ) =
∑k−1

i=0 π
i(P ) = ∞. Then e : G1 × G2 → GT is a Type 3 pairing. Finally, if G′2 is

any order-n subgroup of E[n] different from G1 and G2, then e : G1 ×G′2 → GT is a Type 2
pairing.

Type 2 pairings have two properties that distinguish them from Type 3 pairings: an
efficient method for hashing onto G′2 is not known1, and there is an efficiently-computable
isomorphism ψ from G′2 to G1 (given by the Trace map). In contrast, hashing onto G2 can

1When we say that “hashing onto a group is not known to be efficient” we mean in such a way that discrete
logarithms of hash values are difficult to compute.
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be done efficiently and no efficiently-computable isomorphism from G2 to G1 is known for
Type 3 pairings.

Shacham [47] proposed pairings e : G1 × E[n] → GT , subsequently named Type 4 pair-
ings. These pairings have the distinguishing property that the Trace map is an efficiently-
computable homomorphism from E[n] onto G1 with kernel G2. Furthermore, hashing onto
E[n] is relatively efficient [16].

3. Elliptic curves with embedding degree one

For the sake of concreteness, we will only consider a particular trace-2 elliptic curve from
[36] in this paper. Elliptic curves with embedding degree one and having trace different from
2 can be generated using the complex multiplication method [14, 30].

Let p be a prime of the form

(4) p = A2 + 1, where A ≡ 2 (mod 4);

note that p ≡ 1 (mod 4). Suppose also that A = hn where n ≡ 3 (mod 4) is prime.
We assume that p does not have any special properties such as having a sparse binary
representation. This is done in order to ensure that the discrete logarithm problem in Fp
does not succumb to variants of the special number field sieve [42]. Then, assuming that
the NFS cannot exploit the property of p − 1 being a perfect square (cf. §3.3), the fastest

algorithm known for computing discrete logarithms in Fp has running time Lp[
1
3
,
(
64
9

)1/3
].

Consider the elliptic curve

(5) E : Y 2 = X3 − 4X over Fp.

Then, as shown in [36], #E(Fp) = p−1 so E is an ordinary curve with trace 2. Furthermore,
E(Fp) ∼= ZA ⊕ ZA so E[n] ⊆ E(Fp) and E(Fp) has embedding degree k = 1 with respect
to n. The endomorphism ring of E is Z[i], the complex number i being identified with the
degree-one endomorphism ψ:

(6) ψ : (x, y) 7→ (−x,Ay).

The map ψ is a distortion map on E[n]. In other words, if P ∈ E[n]\{∞} then ψ(P ) 6∈ 〈P 〉. 2

Thus, for any P ∈ E[n] \ {∞}, the pair of points (P, ψ(P )) generate E[n]. The p-th power
Frobenius π satisfies π(P ) = (1 + Ai)P for all P ∈ E(Fp).

The existence of an efficiently-computable distortion map on E[n] means that the deci-
sional Diffie-Hellman (DDH) problem in any order-n subgroup of E[n] is easy. Recall that
the DDH problem in an order-n group 〈P 〉 is the following: given P , A = aP , B = bP
and Q, where a, b ∈R [0, n − 1] and either Q = abP or Q = cP for c ∈R [0, n − 1], decide
whether or not Q = abP . The Weil pairing can be used to solve DDH efficiently since if
Q = abP then wn(P,Q) = wn(A,B), whereas if Q = cP then wn(P,Q) 6= wn(A,B) with
overwhelming probability.

2If n ≡ 1 (mod 4), then ψ is a distortion map for all but two of the n+ 1 order-n subgroups of E[n]. These
two exceptions were overlooked in Theorem 3 of [36].
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3.1. Subgroup membership testing. Let P,Q ∈ E[n] \ {∞}. In cryptographic protocols
it is usually necessary to have an efficient method for testing whether Q ∈ 〈P 〉. The alter-
nation and non-degeneracy properties of the Weil pairing imply that Q ∈ 〈P 〉 if and only if
wn(P,Q) = 1. Thus, subgroup membership testing can be done using the Weil pairing.

Subgroup membership testing cannot in general be done in the same manner using the
Tate pairing. Indeed, it is no longer guaranteed that tn(P, P ) = 1. The following result was
stated in Remark 2 of [30]. We include a self-contained proof for completeness.

Lemma 5. Let E be the trace-2 elliptic curve defined in (5). Then tn(P, ψ(P )) = 1 for all
P ∈ E[n].

Proof. Let P ∈ E[n] \ {∞}. By Theorem X.1.1 of [48], we have wn(π(Q) − Q, iP ) = βp−1,
where Q ∈ E(Fp) with nQ = P , and β ∈ Fp with βn = t̂n(iP, P ) where t̂n is the unreduced
Tate pairing. Now, βp−1 = (βn)(p−1)/n = t̂n(iP, P )(p−1)/n = tn(iP, P ). And, π(Q) − Q =
(1 + Ai)Q−Q = hniQ = hiP . Thus, tn(iP, P ) = wn(hiP, iP ) = wn(iP, iP )h = 1.

Now, the dual of the endomorphism i is −i. Hence, by part 3 of Theorem IX.9 of [21], we
have 1 = tn(iP, P ) = tn(P,−iP ) = tn(P, iP )−1, whence tn(P, iP ) = tn(P, ψ(P )) = 1. �

Non-degeneracy of the Tate pairing immediately gives the following result which yields a
method for subgroup membership testing using the Tate pairing.

Corollary 6. Let E be the trace-2 elliptic curve defined in (5). Let P,Q ∈ E[n] \ {∞}.
Then Q ∈ 〈P 〉 if and only if tn(P, ψ(Q)) = 1.

Non-degeneracy of the Tate pairing also gives the following result.

Corollary 7. Let E be the trace-2 elliptic curve defined in (5). Then tn(P, P ) 6= 1 for all
P ∈ E[n] \ {∞}.

3.2. Pairings. For the trace-2 elliptic curve E defined in (5), there are no analogues to G1

and the Trace-0 group G2 in the case of Type 2 and Type 3 pairings (see §2.3). Indeed, there
is no natural way of distinguishing any order-n subgroup of E[n] from the other order-n
subgroups.

There are several types of pairings on order-n groups that can be defined from the Weil
pairing (1) and the Tate pairing (3). We present three kinds of pairings, called Type A,
Type B and Type C, and discuss their properties in §§4-6. In all these pairings, GT denotes
the order-n subgroup of F∗p. Note that no efficient method is known for efficiently and
reversibly embedding binary strings from {0, 1}m (for some m) in GT .

3.3. Applicability of the SNFS. Let d > 1 and m = bp1/dc. Suppose also that p > 2d
2
.

Let f(t) = td + fd−1t
d−1 + · · · + f1t + f0 ∈ Z[t], where md +

∑d−1
i=0 fim

i is the base-m
representation of p. Then f is irreducible over Z and f(m) = p ≡ 0 (mod p). Let α ∈ C be
a root of f . The NFS for computing discrete logarithms in Fp [25, 41] seeks to find pairs of
integers (a, b) with 0 ≤ b < B and 0 ≤ |a| < B such that

T = (a− bm) · bdf(a/b) = (a− bm)(ad + ft−1a
t−1b+ · · ·+ f1ab

t−1 + f0b
t)
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is smooth. Note that T ≈ (d + 1)Bd+1p2/d. The optimal choices for B and d yield an

algorithm with running time Lp[
1
3
,
(
64
9

)1/3
].

In the special NFS (SNFS), p has a special form, e.g., p = re ± s with small r and
s. The special form of p yields a monic irreducible polynomial f with small coefficients.
Consequently, the bound on T becomes T ≈ (d+ 1)Bd+1p1/d, resulting in an algorithm with

a significantly faster running time Lp[
1
3
,
(
32
9

)1/3
].

For the case p = A2 + 1, one could take d = 2 and f(t) = t2 + 1. But then T ≈ 3B3p1/2,
which is too large to be effective. A second strategy to exploit the structure of p is to let
m = bA1/dc and g(t) = td + gd−1t

d−1 + · · · + g1t + g0, where md +
∑d−1

i=0 gim
i is the base-m

representation of A. Then, one can take f(t) = g2(t) + 1 and hope that f is irreducible over
Z; note that f(m) = p and deg(f) = 2d. However, the coefficients fi of f satisfy fi ≈ m2.
Indeed, by taking m̃ = bp1/2dc ≈ bA1/dc, one could have used the method in the original

NFS to obtain a degree-2d irreducible polynomial f̃ with f̃(m̃) = p and coefficients f̃i ≈ m̃.
Thus, this second strategy also fails.

An outstanding open problem is to determine whether the special structure of p = A2 + 1
can be exploited to devise an algorithm for computing discrete logarithms in Fp that has

running time significantly smaller than Lp[
1
3
,
(
64
9

)1/3
]. If this can be accomplished, then the

keylength and efficiency estimates in §7 will have to be revised accordingly.

4. Type A pairings

4.1. The pairings. Let G1 be an arbitrary order-n subgroup of E(Fp).

Definition 8. The Type A Weil pairing wA : G1 ×G1 → GT is

(7) wA(P,Q) = wn(P, ψ(Q)) = (−1)n
fn,P (ψ(Q))

fn,ψ(Q)(P )
,

where P,Q 6=∞ and fn,P and fn,ψ(Q) are normalized Miller functions. Furthermore, wA(P,∞) =
wA(∞, P ) = 1 for all P ∈ G1.

The pairing wA is non-degenerate since ψ(Q) 6∈ 〈P 〉. Note that the Miller function com-
putations in (7) never fail since ψ(Q) 6∈ 〈P 〉 and P 6∈ 〈ψ(Q)〉.

Since tn(P, P ) 6= 1, the Tate pairing restricted to G1×G1 is a non-degenerate pairing. How-
ever, as mentioned in Remark 2, the Miller function computation when computing tn(P,Q)
using (3) can fail since Q ∈ 〈P 〉. To circumvent this possible failure, we select R = ψ(P )
in (2). Then, since fn,P (ψ(P ))(p−1)/n = 1 when fn,P is normalized, we obtain the following
Type A Tate pairing.

Definition 9. The Type A Tate pairing tA : G1 ×G1 → GT is

(8) tA(P,Q) = (fn,P (Q+ ψ(P )))(p−1)/n ,

where fn,P is normalized.
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The Type A pairings wA and tA are symmetric in the sense that they are defined on
G1 × G1 where G1 is a cyclic group of order n. However, these pairings differ from Type 1
symmetric pairings in that no efficient method is known for hashing onto G1.

4.2. Protocols. Let eA : G1×G1 → GT denote the Type A Weil pairing wA or the Type A
Tate pairing tA. The Type A pairing setting provides a protocol designer the same capabil-
ities as in the Type 1 setting provided there is no need of hashing onto G1 (also known as
a map-to-point function). Recall that such a hash function is usually modelled as a random
oracle in the security reduction. Hence, all protocols that are originally described in the
Type 1 setting and do not require the random oracle assumption for such a map-to-point
function can be instantiated in the Type A setting.

Examples of protocols that can be implemented in the Type A setting include Joux’s
three-party key agreement scheme [31] and Waters’ IBE and signature schemes [51]. More
generally, all so-called standard model protocols in the Type 1 setting can be implemented
in the Type A setting without any difficulty. Note that it is straightforward to cast the
corresponding hardness assumptions and security theorems and proofs in the Type A setting.
For example, the bilinear Diffie-Hellman problem in the Type A setting and its decisional
version can be defined as follows.

Definition 10 (BDH-A). Bilinear Diffie-Hellman problem in (G1,GT ): Given P , aP , bP ,
cP ∈ G1, where a, b, c ∈R [1, n− 1], compute eA(P, P )abc.

Definition 11 (DBDH-A). Decisional Bilinear Diffie-Hellman problem in (G1,GT ): Given
P, aP, bP, cP ∈ G1, where a, b, c ∈R [1, n − 1] and Z ∈ GT , decide whether Z = eA(P, P )abc

or Z is a random element in GT .

4.2.1. BLS-1 signature scheme. To illustrate the problem of implementing protocols that
employ a map-to-point function onto G1, we recall the Boneh-Lynn-Shacham (BLS) signature
scheme [13] in the Type 1 setting.

Let e1 : G1 ×G1 → GT be a Type 1 pairing where G1 = 〈P 〉. Let H : {0, 1}∗ → G1 be a
hash function. The public parameters are e1, P and H.

Alice’s private key is an integer a ∈R [1, n − 1], while her public key is A = aP . To sign
a message m ∈ {0, 1}∗, Alice computes M = H(m) and σ = aM . Her signature on m is σ.
To verify the signed message (m,σ), Bob computes M = H(m), verifies that σ ∈ 〈G1〉, and
accepts if and only if e1(P, σ) = e1(A,M).

Observe that the BLS signature scheme cannot be instantiated in the Type A setting
simply because there is no known efficient method for hashing onto G1. A similar obstruction
is present for several other protocols including the original Boneh-Franklin IBE scheme [11].

5. Type B pairings

5.1. The pairings. Let G1 be an arbitrary order-n subgroup of E(Fp) and let G2 = E[n].
Then we have the following restriction of the Weil or Tate pairings:

(9) eB : G1 ×G2 → GT .
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We can now hash to G2 — by hashing to a random point in E(Fp) and then multiplying
the resulting point by the cofactor A/n = h. However, as before, we cannot hash to any
particular order-n subgroup of G2. We will henceforth assume that the group G1 is the same
as the one in the definition of eA; thus the restriction of eB to G1 ×G1 is equal to eA.

Since G2 is not an order-n group, eB is not a Type 1, 2 or 3 pairing. The pairing eB is
reminiscent of a Type 4 pairing (see §2.3). However, unlike the case of Type 4 pairings, no
efficiently-computable homomorphism is known from G2 onto G1.

Remark 12. (failure of a Miller function computation) The Type B Weil pairing

(10) wB(P,Q) = (−1)n
fn,P (Q)

fn,Q(P )

is degenerate if Q ∈ 〈P 〉. Moreover, the computation of (10) can fail when Q ∈ 〈P 〉 or
when P ∈ 〈Q〉 (both these conditions are implied by Q ∈ 〈P 〉). Thus protocols that use
the Type B pairing wB should ensure that Q 6∈ 〈P 〉, or that this occurs only with negligible
probability.

The Type B Tate pairing

(11) tB(P,Q) = (fn,P (Q))(p−1)/n

is degenerate if Q ∈ 〈ψ(P )〉. Moreover, the computation of (11) can fail when Q ∈ 〈P 〉.
Thus, protocols that use the Type B pairing tB should ensure that Q 6∈ 〈P 〉 and Q 6∈ 〈ψ(P )〉,
or that this occurs only with negligible probability.

5.2. Protocols.

5.2.1. BLS-B signature scheme. Let E be an elliptic curve with embedding degree one, and
let eB : G1 × G2 → GT be a Type B pairing where G1 = 〈P 〉. Let H : {0, 1}∗ → E[n] be a
hash function. The public parameters are E, P , eB and H.

Alice’s private key is an integer a ∈R [1, n − 1], while her public key is A = aP . To sign
a message m, Alice computes M = H(m) and σ = aM . Her signature on m is σ. To verify
the signed message (m,σ), Bob computes M = H(m), verifies that σ ∈ 〈M〉, and accepts if
and only if eB(P, σ) = eB(A,M).

Correctness of the verification algorithm follows because

eB(P, σ) = eB(P, aM) = eB(aP,M) = eB(A,M).

Note that since M is randomly selected from E[n], the probability that M ∈ 〈A〉 or M ∈
〈ψ(A)〉 is negligible (cf. Remark 12).

Recall that the Diffie-Hellman problem (DHP) in a cyclic group G1 = 〈P 〉 is the following:
Given P , A = aP where a ∈R [1, n−1], and M ∈R G1, compute σ = aM . Security of BLS-B
can be proven under the assumption that the following variant of DHP is intractable.

Definition 13. The DHP-B problem is the following: Given P ∈ G1, A = aP where
a ∈R [1, n− 1], and M ∈R E[n], compute σ = aM .
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It is easy to see that DHP polynomial-time reduces to DHP-B. Namely, suppose we are
given an instance (P,A,M) of DHP and a DHP-B oracle. We compute Q = ψ(P ) and
M ′ = M + rQ where r ∈R [0, n − 1]. We present (P,A,M ′) to the oracle and obtain
σ′ = aM ′. Since

σ′ = aM ′ = a(M + rQ) = aM + r(aQ) = σ + rψ(A),

we can efficiently compute the DHP solution σ = σ′ − rψ(A).
Security of BLS-B can be proven with respect to intractability of DHP-B. The following

result omits the tightness gap in the reduction.

Theorem 14. Suppose that the DHP-B problem is intractable and H is a random oracle.
Then BLS-B is existentially unforgeable against adaptive chosen-message attacks.

Proof. Suppose we are given a DHP-B instance (P,A,M∗) and need to compute σ∗ = aM∗

where A = aP . We compute Q = ψ(P ) and B = ψ(A) = aQ, where ψ is the distortion map
(6). We then run the forger with input (P,A). The forger makes queries to a random oracle
H and to a signing oracle. We assume that the forger always queries H with a message m
before it queries the signing oracle with m. We also assume that the forger queries H with
m before producing its forgery (m,σ). We respond to all but one randomly selected hash
query on m with M = H(m) = r1P + r2Q where r1, r2 ∈R [0, n− 1]; note that M is indeed
distributed uniformly at random in E[n], so the response to the hash query is valid. For the
randomly selected hash query m∗, we respond with H(m∗) = M∗. We respond to signing
queries on messages m 6= m∗ with σ = r1A+ r2B. This is a valid signature since

σ = r1A+ r2B = r1(aP ) + r2(aQ) = a(r1P + r2Q) = aH(m) = aM.

If the forger asks for the signature on m∗, we abort. We also abort if the forger does not
output a valid signature on m∗. Otherwise, if the forger outputs a valid signed message
(m∗, σ∗), then σ∗ is the solution to the DHP-B challenge (P,A,M∗). �

Note that in the Type B setting we can hash onto E[n] but not onto G1. Hence, protocols
that require a map-to-point function such that at most one argument of the pairing function
is expressed in terms of such a point can be instantiated in the Type B pairing setting. Apart
from the BLS signature scheme, some other prominent examples are the Boneh-Franklin IBE
scheme [11] and the Boneh-Gentry-Lynn-Shacham aggregate signature scheme [12]. Note also
that the protocols that can be instantiated in the Type A setting can be instantiated in the
Type B setting without any difficulty.

The main difference between the Type A and the Type B settings is that E[n] is not a
cyclic group of prime order. This necessitates an appropriate modification in the underlying
hardness assumption as well as the protocol description and its security reduction. We have
already illustrated this in the context of the BLS signature scheme. Next we briefly describe
the bilinear Diffie-Hellman (BDH) problem in the Type B setting and its relation with the
corresponding problem in the Type A setting.
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5.2.2. BDH problem in Types A and B.

Definition 15 (BDH-B). Bilinear Diffie-Hellman problem in (G1,G2,GT ): Given P , aP ,
bP ∈ G1, where a, b ∈R [1, n− 1], and R ∈R G2, compute eB(P,R)ab.

It is easy to see that the BDH problem in the Type A setting (BDH-A) polynomial-time
reduces to BDH-B. Namely, suppose we are given an instance (P, aP, bP, cP ) of BDH-A
and access to a BDH-B oracle. We compute Q = ψ(P ) and B = ψ(bP ) = bQ. We
further compute R = cP + rQ where r ∈R [1, n − 1]. We run the BDH-B oracle with
input (P, aP, bP,R). The oracle returns eB(P,R)ab = eA(P, P )abceB(aP, bQ)r from which
one can easily extract the BDH-A solution, namely eA(P, P )abc.

5.2.3. Sakai-Oghishi-Kasahara id-based key agreement. We recall the Sakai-Oghishi-Kasahara
id-based Non-Interactive Key Agreement (SOK-NIKA) scheme in the Type 1 setting [40].

Let e1 : G1 ×G1 → GT be a Type 1 pairing where G1 = 〈P 〉. Let H : {0, 1}∗ → G1 be a
hash function. The key generation center (KGC) chooses her master secret s ∈R [1, n − 1]
and the corresponding public parameters are e1, P , sP and H.

An entity with identity id obtains her corresponding private key from the KGC as did =
sQid where Qid = H(id). Two parties having identities respectively id and id′ can compute
a shared secret without any interaction as follows. The party with identity id computes
K = e1(did, H(id′)), whereas the party with identity id′ computes K ′ = e1(did′ , H(id)). Both
parties compute the same shared secret because

K = e1(did, H(id′)) = e1(sQid, Qid′) = e1(Qid, sQid′) = e1(H(id), did′) = e1(did′ , H(id)) = K ′.

Note that SOK-NIKA cannot be implemented in the Type B (or Type A) setting because
there is no known way to hash onto a fixed order-n group G1.

6. Type C pairings

6.1. The pairings. Let G2 = E[n]. Then the full Weil and Tate pairings defined in (1)
and (3) are bilinear pairings from G2×G2 to GT . We say that these pairings are of Type C
and denote them by eC . Note that one can efficiently hash onto G2. Hence, protocols that
require a map-to-point function for either of the two arguments of the pairing function can
be considered for implementation with Type C pairings. For any fixed order-n subgroup G1,
the restriction of eC to G1×G1 gives the Type A pairing eA. Similarly, the restriction of eC
to G1 ×G2 gives the Type B pairing eB.

6.2. Protocols.

6.2.1. Sakai-Oghishi-Kasahara id-based key agreement in Type C. Let eC : G2 × G2 → GT

be a Type C pairing, and let P ∈ G2. Let H : {0, 1}∗ → G2 be a hash function. The key
generation center (KGC) chooses her master secret s ∈R [1, n − 1] and the corresponding
public parameters are eC , P , sP and H.

An entity with identity id obtains her corresponding private key from the KGC as did =
sQid where Qid = H(id). Two parties having identities respectively id and id′ can compute a
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shared secret without any interaction as follows. Suppose that id is lexicographically smaller
than id′. The party with identity id computes K = eC(did, H(id′)), whereas the party with
identity id′ computes K ′ = eC(H(id), did′). Both parties compute the same shared secret
because

K = eC(did, H(id′)) = eC(sQid, Qid′) = eC(Qid, sQid′) = eC(H(id), did′) = K ′.

A Key Derivation Function (KDF) H̃ : GT → {0, 1}k can be applied to the shared secret to
produce a k-bit secret key.

In the Type 1 pairing setting it has been shown [20, 38] that when H and H̃ are modeled
as random oracles, the security of SOK-NIKA is based on the hardness of BDH in the Type 1
setting. The original security argument can be easily modified for the above variant whence
the security depends on the following version of the BDH problem in the Type C setting.

Definition 16 (BDH-C). Bilinear Diffie-Hellman problem in (G2,GT ): Given P ∈ G2,
Q = aP where a ∈R [1, n− 1], and R, S ∈R G2, compute eC(R, S)a.

If H̃ is not included in the protocol description, then one can argue the security of SOK-
NIKA based on the following version of the decisional Bilinear Diffie-Hellman problem in
the Type C setting.

Definition 17 (DBDH-C). Decisional Bilinear Diffie-Hellman problem in (G2,GT ): Given
P ∈ G2, Q = aP where a ∈R [1, n − 1], R, S ∈R G2, and Z ∈ GT , decide whether Z =
eC(R, S)a or Z is a random element in GT .

As in the case of variants of the BDH problem, it is easy to see that DBDH-A polynomial-
time reduces to DBDH-C. Namely, suppose we are given an instance (P, aP, bP, cP, Z) of
DBDH-A and access to a DBDH-C oracle. We compute Q = ψ(P ), A = ψ(aP ) = aQ,
B = ψ(bP ) = bQ, and C = ψ(cP ) = cQ. We further compute R = bP+rQ and S = cP+sQ
where r, s ∈R [1, n − 1] and Z ′ = Z · eC(bP, aQ)s · eC(aQ, cP )r · eC(aQ,Q)rs. We run the
DBDH-C oracle with input (P, aP,R, S, Z ′) and return whatever bit the oracle returns.
Clearly, when Z = eA(P, P )abc then Z ′ = eC(R, S)a. On the other hand, if Z is a random
element of GT then so is Z ′.

In the proof sketch below for the security of SOK-NIKA, we follow the IND-SK security
model proposed in [38]. In this model the adversary is allowed to make H-oracle queries,
key extraction queries on identities of its choice, shared key reveal queries on any pair of
identities of its choice, and a challenge (Test) query on a pair of identities subject to the
natural restriction that no key extraction query is made on the challenge identities, nor
is there any shared-key reveal query on the pair of challenge identities. In response to the
challenge query the adversary is given with equal probability either the shared key of the two
challenge identities or a random element from the key space. IND-SK security is achieved if
the adversary cannot distinguish between the two with probability significantly greater than
1
2
. The following result omits the tightness gap in the reduction.

Theorem 18. Suppose that the DBDH-C problem is intractable and H is a random oracle.
Then SOK-NIKA is a secure key-agreement scheme in the IND-SK model.
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Proof. Suppose we are given a DBDH-C instance (P,A = aP,R, S, Z) and need to decide
whether Z = eC(R, S)a or Z is random. We compute Q = ψ(P ) and B = ψ(A) = aQ, where
ψ is the distortion map (6). We then run the IND-SK adversary against SOK-NIKA with
input (P,A). The adversary makes queries to a random oracle H as well as key extraction
and shared-key reveal queries. We assume that the adversary always queries H with id
before it queries for key-extraction or shared-key involving that identity. We respond to
all but two randomly selected hash queries on id with Qid = H(id) = r1P + r2Q where
r1, r2 ∈R [0, n − 1]; note that Qid is indeed distributed uniformly at random in G2, so the
response to the hash query is valid. For the randomly selected hash query id∗1 and id∗2, we
respond with H(id∗1) = R and H(id∗2) = S. We respond to key-extraction queries on identity
id /∈ {id∗1, id∗2} with did = r1A+ r2B. This is a valid private key for id since

did = r1A+ r2B = r1(aP ) + r2(aQ) = a(r1P + r2Q) = aH(id) = aQid.

We abort if id ∈ {id∗1, id∗2}.
Next, suppose that the adversary asks for the shared key for (idi, idj). We abort if both of

them are from {id∗1, id∗2}. If not, let’s assume without loss of generality,that idi /∈ {id∗1, id∗2}.
We return eC(didi , H(idj)) as the shared key. When the adversary makes the challenge query
we abort if the challenge identities are not {id∗1, id∗2}. Else, we return Z as response. It is
easy to see that the above strategy provides a perfect simulation of IND-SK security if we
do not abort during the simulation.

Finally, we return the adversary’s response (“real” or “random”) to the challenge query
as our solution to the DBDH-C instance. �

Some other SOK-type protocols that can be implemented with Type C pairings (but not
Type A or Type B) are Scott’s key agreement protocol [43] and the hierarchical id-based
key-agreement of Gennaro et al. [23].

7. Efficiency

This section provides cost estimates for arithmetic operations on the k = 1 elliptic curve E
defined in (5). The cost estimates are in terms of the number of Fp multiplications. We do not
count Fp additions and subtractions, so the estimates are somewhat optimistic. Nonetheless,
they serve to demonstrate the practicality of implementing pairing-based protocols with
k = 1 elliptic curves at the 128-bit security level.

We focus on the operations that are needed to implement the BLS-B signature scheme at
the 128-bit security level. To achieve this security level against NFS attacks on the discrete
logarithm problem, one needs to select a 3072-bit prime p. One method for selecting such a
p is to randomly select a 1535-bit prime n with n ≡ 3 (mod 4) until A2 + 1, where A = 2n,
is a 3072-bit prime; here the cofactor is h = 2. We are assuming here that the special form
of p, namely p = A2 + 1 where A is twice a randomly selected 1535-bit prime, cannot be
exploited to speed up the NFS.

In order to reduce the number of iterations in Miller’s algorithm, an alternative is to select
a 256-bit prime n with n ≡ 3 (mod 4) and a randomly selected 1280-bit cofactor h = A/n. A
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smaller n also speeds up subgroup membership testing and point multiplication since scalars
are now only 256 bits in length. The resulting speedups are partially offset by an increase in
the time to perform hashing and the final exponentiation in the Tate pairing computation.
Note that Pollard’s rho attack [39] on the discrete logarithm problem in an order-n subgroup
of E(Fp) takes roughly n1/2 steps, so selecting a 256-bit n preserves the 128-bit security
level. In order to decrease the number of addition steps in Miller’s algorithm (steps 9–12 in
Algorithm 1), one can select n so that its binary representation has low Hamming weight.
Then, under the heuristic assumption that A is a uniformly distributed 1536-bit number, it
is reasonable to assume that the special form of n cannot be exploited to speed up attacks
on the discrete logarithm problem.

In §7.1 we give the cost estimates for arithmetic operations; see Table 1. We consider two
cases, one where n is a randomly-selected 1535-bit prime with Hamming weight approxi-
mately 768, and the other where n is a 256-bit prime of Hamming weight 3 3 with 1280-bit
cofactor h of Hamming weight approximately 640. In both cases, n ≡ 3 (mod 4) and p is
assumed to have Hamming weight approximately 1536. We denote the cost of multiplication,
squaring and inversion in Fp by M , S, and I, respectively. For the sake of simplicity, we
will assume that S ≈M . In §7.2 we give clock cycle counts for BLS-B signature generation
and signature verification. These counts indicate that the BLS-B signature scheme at the
128-bit security level is reasonably efficient on desktop computers.

Operation 1535-bit n 256-bit n
Tate pairing 42957M 8726M
Weil pairing 81306M 9252M
Point multiplication 16277M 2863M
Hashing 4617M 18238M
Subgroup membership testing 59234M 11589M

Table 1. Cost estimates for operations on the k = 1 elliptic curve (5) with
1535-bit n and 256-bit n. The cost of a multiplication in Fp is denoted by M .

7.1. Cost estimates.

7.1.1. Elliptic curve representation. To avoid expensive inversions in Fp, we represent points
in E(Fp) using modified Jacobian coordinates, where a point (X, Y, Z,W = Z2) corresponds
to the point (x, y) in affine coordinates with x = X/Z2 and y = Y/Z3 [18]. With modified
Jacobian coordinates, the cost of a point addition is A = 7M + 4S ≈ 11M and the cost of a
point doubling is D = 1M + 8S ≈ 9M .

3One can also use primes whose signed binary representations have low Hamming weight. Among such
primes are 2255 + 296 − 1, 2255 + 2176 − 1, 2255 + 2232 − 1, 2256 − 276 − 1 and 2256 − 2194 − 1.
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7.1.2. Pairing computation. Section 4.2 of [30] gives formulas for the doubling step of Miller’s
algorithm (steps 4–7 of Algorithm 1) and the addition step (steps 9–12 of Algorithm 1). The
costs are 8M + 10S and 12M + 5S, respectively. Now, the cost of Miller’s algorithm with n
of bitlength ` and Hamming weight v is (`−1) · (8M + 10S) + (v−1) · (12M + 5S) + 2M + I.
Ignoring the cost of I, we get a total cost of 40653M in the case of 1535-bit n, and 4626M
in the case of 256-bit n (with Hamming weight v = 3).

In the case of the Tate pairing, we must perform a final exponentiation by the power
(p−1)/n. Suppose we use the repeated-square-and-multiply method for the exponentiation.
Then the final exponentiation cost is 2304M in the case of 1535-bit n, and 4100M in the
case of 256-bit n.

Thus, the total cost of a Tate pairing is 42957M in the case of 1535-bit n, and 8726M in
the case of 256-bit n. The cost of the Weil pairing in the two cases is 81306M and 9252M .

7.1.3. Point multiplication. Let P ∈ E(Fp) and let r be an `-bit integer. Then point multi-
plication rP can be performed using the w-NAF method at a cost of (2w−2− 1)A+ (`/(w+
1))A + (` + 1)D (see [28, Algorithm 3.36]). Thus the cost of the point multiplication when
P ∈ E[n] and r ∈R [1, n−1] is 223A+1536D = 16277M in the case of 1535-bit n and w = 7,
and 50A+ 257D = 2863M in the case of 256-bit n and w = 5.

7.1.4. Hashing. Hashing onto G2 can be performed by first using a standard hash function
to map an arbitrary string to the x-coordinate of a point in E(Fp), then solving a quadratic
equation over Fp to find the corresponding y-coordinate, and finally multiplying the resulting
point by the cofactor h to obtain an n-torsion point. Since p ≡ 1 (mod 4), one can select
parameters so that p ≡ 5 (mod 8). Then the square root of a quadratic residue a ∈ Fp can
be computed with one exponentiation by (p − 5)/8 and a small number of multiplications;
see Algorithm 3 in [2]. The exponentiation can be performed using the repeated-square-
and-multiply algorithm at a cost of approximately 4608M . The cost of the w-NAF point
multiplication method with an `-bit scalar is (2w−2− 1)A+ (`/(w+ 1))A+ (`+ 1)D (see [28,
Algorithm 3.36]). Thus the cost of the point multiplication by h is 1D = 9M in the case
h = 2, and approximately 191A + 1281D = 13630M in the case of 1280-bit h and w = 7.
This gives a hashing cost of 4617M for h = 2, and 18238M for 1280-bit h.

7.1.5. Subgroup membership testing. Let P ∈ E[n]. By Corollary 6 a point Q is in 〈P 〉 if
and only if (i) Q satisfies the defining equation of E; (ii) nQ =∞; and (iii) tn(P, ψ(Q)) = 1.
Thus the cost of subgroup membership testing is approximately the sum of the costs of a
point multiplication and a Tate pairing computation.

7.2. BLS-B signature scheme. We employ an elliptic curve with 256-bit n, and the Tate
pairing. The dominant operations in BLS-B signature generation (see §5.2.1) are a hashing
and a point multiplication, for a total cost of 21101M . The dominant operations in BLS-B
signature verification are a hashing, a subgroup membership testing, and two pairings, for a
total cost of 47279M .
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Now, the 3072-bit operands a, b ∈ Fp each require forty-eight 64-bit words. Beginning with
the Haswell microarchitecture, Intel introduced the MULX instruction that performs a 64-
bit word product leaving the arithmetic flags untouched. This feature permits the smooth
combination of the MULX and add-with-carry instructions. In this way, the Karatsuba
multiplier approach as described in [52, 45] can be efficiently implemented on a Haswell
processor by computing the 6144-bit integer product t = a · b in roughly 5,200 clock cycles.
The field product c = t mod p can then be performed using Barrett reduction [10] at an
extra cost of roughly 1.5 integer multiplications. Hence, the total cost of computing the field
multiplication is approximately 13,000 clock cycles.

The 13,000 clock cycle estimate for a field multiplication yields the estimates of 113.4
million clock cycles for computing the Tate pairing, 274.3 million clock cycles for BLS-B
signature generation, and 614.6 million clock cycles for BLS-B signature verification. These
numbers suggest that k = 1 pairings have acceptable performance for applications that run
on desktop computers and high-end mobile devices where clock rates of 2.0 GHz are common.

Remark 19. (speed comparisons with pairings of even embedding degree) We did not attempt
to optimize our cost estimates, e.g., by exploiting parallelism or combining operations when
computing a product of pairings [44]. Nonetheless, the k = 1 pairings are expected to
be significantly slower than pairings derived from elliptic curves of even embedding degree
because of the inapplicability of many optimizations available in the latter such as reducing
the number of iterations in Miller’s algorithm [49], denominator elimination [8], and fast
exponentiation [46]. For example, [3] report a speed of 18.7 million clock cycles for computing
a BLS12 pairing at the 192-bit security level on an Intel Core i5 Nehalem machine. Still, k = 1
pairings are not expected to be drastically slower than pairings derived from supersingular
elliptic curves with embedding degree 2 as standardized in [15, 27].

8. Concluding remarks

We have defined three types of pairings with elliptic curves of embedding degree one.
These three pairings do not fit within the general classification of pairings derived from
elliptic curves of even embedding degree. Our study of pairing-based protocols indicates
that any protocol that can be implemented with a Type A pairing can also be implemented
with Types B and C; however the converse is not true. Similarly, any protocol that can be
implemented with a Type B pairing can also be implemented with Type C, but the converse
is not true.

Finally, we note that there are some pairing-based protocols that cannot be implemented
in either Types A, B or C. Protocols have been designed based on the Symmetric eXternal
Diffie-Hellman assumption (SXDH) in the Type 3 setting (which says that the decisional
Diffie-Hellman (DDH) problem is hard in the pairing groups G1 and G2). Examples of such
protocols can be found in [17, 33]. Since DDH is easy in the pairing groups defined over
elliptic curves with embedding degree one, these protocols cannot be securely instantiated
in either Types A, B or C. Neither will it be possible to implement protocols that require
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reversible embedding of messages in GT ; among such protocols are Waters’ IBE scheme in
its original form [51] and Gentry’s IBE scheme [24] (see also [34]).
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