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Abstract. We propose a new suite of algorithms that significantly improve the performance
of supersingular isogeny Diffie-Hellman (SIDH) key exchange. Subsequently, we present a
full-fledged implementation of SIDH that is geared towards the 128-bit quantum and 192-bit
classical security levels. Our library is the first constant-time SIDH implementation and is
more than 2.5 times faster than the previous best (non-constant-time) SIDH software. The
high speeds in this paper are driven by compact, inversion-free point and isogeny arithmetic
and fast SIDH-tailored field arithmetic: on an Intel Haswell processor, generating ephemeral
public keys takes 51 million cycles for Alice and 59 million cycles for Bob while computing
the shared secret takes 47 million and 57 million cycles, respectively. The size of public keys
is only 751 bytes, which is significantly smaller than most of the popular post-quantum key
exchange alternatives. Ultimately, the size and speed of our software illustrates the strong
potential of SIDH as a post-quantum key exchange candidate and we hope that these results
encourage a wider cryptanalytic effort.

Keywords: Post-quantum cryptography, Diffie-Hellman key exchange, supersingular ellip-
tic curves, isogenies, SIDH.

1 Introduction

Post-quantum cryptography. The prospect of a large scale quantum computer that is capable
of implementing Shor’s algorithm [50] has given rise to the field of post-quantum cryptography
(PQC). Its goal is to develop and ultimately deploy cryptographic primitives that resist crypt-
analysis by both classical and quantum computers. Recent developments in quantum computing
(see, e.g., [18, 40, 29]) have helped catalyze government and corporate action in this arena. For
example, in April 2015, the National Institute of Standards and Technology (NIST) held a “Work-
shop on Cybersecurity in a Post-Quantum World”, reaching out to academia and industry to
discuss potential future standardization of PQC. Later, in August 2015, the National Security
Agency (NSA) released a major policy statement that announced plans to “transition to quan-
tum resistant algorithms in the not too distant future”[41]. In February 2016, NIST published a
draft “Report on Post-Quantum Cryptography” [13], which emphasizes the need to start working
towards the deployment of post-quantum cryptography in our information security systems, and
outlines NIST’s plans to “initiate a standardization effort in post-quantum cryptography”.

In terms of public-key PQC, there are four well-known and commonly cited classes of cryp-
tographic primitives that are believed to remain secure in the presence of a quantum computer:
code-based cryptography, lattice-based cryptography, hash-based cryptography, and multivariate
cryptography. Specific examples for each of these are McEliece’s code-based encryption scheme [35];
Hoffstein, Pipher and Silverman’s lattice-based encryption scheme “NTRU” [27]; Merkle’s hash-
tree signatures [36]; and Patarin’s “HFEv−” signature scheme [44]. A positive trait shared by all of
these examples is a resistance to decades of attempted classical and quantum cryptanalysis which
has inspired widespread confidence in their suitability as a post-quantum primitive. However, most
of these examples also share the trait of having enormous public key and/or signature sizes, par-
ticularly when compared to traditional primitives based on the hardness of integer factorization
or (elliptic curve) discrete logarithm computation.



Supersingular isogeny Diffie-Hellman. In this paper, we study a different primitive that does
not fall into any of the above classes, but is currently believed to offer post-quantum resistance:
the supersingular isogeny Diffie-Hellman (SIDH) key exchange protocol proposed by Jao and De
Feo in 2011 [28]. The SIDH key exchange protocol is more than a decade younger than all of the
above schemes, so its security is yet to withstand the tests of time and of a wide cryptanalytic
effort. Nevertheless, the current picture of its security properties looks promising. The best known
classical and quantum attacks against the underlying problem are both exponential in the size of
the underlying finite field, and their complexities make current SIDH key sizes significantly smaller
than their post-quantum key exchange and/or encryption counterparts1.

Our contributions. We present a full-fledged, high-speed implementation of (unauthenticated)
ephemeral SIDH that currently provides 128 bits of quantum security and 192 bits of classical secu-
rity. This implementation uses 48-byte private keys to produce 751-byte ephemeral Diffie-Hellman
public keys, and is currently written almost entirely in C with only a limited set of functions
written in assembly. To our knowledge, our library (see [16]) presents the first SIDH software that
runs in constant-time, i.e., that is designed to resist timing [32] and cache timing [43] attacks. On
x64 platforms, our implementation runs more than 2.5 times faster than the (previously fastest)
implementation of SIDH by Azarderakhsh, Fishbein and Jao [2]. Note that this performance com-
parison does not take into account the fact that the implementation from [2] is not protected
against timing attacks.

The main technical contributions that lead to these improvements are:

– Projective curve coefficients: a widely-deployed technique in traditional ECC involves avoid-
ing inversions by working with elliptic curve points in projective space. Following Jao and
De Feo [28], we also employ this technique to work efficiently with points in P1 by making
use of the fast arithmetic associated with the Kummer varieties of Montgomery curves. A
crucial difference in this work, however, is that we also work projectively with the curve co-
efficients; unlike traditional ECC where the curve is fixed, every SIDH key exchange requires
computations on many different isogenous curves. In Section 3 we show that the Montgomery
model also allows all of the necessary isogeny arithmetic to be performed efficiently in P1.
This gives rise to more compact algorithms, significantly simplifies the overall computation,
and in particular means that only one inversion is required during each round of the SIDH
protocol. The observations in Section 3 ultimately show that using the Kummer varieties of
Montgomery curves gives a twofold advantage in SIDH: both point arithmetic and isogeny
arithmetic amount to simple computations in P1.

– Prime selection and tailor-made Montgomery multiplication: we select a prime with form
p = `eAA `eBB f − 1, where `A = 2, `B = 3, and the bit lengths of 2eA and 3eB are slightly smaller
than a multiple of 64. This supports efficient arithmetic on a wide range of platforms and
allows access to a large variety of optimizations such as the efficient use of vector instructions,
Karatsuba multiplication, and lazy reduction. Moreover, it is well-known that primes of a
special form can lead to faster algorithms for computing modular arithmetic in comparison
with general-purpose algorithms. In this work, we note the special shape of these SIDH-friendly
primes and modify the popular Montgomery multiplication algorithm to speed up modular
arithmetic.

– Ground field scalar multiplications for key generation: secure key generation in the SIDH
protocol requires the definition of two independent cyclic subgroups of a fixed order (see
Section 2). Jao and De Feo [28, §4.1] propose that generators of these two groups can be
computed by multiplying random curve points by an appropriate cofactor, and that their
linear independence can be checked via the Weil pairing. In Section 4 we employ a well-
known technique from the pairing literature [48, §5] to work with two advantageous choices
of torsion subgroups: the base-field and trace-zero subgroups. These choices allow the initial

1 An exception here is NTRUEncrypt [27], which has comparable public key sizes – see
https://github.com/NTRUOpenSourceProject/ntru-crypto.



scalar multiplications that are required during key generation to be performed entirely over
the base field. While these scalar multiplications only constitute a small fraction of the overall
key generation time, and therefore the overall speedup from this technique is only moderate,
a more visible benefit is the significant decrease in the size of the public parameters – see
Section 6. We discuss possible security implications of this choice in Section 4.

Several of the above choices not only aid efficiency, but also the overall simplicity and compact-
ness of the SIDH scheme. Choosing to unify points with their inverses and to unify Montgomery
curves with their quadratic twists (see Section 3) effectively compresses the elements that are sent
over the wire, i.e., the public keys, by a factor of two. Moreover, there is no decompression required
and, in particular, our software never requires the computation of square roots2.

The timings we present in Section 7 reveal that high-security SIDH key exchange is more
efficient than it was previously known to be. Moreover, our constant-time software shows that,
if confidence in the security of SIDH warrants real-world deployment in the future, the same
level of side-channel protection can be achieved in the SIDH setting as in traditional number-
theoretic schemes. We therefore hope that this paper encourages a wider cryptanalytic effort
on the problems underlying the security of SIDH (see Section 2). Moreover, even if cryptanalytic
improvements are made in the future, the huge difference between current SIDH key sizes and those
of other PQC primitives suggest that the problem could remain of interest to practitioners. So
long as the best known attacks remain exponential with a reasonable exponent (see the discussion
below), it is reasonable to suggest that elliptic curves could offer the same benefit in post-quantum
cryptography that they did in classical cryptography.

Beyond the efficiency improvements above, we present several techniques that help to bridge
the gap between the theoretical SIDH scheme in [28] and its real-world deployment. Of particular
importance are the contributions discussed in the following two paragraphs.

A strong ECDH+SIDH hybrid. Given the uncertainty surrounding the arrival date of large-scale
quantum computers (as well as the time it takes for new primitives to be thoroughly cryptanalyzed,
standardized and deployed), many real-world cryptographers are hastily pushing for deployment
of post-quantum primitives sooner rather than later. Subsequently, a proposal that is gaining
popularity in the PQC community is the deployment of hybrid schemes, i.e., schemes where a long-
standing classically-secure primitive P is partnered alongside a newer post-quantum candidate Q
(cf. [7]). The simple reasoning here is that, even if further cryptanalysis weakens Q’s resistance
to classical computers, the hybrid scheme P +Q is likely to remain classically secure; conversely,
P’s presumed weakness against a quantum computer does not affect the post-quantum security
of P +Q. Taking such a prudent measure in the case of SIDH, which is much newer than other
post-quantum primitives, seems especially wise. In Section 8 we present a possibility to partner
SIDH public keys alongside traditional elliptic curve Diffie-Hellman (ECDH) public keys that are
extremely strong. In particular, while our proposed SIDH parameters respectively offer around
128 and 192 bits of security against the best known quantum and classical attacks, the proposed
hybrid offers around 384 bits of classical security based on the elliptic curve discrete logarithm
problem (ECDLP). While this might seem like overkill3, we show that this partnering is a very
natural choice and comes at a relatively small cost: compared to a standalone SIDH, the size of
the public keys and the overall runtime in our SIDH+ECDH hybrid increase by no more than
17% and 13%, respectively, and there is almost no additional code required to include ECDH in
the scheme.

Full public key validation. The security of unauthenticated ephemeral key exchange is modeled
using passive adversaries, in which case we can assume that both parties’ public keys are honestly
generated. As was pointed out in April 2015 by a group at the NSA [30], in static key exchange

2 Square roots in the types of fields used in SIDH are particularly annoying and require multiple field
exponentiations [49, §3.3].

3 For example, this is double the bit-size of the 192-bit ECDH currently recommended by the NSA [41]
for “up to TOP SECRET” protection.



when private keys are reused, validating public keys in the case of isogeny-based cryptography
becomes both necessary and non-trivial. In Section 9 we detail the validation of the public keys
used in our scheme, and in particular show how to achieve full validation efficiently in our compact
framework. To our knowledge this is the first time public key validation has been described in the
case of SIDH.

SIDH history and security. Beginning with an unpublished preprint with Rostovtsev in early
2006 [46], and then in a series of Russian papers that culminated in his thesis [52]4, Stolbunov
proposed a Diffie-Hellman-like cryptosystem based on the difficulty of computing isogenies between
ordinary (i.e., non-supersingular) elliptic curves. The best algorithm to solve this problem on a
classical computer runs in exponential time and is due to Galbraith and Stolbunov [24]5. In late
2010, however, Childs, Jao and Soukharev [14] gave a quantum algorithm that computes isogenies
between ordinary curves in subexponential time, assuming the Generalized Riemann Hypothesis
(GRH). Subsequently, in late 2011, Jao and De Feo [28] put forward SIDH, which is instead based
on the difficulty of computing isogenies between supersingular elliptic curves. This problem is
immune to the quantum attack in [14], since this attack crucially relies on the endomorphism ring
being commutative, which is not the case for a supersingular curve whose endomorphism ring is
isomorphic to an order in a quaternion algebra [51, §V.3.1].

Given two isogenous supersingular elliptic curves defined over a field of characteristic p, the
general supersingular isogeny problem is to construct an isogeny between them. The best known
classical attack on this problem is due to Delfs and Galbraith [17] and requires Õ(p1/2) bit oper-
ations, while the best known quantum attack is due to Biasse, Jao and Sankar [8] and requires
Õ(p1/4) bit operations. The problems underlying SIDH (see Section 2) are not general in that the
degree of the isogeny, which is smooth and in O(

√
p), is known and public. As is discussed by De

Feo, Jao and Plût [19, §5.1]6, this specialized problem can be viewed as an instance of the claw
problem, and the optimal asymptotic classical and quantum complexities for the claw problem are
known to be O(p1/4) and O(p1/6), respectively [59, 54]. Currently, this approach yields the best
known classical and quantum attacks against SIDH.

Organization. In Section 2 we recall the key concepts from [19] that are needed in SIDH. In
Section 3 we show that all isogeny and point computations can be performed in P1; here we
derive all of the lower-level functions that are called during the key generation and shared secret
operations. In Section 4 we fix the underlying isogeny class used in our software, describe the
high-level key exchange operations, and discuss other implementation choices. In Section 5 we
detail the special field arithmetic that is tailored towards our chosen prime (as well as many other
well-chosen SIDH-friendly primes).

We give a summary of the scheme in Section 6 and present performance results of our imple-
mentation in Section 7. In Section 8 we describe our proposal for a strong hybrid key exchange
scheme that combines classical ECDH with post-quantum SIDH. Section 9 shows how to efficiently
validate SIDH public keys in static key exchange settings, and Section 10 discusses (further) public
key compression. We conclude the paper in Section 11.

To promote future implementations of SIDH, we have endeavored to make this paper as self-
contained as possible. Essentially, all functions that are needed to implement SIDH are fully
described in Section 3. High level functions are given in explicit form in the appendix. All other
details can be found in the released code [16].

4 See [52, §1.3] for a history of isogeny-based cryptographic proposals prior to Stolbunov’s work.
5 This is based on the algorithm for constructing isogenies by Galbraith, Hess and Smart [21, §3], which

itself is an extension of the original algorithm by Galbraith [20].
6 This is an extended version of the original SIDH paper by Jao and De Feo [28].



2 Diffie-Hellman key exchange from supersingular elliptic curve
isogenies

This section sets the stage by introducing notation, giving some basic properties of torsion sub-
groups and isogenies, and recalling the supersingular isogeny Diffie-Hellman key exchange protocol.
This is all described in a similar fashion by De Feo, Jao and Plût in [19, §2].

Smooth order supersingular elliptic curves. SIDH uses isogeny classes of supersingular
elliptic curves with smooth orders so that rational isogenies of exponentially large (but smooth)
degree can be computed efficiently as a composition of low degree isogenies. Fix two small prime
numbers `A and `B , an integer cofactor f , and let p be a prime of the form p = `eAA `eBB f ± 1. It is
then easy to construct a supersingular elliptic curve E defined over Fp2 of order (`eAA `eBB f)2 [11].

For ` ∈ {`A, `B} and e ∈ {eA, eB} the corresponding exponent, we have that the full `e-
torsion group on E is defined over Fp2 , i.e. E[`e] ⊆ E(Fp2). Since ` is coprime to p, E[`e] ∼=
(Z/`eZ) × (Z/`eZ) [51, III.6.4]. Let P,Q ∈ E[`e] be two points that generate E[`e] such that
the above isomorphism is given by (Z/`eZ) × (Z/`eZ) → E[`e], (m,n) 7→ [m]P + [n]Q. Roughly
speaking, the SIDH secret keys are degree `e isogenies of the base curve E, which are in one-to-one
correspondence with the cyclic subgroups of order `e that form their kernels. A point [m]P + [n]Q
has full order `e if and only if at least either m or n are not divisible by `. There are `2e−2(`2− 1)
such points. Since distinct cyclic subgroups only intersect in points of order less than `e and all
full-order points in a single subgroup are coprime multiples of one such point, it follows that there
are `e−1(`+ 1) distinct cyclic subgroups of order `e.

Computing large degree isogenies. Given a cyclic subgroup 〈R〉 ⊆ E[`e] of order `e, there is
a unique isogeny φR of degree `e, defined over Fp2 with kernel 〈R〉 [51, III.4.12], mapping E to an
isogenous elliptic curve E/〈R〉. The isogeny φR can be computed as the composition of e isogenies
of degree ` which in turn can be computed by using Vélu’s formulas [56]. As described in [19, §4.2.2],
we can start with E0 := E and R0 := R and then iteratively compute Ei+1 = Ei/〈[`e−i−1]Ri〉 for
0 ≤ i < e as follows. Each iteration computes the degree-` isogeny φi : Ei → Ei+1 whose kernel
is the cyclic group 〈[`e−i−1]Ri〉 of order `, before applying the isogeny to compute Ri+1 = φi(Ri).
The point Ri is an (`e−i)-torsion point and so [`e−i−1]Ri has order `. Thus, the composition
φR = φe−1 ◦ · · · ◦ φ0 has degree `e, which together with (φe−1 ◦ · · · ◦ φ0)(R) = Re = O shows that
ker(φR) = 〈R〉, and therefore that φ = φe−1 ◦ · · · ◦ φ0.

There are two obvious ways of computing φ using the above decomposition. One of them follows
directly from the description above: in each iteration, one first computes the scalar multiplication
[`e−i−1]Ri to obtain a point of order `, then uses Vélu’s formulas to compute φi, and evaluates it at
Ri to obtain the next point Ri+1. Jao and De Feo [28, Figure 2] call this the multiplication-based
strategy because it is dominated by the number of scalar multiplications by ` that are needed to
obtain the `-torsion points. The second obvious approach is called the isogeny-based method [28,
Figure 2] because it is dominated by the number of isogeny evaluations. It requires only one loop
of scalar-multiplications that stores all `-multiples of R, i.e., all intermediate results Qi = [`i]R
for 0 ≤ i < e. The point Qe−1 has order ` and can be used to obtain the isogeny φ0 as above. One
then replaces all Qi for 0 ≤ i ≤ (e− 2) by φ0(Qi). At this point Qe−2 has order ` and is used to
obtain φ1. This is repeated until one obtains φe−1 and hence the composition φ.

De Feo, Jao and Plût [19, §4.2.2] demonstrate that both of these methods are rather wasteful
and that there is a much more efficient way to schedule the multiplications-by-` and `-isogeny
evaluations. Section 4 presents more details about this for our specific parameter choice.

SIDH key exchange. This paragraph recalls the SIDH key exchange protocol from [19, §3.2].
The public parameters are the supersingular curve E0/Fp2 whose group order is (`eAA `eBB f)2, two
independent points PA and QA that generate E0[`eAA ], and two independent points PB and QB that
generate E0[`eBB ]. To compute her public key, Alice chooses two secret integers mA, nA ∈ Z/`eAA Z,



not both divisible by `A, such that RA = [mA]PA + [nA]QA has order `eAA . Her secret key is
computed as the degree `eAA isogeny φA : E0 → EA whose kernel is RA, and her public key is the
isogenous curve EA together with the image points φA(PB) and φA(QB). Similarly, Bob chooses
two secret integers mB , nB ∈ Z/`eBB Z, not both divisible by `B , such that RB = [mB ]PB +[nB ]QB
has order `eBB . He then computes his secret key as the degree `eBB isogeny φB : E0 → EB whose
kernel is RB , and his public key is EB together with φB(PA) and φB(QA). To compute the shared
secret, Alice uses her secret integers and Bob’s public key to compute the degree `eAA isogeny
φ′A : EB → EBA whose kernel is the point [mA]φB(PA) + [nA]φB(QA) = φB([mA]PA + [nA]QA) =
φB(RA). Similarly, Bob uses his secret integers and Alice’s public key to compute the degree `eBB
isogeny φ′B : EB → EAB whose kernel is the point [mB ]φA(PB)+[nB ]φA(QB) = φA(RB). It follows
that EBA and EAB are isomorphic, so Alice and Bob can compute a shared secret as the common
j-invariant j(EBA) = j(EAB).

We note that the number of possibilities for Alice to choose her secret isogeny is equal to the
number of possible distinct kernels, which is `eA−1A (`A+1), and analogously the number of possible
choices for Bob is `eB−1B (`B + 1).

Security under SSDDH. In [19, §5], De Feo, Jao and Plût give a number of computational
problems related to SIDH and discuss their complexity. In [19, §6], they prove that SIDH is session-
key secure in the authenticated-links adversarial model of Canneti and Krawczyk [12] under the
Supersingular Decision Diffie-Hellman (SSDDH) problem, which we recall as follows. With the
public parameters as above, one is given a tuple sampled with probability 1/2 from either one of
the following two distributions:

– (EA, EB , φA(PB), φA(QB), φB(PA), φB(QA), EAB), where

EAB ∼= E0/
〈
[mA]PA + [nA]QA, [mB ]PB + [nB ]QB

〉
.

– (EA, EB , φA(PB), φA(QB), φB(PA), φB(QA), EC), where

EC ∼= E0/
〈
[m′A]PA + [n′A]QA, [m

′
B ]PB + [n′B ]QB

〉
,

and the values m′A, n
′
A,m

′
B and n′B are chosen randomly from the same respective distributions

as mA, nA,mB and nB . The SSDDH problem is to determine from which distribution the tuple is
sampled.

We note that the Canneti-Krawczyk model assumes perfectly authenticated links which effec-
tively forces adversaries to be passive eavesdroppers. We return to this discussion in Section 9.

3 Projective points and projective curve coefficients

In this section we present one of our main technical contributions by showing that, just as the
Montgomery form allows point arithmetic to be carried out efficiently in P1, in the context of
SIDH it also allows isogeny arithmetic to be carried out in P1. This gives rise to fast, inversion-
free point-and-isogeny operations that significantly boost the performance of SIDH. In comparison
to the software7 accompanying [19] that computes at least one inversion per isogeny computation,
and therefore O(`) inversions per round of the protocol, our software only requires one inversion
per round. We describe all of the point and isogeny operations that are needed and conclude
the section with a table summarizing their operation counts. For all of the explicit formulas in
optimized two-operand form, see SIDH.mag in [16].

7 See https://github.com/defeo/ss-isogeny-software/.



Montgomery curves. Over a field K, a Montgomery curve [39] is defined by the two constants
(a, b) ∈ A2(K) as E(a,b) : by2 = x3 + ax2 + x. Unlike traditional ECC, in this work the defining
curve does not stay fixed, but changes as we move around an isogeny class. As we discuss further
below, it is therefore convenient to work projectively both with points on curves and with the
curve coefficients themselves. Let (A : B : C) ∈ P2(K) with C ∈ K̄× be such that a = A/C and
b = B/C. Then E(a,b) can alternatively be written as

E(A : B : C) : By2 = Cx3 +Ax2 + Cx.

The K-rational points on E(a,b) or E(A : B : C) are contained in P2(K), so as usual we use the
notation (X : Y : Z) ∈ P2(K) with Z 6= 0 to represent all points (x, y) = (X/Z, Y/Z) in A2(K),
and the point at infinity is O = (0: 1 : 0).

The j-invariants of the curves given by these models are

j(Ea,b) =
256(a2 − 3)3

a2 − 4
and j(E(A : B : C)) =

256(A2 − 3C2)3

C4(A2 − 4C2)
. (1)

Kummer varieties and points in P1. Following [39], viewing the x-line P1 as the Kummer
variety of E(a,b) allows for particularly efficient arithmetic in E(a,b)/〈±1〉 ∼= P1. Let

x : E(a,b) \ {O} → P1, (X : Y : Z) 7→ (X : Z).

For the points P,Q ∈ E(a,b) \ {O} and m ∈ Z, Montgomery [39] gave efficient formulas for com-
puting the doubling function xDBL : (x(P ), a) 7→ x([2]P ), the function xADD : (x(P ), x(Q), x(Q −
P )) 7→ x(Q+P ) for differential additions, and the function xDBLADD : (x(P ), x(Q), x(Q−P ), a) 7→
(x([2]P ), x(Q−P )) for the merging of the two. These are all ingredients in the Montgomery ladder
function to compute the Z-action on E(a,b)/〈±1〉 ∼= P1, i.e., LADDER : (x(P ), a,m) 7→ x([m]P ).

We note that the xADD function works identically for E(a,b) and E(A : B : C), while the other
functions on E(a,b) that involve a can be trivially modified to work on E(A : B : C) by substituting
a = A/C and avoiding the inversion by carrying the denominator C through to the projective
output. All of these functions are summarized in Table 1, where we use an asterisk (∗) to denote
that they have been modified to work on E(A : B : C) rather than E(a,b). Conveniently, all of these
subroutines are only needed to work entirely in only one of E(A : B : C) and E(a,b).

During the computations of shared secrets, we found it advantageous to employ the function
LADDER 3 pt : (x(P ), x(Q), x(Q − P ), a,m) 7→ x(P + [m]Q), which is precisely the “three point
ladder” given by De Feo, Jao and Plût [19, Algorithm 1].

Following [19], we also derived a function to compute xTPL : (x(P ), A,C) 7→ x([3]P ) on
E(A : B : C)/{±1}. To our knowledge, our derived tripling formulas are the fastest known x-only
Montgomery tripling formulas, so we briefly describe their derivation. We take the tripling to be
the concatenation of a doubling and an addition operation, i.e.,

xTPL(x(P ), a) = xADD
(
xDBL(x(P ), a), x(P ), x(P ), a

)
.

Let P = (X : Y : Z) with Z 6= 0 such that [3]P 6= O, and8 xP = X/Z. Simplifying the formulas
for tripling P obtained from the above concatenation yields

x[3]P = xP ·
(
x4P − 6x2P + 4axP + 3

3x4P + 4ax3P + 6x2P − 1

)2

,

where x([3]P ) = (X3 : Z3) and x[3]P = X3/Z3. Substituting a = A/C and xP = X/Z, we get that
(X3 : Z3) can be computed from (X : Z), A and C in either 9M + 4S + 12a or 8M + 5S + 15a9.

8 Throughout we use xP to denote the affine x-coordinate of P 6= O, i.e. xP = X/Z is a unique normal-
ized value, in contrast with x(P ) which denotes a projective point x(P ) = (X : Z) ∈ P1 that can be
represented by any X,Z such that (X : Z) ∼ (xP : 1).

9 As usual, M, S and a represent the costs of field multiplications, squarings, and additions, respectively.
We will always count multiplications by curve coefficients as full multiplications, since these coefficients
change within an isogeny class and thus we cannot expect any savings by treating them differently to
generic elements.



Here we are counting multiplications by A and C as 1M each, and we note that two of the tallied
multiplications are multiplications by C, i.e., on a fixed Montgomery curve, both sets of formulas
become 2M faster.

Minimizing the number of inversions via curves in P1. Observe that all of the functions
mentioned above on E(a,b)/{±1} (resp. E(A : B : C)/{±1}) depend entirely on a (resp. A and C)
and are independent of b (resp. B). This is because, for a fixed a = A/C and up to isomorphism,
there are only two curves found by varying b (resp. B) over K: the curve E and its non-trivial
quadratic twist. Indeed, an elliptic curve and its twist are unified under the quotient by {±1}, i.e.,
have the same Kummer variety, so it is no surprise that the Kummer arithmetic is independent of
the Montgomery b (resp. B) coefficient. Moreover, referring back to (1), we see that the j-invariant
is also independent of b (resp. B)10.

Our implementation profits significantly from these observations, and the choice of Mont-
gomery form provides two advantages in parallel. The first is the well-known Montgomery-style
point arithmetic that unifies points and their inverses by ignoring the Y coordinate to work with
(X : Z) ∈ P1; the second is new isogeny arithmetic that unifies curves and their quadratic twists by
ignoring the B coefficient to instead work only with (A : C) ∈ P1. In this way all point operations
and isogeny computations are performed in P1, meaning that only one inversion is required (at
the very end) when generating public keys or computing shared secrets. In the latter case, the
inversion is computed during the j-invariant function j inv : (A,C) 7→ j(E(A : B : C)), while in the
former case we use a 4-way simultaneous inversion [39] to normalize all of the components of the
public key prior to transmission; see Table 1 for more details on these functions.

Notation and terminology. Strictly speaking, in dropping the b (resp. B) coefficient from our
isogeny computations, we will not be deriving isogenies between curves, but maps between their
Kummer varieties. Thus, unless otherwise specified, henceforth we use Ea or E(A : C) interchange-
ably to denote the Kummer variety of any K-rational Montgomery curve whose x2 coefficient is
a = A/C, or by abuse of notation, to denote any K-rational Montgomery curve with coefficient
a = A/C. We will continue to use the terminology of, e.g., computing isogenies “between curves”,
with the understanding that our computations are technically taking place between the associated
Kummer varieties. We stress that using Kummer varieties in this way does not affect the security
of the scheme (see Remark 1), but has major efficiency benefits.

Projective three isogenies. Let x(P ) = (X3 : Z3) ∈ P1 be such that P has order 3 in E(A : C).
Let E′(A′ : C′) = E(A : C)/〈P 〉, φ : E(A : C) → E′(A′ : C′), Q ∈ Ea \ker(φ), and write x(Q) = (X : Z) ∈
P1 with x(φ(Q)) = (X ′ : Z ′) ∈ P1. Our goal is to derive two sets of explicit formulas: the first set
computes the isogenous curve E(A′ : C′) from (X3 : Z3) and E(A : C), while the second set is used
to evaluate the corresponding isogeny by computing (X ′ : Z ′) from the additional input (X : Z).
The projective version of [19, Equation (17)] gives

(A′ : C ′) =
(

(AX3Z3 + 6(Z2
3 −X2

3 ))X3 : CZ3
3

)
,

which can be computed in 6M+2S+5a. However, it is possible to do much better by using Z3 6= 0
and the fact that X3/Z3 is a root of the 3-division polynomial ψ3(x) = 3x4 + 4(A/C)x3 + 6x2 − 1
on E(A : C). This yields the alternative expression

(A′ : C ′) =
(

(Z4
3 + 18X2

3Z
2
3 − 27X4

3 : 4X3Z
3
3

)
, (2)

which is independent of the coefficients of E(A : C) and can be computed in 3M + 3S + 8a; see
the function get 3 isog in Table 1. For the evaluation of the isogeny, we modify the map in [19,
Equation (17)] to give

(X ′ : Z ′) =
(
X(X3X − Z3Z)2 : Z(Z3X −X3Z)2

)
. (3)

This costs 6M + 2S + 2a; see the function eval 3 isog in Table 1.

10 This is a special case of [51, III.1.4(b)]



Projective four isogenies. We now let x(P ) = (X4 : Z4) ∈ P1 be such that P has exact order
4 in E(A : C), and leave all other notation and definitions as above. As is discussed in [19, §4.3.2],
there are some minor complications in the derivation of 2- and 4-isogenies, either because a di-
rect application of Vélu’s formulas [56] for a 2-isogeny do not preserve the Montgomery form, or
because repeated application of the 4-isogeny resulting from Vélu’s formulas is essentially degen-
erate. For our purposes, i.e., in the case of 4-isogenies (overall, we found using 4-isogenies to be
significantly faster than using 2-isogenies), the latter problem is remedied by application of the
simple isomorphism in [19, Equation (15)]. When building the 4e isogenies as a composition of
4-isogenies, this isomorphism is needed in every 4-isogeny computation except for the very first
one, and we derive explicit formulas for both of these cases.

Note that for the very first 4-isogeny φ0 : E(A : C) → E(A′ : C′) computed in the public key
generation phase, the curve E(A : C) is that which is specified in the system parameters; and, for
the first 4-isogeny in the shared secret computation, E(A : C) is the curve that is received as part
of a public key sent over the wire. In both cases the curve is normalized so that A = a and C = 1.
In this case we use [19, Equation (20)] directly, which gives

(A′ : C ′) = ( 2(a+ 6) : a− 2) , (4)

and projectivize the composition of [19, Equations (19) and (21)] to give

(X ′ : Z ′) =
(

(X + Z)2(aXZ +X2 + Z2) : (2− a)XZ(X − Z)2
)
. (5)

This costs 4M + 2S + 9a; see the function first 4 isog in Table 1.
For the general 4-isogeny, we projectivized the composition of the above isogeny with the

isomorphism in [19, Equation (15)], making some modifications as follows. We made use of the
xDBL function to parameterize the point of order 2 in [19, Equation (15)] in terms of the point
(X4 : Z4) of order 4. For the isogeny evaluation function, we again found it advantageous to simplify

under the applicable component of the 4-division polynomial ψ4(x, y) = 4y(x − 1)(x + 1)ψ̂4(x),

which is ψ̂4(x) = x4 + 2(A/C)x3 + 6x2 + 2(A/C)x + 1 and which vanishes at X4/Z4. For the
computation of the isogenous curve, we get

(A′ : C ′) =
(

2(2X4
4 − Z4

4 ) : Z4
4

)
, (6)

and for the evaluation of the isogeny, we get

(X ′ : Z ′) =
(
X
(
2X4Z4Z −X(X2

4 + Z2
4 )
)

(X4X − Z4Z)2 :

Z
(
2X4Z4X − Z(X2

4 + Z2
4 )
)

(Z4X −X4Z)2
)
. (7)

Since each 4-isogeny is evaluated at multiple points, during the computation of the isogenous
curve in (6), we also compute and store five values that can be (re)used in (7): c = [ X2

4 +Z2
4 , X

2
4−

Z2
4 , 2X4Z4, X

4
4 , Z

4
4 ].

The computation of (6) and of the five values in c above costs 5S + 7a, and on input of c
and Q = (X : Z), the computation of (7) costs 9M + 1S + 6a; see the functions get 4 isog and
eval 4 isog in Table 1.

Summary of subroutines. All of the point and isogeny operations are summarized in Table 1.
We note that the input c ∈ K5 into the eval 4 isog function is the same tuple of constants
output from get 4 isog, as described above. We also point out that all of the operation counts in
Table 1 are counted as being field operations in K, but that K is not necessarily the same field for
all of these functions. In particular, we start the next section by fixing K, but as we will see in §6,
the secret pt function (and the LADDER functions it calls) takes place in the quadratic subfield
of K in our implementation.

Remark 1. We conclude this section by reiterating that the shared secrets derived by working
with projective Kummer points and projective Kummer variety coefficients are exactly the same



function / input(s) output(s) operations

from type(s) type(s) M S a I

j inv (A,C) j(E)
3 4 8 1

Eq. (1) K ×K K

xDBLADD (x(P ), x(Q), x(Q− P ), â) (x([2]P ), x(Q+ P ))
6 4 8 -

[39] P1 × P1 × P1 ×K P1 × P1

xADD (x(P ), x(Q), x(Q− P )) x(Q+ P )
3 2 6 -

[39] P1 × P1 × P1 P1

xDBL
(
x(P ), Â, Ĉ

)
x([2]P )

4 2 4 -
[39]* P1 ×K ×K P1

xDBLe (x(P ), A, C, e) x([2e]P )
4e 2e

4e
-

[39]* P1 ×K ×K × N P1 +3

LADDER
(
x(P ), a,m

)
x([m]P )

5n 4n 9n -
[39] P1 ×K × N P1

LADDER 3 pt (x(P ), x(Q), x(Q− P ), a,m) x(P + [m]Q) 9n 6n 14n
-

[19] P1 × P1 × P1 ×K × N P1 +3

xTPL
(
x(P ), Â, C

)
x([3]P )

8 5 15 -
[19]* P1 ×K ×K P1

xTPLe (x(P ), A, C, e) x([3e]P )
8e 5e 15e -

[19]* P1 ×K ×K × N P1

get 3 isog x(P ) (A′, C′)
3 3 8 -

[19]* and (2) P1 K ×K
eval 3 isog (x(P ), x(Q)) x(φ(Q))

6 2 2 -
[19]* P1 × P1 P1

first 4 isog (x(Q), a) (x(φ0(Q)), A′, C′)
4 2 9 -

[19]* and (4)-(5) P1 ×K P1 ×K ×K
get 4 isog x(P ) (A′, C′, c)

- 5 7 -
[19]* and (6) P1 K ×K ×K5

eval 4 isog (c, x(Q)) x(φ(Q))
9 1 6 -

[19]* and (7) K5 × P1 P1

secret pt (P,Q = τ(P ),m) x(P + [m]Q) 5n 4n 9n
-

see §6 E × E × N P1 +16 +3 +11

distort and diff xP x(τ(P )− P )
- 1 2 -

see §6 K P1

inv 4 way (z1, z2, z3, z4) (z−1
1 , z−1

2 , z−1
3 , z−1

4 )
9 - - 1

[39] K4 K4

Table 1. Summary of the subroutines used in our SIDH implementation. Here the points P and Q are on
the curve E(a,b) = E(A : B : C), and E′ = E(A′ : B′ : C′) is used to denote the isogenous curve E′ = E/〈P 〉
with φ : E → E′ the corresponding isogeny. Asterisks (*) are used in the first column when functions have
been modified according to our use of the curve model E(A : B : C), rather than E(a,b). We use n = log2m−1

to count operations, and note some minor changes in input constants: 4â = a+ 2 in xDBLADD, 4 Â
Ĉ

= A
C

+ 2

in xDBL, Â = 4A in xTPL.



as the shared secrets that would result from instead working in, e.g., affine space using Vélu’s
formulas for the full short Weierstrass model [56]. Quite trivially, since the derived j-invariants
only depend on the K̄-isomorphism class of a curve [51, III.1.4(b)], using isomorphic curve models
or working with the Kummer variety that corresponds to both quadratic twists cannot change the
result. As such, the improvements in this section can be viewed as implementation choices that aid
efficiency and compactness but do not necessarily hamper interoperability, e.g., if the other party
chooses to compute their keys in a different manner. In the next section we will define our starting
curve E0, which in particular is both a Montgomery and short Weierstrass curve. The script
Kummer Weierstrass equivalence.mag is included in [16] to illustrate this point. In particular,
it performs each round of the SIDH key exchange both using our projective Kummer variety
arithmetic and using Magma’s [10] built-in IsogenyFromKernel function, in order to show that
the resulting curves in the public keys are isomorphic and that the shared secrets are equivalent.

4 Parameters and implementation choices

In this section we fix the underlying starting curve and discuss several implementation choices
that were made in the development of our library.

Prime field and isogeny class. From here on, the field K is fixed as K := Fp2 , where

p := 2372 · 3239 − 1 ,

and Fp2 = Fp(i) for i2 = −1. In terms of the notation from Section 2, this means that `A = 2,
`B = 3, eA = 372, eB = 239 and f = 1. We searched for primes of the form 2eA3eBf − 1 with
a bit length close to (but no larger than) 768, aiming to strike a balance `eAA ≈ `eBB to ensure
that one side of the key exchange is not appreciably easier to attack than the other (more on this
below), and to balance the computational costs for Alice and Bob. We originally searched with no
restriction on the cofactor f , but did not find an example of another prime that would perform
as fast as ours and where the overall security was increased enough to warrant f 6= 1. Given the
best known classical and quantum attack complexities (see Section 1), choosing a prime close to
768 bits aims to reach a claim of 192 bits of classical security and 128 bits of quantum security.
Following [19, §5.1], and since `eAA < `eBB and `A = 2, we ignore any constants hidden by the big-O
notation to err on the conservative side and claim that the above curve offers eA/2 = 186 bits
of classical security and eA/3 = 124 bits of quantum security. The arithmetic advantages of this
prime choice are detailed in Section 5.

Our implementation works in the isogeny class of elliptic curves over Fp2 that contains the
supersingular Montgomery curve

E0/Fp2 : y2 = x3 + x.

Every curve in this isogeny class has (p + 1)2 = (2372 · 3239)2 points and is also supersingular
[51, Exercise 5.4 & 5.10(a)]. The curve E0 is the public parameter that is the starting point for
the key exchange protocol.

Remark 2 (Starting on a subfield curve). In [8], Biasse, Jao and Sankar give a quantum algorithm
that solves the more general (i.e., unknown degree) supersingular isogeny problem. To compute
an isogeny between E1/Fp2 and E2/Fp2 , their algorithm finds an isogeny path from E1/Fp2 to a
subfield curve E′1/Fp and an isogeny path from E2/Fp2 to a subfield curve E′2/Fp, before connecting
the paths by finding an isogeny between E′1/Fp and E′2/Fp. In both cases the search for an isogenous

subfield curve has complexity Õ(p1/4), and the step that finds a path between E′1 and E′2 takes
subexponential time. This yields an overall attack complexity of Õ(p1/4), and is therefore not
competitive with the quantum claw attack mentioned in Section 1. Nevertheless, Biasse, Jao and
Sankar [8, §6] suggest that the nature of their attack (and the possibility of an improved version)
could mean that choosing a subfield curve as the starting point is less secure than starting from



a curve defined over Fp2 ; indeed, if E1 is already defined over Fp then the Õ(p1/4) step need only
be performed once instead of twice.

In our implementation we still choose to start on a subfield curve for one main reason. To our
knowledge, there is currently no known way to randomly sample from the isogeny class directly,
i.e., without (some party) knowing the isogeny path to a subfield curve. Indeed, over the fields of
interest in SIDH, Bröker’s construction [11] outputs a subfield curve E/Fp, and De Feo, Jao and
Plût [19] say that one can find a different starting curve that is minimally defined over Fp2 by
means of a random walk (starting from E) on the isogeny graph. While it is possible that there
are already cryptographic techniques available that allow two or more mutually distrusting parties
to arrive at a starting curve for which no single party knows the route to a subfield curve, until
a more satisfactory solution is developed (e.g., a way of hashing directly into the isogeny class)
it seems most prudent to lay ones cards on the table and start with E0 as above. Moreover, we
reiterate that such a special choice of starting curve makes no known difference to the complexity
of the best known attacks, and as we are about to show, can give rise to more compact public
parameters and more efficient key generation algorithms.

The base-field and trace-zero torsion subgroups. A valuable technique that was introduced
by Verheul [57] and that has played a key role in the implementation of symmetric pairings on
supersingular elliptic curves [48], is that of using a distortion map. Verheul showed that every
supersingular elliptic curve has a distortion map [57]. For a prime power `e | #E0(Fp), such a map
connects the cyclic torsion subgroup E0(Fp)[`e] defined over the base field Fp with the trace-zero
subgroup of E0(Fp2)[`e].

In the pairing context, this technique essentially enables one to work mostly with points defined
over the base field instead of the quadratic extension. The distortion map we use for E0 is given
by the endomorphism τ : E0(Fp2)→ E0(Fp2), (x, y) 7→ (−x, iy).

An `e torsion point P ∈ E0(Fp) is mapped to an `e-torsion point τ(P ) ∈ E0(Fp2) and the Weil
pairing e`e(P, τ(P )) 6= 1 is non-trivial. It is easy to see that the trace of the image point is zero,
namely Tr(τ(P )) = τ(P ) + πp(τ(P )) = O, where πp is the p-power Frobenius endomorphism on
E0. An advantage of using the trace-zero subgroup is that its points can be represented by two
Fp-elements only and are therefore half the size of a general curve point defined over Fp2 .

Choosing generator points for torsion subgroups. We apply a similar idea in that we fix the
public `eAA -torsion points PA, QA and `eBB -torsion points PB , QB as generators of the (respective)
base field and trace-zero subgroups, chosen as follows. Let PA ∈ E0(Fp)[2372] be the point given
as [3239](z,

√
z3 + z), where z is the smallest positive integer such that

√
z3 + z ∈ Fp and PA has

order 2372. The point PB is selected in the same way with order and cofactor swapped. We then
take QA = τ(PA) and QB = τ(PB), which produces the following generators:

PA = [3239](11,
√

113 + 11), QA = τ(PA),

PB = [2372](6,
√

63 + 6), QB = τ(PB).

In addition to the base field representations mentioned above, the simple relationship between
the coordinates of QA and PA and the coordinates of QB and PB helps to further compactify
the public parameters; see Section 6. However, choosing {PA, QA} and {PB , QB} as the bases for
generating isogeny kernels from the base-field and trace-zero torsion subgroups can have caveats.
For example, in the case ` = `A = 2, one obtains the following lemma.

Lemma 1. Let E : y2 = x3 + x be a supersingular elliptic curve defined over Fp, p > 3, p ≡ 3
(mod 4), such that #E(Fp) = 2e ·N with N odd. Let Fp2 = Fp(i), i2 = −1, and let E[`e] ⊆ E(Fp2).
Let P ∈ E(Fp)[2e] be any point of order 2e and let Q ∈ E(Fp2)[2e] be any point of order 2e with
Tr(Q) = Q+ πp(Q) = O. Then the order of P +Q equals 2e−1.

Proof. The distortion map τ : E(Fp2) → E(Fp2), (x, y) 7→ (−x, iy) is a group isomorphism from
the cyclic group 〈P 〉 = E(Fp)[2e] to the trace-zero subgroup of E(Fp2)[2e]. In particular, this means



that Q = τ(Q′) for a point Q′ ∈ E(Fp)[2e]. This means that Q′ = [λ]P for λ ∈ Z, 1 ≤ λ ≤ 2e − 1
and λ = 1 + 2λ′ must be odd because Q has full order. We thus see that

P +Q = P + τ(Q′) = P + τ([λ]P ) = P + [λ]τ(P ) = (P + τ(P )) + [2λ′]τ(P ).

The point [2e−1]P has order 2 and is defined over Fp. The only such point is (0, 0), which means
that [2e−1]P = (0, 0). It follows that

[2e−1](P + τ(P )) = [2e−1]P + τ([2e−1]P ) = (0, 0) + τ((0, 0)) = O.

This proves that

[2e−1](P +Q) = [2e−1](P + τ(P ) + [2λ′]τ(P )) = [2e−1](P + τ(P )) + [λ′]([2e]τ(P )) = O.

To see that P+Q has the exact order 2e−1, assume that it has smaller order, i.e. [2e−2](P+Q) =
O. Then [2e−2]P = −[2e−2]Q. The point [2e−2]P has order 4 and is defined over Fp. Such a point
does not have trace zero, and thus cannot be equal to a non-zero multiple of the point Q, which
lies in the trace-zero subgroup. ut

In particular, Lemma 1 proves that any point of the form P + [m]Q for odd m has order less
than 2e. Also note that if m is even, then the order of P + [m]Q is 2e because [2e−1](P + [m]Q) =
[2e−1]P 6= O. Furthermore, this means that the points P and Q do not generate the full 2e-torsion
subgroup, and strictly speaking, the two points are not independent11.

Recalling that the best attacks against SSDDH assume that the isogeny degrees are known to be
maximal, we remark that the implementation is also much easier if this is always the case; among
other things, it fixes the optimal strategies for isogeny computations and simplifies the techniques
for obtaining constant-time code. In the following two paragraphs we show how Alice and Bob
can choose their secret scalars to guarantee that the degrees of their isogenies are maximal, i.e.,
`eAA and `eBB respectively.

Sampling full order 2-torsion points. To sample a 2-torsion point RA of full order, we sample
a uniform random integer m′ ∈ {1, 2, . . . , 2eA−1−1 = 2371−1} and set RA = PA+[2m′]QA; RA is
guaranteed to have order 2eA by the above discussion. Because two distinct choices for m′ lead to
two distinct cyclic subgroups generated by the corresponding RA, one can reach 2eA−1−1 = 2371−1
distinct subgroups and thus isogenies with this sampling procedure. We have seen in Section 2
that there are 3 · 2eA−1 distinct full order subgroups in E0[2eA ], and thus our sampling procedure
only reaches about one third of those.

We have restricted to this case since it allows us to obtain a simpler implementation than when
all of the other cases (such as [2m′]PA +QA) are covered in order to span the full set of possible
isogenies. It is an interesting and open problem to determine whether choices such as this have
implications on the security of the protocol; see Remark 5 for further discussion.

Sampling full order 3-torsion points. To sample a 3-torsion point RB of full order, we sample
a uniform random integer m′ ∈ {1, 2, . . . , 3eB−1−1 = 3238−1} and set RB = PB +[3m′]QB . Since
[3eB−1]RB = [3eB−1]PB 6= O, RB is guaranteed to have order 3eB . In this way, we reach 3238 − 1
of the possible subgroups and corresponding isogenies. Since there are 4 · 3eB−1 such subgroups in
E0[3eB ], we sample from about one quarter of those.

Again, for simplicity of the implementation, we chose to restrict to the above subclass of
isogenies and to leave the security implications of that choice as an open problem for future work;
see Remark 5.

11 Whenever we use the term independent for the points P and Q in what follows, we mean that the Weil
pairing evaluated at P and Q is non-trivial.



Remark 3. Choosing to define QA = τ(PA) and QB = τ(PB) is independent of whether or not the
base field and/or trace-zero subgroups are used in the definition of the public parameters, and in
any case it offers the advantage of more compact public parameters mentioned above. In general,
whether the generators are related by the distortion map or chosen independently (by multiplying
random points by the corresponding cofactors as suggested in [19]), it is both possible that the
resulting pairs of points do generate the full `e-torsion, and possible that they do not. In both
cases, the order of the Weil pairing allows us to check the proportion of the torsion generated by
PA and QA (or PB and QB); we note that this check is once-and-for-all and can be done offline.
Once more, the security implications of linking the generators with a distortion map are unknown
and left open.

Strategies for isogeny computation and evaluation. For computing and evaluating `eAA -
and `eBB -isogenies, we closely follow the methodology described in [19, §4.2.]. As already described
in Section 2, such isogenies are composed of eA isogenies of degree `A and eB isogenies of degree
`B , respectively. Figure 2 in [19] illustrates this computation with the help of a directed acyclic
graph. In order to be able to evaluate the desired isogeny, one needs to compute all points that
are represented by the final vertices, i.e., the leaves in the graph.

As described earlier in Section 2, using the multiplication-based or isogeny-based methods to
traverse this graph yields a simple but costly algorithm. De Feo, Jao, and Plût [19, §4.2.2] provide a
discussion of how to obtain an optimal algorithm. They formally define the notion of a strategy for
evaluating φ along a directed acyclic graph and show how to find an optimal strategy depending on
the relative costs of scalar multiplication-by-` and `-isogeny evaluation. The overall cost measure
is the total cost for computing and evaluating the isogeny. The key insight is that an optimal
strategy must be composed of two optimal sub-strategies, which yields a dynamic programming
approach to optimizing the overall strategy by working our way up from small `-power isogenies
to higher powers.

A strategy corresponds to a binary tree topology and hence a strategy for a tree with a given
number of leaves can be decomposed into two sub-strategies on strictly smaller leaf sets. The
overall cost for the strategy is the sum of the sub-strategy costs plus the cost for moving down the
tree along the edges to the roots of the sub-strategies. Given the costs of all optimal sub-strategies,
one can select the optimal strategy by going through all possibilities of combining two of them.
We refrain from giving more details for space reasons and refer to [19, §4.2.2].

A strategy can be stored in a simple list L of integers of length equal to the total number of
leaves. The i-th entry L[i] in the list characterizes the sub-strategy on a graph with i leaves. In our
setting, we chose to use the number of scalar-multiplication steps along the left edge of the graph
that are needed in a strategy on i leaves to reach the root of the next sub-strategy. This number
uniquely determines the splitting of the strategy into its sub-strategies. The sub-strategies are
then defined by the respective sub-sequences. At the same time the list L determines an algorithm
to traverse the graph (as shown for example in Algorithm 3).

The strategies for 4-isogeny and 3-isogeny computation that we use in our implementation are
given below; they were derived on input of the following cost ratios: the ratio between the latencies
of a 4-isogeny evaluation (eval 4 isog) and the multiplication-by-4 map (two applications of xDBL)
was 22.8/(2 ·12.9), and the ratio between the latencies of a 3-isogeny evaluation (eval 3 isog) and
the multiplication-by-3 map (xTPL) was 17.0/27.8. These ratios were obtained on an Intel Haswell
machine running Ubuntu 14.04 LTS after averaging 103 executions of each of the functions and
rounding the values to the nearest 102 clock cycles. Alice’s optimal strategy for the 4-isogeny
computation is described by LA and Bob’s optimal strategy for the 3-isogeny is described by LB .
The script optimalstrategies.mag in [16] can be modified to generate such strategies in other
situations (e.g., over other primes and for different cost ratios).



LA = [0, 1, 1, 2, 2, 2, 3, 4, 4, 4, 4, 5, 5, 6, 7, 8, 8, 8, 8, 8, 9, 10, 9, 12, 11, 11, 12, 12, 13, 14, 15, 16, 16, 16, 16, 16, 17, 17, 17,

17, 17, 19, 19, 17, 18, 19, 20, 21, 22, 21, 23, 22, 24, 24, 25, 25, 27, 27, 27, 28, 30, 30, 31, 32, 32, 33, 33, 33, 33, 32, 33,

33, 33, 33, 33, 33, 33, 33, 36, 34, 35, 34, 35, 38, 37, 38, 38, 39, 38, 41, 39, 43, 38, 41, 42, 43, 43, 40, 41, 42, 43, 44, 45,

46, 47, 48, 49, 50, 48, 49, 53, 51, 51, 51, 53, 55, 56, 55, 56, 58, 58, 58, 59, 61, 61, 63, 63, 64, 64, 64, 65, 65, 65, 64, 64,

65, 65, 65, 66, 67, 65, 66, 65, 68, 66, 65, 66, 65, 66, 67, 65, 66, 67, 68, 69, 70, 71, 72, 71, 72, 71, 76, 71, 76, 72, 71, 76,

71, 73, 72, 76, 76, 73, 73, 72, 76, 76, 75, 76, 76, 75, 81, 81, 83, 81].

LB = [0, 1, 1, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 6, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 12, 12, 12, 12, 12, 12, 12, 13, 14, 14, 15, 16, 16, 16, 16,

17, 16, 19, 17, 19, 19, 19, 20, 21, 22, 22, 22, 22, 22, 22, 22, 24, 22, 22, 24, 24, 26, 27, 27, 28, 28, 28, 30, 28, 28, 28, 29,

28, 28, 28, 29, 29, 30, 33, 33, 33, 33, 34, 35, 37, 37, 37, 38, 38, 38, 37, 38, 38, 38, 38, 38, 39, 38, 44, 43, 44, 39, 40, 41,

43, 43, 43, 45, 46, 46, 46, 47, 48, 48, 49, 49, 50, 51, 51, 49, 49, 50, 51, 50, 51, 50, 50, 51, 50, 51, 51, 51, 53, 55, 55, 55,

56, 56, 56, 56, 56, 57, 58, 61, 61, 61, 63, 63, 63, 64, 65, 66, 65, 66, 66, 66, 65, 66, 66, 66, 66, 66, 68, 71, 66, 66, 68, 67,

71, 66, 66, 68, 67, 71, 66, 66, 68, 68, 71, 70, 70, 72, 72, 76, 75, 75, 78, 78, 78, 80, 80, 80, 80, 81, 81, 81, 82, 83, 84, 85,

86, 86, 86, 86, 86, 86, 88, 86, 90, 86, 92, 87, 86, 89, 86, 92, 87, 86, 87, 86, 91, 89, 89, 90, 90, 92, 92, 92, 93, 93, 93, 95,

95, 95, 95, 95, 95, 95, 95]

5 Field arithmetic

In this section, we describe the advantages of the chosen prime and optimizations to speed up the
modular reduction inside SIDH, which were inspired by similar work on so-called Montgomery-
friendly primes (e.g., see [33, 25]). We remark that similar ideas can be easily applied to selecting
primes and implementing their modular arithmetic at different security levels.

In our case, arithmetic is performed modulo the prime p = 2372 · 3239 − 1. As described in
Section 4, choosing an SIDH prime such that `eAA ≈ `

eB
B ensures a certain security strength across

the whole key exchange scheme. Additionally, some implementations benefit from having a prime
with a bit length slightly smaller than a multiple of a word size. Since 768 is the next multiple
of 32 and 64 above the bit length of our prime, and log2 p = 751 = 768 − 17, the extra room
available at the word boundaries enables the efficient use of other optimization techniques such as
carry-handling elimination, and eases the efficient use of vector instructions. Working on a field of
size slightly smaller than 2768 enables us to, e.g., use 12× 64-bit limbs to represent field elements,
whereas a prime slightly larger than 2768, such as p768 = 2387 ·3242−1 from [2], requires 13×64-bit
limbs; the latter choice brings a relatively small increase in security at the expense of a significant
increase in the cost of the modular arithmetic.

Since we work over Fp2 , where Fp2 = Fp(i) for i2 = −1, we can leverage the extensive research
done on the efficient implementation of such quadratic extension fields. In the context of pairings,
high-speed implementations have exploited the combination of Karatsuba multiplication, lazy
reduction, and carry-handling elimination; e.g., these techniques have been combined in optimized
implementations on the curve BN254 [1]. Here we can follow a similar strategy since our field
definition and underlying prime share several common traits with BN254, e.g., our prime being
slightly smaller than a multiple of the word size enables the computation of several additions
without carry-outs in the most significant word.

Efficient modular reduction. The cost of modular arithmetic (and, in particular, of modular
multiplication) dominates the cost of the isogeny-based key exchange, so its efficient implemen-
tation is crucial for achieving high performance. At first glance, it would seem that SIDH primes
prompt the use of generic Montgomery [38] or Barrett [5] reduction algorithms, which are rel-
atively expensive in comparison with the efficient reduction of certain primes with special form
(e.g., pseudo-Mersenne primes). For example, Azarderakhsh, Fishbein and Jao [2] use a generic
Barrett reduction for computing the modular multiplication in their SIDH implementation. How-
ever, we note that primes of this form do have a special shape that is amenable to faster modular



reduction. Consider the case of the well-known Montgomery reduction [38]: letting R = 2768 and
p′ = −p−1 mod R, then one can compute the Montgomery residue c = aR−1 mod p for an input
a < pR, by using

c = (a+ (ap′ mod 2768) · p)/2768,
which costs approximately s2 + s multiplications for a 2s-limb value a. For p = 2372 · 3239 − 1,
however, this computation simplifies to

c =
(
a+ (ap′ mod 2768) · 2372 · 3239 − (ap′ mod 2768)

)
/2768

= a/2768 +
(
(ap′ mod 2768) · 3239

)
/2396.

Moreover, p′ = −p−1 mod 2768 also exhibits a special form which reduces the cost of computing
ap′ mod 2768 (e.g., p′ − 1 contains five 64-bit limbs or eleven 32-bit limbs of value 0). In total, the
cost of computing c in this case is s(s−b372/wc) multiplications for a word-size w. For example, if
w = 64 (i.e., s = 12), the theoretical speedup for the simplified modular reduction is about 1.85x
when applying these optimizations.

It is straightforward to extend the above optimizations to the different Montgomery reduc-
tion variants that exist in the literature. For our implementation, we adapted the Comba-based
Montgomery reduction algorithm from [47]. Although merged multiplication/reduction algorithms,
such as the coarsely integrated operand scanning (CIOS) Montgomery multiplication [31], offer
performance advantages in certain scenarios, we prefer an implementation variant that consists of
separate routines for integer multiplication and modular reduction. This approach enables the use
of lazy reduction for the Fp2 arithmetic and allows easy-to-implement improvements in the integer
multiplication, e.g., by using Karatsuba.

Algorithm 1 is based on the Montgomery reduction algorithm in product scanning form (a.k.a.
Comba) presented in [47]. It has been especially tailored for efficient computation modulo the
prime p = 2372 · 3239 − 1 following the optimizations discussed above. As usual, given a radix-2r

field element representation using s limbs, the algorithm receives as input an operand a < 2rsp
(e.g., the integer product of two Montgomery residues) and outputs the Montgomery residue
c = a · 2−rs mod p. Here c is typically computed as (a+ (ap′ mod 2r) · p)/2r (s times) in a Comba-
like fashion, where p′ = −p−1 mod 2r. However, as mentioned above, this expression simplifies to
(a + (a mod 2r) · p̂)/2r where p̂ = p + 1 = 2372 · 3239, since p′ = 1 for our prime. In addition,
Algorithm 1 eliminates several multiplications due to the fact that the beA/rc least significant
limbs in p̂ have value 0.

Since our scheme forces the availability of extra room in the radix-2r representation (which
is made possible by having the additional condition that p < 2rs−2), there is no overflow in the
most significant word during the computation of c in Algorithm 1 (i.e., its intermediate value can
be held on exactly s r-bit registers). Moreover, if field elements are represented as elements in
[0, 2p − 1] (instead of the typical range [0, p − 1]), the output of Algorithm 1 remains bounded
without the need of the conditional subtraction in Steps 26-28 [58].

Although typical values for r would be w = 32 or 64 to match w-bit architectures, some
redundant representations might benefit from the use of r < w in order to avoid additions with
carries or to facilitate the efficient use of vector instructions. To this end, the chosen prime is very
flexible and supports different efficient alternatives; for example, it supports the use of a 58-bit
representation with s = 13 limbs when using 64-bit multipliers or the use of a 26-bit representation
with s = 29 limbs when using 32-bit multipliers.

In our 64-bit implementation, we opted for a generic radix-264 representation using s = 12
limbs, in which case the Montgomery constant is 2rs = 2768. In this case, given that the initial and
final loop iterations can be simplified in an unrolled implementation of Algorithm 1, the cost of
the modular reduction is 83 multiplication instructions. This result almost halves the number of
multiplication instructions compared to the typical Montgomery reduction, which requires 122 +
12 = 156 multiplication instructions (per reduction).

Inversions. SIDH-based key generation and shared secret computations each require one modular
inversion at the very end of their executions. These inversions can be implemented using Mont-



Algorithm 1 Optimized Comba-based Montgomery reduction for the prime p = 2372 · 3239 − 1.

Input: The prime p = 2eA · 3eB − 1; the value p̂ = p+ 1 containing z = beA/rc 0-value terms in its r-bit
representation, where eA = 372, eB = 239 and 2r is the radix; the Montgomery constant 2rs such that
2r(s−1) ≤ p < 2rs−1; and, the operand a = (a2s−1, ..., a1, a0) with a < 2rsp and s = dlog2 p/re.
Output: The Montgomery residue c = a · 2−rs mod p.

1: (t, u, v) = 0
2: for i = 0 to s− 1 do
3: for j = 0 to i− 1 do
4: if j < i− z + 1 then
5: (t, u, v) = cj × p̂i−j + (t, u, v)
6: end if
7: end for
8: (t, u, v) = (t, u, v) + ai
9: ci = v

10: v = u, u = t, t = 0
11: end for
12: for i = s to 2s− 2 do
13: if z > 0 then
14: z = z − 1
15: end if
16: for j = i− s+ 1 to s− 1 do
17: if j < s− z then
18: (t, u, v) = cj × p̂i−j + (t, u, v)
19: end if
20: end for
21: (t, u, v) = (t, u, v) + ai
22: ci−s = v
23: v = u, u = t, t = 0
24: end for
25: cs−1 = v + a2s−1

26: if c ≥ p then
27: c = c− p
28: end if
29: return c

gomery inversion based on, e.g., the binary GCD algorithm. However, this method does not run in
constant time by default, and therefore requires additional countermeasures to protect it against
timing attacks (e.g., the application of input randomization). Since inversion is used scarcely in our
software, we instead opted for the use of Fermat’s little theorem, which inverts the field element a
via the exponentiation ap−2 mod p that uses a fixed addition chain. Our experiments showed that
the cost of this exponentiation is around 9 times slower than (an average run of) the GCD-based
method, however even the more expensive inversion only contributes to less than 1% of the overall
latency of each round of the protocol. Thus, our choice to compute each isolated inversion via
a fixed exponentiation protects the implementation without impacting the performance in any
meaningful way, and avoids the need for any additional randomness.

6 SIDH implementation summary

In this section we pull together all of the main ingredients from Sections 2-5 to give a brief overview
of the scheme and its implementation. For high-level Magma code that illustrates the entire SIDH
protocol, see SIDH.mag in [16].

Public parameters. Together with the curve E0 : y2 = x3 + x and the prime p = 23723239 − 1,
the public parameters are PA = [3239](11,

√
113 + 11), QA = τ(PA), PB = [2372](6,

√
63 + 6), and



QB = τ(PB). Given that all these square roots are in Fp (we choose the “odd” ones), and that
QA and QB require no storage, this means that only 4 Fp-elements (or 3004 bits) are required to
fully specify the public generators. If we were to instead randomly choose extension field torsion
generators without use of the distortion map, as is suggested in [19], then 16 Fp elements (or 12016
bits) would be required to specify the public generators.

Key generation. On input of the public parameters above, and the secret key mA chosen
as in Section 4, Alice proceeds as in Algorithm 3 (see Algorithm 2 for the simple, but slower
multiplication-based main loop). She calls the secret pt function, which computes PA + [mA]QA
by calling LADDER to compute x([mA]QA)), before recovering the corresponding y-coordinate using
the Okeya-Sakurai strategy [42]; this allows the addition of PA and [mA]QA. All of these operations
are performed over the ground field and we proceed by taking only x(PA + [mA]QA) through the
main loop.

We note that our implementation requires that Alice’s secret isogeny is evaluated at both of
the public parameters xPB

and xQB
, as well as at the x-coordinate of the difference, xQB−PB

;
this allows Bob to kickstart the three pt ladder function (from [19, Algorithm 1]) during his
shared secret phase. Conversely, Bob must also evaluate his secret isogeny at xQA−PA

. In both
cases, rather than setting xQ−P as a public parameter, it can be computed on-the-fly from xP ,
since in this special instance, xQ−P = xτ(P )−P = i · (x2P + 1)/(2xP ). This is fed directly into our
projective isogeny evaluation function, so we do not need xQ−P ∈ A, but can instead compute
x(Q − P ) = (i(x2P + 1): 2xP ) ∈ P1, which costs just one squaring and two additions in Fp; this
operation is performed with the distort and diff function.

At the conclusion of Algorithm 3, Alice outputs her public key

PKAlice = [aA, xφA(PB), xφA(QB), xφA(QB−PB)] ∈ F4
p2 .

Bob proceeds similarly, as shown in Algorithm 5 (again, see Algorithm 4 for a simpler, but slower
multiplication-based approach), and outputs his public key

PKBob = [aB , xφB(PA), xφB(QA), xφB(QA−PA)] ∈ F4
p2 .

Alice’s fast key generation via Algorithm 3, using the strategies for computing the isogeny trees
as given in Section 4, requires 638 multiplications-by-4 and the evaluation of 1330 4-isogenies;
calling the simpler Algorithm 2 requires 17020 multiplications-by-4 an 744 4-isogeny evaluations.
On Bob’s side, the optimal strategy (i.e., fast key generation) requires 811 multiplications-by-3
and the evaluation of 1841 3-isogenies; the simpler version requires 28441 multiplications-by-3 and
956 3-isogeny evaluations. See Section 7 for the benchmarks and further discussion.

Shared secret. On input of PKBob = [a, xφB(PA), xφB(QA), xφB(QA−PA)] and her secret key mA,
Alice calls Algorithm 7 (again, see Algorithm 6 for a more compact, but significantly slower main
loop) to generate her shared secret. This starts by calling the three pt ladder function (from [19,
Algorithm 1]) to compute x(φB(PA) + [mA]φB(QA)), which is used to generate the kernel of the
isogeny that is computed in the main loop. Finally, Alice uses the j inv function to compute her
shared secret. For Bob’s analogous shared key generation, see Algorithms 9 and 8.

Alice’s fast key generation via Algorithm 7, again using the strategies in Section 4, requires 638
multiplications-by-4 and the evaluation of 772 4-isogenies; calling the simpler Algorithm 6 requires
17020 multiplications-by-4 and 186 4-isogeny evaluations. On Bob’s side, the optimal strategy (i.e.,
fast key generation) requires 811 multiplications-by-3 and the evaluation of 1124 3-isogenies; the
simpler version requires 28441 multiplications-by-3 and 239 3-isogeny evaluations. See Section 7
for the benchmarks and further discussion.

Remark 4. In light of the simple relationship QB = τ(PB), at first glance it might seem wasteful
for Alice to have to evaluate her isogeny φA at all three of xPB

, xQB
, and xQB−PB

. For example,
the relationship xQB

= −xPB
suggests there might be a more efficient way to compute φA(xQB

)



directly from φA(xPB
), but this does not seem to be the case. If φA : E0 → EA is Alice’s secret

isogeny and τ : E0 → E0 is the distortion map defined by (x, y) 7→ (−x, iy), finding τ ′ : EA → EA
such that τ ′ ◦ φA = φA ◦ τ appears to be non-trivial. The algorithm in [23] constructs distortion
maps on arbitrary supersingular curves, but using it would undoubtedly be slower than accu-
mulating the evaluation of isogenies at xQB

through the main loop, and moreover, there is no
guarantee that the distortion map that results from such a construction is the distortion map τ ′

we need. Equations (3) and (7) offer some evidence in this regard, e.g., there does not appear to
be an exploitable relationship between their repeated application on (X : Z) and their repeated
application on (−X : Z).

7 SIDH performance

To evaluate the performance of the proposed supersingular isogeny system and the different op-
timizations, we wrote a software library supporting ephemeral SIDH key-exchange. The software
was mostly written in the C language and has been designed to facilitate the addition of specialized
code for different platforms and applications. The first release of the library comes with a fully
portable C implementation supporting 32- and 64-bit platforms and two optional x64 implemen-
tations of the field arithmetic: one implementation based on intrinsics (which is, e.g., supported on
Windows OS by Visual Studio) and one implementation written in x64 assembly (which is, e.g.,
supported on Linux OS using GNU GCC and clang compilers). The latter two optional modules
are intended for high-performance applications. All of the software is publicly available in [16].

In Table 2, we present the performance of our software using the x64 assembly implementation
in comparison with the implementation proposed by [2]. Results for the implementation in [2] were
obtained by benchmarking their software12 on the same Intel Sandy Bridge and Haswell machines,
running Ubuntu 14.04 LTS. Note that the results in Table 2 differ from what was presented in Table
3 in [2]. The differences might be due to the use of overclocking (i.e., TurboBoost technology). For
our comparisons, we disabled TurboBoost for a more precise and fair comparison.

Table 2. Performance results (expressed in millions of clock cycles) of the proposed SIDH implementation
in comparison with the implementation by Azarderakhsh et al. [2] on x64 platforms. Benchmark tests
were taken with Intel’s TurboBoost disabled and the results were rounded to the nearest 106 clock cycles.
Benchmarks were done on a 3.4GHz Intel Core i7-2600 Sandy Bridge and a 3.4GHz Intel Core i7-4770
Haswell processor running Ubuntu 14.04 LTS.

Operation

This work Prior work [2]

Sandy
Haswell

Sandy
Haswell

Bridge Bridge

Alice’s keygen 54 51 165 149

Bob’s keygen 64 59 172 152

Alice’s shared key 51 47 133 118

Bob’s shared key 61 57 137 122

Total 230 214 608 540

Table 2 shows that the total cost of computing one Diffie-Hellman shared key (adding Alice’s
and Bob’s individual costs together) using our software is around 2.6 and 2.5 times faster than the
software from [2], on Sandy Bridge and Haswell, respectively. These results are due to the different
optimizations discussed throughout this work, the most prominent two being (i) the elimination
of inversions during isogeny computations by working with projective curve coefficients, and (ii)
the faster modular arithmetic triggered by the selected prime and the tailor-made Montgomery
reduction for SIDH primes. It is important to note that, in particular, the advantage over [2] is

12 See https://github.com/defeo/ss-isogeny-software.



not even larger because the numerous inversions used during the isogeny computations in [2] are
not computed in constant time. Making such inversions constant-time would significantly degrade
their performance (see the related paragraph in Section 5).

Remark 5. In Section 4 we discussed several specialized choices that were made for reasons unre-
lated to performance, e.g., in the name of simplicity and/or compactness. We stress that, should
future cryptanalysis reveal that these choices introduce a security vulnerability, the performance
of SIDH and the performance improvements in Sections 3 and 5 are unlikely to be affected (in
any meaningful way) by reverting back to the more general case(s). In particular, if it turns out
that sampling from a fraction of the possible 2- and 3-torsion subgroups gives an attacker some
appreciable advantage, then modifying the code to sample from the full set of torsion subgroups is
merely an exercise, and the subsequent performance difference would be unnoticeable. Similarly, if
the use of the base-field and trace-zero subgroups and/or the distortion map turns out to degrade
SIDH security, then the main upshot of reverting to randomized public generators would be the
inflated public parameters (see Section 6); the slowdown during key generation would be minor
and the shared secret computations would be unchanged.

8 BigMont: a strong ECDH+SIDH hybrid

We now return to the discussion (from Section 1) of a hybrid scheme. Put simply, and in regards
to both security and suitability, at present there is not enough confidence and consensus within
the PQC community to warrant the standalone deployment of one particular post-quantum key
exchange primitive. Subsequently, there is interest (cf. [7]) in deploying classical primitives along-
side post-quantum primitives in order to hedge one’s bets until a confidence-inspiring PQC key
exchange standard arrives. This is particularly interesting in the case of SIDH, whose security has
(because of its relatively short lifespan) received less cryptanalytic scrutiny than its post-quantum
counterparts.

In this section we discuss how traditional ECDH key exchange can be included alongside SIDH
key exchange at the price of a very small overhead. The main benefit of our approach is its
simplicity; while SIDH could be partnered with ECDH on any of the standardized elliptic curves,
this would mean that a lot more code needs to be written and/or maintained. In particular, it
is often the case that the bulk of the code in high-speed ECC implementations relates to the
underlying field arithmetic. Given that none of the fields underlying the standardized curves are
SIDH-friendly13, such a partnership would require either a generic implementation that would be
much less efficient, or two unrelated implementations of field arithmetic. Our proposal avoids this
additional complexity by performing ECDH on an elliptic curve defined over the same ground field
as the one used for SIDH.

For p = 23723239− 1, recall that our SIDH software works with isogenous curves Ea/Fp2 : y2 =
x3 +ax2 +x whose group orders are of the form #Ea = 2i ·3j , meaning that elliptic curve discrete
logarithms are easy on all such curves by the Pohlig-Hellman algorithm [45]. However, there are
also (exponentially many) ordinary curves of the form Ea/Fp2 that are cryptographically secure.
In particular, over the base field Fp, we can hope to find a ∈ Fp such that Ea/Fp and its quadratic
twist E′a/Fp are cryptographically strong, i.e., such that Ea/Fp is twist-secure [6].

Since p ≡ 3 mod 4, we searched for such a curve in exactly the same way as, e.g., Hamburg’s
Goldilocks curve [26] was found. Namely, since the value (a + 2)/4 is the constant that appears
in Montgomery’s ladder computation [39], we searched for the value of a that gave rise to the
smallest absolute value of (a+ 2)/4 (when represented as an integer in [0, p)), and such that #Ea
and #E′a are both 4 times a large prime. For p as above, the first such value is a = 624450; to
make a clear distinction between curves in the supersingular isogeny class and the strong curve
used to perform ECDH, we (re)label this curve as

Ma/Fp : y2 = x3 + ax2 + x with a = 624450.

13 Nor are any of the fields large enough to support highly quantum-secure SIDH.



The trace tMa
of the Frobenius endomorphism on Ma is

tMa =0x743FC8888E1D8916BAB6DD6500AD5265DFE2E04882877C

26BA8CD28BE24D10D3E729B0BD07BC79699230B6BC69FEAC,

which gives #Ma = p+ 1− tMa
= 4ra and #M ′a = p+ 1 + tMa

= 4r′a, where ra and r′a are both
749-bit primes.

Following [6], every element in Fp corresponds to the x-coordinate of a point on either Ma or
on M ′a. Together with the fact that Montgomery’s LADDER function correctly computes underlying
scalar multiplications independently of the quadratic twist, Ma being twist-secure allows us to
treat all Fp elements as valid public keys and to perform secure ECDH without the need for any
point validation.

The ECDH secret keys are integers in [0, ra). To ensure an easy constant-time LADDER function,
we search for the smallest α ∈ N such that αra and (α + 1)ra − 1 are the same bit length,
which is α = 3; accordingly, secret keys are parsed into [3ra, 4ra) prior to the execution of scalar
multiplications via LADDER. Subsequently, form ∈ [0, ra) and x(P ) ∈ P1(Fp), computing x([m]P ) =
LADDER(x(P ),m, a) requires 1 call to xDBL and 750 calls to xDBLADD (see Table 1 for the operation
counts of these functions, but note that here we can take advantage of the fixed, small constant
a). As all of these computations take place over the ground field, the total time taken to compute
ECDH public keys and shared secrets is only a small fraction of the total time taken to compute
the analogous SIDH keys – see Table 3.

From an implementation perspective, partnering SIDH with ECDH as above is highly advanta-
geous because all of the functions required to compute x([m]P ) = LADDER(x(P ),m, a) are already
available from our Montgomery SIDH framework. In particular, the key generation (see Section 6)
already has a tailored Montgomery LADDER function that works entirely over the base field, i.e.,
on the starting curve E0, so computing ECDH keys is as simple as calling pre-existing functions
on input of a different constant.

Though the speed overhead incurred by adding ECDH to SIDH in this way is small (see
Table 3), choosing to use such a large elliptic curve group makes concatenated keys larger than they
would be if a smaller elliptic curve was used for ECDH. For example, suppose we were to instead use
the curve currently recommended in Suite B [41], Curve P-384, and (noting that uncompressed
Curve P-384 points are larger than our proposed ECDH public keys) were to compress ECDH
public keys as an x-coordinate and a sign bit. The total public key size with SIDH-compressed
(resp. uncompressed) keys would then be 612 (resp. 800) bytes, instead of the 658 (resp. 845) bytes
reported in Table 3. Though this difference is noticeable, it must be weighed up against the cost
of the extensive additional code required to support Curve P-384, which would almost certainly
share nothing in common with the existing SIDH code. Moreover, the simplicity of adding ECDH

Table 3. Comparison of standalone SIDH versus hybrid SIDH+ECDH. Timing benchmarks were taken
(assuming no SIDH compression) on a 3.4GHz Intel Core i7-4770 Haswell processor running Ubuntu 14.04
LTS with TurboBoost disabled and results rounded to the nearest 106 clock cycles. The compression
referred to is the simple compression of xQ−P discussed in Section 10. For simplicity, the bit-security of
the primitives was taken to be the target security level and is not intended to be precise.

comparison standalone SIDH hybrid SIDH+ECDH

≈ bit-security classical 192 (SSDDH) 384 (ECDHP)

(hard problem) PQ 128 (SSDDH) 128 (SSDDH)

public key size uncompressed 751 845

(bytes) compressed 564 658

Alice’s keygen 51 58

speed Bob’s keygen 59 66

(cc ×106) Alice’s shared key 47 54

Bob’s shared key 57 64



to SIDH as we propose is not the only reason to justify slightly larger public keys; the colossal 384-
bit security achieved by M624450 also puts it in a position to tolerate the possibility of significant
future advancements in ECDLP attacks. Due to the complexity of the ECDLP on M624450 in
comparison with all of the elliptic curves in the standards, we dub this curve “BigMont”.

In Table 3 we compare hybrid SIDH+ECDH versus standalone SIDH. The take-away message
is that for a less than 1.17x increase in public key sizes and less than 1.13x increase in the overall
computing cost, we can increase the classical security of the key exchange from 192 bits (based on
the relatively new SSDDH problem) to 384 bits (based on the long-standing ECDLP).

9 Validating public keys

Recall from Section 2 that De Feo, Jao and Plût [19] prove that SIDH is session-key secure
(under SSDDH) in the authenticated-links adversarial model [12]. This model assumes perfectly
authenticated links which effectively forces adversaries to be passive eavesdroppers; in particular,
it assumes that public keys are correctly generated by honest users. While this model can be
suitable for key exchange protocols that are instantiated in a truly ephemeral way, in real-world
scenarios it is often the case that (static) private keys are reused. This can incentivize malicious
users to create faulty public keys that allow them to learn information about the other user’s
static private key, and in such scenarios validating public keys becomes a mandatory practical
requirement.

In traditional elliptic curve Diffie-Hellman (ECDH), validating public keys essentially amounts
to checking that points are on the correct and cryptographically secure curve [9]. Such point
validation is considered trivial in ECDH since checking that a point satisfies a curve equation
requires only a handful of field multiplications and additions, and this is negligible compared to
the overall cost (e.g., of a scalar multiplication).

In contexts where SIDH private keys are reused, public key validation is equally as important
but is no longer as trivial. In April 2015, a group from the NSA [30] pointed out that “direct
public key validation is not always possible for [...] isogeny based schemes” before describing more
complicated options that validate public keys indirectly. In this section we describe ways to directly
validate public keys that, in particular, work entirely in our compact framework, i.e., without the
need of y-coordinates or of the b coefficient that fixes the Montgomery quadratic twist.

Recall from Section 6 that an honest user will generate public keys of the form

PK =
[
a , xP , xQ , xQ−P

]
∈ F4

p2 ,

where P = (xP , xQ) and Q = (xQ, yQ) are independent and of the same order `e on the Mont-
gomery curve Ea that is Fp2 -isogenous to E0; the algorithms we describe below will only deem a
purported public key as valid if this is indeed the case.

We first point out that, whether the public parameters are chosen from special torsion sub-
groups or not, the three x-coordinates in a public key will be (with overwhelming probability)
defined over Fp2 . The first check that must be made on public keys is that the (underlying) points
P and Q are of the full order `e. If not, then an SIDH-like analogue of the Lim-Lee [34] small
subgroup attack becomes a threat; e.g., an attacker could send xQ where Q has small order q
and guess the shared secret (i.e., the kernel 〈P + [m]Q〉) to learn m mod q. In addition, to our
knowledge, the nature of the public key suggests that the only practical way of asserting that P
and Q are independent is that their Weil or Tate pairing e`e(P,Q) is non-trivial. If this assertion
is not made, then a malicious user can simply send a public key where Q = [λ]P , which ultimately
forces the shared secret to be independent of the honest party’s private key14. Such capabilities
could be catastrophic if the authentication mechanism does not detect this.

The validation of the three x-coordinates in a public key is different for Alice and Bob, so
we now describe these cases separately. We then discuss how both parties validate that the first

14 If Q = [λ]P , then the “secret” kernel generated by R = P + [m]Q is the same as the kernel generated
by Q and/or P , which are public.



component of the public key (i.e., a) corresponds to a supersingular curve in the correct isogeny
class, and conclude the section with performance benchmarks for full validation of public keys.

Alice’s validation of Bob’s public key. Alice must determine whether Bob’s transmission
[a, xP , xQ, xR] ∈ F4

p2 is a valid public key. Let n = 2eA and let fi,P be the function with divisor

div(fi,P ) = i(P )−([i]P )−([i−1]O) on Ea. We now show that through a computation related to the
Weil pairing en(P,Q), Alice can simultaneously check that xP and xQ correspond to the points P
and Q of order n on the Montgomery curve Ea, and that P and Q are independent. At a high level,
we follow the ideas of Galbraith and Lin [22] who showed that, under certain circumstances, the
(traces of the) Weil and Tate pairings can be computed using only x-coordinates. One obstruction
preventing the direct application of [22] in our case is that the coordinates of P and Q do not have
the special (i.e., subfield) form that was needed in [22]. On the other hand, here we do not need to
compute the value of the pairing, we merely need to know whether it is 1 or not. In this case we can
use recursions similar to those in [22] to write the Weil pairing en(P,Q) = fn,P (Q)/fn,Q(P ) as an
indeterminate function in yP and yQ. For i = 1, . . . , n, we compute fi,P (Q) = αi,P · yP + βi,P · yQ
and fi,Q(P ) = αi,Q · yP + βi,Q · yQ, where the subscripted α’s and β’s are recursively computed as
functions of xP and xQ only, until we have

en(P,Q) =
αn,P · yP + βn,P · yQ
αn,Q · yP + βn,Q · yQ

.

It follows that en(P,Q) = 1 if and only if(
αn,Q − αn,P
βn,P − βn,Q

)2

=
x3Q + ax2Q + xQ

x3P + ax2P + xP
,

which can be computed and checked using only xP and xQ. Note that no inversions are required
in this validation: all point operations and line computations in Miller’s algorithm are performed
projectively, and the numerator and denominator of en(P,Q) are carried separately throughout
the entire computation until we cross-multiply to check the above equation.

Checking the order of the points P and Q in Ea essentially comes for free during the above
computation. Since `A = 2, the indeterminate functions fn,P and fn,Q are computed via a sequence
of eA iterations of Miller’s algorithm [37], which computes both x[`eAA ]P and x[`eAA ]Q via eA repeated

calls to the xDBL function. For example, during the second last call that computes (X : Z) =
x([`eA−1A ]P ), we check that Z 6= 0, and during the last call that computes (X ′ : Z ′) = x([`eAA ]P ),
we check that Z ′ = 0. If either of these checks are not satisfied (for both xP and xQ), then
[a, xP , xQ, xR] ∈ F4

p2 is not a valid public key. If they are both satisfied, then we have (so far)
established that xP and xQ correspond to independent points P and Q on the Montgomery curve
Ea/Fp2 , and that they have exact order `eAA .

The fourth component of the public key can be validated via Hamburg’s observation [25, §A.2],
which says that xR = xQ±P if and only if

4(a+ xP + xQ + xR) =
(1− xPxQ − xPxR − xQxR)2

xPxQxR
.

Note that an adversary gains nothing from manipulating xR = xQ−P into xR = xQ+P ; both are
valid possibilities for honestly generated public keys that also contain xP and xQ. The transmission
of the sign bit (that chooses between these two options) during the simple compression in Section 10
is to ensure that the two parties arrive at the same shared secret.

Almost all of the computational cost in Alice’s validation is the main loop of the above Weil
pairing. This takes eA−1 = 371 iterations, each of which incurs 61M+12S+37a. See the function
Validate PKB in Validate.mag [16].

It remains to discuss how to check that the Montgomery curve Ea is in the correct isogeny
class. Since this is done in the same way for Alice and Bob, we postpone it until after Bob’s
validation.



Bob’s validation of Alice’s public key. Bob must determine whether Alice’s transmission
[a, xP , xQ, xR] ∈ F4

p2 is a valid public key. Let n = 3eB , and let fi,P be as above. Bob could
use a binary double-and-add version of Miller’s algorithm to compute fn,P , but this does not
take advantage of the nature of n and would incur a significant performance penalty. We now
show that it is possible to do much better, by sketching that an x-only, tripling-only version of
Miller’s algorithm to compute the Weil pairing can use analogous recursions as the Galbraith-Lin
recursions used by Alice above.

In the case of a tripling-only version of Miller’s algorithm, each iteration computes f3i,P = f3i,P ·
lP /vP , where div(lP /vP ) = 3([i]P )− ([3i]P )−2(O). Thus, we take lP = y− (l2,Px

2 + l1,Px− l0,P )
as the quadratic function that has respective zeros of order 3 and 1 at [i]P and (−[3i]P ), and a
pole of order 4 at O; and, as usual, we take v = x − x[3i]P as the vertical function with zeros of
order 1 at [3i]P and −[3i]P and a pole of order 2 at O. Matching derivatives yields the li,P as

l2,P = y
(
6x2 − 1 + 4ax3 + 3x4

)/(
8x2(x2 + ax+ 1)2

)
,

l1,P = y
(
2x2 + 4a2x2 + 3 + 6ax+ 6ax3 + 3x4

)/(
4x(x2 + ax+ 1)2

)
,

l0,P = y
(
6x2 + 3 + 4ax− x4

)/(
8(x2 + ax+ 1)2

)
.

The key observation is that the y term appears in front of each of the li, which allows us to write

y([3i]P ) = −
(
l2,P (x([3i]P ))2 + l1,P (x[3i]) + l0,P

)
= y · g(x([3i]P )),

= y · h(x([i]P )),

for some functions g(x) and h(x). This allows us to write a Montgomery tripling analogue for
the doubling recurrence in [22, Lemma 2], setting y[i]P = ui · yP with ui only dependent on
x-coordinates. We then carry yP and yQ indeterminately through Miller’s algorithm, eventually
checking that the pairing is non-trivial and that the points P and Q have full order `eBB , exactly as
was done for Alice15. Here we optimized a tailored routine for the merging of the x-only tripling
function xTPL together with the evaluations of the (projective versions of the) line functions above.

We point out that one non-trivial difference between a “tripling-only” Weil pairing computation
and the pairing computations often documented in the literature is the evaluation of functions
at infinity. In particular, the final exponentiation in the Tate pairing allows evaluations of the
form fi,P ((Q)− (O)) to be computed as fi,P (Q) [4, Theorem 1]. Here the absence of a final
exponentiation means that the Weil pairing, which is defined as en(P,Q) = −fn,P (DQ)/fn,Q(DP )
for divisors DP ∼ (P ) − (O) and DQ ∼ (Q) − (O), means that we must include the evaluations
of fn,P and fn,Q at O. In our case, the computational upshot is that the evaluations of the Miller

lines
lP (DQ)
vP (DQ)/

lQ(DP )
vQ(DP ) can be computed as lP (Q)

vP (Q)/
lQ(P )
vQ(P ) ·

l2,Q
l2,P

.

Again, almost all of the computational cost in Bob’s validation is the main loop of the Weil
pairing. This takes eB−1 = 238 iterations, each of which incurs 82M+16S+83a. See the function
Validate PKA in Validate.mag [16].

Validating the curve. We now show how to validate that a (i.e., the curve coefficient in Alice
or Bob’s public key) corresponds to a Montgomery curve Ea that is a member of the correct
supersingular isogeny class. The validation has two steps: we firstly assert that j(Ea) /∈ Fp so that
Ea is not a subfield curve, then we assert that Ea is in the correct supersingular isogeny class.

For the first step, we write a = a0+a1 ·i with a0, a1 ∈ Fp. We next write 256(a2−3)3 = c0+c1 ·i
and a2 − 4 = d0 + d1 · i for c0, c1, d0, d1 ∈ Fp. Note that a curve in Montgomery form must satisfy
a2 − 4 6= 0, so either d0 or d1 must be non-zero. Using the p-power Frobenius automorphism,
it follows from (1) that j(Ea) ∈ Fp if and only if c0d1 = c1d0. In this case, if di 6= 0, we have

15 A minor difference (in our code) is that we actually check that P ′ = [3eB−1]P and Q′ = [3eB−1]Q have
order 3 by asserting that x(P ′) = x(xDBL(P ′)) and x(Q′) = x(xDBL(Q′)), and that neither x(P ′) or x(Q′)
are equivalent to (0 : 1). This is because the final iteration already computes these xDBL operations.



j(Ea) = ci/di for i ∈ {0, 1}. Thus, to assert that j(Ea) /∈ Fp, we simply compute c0, c1, d0, d1 from
a and assert that c0d1 6= c1d0 in Fp, which totals only a handful of multiplications in Fp. This
check also catches if a ∈ Fp is submitted, i.e. a1 = 0, since then c1 = 0 = d1.

The less trivial step is to validate that Ea is supersingular. To do this, we make use of Suther-
land’s probabilistic algorithm [53, Algorithm 1], which (for our purposes) says to pick a random
point P ∈ Ea(Fp2), and to check whether [p − 1]P = O or [p + 1]P = O. If this is the case, then
Ea is supersingular with overwhelming probability: the probability that this test would pass if Ea
was actually an ordinary curve is at most 8p/(p− 1)2 < 1/2747 [53, Proposition 1].

We now point out that Ea being supersingular is equivalent to either Ea or its quadratic
twist, E′a, belonging to the correct isogeny class. Namely, by [51, V.5.10(a)], Ea is supersingular
if and only if its trace, tEa

, satisfies tEa
≡ 0 mod p. Together with [55, Theorem 1], and recalling

that −2p ≤ tEa ≤ 2p [51, V.1.1], this means that there are (at most) 5 possible isogeny classes
of supersingular elliptic curves, those which are described by tEa ∈ {−2p,−p, 0, p, 2p}. Since
p ≡ 3 mod 4, there are only two possibilities for tEa

that correspond to a Montgomery curve, i.e.,
two possible tEa

such that 4 | #Ea [39], namely tEa
= −2p and tEa

= 2p. These traces respectively
correspond to curves with #Ea = (p+ 1)2 that are in the correct isogeny class, and to curves with
#E′a = (p− 1)2 that are in the isogeny class containing all of their non-trivial quadratic twists.

In our case we are trying to validate that a corresponds to a curve with #Ea = (p+ 1)2, so at
first glance it would seem that the best route is to pick a random point P ∈ Ea(Fp2) and assert that
[p+1]P = O. However, generating such a random point requires a square-root computation, and it
turns out that we can (again) avoid the need for a square root altogether. For a given a, recall from
Section 8 (or, in turn, from [6]) that every element in Fp2 is either16 the x-coordinate of a point
on Ea/Fp2 or the x-coordinate of a point on E′a/Fp2 . This means that if Ea is supersingular, every
element in Fp2 is the x-coordinate of a point whose order divides either p− 1 or p+ 1. This gives
us a way to quickly assert (with overwhelming probability) that a corresponds to a supersingular
Montgomery curve in the correct isogeny class. With the Montgomery LADDER function as described
in Section 3, we simply take a random element r in Fp2 , compute (X : Z) = LADDER((r : 1), a, p+1)
and (X ′ : Z ′) = LADDER((r : 1), a, p−1), and ensure that Z ·Z ′ = 0; otherwise, we reject the public
key as invalid.

We can compute a condition equivalent to Z ·Z ′ = 0 using only one call to the LADDER function
as follows. The condition O ∈ {[p − 1]P, [p + 1]P} is equivalent to the condition x(P ) = x([p]P ),
which can be checked by computing (X : Z) = LADDER(x(P ), a, p) with x(P ) = (xP : 1) and
checking that Z · xP = X. However, calling LADDER to compute x([p]P ) directly is undesirable;
given that p + 1 = 2`A3`B , it is instead preferable to write a tailored ladder (consisting only of
xDBL and xTPL operations) that computes a scalar multiplication by p+ 1. We do this by noting
that the condition x(P ) = x([p]P ) is equivalent to the condition that either x([p+ 1]P ) = x([2]P )
or [p+ 1]P = O is satisfied.

To summarize, the validation that a corresponds to a supersingular Montgomery curve in the
correct isogeny class proceeds as follows. On input of a, we choose a random element r ∈ Fp2
and compute (X : Z) = xDBL((r : 1), a), we then compute eA − 1 = 371 repeated doublings
as (X ′ : Z ′) = xDBLe((X : Z), a, 1, eA − 1) before computing eB = 239 repeated triplings as
(X ′′ : Z ′′) = xTPLe((X ′ : Z ′), a, 1, eB). We then accept the curve as valid if and only if Z ′′(XZ ′′ −
X ′′Z) = 0. Thus, validation of the curve amounts to 372 xDBL operations, 239 xTPL operations, and
3 subsequent Fp2 multiplications. This constitutes a small fraction of the Weil pairing computation
and thus a small fraction of the full validation.

We reiterate that accepting a as valid means that one of the two quadratic twists Ea/Fp2 : y2 =
x3+ax2+x and E′a/Fp2 : by2 = x3+ax2+x (for b non-square in Fp2) is in the correct supersingular
isogeny class. Within our framework (which ignores the choice of quadratic twist by working on
the associated Kummer variety), a successful validation can be viewed as accepting such an a and
then choosing to work on the quadratic twist corresponding to the correct isogeny class. For the
function that validates the curve, see test curve in Validate.mag [16].

16 These two quadratic twists share points of order 2, i.e., there are (at most 3) points of the form (x0, 0)
that lie on both curves; otherwise, an Fp2 element will correspond to precisely one or the other.



Remark 6. Referring back to Remark 2, we now discuss why Alice rejects Bob’s public key PK =
[a, . . . ] if j(Ea) ∈ Fp. This is not because the subsequent shared secret would, to our knowledge,
give Bob any more information about Alice’s long-term private key than if j(Ea) ∈ Fp2 \Fp; indeed,
honestly generated public keys are assumed to be safe based on an isogeny walk that started on a
subfield curve. Put another way, there is no current reason to believe that, if Bob was malicious,
he would gain anything from sending a such that j(Ea) ∈ Fp. Alice is rejecting Bob’s public key
because the (in)security of his private key is based on the difficulty of finding the isogeny between
two curves defined over the ground field Fp, for which there is a known quantum algorithm with
subexponential complexity [8]. If Alice were to accept this public key as valid, both Bob’s private
key and therefore their shared secret could be compromised. Here the discussion is identical for
Bob’s validation of Alice’s public key, i.e., this part of the validation is the same for both parties.

Remark 7. The speed and simplicity of the above Monte Carlo algorithm for validating Ea, as
well as the ease of implementing it on the existing SIDH code base, makes it highly desirable for
this stage of the public key validation. Moreover, the O(1/p) chance of this procedure deeming
an ordinary curve as supersingular makes it suitable for real-world deployment. We reiterate that
this probability and suitability relies on the input element in Fp2 being unknown to an adversary,
i.e., independent of the a value(s) it is used to validate. If an adversary knew the Fp2 element in
advance, it is conceivable that this could be used to derive an ordinary curve Ea that would pass
validation. On the other hand, so long as this input element is kept secret, it might be possible
and desirable to safely relax the freshness/randomness requirements suggested by the algorithm.
On a related note, we point out that Sutherland [53, §4] also gives a deterministic algorithm for
asserting supersingularity, but its additional overhead makes it less suitable for our application.

The price of public key validation. The cost of validating Alice’s and Bob’s public keys is
non-trivial. On our target platforms, i.e., a 3.4GHz Intel Core i7-2600 Sandy Bridge and a 3.4GHz
Intel Core i7-4770 Haswell processor running Ubuntu 14.04 LTS, the validation of Alice’s public
key costs around 68 million and 63 million clock cycles, respectively. Similarly, the validation of
Bob’s public key costs around 75 million and 70 million clock cycles, respectively. Referring back
to Table 2, this means that validation is between 1.17 and 1.34 times more expensive than a key
generation or shared secret computation. In both cases, the cost is dominated by the expensive
Weil pairing computation.

From a performance perspective, and until a much faster public key validation procedure is
discovered, these results seem to suggest that instantiating SIDH in a truly ephemeral fashion (i.e.,
using private/public key pairs once and then discarding them) is the way to go. Indeed, the savings
obtained by not having to generate fresh public keys in the static case are completely consumed
by the more costly public key validation. On the other hand, in cases where performance is not the
governing reason behind a static instantiation, the above public key validation is less complicated
(from a protocol perspective) than the indirect validation in [30].

10 Compression of public keys

Recall that our public keys are of the form [a, xP , xQ, xQ−P ] ∈ F4
p2 , where P = (xP , yP ) and

Q = (xQ, yQ) lie on Ea : y2 = f(x) = x3 +ax2 +x. We now show how to compress17 the public key
to [a, xP , xQ, bit] ∈ F3

p2 × {0, 1}. The idea is to use the equation from [42, Theorem 2] to write

2yP yQ = xQ−P · (xQ − xP )2 − (xQ + xP )(xQxP + 1)− 2axQxP . (8)

To compress, we compute 2yP yQ from xP , xQ and xQ−P as above and set bit as the corresponding
sign bit, e.g., if 2yP yQ = u + vi with u, v ∈ Fp, we can set bit as the lowest bit of u (viewing u

17 This compression was derived by Ping Ngai Chung during the preparation of [15].



as an integer in [0, p)). To decompress, we compute 2yP yQ =
√

4f(xP )f(xQ), using bit to choose
the correct square root. Rewriting the above equation reveals that xQ−P can be recovered as

xQ−P =
(xP + xQ)(xPxQ + 1) + 2axPxQ + 2yP yQ

(xQ − xP )2
.

In general, this would compress an (8 log2 p)-bit public key into a (6 log2 p+ 1)-bit public key, and
in our case our public keys would be compressed from 6008 bits (751 bytes) to 4507 bits (563
bytes). If computed as above, then compression is essentially free, while decompression comes at
a cost of (roughly) one square root and one inversion in Fp2 ; assuming a valid public key (i.e.,
that 4f(xP )f(xQ) is indeed a square in Fp2), the former can be computed via two square roots
over the base field [49, §3.3], while the latter can be computed via one inversion in the base field.
This would add a small but noticeable overhead to the “shared key” computations benchmarked
in Table 2.

Azarderakhsh et al. [3] recently described two techniques for key compression in isogeny-based
cryptosystems. We now discuss the application of their techniques to our choice of public keys.
Firstly, in [3, §3] it is remarked that the x-coordinates of points can be sent over the wire and
that the sign ambiguity (when recovering the corresponding y coordinate) is immaterial, i.e., that
(x, y) and (x,−y) will generate the same kernel subgroup. In our case, this would suggest that
we could avoid the transmission of xQ−P (or the corresponding sign bit if compression is used)
altogether. However, it is actually not the case that the same kernel will be generated for all four
combinations of ±P and ±Q. In particular, the subsequent computation (U, V ) 7→ U + [m]V will
yield the same subgroup if (U, V ) = (P,Q) or if (U, V ) = (−P,−Q), but will yield a different
subgroup if (U, V ) = (−P,Q) or (U, V ) = (P,−Q). This means that our inclusion of xQ−P (or
bit) in the public key is necessary to guarantee that Alice and Bob generate matching shared
secrets.

There are two compression techniques suggested in [3]. The first, described in [3, §3.1], shows
how the curve generated under the secret isogeny can be sent over the wire using only one element
in Fp2 , rather than, e.g., the two coefficients used to specify a short Weierstrass curve. We note
that this technique does not help in our case, since our framework (which unifies a Montgomery
curve with its twist) already allows for the “curve part” of the public keys to be specified using one
element a ∈ Fp2 . We note that our approach has the advantage of avoiding conversions between
curve models as well as the other overheads discussed in [3, §3.1].

On the other hand, the second technique in [3, §3.2] could be used to further compress our
public keys. Rather than sending xP and xQ over the wire, Azarderakhsh et al. suggest that each
of these points could instead be transferred as their scalar representations with respect to a fixed
torsion basis {R,S}. In particular, if {R,S} is a basis for E[`e], rather than sending xP (which
corresponds to ±P ∈ E[`e]), we could compute α and β in Z/`eZ such that [α]R + [β]S = P
and transmit (α, β) instead. In general this technique allows xP and xQ to be transferred using
roughly half as many bits (the exact reduction depends on the specific curve and its torsion sizes –
see [3]), but there is a significant overhead in doing so. Specifically, while decompression essentially
amounts to recovering P via the computation of [α]R+ [β]S (and this small overhead would prob-
ably be worthwhile), the compression phase involves solving a smooth order discrete logarithm
problem via the Pohlig-Hellman algorithm [45]. The benchmarks in [3, §5.4] show that this part
of the compression alone costs over 10 times the total cost of the entire key exchange protocol.
In our case, and presuming that xQ−P is compressed as above, this further compression would
reduce our 4507-bit public keys to 3005-bit public keys. Given the drastic loss in performance, our
software does not incorporate this Pohlig-Hellman-style compression, but (as is discussed in [3,
§6]) we note that there could be situations where this further compression makes the difference
between the applicability (or not) of isogeny-based key exchange, e.g., when the target application
has a strict upper bound on the size of public keys.



11 Conclusion

We presented several new algorithms that have given rise to more efficient SIDH key exchange.
We built a software library around a supersingular isogeny class determined by a fixed base curve
that was chosen to target 128 bits of quantum security, and showed that these techniques give rise
to a factor speedup above 2.5x over the previous fastest SIDH software. To our knowledge, our
SIDH key exchange software is the first such implementation to run in constant time, and offers a
range of additional benefits, such as compactness. In addition, we introduced two new techniques
that bridge the gap between theoretical and real-world deployment of SIDH key exchange: the
ECDH+SIDH hybrid and an algorithm for full validation of public keys. The speed of our software
(and the size of the public keys it generates) highlights the potential that SIDH currently offers
as a candidate for post-quantum key exchange.
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A Key exchange algorithms

Here we describe eight algorithms for SIDH key exchange, which correspond to the following
scenarios:

– Algorithm 2: Alice’s key generation using the simple (but slow) multiplication-based strategy
for traversing the isogeny tree.

– Algorithm 3: Alice’s key generation using an optimal strategy for traversing the isogeny tree.
– Algorithm 4: Bob’s key generation using the simple (but slow) multiplication-based strategy

for traversing the isogeny tree.
– Algorithm 5: Bob’s key generation using an optimal strategy for traversing the isogeny tree.
– Algorithm 6: Alice’s shared secret computation using the simple (but slow) multiplication-based

strategy for traversing the isogeny tree.
– Algorithm 7: Alice’s shared secret computation using an optimal strategy for traversing the

isogeny tree.
– Algorithm 8: Bob’s shared secret computation using the simple (but slow) multiplication-based

strategy for traversing the isogeny tree.
– Algorithm 9: Bob’s shared secret computation using an optimal strategy for traversing the

isogeny tree.

All of these high-level descriptions can also be found in SIDH.mag in [16].

Algorithm 2 Simple key generation for Alice. (See keygen Alice simple in SIDH.mag in [16].)

Input: Public parameters xPB , xPA , yPA and Alice’s secret key SKAlice = mA ∈ {1, 2, . . . , `eA−1
A − 1} · `A.

Output: Alice’s public key PKAlice = [aA, xφA(PB), xφA(QB), xφA(QB−PB)], where φA : E0 → EaA is the
secret isogeny with kernel generated by PA + [mA]QA and EaA : y2 = x3 + aAx

2 + x.

1: A← 0, C ← 1
2: XP ← xPB , ZP ← 1
3: XQ ← −xPB , ZQ ← 1
4: XD, ZD ← distort and diff(xPB )
5: XR,0, XR,1, ZR ← secret pt(xPA , yPA , SKAlice)
6: XR ← XR,0 +XR,1i
7: XP , ZP ← first 4 isog(XP , ZP , A)
8: XQ, ZQ ← first 4 isog(XQ, ZQ, A)
9: XD, ZD ← first 4 isog(XD, ZD, A)

10: XR, XZ , A, C ← first 4 isog(XR, ZR, A)
11: for e = eA − 4 to 0 by −2 do
12: XS , ZS ← xDBLe(XR, ZR, A, C, e)
13: A,C, consts← get 4 isog(XS , ZS)
14: XR, ZR ← eval 4 isog(consts, XR, ZR)
15: XP , ZP ← eval 4 isog(consts, XP , ZP )
16: XQ, ZQ ← eval 4 isog(consts, XQ, ZQ)
17: XD, ZD ← eval 4 isog(consts, XD, ZD)
18: end for
19: C,ZP , ZQ, ZD ← inv 4 way(C,ZP , ZQ, ZD)
20: A← A · C
21: xP ← XP · ZP
22: xQ ← XQ · ZQ
23: xD ← XD · ZD
24: return PKAlice = [A, xP , xQ, xD]



Algorithm 3 Fast key generation for Alice using an optimal strategy for isogeny computation
and evaluation. (See keygen Alice fast in SIDH.mag in [16].)

Input: Public parameters xPB , xPA , yPA , a list of positive integers LA of length fA = eA/2− 1 describing
the isogeny-graph strategy and Alice’s secret key SKAlice = mA ∈ {1, 2, . . . , `eA−1

A − 1} · `A.
Output: Alice’s public key PKAlice = [aA, xφA(PB), xφA(QB), xφA(QB−PB)], where φA : E0 → EaA is the
secret isogeny with kernel generated by PA + [mA]QA and EaA : y2 = x3 + aAx

2 + x.

1: A← 0, C ← 1
2: XP ← xPB , ZP ← 1
3: XQ ← −xPB , ZQ ← 1
4: XD, ZD ← distort and diff(xPB )
5: XR,0, XR,1, ZR ← secret pt(xPA , yPA , SKAlice)
6: XR ← XR,0 +XR,1i
7: XP , ZP ← first 4 isog(XP , ZP , A)
8: XQ, ZQ ← first 4 isog(XQ, ZQ, A)
9: XD, ZD ← first 4 isog(XD, ZD, A)

10: XR, ZR, A,C ← first 4 isog(XR, ZR, A)
11: pts = [ ], i = 0
12: for j = 1 to fA do
13: while i < fA − j do
14: Push (XR, ZR, i) to pts, i.e. append it to the end of pts
15: e← LA[fA − i− j + 1]
16: XR, ZR = xDBLe(XR, ZR, A, C, 2e)
17: i← i+ e
18: end while
19: A,C, consts← get 4 isog(XS , ZS)
20: for S = (XS , ZS , iS) ∈ pts do
21: XS , ZS ← eval 4 isog(consts, XS , ZS)
22: end for
23: XP , ZP ← eval 4 isog(consts, XP , ZP )
24: XQ, ZQ ← eval 4 isog(consts, XQ, ZQ)
25: XD, ZD ← eval 4 isog(consts, XD, ZD)
26: Pop (XS , ZS , iS) from pts, i.e. remove it from the end of pts
27: XR ← XS , ZR ← ZS , i← iS
28: end for
29: A,C, consts← get 4 isog(XS , ZS)
30: XP , ZP ← eval 4 isog(consts, XP , ZP )
31: XQ, ZQ ← eval 4 isog(consts, XQ, ZQ)
32: XD, ZD ← eval 4 isog(consts, XD, ZD)
33: C,ZP , ZQ, ZD ← inv 4 way(C,ZP , ZQ, ZD)
34: A← A · C
35: xP ← XP · ZP
36: xQ ← XQ · ZQ
37: xD ← XD · ZD
38: return PKAlice = [A, xP , xQ, xD]



Algorithm 4 Simple key generation for Bob. (See keygen Bob simple in SIDH.mag in [16].)

Input: Public parameters xPA , xPB , yPB and Bob’s secret key SKBob = mB ∈ {1, 2, . . . , `eB−1
B − 1} · `B .

Output: Bob’s public key PKBob = [aB , xφB(PA), xφB(QA), xφB(QA−PA)], where φB : E0 → EaB is the
secret isogeny with kernel generated by PB + [mB ]QB and EaB : y2 = x3 + aBx

2 + x.

1: A← 0, C ← 1
2: XP ← x(PA), ZP ← 1
3: XQ ← x(QA), ZQ ← 1
4: XD, ZD ← distort and diff(xPA)
5: XR,0, XR,1, ZR ← secret pt(xPB , yPB , SKBob)
6: XR ← XR,0 +XR,1i
7: for e = eB − 1 to 0 by −1 do
8: XS , ZS ← xTPLe(XR, ZR, A, C, e)
9: A,C, consts← get 3 isog(XS , ZS)

10: XR, ZR ← eval 3 isog(consts, XR, ZR)
11: XP , ZP ← eval 3 isog(consts, XP , ZP )
12: XQ, ZQ ← eval 3 isog(consts, XQ, ZQ)
13: XD, ZD ← eval 3 isog(consts, XD, ZD)
14: end for
15: C,ZP , ZQ, ZD ← inv 4 way(C,ZP , ZQ, ZD)
16: A← A · C
17: xP ← XP · ZP
18: xQ ← XQ · ZQ
19: xD ← XD · ZD
20: return PKBob = [A, xP , xQ, xD]



Algorithm 5 Fast key generation for Bob using an optimal strategy for isogeny computation and
evaluation. (See keygen Bob fast in SIDH.mag in [16].)

Input: Public parameters xPA , xPB , yPB , a list of positive integers LB of length eB describing the isogeny-
graph strategy and Bob’s secret key SKBob = mB ∈ {1, 2, . . . , `eB−1

B − 1} · `B .
Output: Bob’s public key PKBob = [aB , xφB(PA), xφB(QA), xφB(QA−PA)], where φB : E0 → EaB is the
secret isogeny with kernel generated by PB + [mB ]QB and EaB : y2 = x3 + aBx

2 + x.

1: A← 0, C ← 1
2: XP ← x(PA), ZP ← 1
3: XQ ← x(QA), ZQ ← 1
4: XD, ZD ← distort and diff(xPA)
5: XR,0, XR,1, ZR ← secret pt(xPB , yPB , SKBob)
6: XR ← XR,0 +XR,1i
7: pts = [ ], i = 0
8: for j = 1 to eB do
9: while i < eB − j do

10: Push (XR, ZR, i) to pts, i.e. append it to the end of pts
11: e← LB [eB − i− j + 1]
12: XR, ZR = xTPLe(XR, ZR, A, C, e)
13: i← i+ e
14: end while
15: A,C, consts← get 3 isog(XS , ZS)
16: for S = (XS , ZS , iS) ∈ pts do
17: XS , ZS ← eval 3 isog(consts, XS , ZS)
18: end for
19: XP , ZP ← eval 3 isog(consts, XP , ZP )
20: XQ, ZQ ← eval 3 isog(consts, XQ, ZQ)
21: XD, ZD ← eval 3 isog(consts, XD, ZD)
22: Pop (XS , ZS , iS) from pts, i.e. remove it from the end of pts
23: XR ← XS , ZR ← ZS , i← iS
24: end for
25: A,C, consts← get 4 isog(XS , ZS)
26: XP , ZP ← eval 3 isog(consts, XP , ZP )
27: XQ, ZQ ← eval 3 isog(consts, XQ, ZQ)
28: XD, ZD ← eval 3 isog(consts, XD, ZD)
29: C,ZP , ZQ, ZD ← inv 4 way(C,ZP , ZQ, ZD)
30: A← A · C
31: xP ← XP · ZP
32: xQ ← XQ · ZQ
33: xD ← XD · ZD
34: return PKAlice = [A, xP , xQ, xD]



Algorithm 6 Simple shared secret algorithm for Alice. (See shared secret Alice simple in
SIDH.mag in [16].)

Input: Bob’s public key PKBob = [aB , xφB(PA), xφB(QA), xφB(QA−PA)] and Alice’s secret key SKAlice =

mA ∈ {1, 2, . . . , `eA−1
A − 1} · `A.

Output: A shared secret j-invariant of an elliptic curve Eshared : y2 = x3 + (A/C)x2 + x.

1: A← PKBob[1], C ← 1
2: XR, ZR ← LADDER 3 pt(SKAlice,PKBob[2],PKBob[3],PKBob[4], A)
3: XR, ZR, A, C ← first 4 isog(XR, ZR, A)
4: for e = eA − 4 to 2 by −2 do
5: XS , ZS ← xDBLe(XR, ZR, A,C, e)
6: A,C, consts← get 4 isog(XS , ZS)
7: XR, ZR ← eval 4 isog(consts, XR, ZR)
8: end for
9: A,C ← get 4 isog(XR, ZR)

10: return j inv(A,C)

Algorithm 7 Fast shared secret algorithm for Alice. (See shared secret Alice fast in SIDH.mag

in [16].)

Input: Bob’s public key PKBob = [aB , xφB(PA), xφB(QA), xφB(QA−PA)], a list of positive integers LA
of length fA = eA/2 − 1 describing the isogeny-graph strategy and Alice’s secret key SKAlice = mA ∈
{1, 2, . . . , `eA−1

A − 1} · `A.
Output: A shared secret j-invariant of an elliptic curve Eshared : y2 = x3 + (A/C)x2 + x.

1: A← PKBob[1], C ← 1
2: XR, ZR ← LADDER 3 pt(SKAlice,PKBob[2],PKBob[3],PKBob[4], A)
3: XR, ZR, A, C ← first 4 isog(XR, ZR, A)
4: pts = [ ], i = 0
5: for j = 1 to fA do
6: while i < fA − j do
7: Push (XR, ZR, i) to pts, i.e. append it to the end of pts
8: e← LA[fA − i− j + 1]
9: XR, ZR = xDBLe(XR, ZR, A, C, 2e)

10: i← i+ e
11: end while
12: A,C, consts← get 4 isog(XS , ZS)
13: for S = (XS , ZS , iS) ∈ pts do
14: XS , ZS ← eval 4 isog(consts, XS , ZS)
15: end for
16: Pop (XS , ZS , iS) from pts, i.e. remove it from the end of pts
17: XR ← XS , ZR ← ZS , i← iS
18: end for
19: A,C ← get 4 isog(XR, ZR)
20: return j inv(A,C)



Algorithm 8 Simple shared secret algorithm for Bob. (See shared secret Bob simple in
SIDH.mag in [16].)

Input: Alice’s public key PKAlice = [aA, xφA(PB), xφA(QB), xφA(QB−PB) and Bob’s secret key SKBob =

mB ∈ {1, 2, . . . , `eB−1
B − 1} · `B .

Output: A shared secret j-invariant of an elliptic curve Eshared : y2 = x3 + (A/C)x2 + x.

1: A← PKAlice[1], C ← 1
2: XR, ZR ← LADDER 3 pt(SKBob,PKAlice[2],PKAlice[3],PKAlice[4], A)
3: for e = eB − 1 to 1 by −1 do
4: XS , ZS ← xTPLe(XR, ZR, A, C, e)
5: A,C, consts← get 3 isog(XS , ZS)
6: XR, ZR ← eval 3 isog(consts, XR, ZR)
7: end for
8: A,C, consts← get 3 isog(XR, ZR)
9: return j inv(A,C)



Algorithm 9 Fast shared secret algorithm for Bob. (See shared secret Bob fast in SIDH.mag

in [16].)

Input: Alice’s public key PKAlice = [aA, xφA(PB), xφA(QB), xφA(QB−PB)], a list of positive integers LB of

length eB describing the isogeny-graph strategy and Bob’s secret key SKBob = mB ∈ {1, 2, . . . , `eB−1
B −

1} · `B .
Output: A shared secret j-invariant of an elliptic curve Eshared : y2 = x3 + (A/C)x2 + x.

1: A← PKAlice[1], C ← 1
2: XR, ZR ← LADDER 3 pt(SKBob,PKAlice[2],PKAlice[3],PKAlice[4], A)
3: pts = [ ], i = 0
4: for j = 1 to eB do
5: while i < eB − j do
6: Push (XR, ZR, i) to pts, i.e. append it to the end of pts
7: e← LB [eB − i− j + 1]
8: XR, ZR = xTPLe(XR, ZR, A, C, e)
9: i← i+ e

10: end while
11: A,C, consts← get 3 isog(XS , ZS)
12: for S = (XS , ZS , iS) ∈ pts do
13: XS , ZS ← eval 3 isog(consts, XS , ZS)
14: end for
15: Pop (XS , ZS , iS) from pts, i.e. remove it from the end of pts
16: XR ← XS , ZR ← ZS , i← iS
17: end for
18: A,C, consts← get 3 isog(XR, ZR)
19: return j inv(A,C)


