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Abstract

The log-likelihood ratio (LLR) test statistic has been proposed in the literature for performing statistical
analysis of attacks on block ciphers. A limitation of the LLR test statistic is that its application requires
the full knowledge of the corresponding distribution. Another test statistic which has been proposed in the
literature does not possess this limitation. The statistical analysis using this test statistic requires approximating
its distribution by a chi-squared distribution. Problematic issues regarding such approximations have been
reported in the literature. This work proposes a new test statistic which offers the following two features.
Its application does not require knowledge of the underlying distribution and it is possible to carry out an
analysis using this test statistic without using any approximation. This is made possible by applying the
theory of martingales to build a Doob martingale satisfying an appropriate Lipschitz condition so that the
Azuma-Hoeffding inequality can be applied. Experimental comparison of the data complexity obtained using
the new method is made to the data complexity obtained using the chi-squared based method for both simulated
distributions and the previously reported distribution for the block cipher SERPENT. In all cases, the data
complexity obtained by the new method turns out to be greater. While this may appear to be a drawback of
the new method, this is a rigorous bound while the data complexity obtained using the chi-squared method is
an approximation where there is little knowledge about the error in the approximation. So, if rigorous bound
is desired, then one will have to be satisfied with a more conservative estimate of the data complexity.
Keywords: multiple linear cryptanalyis, LLR statistic, chi-squared statistic.

1 Introduction

Consider the setting of multiple linear cryptanalysis of block ciphers. Statistical analysis proceed by identifying
a test statistic. In purely statistical terms, the setting is as follows. Let X1, . . . , XN be independent and
identically distributed random variables taking values from the set {0, 1}`. The distribution of the Xj ’s is either
a distribution p̃ = (p0, . . . , p2`−1) or it is the uniform distribution on {0, 1}`. For η ∈ {0, 1}`, let Qη be the
random variable which counts the number of j’s such that Xj = η. The following test statistics have been used
in the literature on block cipher cryptanalysis. Assume ` > 1.

LLR =

2`−1∑
η=0

Qη ln(2`pη);

Λ =
2`−1∑
η=0

(Qη/N − 2−`)2.
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The LLR test statistic arises from the log-likelihood ratio while the distribution of the Λ test statistic can be
approximated by a chi-squared distribution. Both these test statistics have some limitations which we mention
below.

To apply the LLR test statistic, it is required to have complete knowledge of the probability distribution p̃.
In many situations, this information may be difficult to obtain. The distribution p̃ is uncovered by a detailed
analysis of the block cipher and for ` > 1, obtaining the full distribution p̃ may not be possible. In such situations,
it is not possible to apply the LLR test statistic.

On the other hand, to apply the chi-squared test statistic, the knowledge of p̃ is not required. The analysis
needs to only unearth the expected value of the test statistic which is one of the factors that determine the number
of plaintext-ciphertext pairs required to mount the attack. So, to apply an analysis based on the chi-squared
test statistic, the requirement from the analysis of the block cipher is substantially lower than that required
from the LLR test statistic. The problem, however, is that the analysis of the chi-squared based method makes
several approximations. This issue has been noted in the literature [11, 10, 21] and problems related to such
approximations have been analysed in details in [21].

In this work, we propose to perform a statistical analysis without making any approximations. For the
LLR test statistic, this has been carried out in [22] using the theory of martingales and the Azuma-Hoeffding
inequality. As discussed above, the LLR test statistic has the shortcoming that to apply the method, complete
information about p̃ is required. To avoid doing this, one requires a different test statistic. A natural candidate
for this is the test statistic Λ. Our analysis of Λ shows that the theory of martingales used in [22] is difficult to
apply to this statistic. This leaves us with the problem of obtaining a new test statistic satisfying the following
two conditions.

1. An attack based on the test statistic should not require complete information about the joint distribution.

2. It should be possible to carry out the analysis without using any approximations.

To achieve the above, we propose a new test statistic. For η ∈ {0, 1}`, let η denote the integer whose binary
representation is η. Let d be a positive real number. We propose the test statistic

T =
∑

η∈{0,1}`
ηdQη.

The computation of this statistic does not require information about p̃. Let µ0 (resp. µ1) be the expectation of
T when the Xj ’s follow p̃ (resp. the uniform distribution). If µ0 6= µ1, then T can be used to carry out a key
recovery attack. The requirement from the analysis of the internal structure of the block cipher is to obtain (an
estimate of) µ0. Given the value of µ0, it is possible to obtain an expression for the data complexity (i.e., the
number of plaintext-ciphertext pairs) required to attain the parameters of a successful attack.

The statistical analysis that we perform does not require us to make any approximations. Following the
approach outlined in [22], we set up a Doob martingale and show that an appropriate Lipschitz condition
holds allowing the application of the Azuma-Hoeffding inequality. The key recovery attack is analysed using the
hypothesis testing framework. This allows obtaining a lower bound on the data complexity necessary for attaining
specified upper bounds on the probabilities of Type-1 and Type-2 errors. These probabilities are directly related
to the success probability and the advantage of an attack.

The theoretical analysis holds for any positive d. The question that arises is what value of d should be used in
practice. An important point to keep in mind is that for the chosen value of d, it should be possible to estimate
the value of µ0. Experiments were done with different values of d. Based on these experiments, we suggest that
the value of d be taken to be 1. In most cases, choosing d = 1 leads to a lower data complexity compared to
choosing d 6= 1.

Experiments were done on the block cipher SERPENT using the new test statistic. The data complexities
turn out to be higher than that of the Λ test statistic. This may seem like a disadvantage of the new test statistic.
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On the other hand, the data complexity obtained using the new method is a rigorous upper bound, while for
the Λ method it is an approximate value and the literature does not provide any estimate of the approximation
errors.

1.1 Previous and Related Works

Linear cryptanalysis was proposed by Matsui in [17] as an attack on DES and involved a single linear approxima-
tion of the cipher. Later, in [18], Matsui used two linear approximations (which were assumed to be independent)
to improve the attack. Independently, Kaliski and Robshaw [16] extended Matsui’s attack involving single linear
approximations to multiple linear cryptanalysis using ` ≥ 1 independent linear approximations. The approxi-
mations that were considered had certain restrictions. It was assumed that the ` linear approximations have a
common data mask (i.e., plaintext and ciphertext mask) but different key masks.

In [3], Biryukov et al. gave a more general method for multiple linear cryptanalysis without any assumption
on the corresponding linear approximations. Their analysis, though, still assumed the linear approximations
to be independent. Analysis under the independence assumption was also done independently by Junod and
Vaudenay in [15] in the context of distinguishing attacks. Further work on distinguishing attacks without the
independence assumption was carried out in [1, 14, 2]. Murphy [20] argued that the independence assumption
need not be valid.

Junod [13] gave a detailed analysis of Matsui’s ranking method [17, 18]. This work introduced the notion
of ordered statistics in linear cryptanalysis. This was further developed by Selçuk in [23], where he used a well
known asymptotic result from the theory of ordered statistic to arrive at the expression for success probability
for both single linear and differential cryptanalysis.

The test statistic used in [1, 14, 2] was the log-likelihood ratio (LLR). The chi-squared test statistic, another
important statistic, was initially used by Handschuh and Gilbert for the cryptanalysis of the SEAL encryption
algorithm. Later Johansson and Maximov [12] gave an explicit analysis of the success and the error probabilities
in the context of their attack on the stream cipher Scream. The idea of Selçuk’s order statistics based approach
has been combined with the LLR and the chi-squared test statistics to obtain expressions for data complexities
of multiple linear cryptanalysis [10].

2 Background

2.1 Linear Cryptanalysis

Let E : {0, 1}k × {0, 1}n 7→ {0, 1}n be a block cipher, and so for each K ∈ {0, 1}k, EK(·) ∆
= E(K, ·) is a bijection

from {0, 1}n to itself. Here, K is called the secret key, the n-bit input to EK is called the plaintext and the n-bit
output of EK is called the ciphertext.

Usual constructions of block cipher involve a simple round function parameterised by a round key which
is iterated over several rounds. The round keys are produced by applying an expansion function, called the
key scheduling algorithm, to the secret key K. Denote the round keys by k(0), k(1), . . . and round functions by

R
(0)

k(0)
, R

(1)

k(1)
, . . .. Also, let K(i) denote the concatenation of the first i round keys, i.e., K(i) = k(0) || · · · || k(i−1)

and E
(i)

K(i) denote the composition of the first i round functions, i.e.,

E
(0)

K(0) = R
(0)

k(0)
; E

(i)

K(i) = R
(i−1)

k(i−1) ◦ · · · ◦R
(0)

k(0)
= R

(i−1)

k(i−1) ◦ E
(i−1)

k(i−1) ; i ≥ 1.

Suppose that an attack targets r + 1 rounds. For a plaintext P , we denote by B the output after r rounds, i.e,

B = E
(r)

K(r)(P ) and we denote by C the output after r + 1 rounds, i.e., C = E
(r+1)

K(r+1)(P ) = R
(r)

k(r)
(B).

Block cipher cryptanalysis starts off with a detailed analysis of the block cipher. This results in one or
possibly more relations between the plaintext P , the input to the last round B and possibly the expanded key
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K(r). In case of linear cryptanalysis these relations are linear in nature and are of the following form:

〈Γ(i)
P , P 〉 ⊕ 〈Γ

(i)
B , B〉 = 〈Γ(i)

K ,K
(r)〉; i = 1, 2, . . . , `;

where Γ
(i)
P ,Γ

(i)
B ∈ {0, 1}n and Γ

(i)

K(r) ∈ {0, 1}nr denotes the plaintext mask, the mask to the input of the last
round and the key mask respectively. A linear relation of the above form is called a linear approximation of the
block cipher. Such linear approximations usually hold with some probability which is taken over the uniform
random choices of the plaintext P . Obtaining such relations and their joint distribution is not a trivial task and
requires a lot of ingenuity and experience. They form the basis on which the statistical analysis of block ciphers
are built. If ` > 1, the attack is called a multiple linear cryptanalysis and if ` = 1, we call the attack single linear
cryptanalysis, or simply, linear cryptanalysis. Define

Li
∆
= 〈Γ(i)

P , P 〉 ⊕ 〈Γ
(i)
B , B〉; for i = 1, 2, . . . , `. (1)

Inner key bits: Let

zi = 〈Γ(i)
K ,K

(r)〉; i = 1, . . . , `.

Note that for a fixed but unknown key K(r), zi represents a single unknown bit. Denote by z = (z1, . . . , z`)

the collection of the bits arising in this manner. Since, the ` key masks Γ
(1)
K , . . . ,Γ

(`)
K are known, the tuple z is

determined only by the unknown but fixed K(r). Hence, there is no randomness either of K(r) or z. The bits of
z are called the inner key bits.

Target sub-key bits: Any linear relation of the form above, between P and B, usually involves only a subset
of the bits of B. When ` > 1, several (or multiple) relations between P and B are known. In such cases, it is
required to consider the subset of the bits of B which covers all the relations. In order to obtain these bits from
the ciphertext C it is required to partially decrypt C by one round. This involves a subset of the bits of the last
round key k(r). We call this the target sub-key. The goal of linear cryptanalysis is then to find the correct value
of the target sub-key using the ` linear approximations and their joint distributions. We denote the number of
bits in the target sub-key by m. In other words, these m key bits are sufficient to partially decrypt C by one
round and obtain the bits of B involved in any of the ` linear approximations. Notice that there are 2m possible
choices of the target sub-key out of which only one is correct. The purpose of the attack is to identify the correct
key. For convenience of notation, we will denote the correct choice of the target sub-key as κ∗.

Setting of the attack: The block cipher is instantiated with an unknown, but, fixed key. It is assumed that
N independent and uniform random plaintexts are chosen and the corresponding ciphertexts under fixed key
are obtained. Denote the plaintext-ciphertext pairs as (Pj , Cj); j = 1, 2, . . . , N . For each choice κ of the target
sub-key, it is possible for the attacker to partially decrypt each Cj by one round to obtain Bκ,j ; j = 1, 2, . . . , N .
Note that Bκ,j is dependent on κ even though Cj may not. Clearly, if the choice of κ is correct, then the Cj ’s
depend on κ. On the other hand, for an incorrect choice of κ, Cj has no relation with κ.

Statistical analysis proceeds by defining a test statistic Tκ for each choice κ of the target sub-key. This
provides 2m random variables of the type Tκ. The distribution of Tκ depends on whether κ is the correct choice
or, it is an incorrect choice. Under the usual wrong key hypothesis [8], it is assumed that the distributions of all
the Tκ’s for incorrect choices of κ’s are the same.

Suppose that the plaintext P is uniformly distributed. Since, each round function is a bijection, the uniform
distribution of P also induces a uniform distribution on B. By definition, Li is a binary random variable taking
values from the set {0, 1}. Also from the discussion above it is clear that the source of randomness of Li comes
from the randomness of P . Define the random variable X to be the following:

X = (L1, . . . , L`).

Then X is a random variable distributed over {0, 1}`.
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Joint distribution parameterised by inner key bits: The distribution of the random variable X =
(L1, . . . , L`) is the following. For η ∈ {0, 1}` and z ∈ {0, 1}`,

pz(η) = Pr[L1 = η1 ⊕ z1, . . . , L` = η` ⊕ z`] =
1

2`
+ εη(z); (2)

where −1/2` ≤ εη(z) ≤ 1 − 1/2`. Denote by p̃z = (pz(0), pz(1), . . . , pz(2
` − 1)) the corresponding probability

distribution, where the integers {0, 1, . . . , 2` − 1} are identified with the set {0, 1}`. For each choice of z, we
obtain a different but related distribution. Let, z′ = z ⊕ β for some β ∈ {0, 1}`, then it is easy to verify that
εη(z

′) = εη⊕β(z), which implies that pz⊕β(η) = pz(η ⊕ β). Let, p̃ denote the probability distribution p̃0` , i.e.,

p̃
∆
= p̃0` . Write

p̃ = (p0, . . . , p2`−1),

so that for all η ∈ {0, 1}`, pη
∆
= p(η) = 1/2` + εη.

For κ ∈ {0, 1, . . . , 2m − 1}, j = 1, . . . , N and i = 1, . . . , `, define

Lκ,j,i = 〈Γ(i)
P , Pj〉 ⊕ 〈Γ

(i)
B , Bκ,j〉; (3)

Xκ,j = (Lκ,j,1, . . . , Lκ,j,1); (4)

Qκ,η = #{j ∈ {1, 2, . . . , N} : Xκ,j = η}. (5)

Note that Qκ,η is the number of times η appears among the random variables Xκ,1, . . . , Xκ,N . Suppose z is the
correct choice of the inner key bits. Then the distribution of Qκ,η is the following:

Qκ,η ∼
{

Bin(N, pz(η)) if κ = κ∗

Bin(N, 2−`) if κ 6= κ∗.

Denote the uniform distribution over the set {0, 1}` by p$ = (2−`, . . . , 2−`).

2.2 Martingales

We provide a brief description of martingales for for discrete random variables. Further details can be found in
standard texts such as [7, 19]. Conditional expectation is defined in the following manner.

Definition 1 (Conditional Expectation). Let X and Y be two random variables such that E [X] <∞. Define

ψ (y)
∆
= E [X|Y = y] =

∑
x

xPr [X = x|Y = y] .

Thus, E [X|Y = y] is a function of y. The conditional expectation of X given Y is defined to be ψ (Y ) and is

written as ψ (Y )
∆
= E [X|Y ]. So, the conditional expectation of X given Y is a random variable ψ (Y ) which is

a function of the random variable Y .

The following are several standard properties of conditional expectation.

Proposition 1. 1. E [E [Y | X]] = E [X] .

2. If X has a finite expectation and if g is a function such that Xg(Y ) has a finite expectation, then E [Xg(Y ) | Y ] =
E [X | Y ] g(Y ).

3. E
[
(X − g(Y ))2

]
≥ E

[
(X − E [X | Y ])2

]
for any pair of random variables X and Y such that X2 and

g(Y )2 have finite expectations.
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4. For any function g, such that g(X) has finite expectation, E [g(X) | Y = y] =
∑
x

g(x) Pr [X = x | Y = y] .

5. | E [X | Y ] |≤ E [| X || Y ] .

6. E [E [X | Y,Z] | Y ] = E [X | Y ] .

7. E [E [g(X,Y ) | Z,W ] | Z] = E [g(X,Y ) | Z] .

Definition 2 (Martingale). A sequence of random variables Z1, Z2, Z3, . . . is a martingale with respect to another
sequence of random variables Y1, Y2, Y3, . . . if for all n ≥ 1 the following two conditions hold.

1. E [|Zn|] <∞.

2. E [Zn+1|Y1, Y2, . . . , Yn] = Zn.

If Zn = Yn for all n ≥ 1 then the sequence is a martingale with respect to itself.

The basic Azuma-Hoeffding inequality for martingales is the following.

Theorem 2. Let, Z0, Z1, Z2, . . . be a martingale with respect Y0, Y1, Y2, . . . and suppose that there exists a sequence
υ1, υ2, . . . of real numbers such that for all i ≥ 1, | Zi − Zi−1 |≤ υi. Then for any integer λ > 0 and real δ > 0

Pr [Zλ − Z0 ≥ δ] ≤ e−δ
2/(2

∑λ
i=1 υ

2
i ); (6)

Pr [Zλ − Z0 ≤ −δ] ≤ e−δ
2/(2

∑λ
i=1 υ

2
i ). (7)

A simple way to construct a martingale is the following. Let Y0, Y1, . . . Yλ be a sequence of random variables
and Y is a random variable with E [| Y |] <∞. Define Zi = E [Y | Y0, Y1, . . . , Yi] for i = 0, 1, . . . , n. Then using
properties of conditional expectation given in Proposition 1, it is easy to see that the following condition holds.

E [Zi+1 | Y0, Y1, . . . , Yi] = Zi.

So, {Zλ} is a martingale with respect to {Yλ}. A martingale of this type is called a Doob Martingale.
To apply the Azuma-Hoeffding inequality, it is required to ensure that the differences |Zi − Zi−1| are

bounded. A general technique for obtaining a Doob martingale with bounded differences is as follows. A
function f(y1, y2, . . . , yλ) is said to satisfy the υ-Lipschitz condition, if for any i and for any set of values
y1, y2, . . . , yλ and y′i,

| f(y1, y2, . . . , yi−1, yi, yi+1, . . . , yλ)− f(y1, y2, . . . , yi−1, y
′
i, yi+1, . . . , yλ) |≤ υ.

That is by changing the value of any single coordinate changes the value of the function by at most υ. Let
Y1, . . . , Yλ be a finite sequence of random variables and set

Z0 = E [f(Y1, Y2, . . . , Yλ)]

Zi = E [f(Y1, Y2, . . . , Yλ) | Y1, Y2, . . . , Yi] .

Then Z0, Z1, . . . , Zλ form a Doob martingale with respect to Y1, . . . , Yλ. Further, if the random variables Yi’s are
independent it can be shown that |Zi−Zi−1| ≤ υ. The martingale Z0, . . . , Zλ satisfies the conditions of Theorem 2
and so the inequality stated in the theorem applies to this martingale.

3 Drawbacks of Previously Proposed Statistics

Two test statistics have been proposed in the literature for performing statistical analysis of attacks on block
ciphers. In this section, we briefly review these statistics and point out certain drawbacks.
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3.1 The Log-Likelihood Ratio Test Statistics

Recall that p̃ = (p0, . . . , p2`−1) and p$ = (2−`, . . . , 2−`). For a fixed κ and 1 ≤ j ≤ N , Xκ,j is given by (4). For
j = 1, . . . , N , define

Yκ,j = ln
(
pXκ,j/2

−`
)
. (8)

The LLR random variable is defined to be the following.

LLRκ =

N∑
j=1

Yκ,j =

N∑
j=1

ln
(

2`pXκ,j

)
=

2`−1∑
η=0

Qκ,η ln(2`pη). (9)

The LLR test statistic has been used for key recovery attacks as well as distinguishing attacks in several works
in the literature [1, 10, 4, 21, 22]. One drawback of this statistics is that to compute it, the full knowledge of
p̃ is required. This can be seen from the above two expressions for LLRκ. In many situations, such complete
knowledge of the joint distribution of the multiple linear approximations may not be available. In such cases, it
will not be possible to compute the value of LLRκ.

3.2 Chi-Squared Test Statistic

Recall from (5) that for a choice κ of the target sub-key and for η ∈ {0, 1}`, Qκ,η is the number of times η occurs
among the random variables Xκ,1, . . . , Xκ,N . Define a test statistic Tκ in the following manner:

Tκ = 2`N
2`−1∑
η=0

(Qκ,η/N − 2−`)2. (10)

For the correct choice κ∗ of the inner key bits, the right hand side of (10) involves Qκ∗,η whose distribution
depends on the correct inner key bits z. Due to the relation pz⊕β(η) = pz(η ⊕ β), the distribution of Tκ∗ ,
however, does not depend on z.

The distribution of Qκ,η follows a binomial for both correct and incorrect choices of κ. The binomial can be
approximated using a normal distribution and then the distribution of Tκ approximately follows a chi-squared
distribution for both correct and incorrect choices of κ. There is, however, the issue of error in approximation.
This issue has been mentioned in the literature [11, 10, 21] and has been analysed in details in [21] where several
shortcomings have been pointed out.

A question then arises as to whether it is possible to use this test statistic to obtain an expression for the data
complexity without using any approximation. Such an approach has been shown to be successful for the LLR test
statistic [22] through the application of the theory of martingales. In this section, we explore the applicability
of this theory to the test statistic Tκ given by (10).

Recalling the discussion in Section 2.2, an approach to applying the theory of martingales is to build a Doob
martingale and obtain a upper bound on the absolute difference in the values of two successive random variables
in the martingale sequence. The first part is quite easy to do, but, obtaining a good upper bound seems to be
difficult.

For 0 ≤ η ≤ 2` − 1, define Yκ,η = Qκ,η −N2−` so that Tκ = 2`

N

∑2`−1
η=0 Y 2

κ,η.

Define Zκ,0 = E[Tκ] = µ0 and for 1 ≤ η ≤ 2`, define

Zκ,η = E[Tκ | Yκ,0, Yκ,1, . . . , Yκ,η−1]

=
2`

N

η−1∑
j=0

Y 2
κ,j +

2`−1∑
j=η

E[Y 2
κ,j | Yκ,0, . . . , Yκ,η−1]

 ; [Since, E[X | X] = X]
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It is not difficult to show that the sequence {Zκ,η}2
`

η=0 forms a Doob Martingale with respect to {Yκ,η}2
`−1
η=0 .

Further, Tκ = Zκ,2` .
Let us now consider the problem of upper bounding |Zi+1 − Zi|. In Section 2.2, the υ-Lipschitz condition

was utilised for this purpose. To apply this condition in the present context, we need to set f(y0, . . . , y2`−1) =∑2`−1
η=0 y2

η. From this, it is possible to obtain an υ such that f satisfies the υ-Lipschitz condition. Moving from
this to a upper bound on |Zi+1 − Zi| requires the crucial condition that the random variables Yκ,0, . . . , Yκ,2`−1

are independent. This condition, however, does not hold. The random variable Yκ,η is defined from Qκ,η and
so Yκ,0, . . . , Yκ,2`−1 are independent if and only if the random variables Qκ,0, . . . , Qκ,2`−1 are independent. From

the definition of Qη, we have that
∑2`−1

η=0 Qκ,η = N . So, Qκ,0, . . . , Qκ,2`−1 are not independent and so neither are
Yκ,0, . . . , Yκ,2`−1. So, the technique of using the Lipschitz condition to upper bound the martingale differences
does not work.

Let us now consider the problem of directly trying to obtain a bound for the | Zη+1 − Zη |. We have,

Zκ,η+1 − Zκ,η

=
2`

N

Y 2
κ,η +

2`−1∑
j=η+1

E[Y 2
κ,j | Yκ,0, . . . , Yκ,η]−

2`−1∑
j=η

E[Y 2
κ,j | Yκ,0, . . . , Yκ,η−1]


=

2`

N

Y 2
κ,η − E[Y 2

κ,η | Yκ,0, . . . , Yκ,η−1] +
2`−1∑
j=η+1

(
E[Y 2

κ,j | Yκ,0, . . . , Yκ,η]− E[Y 2
κ,j | Yκ,0, . . . , Yκ,η−1]

) .
Clearly, the involved random variables take values from a finite set and so there is indeed a maximum value for
| Zη+1−Zη |. Getting a good bound on this maximum value, however, seems to be quite difficult to obtain from
the above expansion. Without an appropriate bound, the application of the Azuma-Hoeffding inequality does
not provide meaningful results. It is due to this reason that we do not explore this approach any further.

4 A New Test Statistic

Let d be a positive integer and consider the following test statistic.

Tκ =
∑

η∈{0,1}`
ηdQκ,η. (11)

Let µ0 be the expectation of Tκ for the correct choice of κ and let µ1 be the expectation of Tκ for an incorrect
choice of κ. Then

µ1 = E[Tκ] =
∑

η∈{0,1}`
ηdE[Qκ,η] = N2−`

∑
η∈{0,1}`

ηd; (12)

µ0 = E[Tκ∗ ]

=
∑

η∈{0,1}`
ηdE[Qκ∗,η]

=
∑

η∈{0,1}`
ηdN(2−` + εη(z)) = µ1 +N

∑
η∈{0,1}`

ηdεη(z) = µ1 +N
∑

η∈{0,1}`
ηdεη. (13)

So, µ0 − µ1 = N
∑

η∈0,1` η
dεη. One can now aim to design a statistical analysis which attempts to recover

κ∗ by exploiting the difference in the two expectations. While doing this, we would like to avoid making any
approximations. We next show how both of these aims can be achieved.
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Recall that for a fixed κ, the random variables Xκ,1, . . . , Xκ,N are independent. The test statistic given
by (11) can be rewritten in the following manner.

Tκ =
∑

η∈{0,1}`
ηdQκ,η =

N∑
j=1

Xd
κ,j . (14)

This enables writing Tκ as the sum of independent random variables. The computation of Tκ can be done in
O(N) time using any one of the two expressions. This computation does not require the knowledge of the εη’s.

Define, a sequence of random variables as

Zκ,0 = E[Tκ]

Zκ,j = E[Tκ | X1, . . . , Xi]; j ≥ 1.

Therefore, ZN = Tκ. The sequence Zκ,0, Zκ,1, . . . Zκ,N forms a Doob Martingale with respect to Xκ,1, . . . , Xκ,N .
We would like to apply the Lipschitz condition to upper bound the martingale differences. To this end, let

f(x1, . . . , xN ) = xd1 + · · ·+ xdN . Let x1, . . . , xN , x
′
i be any N + 1 elements in {0, . . . , 2` − 1}. Then∣∣f(x1, . . . , xi−1, xi, xi+1, xN )− f(x1, . . . , xi−1, x

′
i, xi+1, xN )

∣∣
=

∣∣∣∣∣∣
N∑
j=1

xdj −
i−1∑
j=1

xdj − x′di −
N∑

j=i+1

xdj

∣∣∣∣∣∣
= | xdi − x′di |≤ max

xi,x′i∈{0,1}`
| xdi − x′di |

= (2` − 1)d.

Let υ = (2` − 1)d. This implies that f() is υ-Lipschitz. Since Xd
1 , . . . , X

d
N are independent, it follows that

| Zκ,j − Zκ,j−1 |≤ υ for all j ∈ {1, 2, . . . , N}. Therefore, for a particular value of κ, one can apply Azuma-
Hoeffding inequality on the Doob Martingale Zκ,0, Zκ,1, . . . Zκ,N .

Recall that µ0 is the expectation of Tκ∗ and µ1 is the expectation of Tκ for any incorrect choice of κ. The
expressions for µ0 and µ1 are given by (12) and (13) respectively. Consider the following test of hypothesis:

Hypothesis Test-1:
H0: “κ is correct” versus H1: “κ is incorrect.”
Decision rule:

Case µ0 > µ1: Reject H0 if Tκ ≤ t,∀z ∈ {0, 1}`; where t ∈ (µ1, µ0);
Case µ0 < µ1: Reject H0 if Tκ ≥ t,∀z ∈ {0, 1}`; where t ∈ (µ0, µ1).

Proposition 3. Let 0 < α, β < 1. In Hypothesis Test-1, it is possible to choose t such that for

N ≥
2(2` − 1)2d(

√
ln(1/α) +

√
ln(1/β))2(∑2`−1

η=0 ηdεη

)2 (15)

the probabilities of the Type-1 and Type-2 errors are upper bounded by α and β respectively.

Proof. We provide the proof for the case µ0 > µ1 with the other case being similar. The probabilities of Type-1
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and Type-2 errors are given by

Pr[Type-I Error] = Pr[Tκ ≤ t | H0 holds] = Pr[Tκ − E[Tκ] ≤ t− E[Tκ]|H0 holds]

= Pr[ZN − Z0 ≤ −(µ0 − t)|H0 holds]

≤ exp

(
−(µ0 − t)2

2Nυ2

)
; [By Azuma-Hoeffding inequality].

Pr[Type-2 Error] = Pr[Tκ > t | H1 holds] = Pr[Tκ − E[Tκ] > t− E[Tκ] | H1 holds]

= Pr[ZN − Z0 > (t− µ1) | H1 holds]

≤ exp

(
−(t−Nµ1)2

2Nυ2

)
; [By Azuma-Hoeffding inequality].

Let,

α = exp

(
−(Nµ0 − t)2

2Nυ2

)
; β = exp

(
−(t−Nµ1)2

2Nυ2

)
.

Then, using the fact that µ1 < t < µ0, we get

t = µ0 − υ
√

2N ln(1/α) (16)

t = µ1 + υ
√

2N ln(1/β). (17)

Eliminating t, from the above two equations and using the expressions for µ0, µ1 and υ, we get the expression
given by the right hand side of (15). For any N greater than this value, the probabilities of Type-1 and Type-2
errors will be at most α and β respectively.

4.1 Success Probability and Expected Advantage

Two important parameters which are relevant to a key recovery attack are the success probability and the
(expected) advantage.

The success probability is the probability that the correct value of the target sub-key is recovered in the
attack. By definition, the success probability is 1− Pr[Type-1 error]. So, if α is an upper bound on the success
probability, then PS = 1− α is a lower bound on the success probability.

The advantage of an attack is a, if a fraction 2−a of all possible 2m values of the target sub-key are reported as
candidate values. So, for an attack with advantage a, the size of the list of candidate keys is 2m−a. A particular
choice of κ is reported as a candidate key if a Type-2 error occurs. Since there are a total of 2m − 1 incorrect
values of the target sub-key, the expected number of wrong values reported as candidate keys is β(2m − 1).
Equating to 2m−a gives β = 2−a × 2m/(2m − 1).

In the expression for the data complexity N , we may replace α by 1−PS and β by 2−a × 2m/(2m − 1). This
provides an expression for the data complexity required to attain success probability at least PS and advantage
at least a.

4.2 Attack Procedure

The actual application of the attack will be as follows. Given PS and a, determine α and β as discussed in
Section 4.1; then determine N as given by the right hand side of (15). From α and N determine t as given
by (16). Once t is determined, Hypothesis Test-1 can be performed. Suppose that µ0 > µ1, the other case being
similar. Initialise a list L to be empty. For each choice κ of the target sub-key, compute Tκ; if Tκ > t, append κ
to L. At the end, L contains the set of candidate keys.

The above procedure does not require knowledge of p̃ to apply the test. Only the knowledge of µ0 is required
to obtain an estimate of the data complexity N .
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4.3 Choice of d

The theory developed above works for all positive d. The question that arises is what is the appropriate value of
d that should be used? There are two factors that need to be kept in mind.

1. The value of d has an effect on the data complexity. So, one should try to choose a value of d which
minimises the data complexity.

2. For the chosen value of d, it should be possible to obtain an estimate of µ0 through the analysis of the
block cipher.

Regarding the first point, there does not seem to be a way to formally prove that one particular value of d will
minimise the data complexity. Instead, we provide intuitive explanations and experimental evidence.

The statistic Tκ =
∑N

j=1X
d
κ,j . As d goes to zero, Xd

κ,j goes to 1 and so the effect of Xκ,j diminishes. Further,

as d → 0, (2` − 1)d → 1 and ηd → 1 for all η ∈ {0, 1}`. So, the numerator of the data complexity expression
given by (15) goes to a constant and the denominator goes to

∑
η∈{0,1}` εη. By definition, the later sum is 0. So,

as d→ 0, the data complexity expression given by (15) goes to infinity. Experiments confirm this behaviour.
Based on the above, we do not consider values of d < 1. For integer values of d ≥ 1, we have run experiments

with the known linear approximations of SERPENT and have observed that the minimum data complexity is
attained for d = 1 and d = 2. To decide between these two values, we consider the second point mentioned
above. Intuitively, it is easier to obtain the value of µ0 for d = 1 than for d = 2. So, we suggest using d = 1 for
defining the test statistic Tκ.

Negative values of d: Most of the theory that has been developed also works for negative values of d. The
only problem is that for η = 0, the value of ηd is undefined. This defect can be rectified by defining Tκ to

be
∑N

j=1(1 + Xκ,j)
d. Working out the details of this test statistic leads to υ = |2`d − 1| and |µ0 − µ1| =∑

η∈{0,1}`(1 + η)dεη. The value of υ does not depend on the sign of d. Suppose d > 0, then the value of |µ0−µ1|
with d is greater than the value of |µ0− µ1| with −d. As a result, the data complexity with d is lesser compared
to the data complexity for −d. Due to this reason, we have not considered negative values of d.

5 Experimental Results for SERPENT

We compare the data complexity given by the new test statistic with that of the data complexity of the Λ-test
statistic given in [10, Equation (18)] for the block cipher SERPENT.

A reduced round linear cryptanalysis of SERPENT was earlier reported in [6] using a set of linear approx-
imations [5]. This set was later used in [9, 10] to perform multidimensional linear cryptanalysis on SERPENT
using the LLR and the Λ-test statistic. To perform their experiments Hermelin et al. (see [9]) used a subset of
64 linear approximations among the list of linear approximations given in [5]. This set can be generated by 10
linear approximations called the basis linear approximations and can be used to recover 10 bits of the last round
key. Thus, for this particular experiment, ` = 10 and m = 10.

We note at this point that the total number of linear approximation required to generate the full probability
distribution for the correct key is 210 − 1 = 1023. However, out of these only 64 are given in [5]. To find the full
probability distribution for the correct key, two methods were suggested in [9]. We have used the second method.

For our experiments, the value of the probability of success (PS) was fixed to 0.95. The data complexities for
both the new test statistic with d = 1 and the chi-squared method were then computed for a = 1, 2, . . . , 10, where
“a” denotes advantage of the method. Table 1 summarises the output of the experiment. In the Table, NΛ and
NX denote the data complexity of the Λ [10, equation 18] and the new test statistic with d = 1, respectively. The
last column of the Table gives the ratio of the two data complexities. From the Table, it is clear that the Λ test
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statistic requires lower data complexity compared to the new method. As a increases, the ratio decreases and for
values of a = 6, . . . , 10, NX is about 8800 to 8300 times more that NΛ. Another experiment was conducted to

a NΛ NX NX/NΛ

1 1.11×1011 1.25×106 88987.47

2 1.43×1011 9.48×106 15135.63

3 1.71×1011 1.53×107 11173.77

4 1.96×1011 2.0×107 9799.09

5 2.19×1011 2.4×107 9132.67

6 2.41×1011 2.75×107 8760.68

7 2.62×1011 3.07×107 8538.75

8 2.83×1011 3.37×107 8403.21

9 3.03×1011 3.64×107 8321.65

10 3.23×1011 3.90×107 8275.83

Table 1: Table showing the comparison of the new test statistic with d = 1 and the chi-squared test statistic for
SERPENT with a ranging from 1 to 10.

determine the value of d for which the data complexity of the new test statistic is minimum. For this experiment,
100 integral and 99 fractional values of d of the form 1, 2, . . . , 100 and 0.01, 0.02, . . . , 0.99, respectively, were
considered. For each of these values of d and for each a = 1, 2, . . . , 10, the corresponding data complexities were
computed for the given distribution of SERPENT.

The value of d corresponding to the minimum data complexity and the corresponding value of the data
complexity were then recorded. These are reported in Table 2. As can be seen from the table, in case of
SERPENT bith d = 1 and d = 2 give the minimum data complexity among all possible values of d > 0. This
table supports our choice of d = 1.

a
Minimum Data Complexity

Value of d Data Complexity

1 1, 2 1.11×1011

2 1, 2 1.43×1011

3 1, 2 1.71×1011

4 1, 2 1.96×1011

5 1, 2 2.19×1011

6 1, 2 2.41×1011

7 1, 2 2.62×1011

8 1, 2 2.83×1011

9 1, 2 3.03×1011

10 1, 2 3.23×1011

Table 2: Table showing the minimum data complexity for different values of d for SERPENT with a ranging
from 1 to 10.
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6 Conclusion

The paper considered the problem of statistical analysis of attacks on block ciphers in the situation where the
LLR test statistic cannot be applied. The other aspect considered was to follow the approach in [22] towards a
rigorous analysis without using any unfounded approximations. We first considered the chi-squared based test
statistic and argued that this test statistic is not amenable to analysis using the theory of martingales used
in [22].

To resolve the problem, we introduced a new test statistic using which an attack can be applied without the
knowledge of the underlying probability distribution. Also, the resulting statistical framework can be analysed
rigorously without making any approximations. The obtained expression for data complexity was compared to the
approximate expression for data complexity for the chi-squared test statistic using known linear approximations
for the block cipher SERPENT. As expected, the data complexity of the new test statistic turns out to be
higher. This shows that if one wishes to follow a rigorous approach, then one would have to be satisfied with a
conservative estimate of the data complexity.
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