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Abstract Due to their high efficiency and their
strong security properties, lattice-based cryptographic
schemes seem to be a very promising post-quantum
replacement for currently used public key cryptogra-
phy. The security of lattice-based schemes has been
deeply analyzed mathematically, whereas little effort
has been spent on the analysis against implementa-
tion attacks.
In this paper, we start with the fault analysis of
one of the most important cryptographic primitives:
signature schemes. We investigate the vulnerabil-
ity and resistance of the currently most efficient
lattice-based signature schemes BLISS (CRYPTO
2013), ring-TESLA (AfricaCrypt 2016), and the GLP
scheme (CHES 2012) and their implementations. We
consider different kinds of (first-order) randomizing,
zeroing, and skipping faults. For each of the signature
schemes, we found at least six effective attacks.
To increase the security of lattice-based signature
schemes, we propose countermeasures for each of
the respective attacks.
Keywords. lattice-based cryptography, signature
scheme, fault attack, side channel analysis

I. INTRODUCTION

Since the invention of Shor’s algorithm, which solves
the discrete logarithm and the integer factorization prob-
lem in polynomial time using quantum computation, most
of our daily used public key cryptography is on threat as
soon as large enough quantum computers can be built. Due
to the expectable development of large quantum computers
in the near future, research on cryptographic construc-
tions which are secure even in the presence of large
quantum computers - called post-quantum cryptography
- has seen a boost in recent years. This is also reflected
in two current announcements by the National Security
Agency (NSA) and the National Institute of Standards and
Technology (NIST): in 2015, NSA advertised lattice-based
cryptography over elliptic curve cryptography [26] and in
2016, NIST announced to start a standardization process
for post-quantum cryptography [27]. These developments

show that post-quantum cryptography is standing on the
edge of being used in practical applications.

Lattice-based constructions promise to be a valuable
post-quantum replacement for current public-key cryp-
tography because of their broad applicability, their high
efficiency, and their strong security properties. However,
when novel cryptographic schemes are brought into prac-
tice, their mathematical security is not sufficient. Physical
attacks which target cryptographic schemes while they are
being executed also have to be considered to provide the
desired level of security. For lattice-based cryptographic
schemes, until now, little effort has been spent in analyzing
their vulnerability against such attacks. While lately the
research on side channel attacks has advanced [9], [29],
there are no results on fault attacks against schemes over
general lattices yet1. Hence, the natural question arises
whether lattice-based primitives and their implementations
are vulnerable against fault attacks.

1) Contribution: In this paper, we start to investigate
the vulnerability of lattice-based cryptography towards
fault attacks. We analyze signature schemes and their
implementations and scrutinize whether certain schemes
or instantiations thereof are more vulnerable than others.

We consider the signature schemes BLISS [13], ring-
TESLA [1], and the GLP scheme [18], since these are the
most promising ones with respect to efficiency, i.e., run-
time, signature sizes, and key sizes. Concerning the faults
that we consider, we focus on first-order fault attacks,
regarding randomizing2, skipping, and zeroing faults. We
explore the reasons for the vulnerability and resistance,
respectively, of the key generation, sign, and verification
algorithms. Furthermore, we propose countermeasures for
each of the developed attacks.

To reduce the number of necessary faults, we propose
a hybrid approach of fault attacks and lattice analysis.
In the three analyzed signature schemes, the secret is a

1A few results for fault attacks on NTRU-lattices and -schemes exist,
e.g., [20]. These cannot be transfered to signature schemes over non-
NTRU lattices which are used nowadays.

2We do not analyze bit flips separately since they are either covered
by randomization faults or in practice considered as unrealistic [17].



polynomial s ∈ Zq[x]/(xn + 1) with small coefficients.
The hybrid approach allows an attacker to determine not
all, but only a necessary amount of the coefficients of
the secret with the help of faults such that the remaining
lattice problem can be solved mathematically. We gen-
erally analyze how many coefficients of the secret must
be recovered by fault attacks in order to use the hybrid
approach for BLISS, ring-TESLA, and the GLP scheme.
We apply this approach on our randomization fault attack.

Our research shows that none of the examined algo-
rithms is resistant towards all three kinds of considered
fault attacks, since we find effective attacks against each
of them. A summary of the analyzed attacks and the
respective vulnerabilities of the three signature schemes is
given in Table I. Note that certain effects can be achieved
with different kinds of fault attacks, e.g., some variables
can be zeroed out both with a zeroing fault and a skipping
fault. Such fault attacks are only listed once in Table I,
but mentioned and explained, respectively, in all relevant
sections in the remainder of this paper.

TABLE I
COMPARISON OF BLISS, RING-TESLA, AND THE GLP SCHEME

WITH RESPECT TO THEIR VULNERABILITY TO THE ATTACKS
DESCRIBED IN THIS PAPER. THE TABLE SHOWS THE ALGORITHMS

WHICH THE FAULT ATTACKS TARGET, I.E., KEY GENERATION (KG),
SIGNATURE GENERATION (S), AND VERIFY (V), AND IF THE
SCHEME IS VULNERABLE TO THE RESPECTIVE ATTACK, I.E.,

VULNERABLE l, VULNERABLE WITH A HUGE NUMBER OF NEEDED
FAULTS (l), NOT VULNERABLE m, NOT APPLICABLE -.

Fault Attack Algorithm GLP BLISS ring- Section
TESLA

Rand. of secret KG l l m III-A
Rand. of error KG m m m III-B
Rand. of modulus S m m m III-C
Rand. of randomness S m m m III-D
Skip of mod-reduction KG m - m IV-A1
Skip of addition KG l l l IV-A2
Skip of rejection S (l) (l) (l) IV-B1
Skip of addition S l m m IV-B2
Skip of mod-reduction S m - m IV-B3
Skip of correct-check V l l l IV-C1
Skip of size-check V l l l IV-C2
Zero. of secret KG l - m V-A
Zero. of randomness S l l l V-B
Zero. of hash value S m m m V-C
Zero. of hash polynomial KG l l l V-D

We show that two commonly used tweaks in the con-
struction of lattice-based signature schemes, which are
deployed for efficiency reasons, should only be carefully
applied. First, our analysis shows a difference between the
vulnerability of ideal-lattice-based schemes and standard-
lattice-based schemes with respect to fault attacks. In
standard-lattice-based schemes the underlying lattice is
defined by a uniformly sampled matrix A ∈ Zm×nq ,
whereas ideal lattices can be defined via a polynomial
of degree n. The resulting additional structure of ideal

lattices leads to much smaller key sizes and better run-
times. Up to know, mathematical cryptanalysis could not
exploit the additional cyclic structure of ideal lattices.
However, based on our results, we show that ideal-lattice-
based schemes are indeed more vulnerable to zeroing
attacks than schemes over standard lattice. Secondly, we
show that instantiating a scheme with common (ideal-)
lattice problems, i.e., choosing the secret polynomial to
be Gaussian distributed, is less vulnerable than more
efficient instantiations. For example, the GLP scheme and
BLISS3 are more vulnerable to randomizing faults since
the coefficients of the secret polynomial are chosen to
be in {−1, 0, 1} or {−2, ..., 3}, respectively, instead of
Gaussian distributed as it is done for ring-TESLA. This
has already been feared from a theoretical perspective [28]
and is now shown in this work from the practical point of
view.

We expect that our fault analysis and the proposed
countermeasures are not limited to signature schemes, but
that they can easily be transfered to most of the existing
lattice-based constructions.

2) Organization: In Sec. II, we introduce the analyzed
signature schemes, i.e., GLP, BLISS, and ring-TESLA,
and explain the hybrid approach for combined fault attacks
and lattice analyses. In Sec. III, we present randomizing
attacks on all three schemes. Skipping attacks for the same
schemes are explained in Sec. IV and in Sec. V, their
vulnerability towards zeroing faults is investigated. We
present countermeasures against the attacks and guidelines
for fault-attack-resistant implementations in Sec. VI and
conclude in Sec. VII.

II. PRELIMINARIES

A. Notation

Let k ∈ N and n = 2k ∈ N throughout this
paper. We define q ∈ N to be a prime with q = 1
(mod 2n). We denote by Zq the finite field Z/qZ with
representatives in

[
−q/2, q/2

]
∩ Z. We write (mod q)

to denote the unique representative in Zq. Furthermore,
we define the rings R = Z[x]/(xn + 1) and Rq =
Zq[x]/(xn + 1) and the sets Rq,[B] = {

∑n−1
i=0 aix

i |
ai ∈ [−B,B] ∩ Z} for B ∈ [0, q/2] ∩ Z and Bn,ω ={
a =

∑n−1
i=0 aix

i | ai ∈ {0, 1},‖a‖2 = ω
}

for ω ∈ [0, n]∩
Z. We indicate the Euclidean norm of a vector v ∈ Rn
by ‖v‖. Similarly, we define ‖a‖ =

√
a2

0 + ...+ a2
n−1 for

a =
∑n−1

i=0 aix
i. We denote polynomials by lower case

letters (e.g., p) and (column) vectors by bold lower case

3We are aware of the fact that the publicly available implementation
of BLISS is not to be used for security applications. However, it is one
of the most efficient signature scheme implementations. By analyzing
this software, the research community still can gain insights about how
to implement schemes resistant against fault attacks.
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letters (e.g., v). We write matrices by bold upper case
letters (e.g., M) and the transpose of a matrix M by MT .
Via the coefficient embedding, we identify a polynomial
a = a0 + a1x+ ...+ an−1x

n−1 ∈ Rq with its coefficient
vector a = (a0, . . . , an−1)T . Without further mentioning,
we denote the coefficient vector of a polynomial a ∈ Rq
by a. We define rot(a) = (−an−1, a0, . . . , an−2)T and
Rot(a) = (a, rot(a), rot2(a), . . . , rotn−1(a)) ∈ Zn×nq .
Polynomial multiplication of a, b ∈ Rq is equivalent to
the matrix-vector multiplication Rot(a)b in Zq. For values
a, b ∈ R, we write a << b if a is much smaller than b.
All logarithms are in base 2.

Let d ∈ N, c ∈ Z. We denote by [c]2d the unique repre-
sentative of c modulo 2d in (−2d−1, 2d−1]∩Z. Let b·ed be
the rounding operator b·ed : Z→ Z, c 7→ (c− [c]2d)/2d.
We naturally extend these definitions to vectors and poly-
nomials by applying b·ed and [·]2d to each component
of the vector and to each coefficient of the polynomial,
respectively. We abbreviate

⌊
v (mod q)

⌉
d

by bved,q.
Let σ ∈ R>0. The centered discrete Gaussian distri-

bution Dσ on Z with standard deviation σ is defined
as follows: For every z ∈ Z the probability of z is
given by ρσ(z)/ρσ(Z), where ρσ(z) = exp(−z

2

2σ2 ) and
ρσ(Z) = 1 + 2

∑∞
z=1 ρσ(z). We denote by d ← Dσ the

operation of sampling an element d with distribution Dσ.
When writing v ← Dnσ we mean sampling each coefficient
of a polynomial v Gaussian distributed. For a finite set S,
we write s←$ S to indicate that an element s is sampled
uniformly at random from S.

Let n ≥ k > 0. A k-dimensional lattice Λ is a
discrete additive subgroup of Rn containing all integer
linear combinations of k linearly independent vectors
{b1, . . . ,bk} = B, i.e., Λ = Λ(B) = {Bx | x ∈ Zk}.
Throughout this paper we are mostly concerned with q-
ary lattices. Λ ∈ Zn is called a q-ary lattice if qZ ⊂ Λ
for some q ∈ Z. Let A ←$ Zm×nq . We define the q-ary
lattices Λ⊥q (A) = {x ∈ Zn | Ax = 0 (mod q)} and
Λq(A) = {x ∈ Zn | ∃s ∈ Zm s.t. x = A>s (mod q)}.

B. Description of the Lattice-Based Signature Schemes

In this subsection, we recall the signature schemes that
we analyze in this work. We describe the GLP scheme by
Güneysu et al. [18], ring-TESLA by Akleylek et al. [1],
and BLISS by Ducas et al. [13]. We depict the three
schemes in Appendix B in Fig. 3, 4, and 5, respectively.
We follow the notation of the respective figures.

The security of the signature schemes is based on the
ring learning with errors (R-LWE), the ring short integer
solution (R-SIS), or the decisional compact knapsack
(DCK) problem. We give formal definitions of the used
problems in Appendix A2.

1) GLP: The secret key consist of two polynomi-
als s, e ←$ Rq,[1] with ternary coefficients, i.e., with

coefficients in {−1, 0, 1}; the public key is a tuple of
a ←$ Rq and b = as + e (mod q). On input µ, the sign
algorithm first samples y1, y2 ←$ Rq,[k]. Afterwards, it
hashes the most significant bits of ay1 + y2 together with
µ. The signature polynomials z1 and z2 are computed.
To hide the secret, rejection sampling is applied, i.e., z2

is compressed to z?2 and the signature is returned only
with some probability (see [22] for further information
on the rejection sampling). The verification algorithm
checks the size of z1 and z?2 and the equality of c and
H
(⌊
az1 + z?2 − bc

⌉
d,q
, µ
)

. Güneysu et al. [18] state the
parameter set GLP-Set-I with n = 512 and q = 8383489.
This instantiation of the DCK gives a hardness of at least
80 bit [13].

2) ring-TESLA: The secret key sk is a tuple of three
polynomials s, e1, and e2 with small coefficients; the pub-
lic key vk consists of the polynomials a1, a2 ←$ Rq, b1 =
a1s + e1 (mod q), and b2 = a2s + e2 (mod q). During
signing a message µ, a random polynomial y ←$ Rq,[B] is
sampled. Afterwards, the hash value c′ of the most signif-
icant bits of the products a1y and a2y and µ is computed
and encoded as the polynomial c ∈ Bn,ω. The signature σ
of µ consists of c′ and the polynomial z = y+ sc. Before
returning the signature, rejection sampling is applied. For
verification of the signature (c′, z), the size of z and the
equality of c′ and H(ba1z − b1ced,q , ba2z − b2ced,q , µ)
is checked, where c is again the encoded polynomial of
c′. Akleylek et al. [1] proposed the parameter set ring-
TESLA-II to achieve 128-bit hardness from the underlying
R-LWE problem: n = 512, σ = 52, q = 39960577. The
scheme ring-TESLA is strongly based on the standard-
lattice-based scheme TESLA by Alkim et al. [4].

3) BLISS: The key pair is chosen NTRU-like, i.e., the
public key is vk = (a1, a2) =

(
22g+1

f (mod q), q − 2
)

,

where f, g ←$ Fd1,d2
= {

∑n−1
i=0 hix

i|hi ∈
{−2,−1, 0, 1, 2}, |{hi = ±1}| = d1, |{hi = ±2}| = d2}
and f is invertible modulo q. The secret key sk consists
of sk = (s1, s2)T = (f, 2g + 1)T . Furthermore, the
vectors (a1, a2), (s1, s2)T , and ξ ∈ Z are chosen such
that (a1, a2)(s1, s2)T = q = −q (mod 2q), ξ(q − 2) =
1 (mod 2q), and hence ξ(a1, a2) = (ξa1, 1) (mod 2q).
To sign a message µ, random vectors y1 and y2 are
sampled with Gaussian distribution. A hash value c is
computed from the randomness, the public key, ξ, and
the message µ. Afterwards, the value b ←$ {0, 1} is
chosen, the polynomials z1 = y1 + (−1)bs1c and z2 =
y2+(−1)bs2c are computed, rejection sampling is applied,
and z2 is compressed to z?2 . During verification of the
signature (z1, z

?
2 , c), the sizes of z1 and z?2 and the equality

of c and H
(⌊
ξa1z1 + ξqc(mod 2q)

⌉
d,2q

+ z?2(mod p), µ
)

are checked. Ducas et al. [13] give two parameter sets
to achieve 128-bit hardness of the underlying problem:
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BLISS-I with n = 512, σ = 215, q = 12289 and BLISS-
II with n = 512, σ = 107, q = 12289. Furthermore, we
like to emphasize that in the instantiations BLISS-I and
BLISS-II, d2 = 0. Hence, it holds true that

sj,i ∈


{−1, 0, 1} if j = 1,

{−1, 1, 3} if j = 2, i = 0,

{−2, 0, 2} if j = 2, i ∈ {1, ..., n− 1},

where s1 =
∑n

i=0 s1,ix
i and s2 =

∑n
i=0 s2,ix

i.

C. Description of the Hybrid Approach of Lattice Analysis
and Fault Attacks

In this section, we describe how to combine fault attacks
and algorithms that solve lattice problems such as LWE or
SIS. Via this combination, which we call hybrid approach,
we can reduce the number of faults necessary to receive
the secret drastically. Revealing all coefficients of the
secret of a lattice problem with high dimension might
require a huge amount of fault attacks. Instead, we analyze
that it is sufficient to reveal just enough coefficients with
the help of faults to solve the remaining instance with
algorithms that solve lattice problems, e.g., the embedding
approach. We describe our hybrid approach for the LWE
problem next.

Let As + e = b (mod q) be an LWE instance, with
A ∈ Zm×nq , s ∈ Znq , and e ∈ Zmq . Assume that k
coefficients of the secret s are known. W.l.o.g., we can
assume that the first k coefficients of s are known, since
the samples of an LWE instance can be reordered. Then,
this instance can be written as

(A1|A2)
(
s1, s2

)T
+ e = A1s1 + A2s2 + e = b,

with A1 ∈ Zm×kq , A2 ∈ Zm×(n−k)
q , and s1 ∈ Zkq , s2 ∈

Zn−kq . Let b′ = b −A1s1. Thus, A2s2 + e = b′ (mod
q) defines an LWE instance with the same number m of
samples but with a decreased dimension n−k of the secret
vector.

To compute the minimal value of k, we first choose the
time T (in seconds) how long the LWE solver should run,
e.g., one day T = 86400. Afterwards, we compute the
corresponding Hermite delta by the estimation made by
Linder and Peikert [21]

log2(δ(T )) =
1.8

log2(T ) + 110
. (1)

The Hermite delta is a measurement for the quality of
a basis reduction, for more information we refer to [21].
Given n, m, and δ and following the embedding approach
proposed in [16], we can compute the value k. We
emphasize that we are aware that the embedding approach
is not always the best attack to solve LWE. Nevertheless,

it yields an upper bound on the number of fault attacks
needed.

In the embedding approach the LWE instance is reduced
to an instance of the unique shortest vector problem
(uSVP) [3], [5], [7]. To this end, an embedding lattice
Λ is defined in which the error vector e is embedded.
Following the explanation by Dagdelen et al. [33], we
know that a short vector can be found if

δdim(Λ) ≤
Γ(1 + dim(Λ)

2 )
1

dim(Λ)

||e||τ
√
π

det(Λ)
1

dim(Λ) , (2)

where τ is constant with τ ≈ 0.4.
Two different ways to define Λ were proposed, which

are described next. During the standard embedding ap-
proach we apply a uSVP solver on the lattice Λ =

Λq (Ast) with Ast =

(
A2 b′

0 1

)
∈ Z(m+1)×(n−k+1)

q .

Hence, dim(Λq(Ast)) = m + 1 and det(Λq(Ast)) =
qm−n+k. Thus, Equation (2) gives the following inequal-
ity:

δm+1 ≤
Γ(1 + m+1

2 )
1

(m+1)

√
π||e|| · τ

· qk−n−1. (3)

During the dual embedding approach we apply a
uSVP solver on the lattice Λ = Λ⊥q (AD) with

AD =
(
A2|Im|b′

)
∈ Zm×(n−k+m+1)

q . Hence,

dim(Λ⊥q (AD)) = n−k+m+1 and det(Λ⊥q (AD)) = qm.
Thus, Equation (2) gives

δn−k+m+1 ≤
Γ(1 + n−k+m+1

2 )
1

(n−k+m+1)

τ ·
√
π‖e‖

· qk−n−1. (4)

Assume that the computations should not run longer than
a day (resp., a week). By Equation (1) this corresponds
to the Hermite delta δ1 = 1.0099 (resp., δ2 = 1.0097).
Finally, given n, m, and δ, we can compute the minimal
value for k such that Equation (3) or Equation (4) is
fulfilled.

Applying the hybrid approach to BLISS, ring-TESLA,
and the GLP scheme with δ1 shows that it is sufficient
to reveal k = 344, k = 405, and k = 118, respectively,
instead of all secret coefficients by fault attacks. Given δ2

the minimal values are k = 337, k = 389, and k = 105,
respectively. Note that the bit-security of the GLP scheme
is 80-bit, whereas the proposed instantiations BLISS-I,
BLISS-II, and ring-TESLA-II give 128 bit of security.

III. RANDOMIZATION FAULTS

A randomization fault randomly changes the value of a
variable that is processed in the attacked alorithm, i.e.,
the attacker does not know the value of the variable
after the attack, but benefits from knowing that it has
been changed within a certain range. Depending on the
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attacker’s abilities, the fault targets the whole variable or
only some bytes or bits of it [31]. We analyze the effects of
a randomization fault targeting the secret polynomial (Sec-
tion III-A), the error polynomial (Section III-B), the mod-
ulus (Section III-C), and the randomness (Section III-D)
during the signature generation.

A. Randomization of the Secret Polynomial

In 1996, Bao et al. introduced a method to attack sig-
nature schemes with binary secret keys [6]. In particular,
they show how to attack RSA, the ElGamal scheme,
and Schnorr signature schemes. In this section, we first
describe how to adjust the attack from [6] to lattice-based
Schnorr-like signature schemes instantiated with binary
secret over standard lattices. Afterwards, we describe a
more evolved attack on the GLP scheme.

Take b = As + e (mod q) with s ∈ {0, 1}n and
e ← χ, where χ is some error distribution over Zn.
The public key is (A,b) and the secret key consists
of (s, e). The signature of a message µ is computed as
follows: choose randomness y, compute the hash value
c = H(bAyed,q , µ), compute z = sc + y, and return
σ = (z, c).

Assume one coefficient of s is changed via a fault
attack, i.e., the secret s′ = (s1, ..., si−1, s

′
i, si+1, ..., sn)T is

used to generate a signature. Hence, σ′ = (z′, c) = (s′c+
y, c) is returned as faulty signature of µ. Now, an attacker
checks whether H

(⌊
Az′ − bc−Avi,αc

⌉
d,q
, µ
)

= c,
where vi,α is the zero vector except that the i-th entry
is equal to α ∈ {−1, 0, 1}. Depending on the value of α
and the index i, the attacker can determine the value of
si:

If α =


0 then si = s′i, run attack again,
1 then si = 1,

−1 then si = 0.

Hence, in case of a successful fault attack, i.e., si 6= s′i,
an attacker finds out one coefficient of the secret for each
injected fault. To our knowledge, there is no lattice-based
signature scheme instantiated over binary LWE. However,
recent results on the hardness of binary LWE [2], [11],
[23] show an interest in this instantiation and also a lattice-
based encryption scheme with binary secret was recently
proposed [10]. With our description above we stand in line
with those being cautious about instantiations of schemes
with binary LWE.

1) Applying the Attack to the GLP Scheme: In this
section we describe a generalization of the attack by
Bao et al. [6] to ternary secret keys, i.e., to secret keys
with coefficients in {−1, 0, 1}. We explain the attack by
applying it to the GLP scheme, since its secret key is
chosen to be ternary. Furthermore, we assume that the

attack changes up to r consecutive coefficients instead of
only a single coefficient of the secret. This is generally
considered to be a more realistic scenario [17].

Assume that an attacker changes r consecutive co-
efficients of the secret s, i.e., s′ = s + ε with ε =∑r

j=1 εijx
ij , 0 ≤ ij < n where all eij , s′i ∈ {−1, 0, 1}.

The attack consists of three steps: inducing a random-
ization fault, querying a signature on some message,
i.e., σ′ = (z′1, z

?
2 , c) = (s′c + y, z?2 , c) with s′ being

the faulty secret, and analyzing the output by running a
software implementation of the algorithm GeneralBao(·)
that is depicted in Fig. 1. The attacker repeats those three
steps until sufficiently many coefficients of the secret are
determined such that the hybrid approach described in
Sec. II-C can be applied.

The algorithm GeneralBao(·) gets as input the public
key, a signature of a message µ, and two lists: the list
secret where the determined coefficients of the secret
are saved and the list determined where the information
whether or not a coefficient is already determined is saved.
The algorithm GeneralBao(·) returns updated lists secret
and determined.

Let α =
∑n−1

i=0 αix
i be a polynomial with αi ∈

{−2,−1, 0, 1, 2}. Thus, α is the difference between the se-
cret s and the faulty secret s′. The attacker checks whether
H(baz1 + z2 − bc− aαced,q , µ) = c with αi, ..., αi+r ∈
{−2,−1, 0, 1, 2} for i ∈ {0, ..., n − 1 − r}. Thereby, the
attacker gains information about the value and index of
si. The possible values for si, s′i, and αi are shown in
Table II.

TABLE II
POSSIBLE COMBINATIONS FOR THE COEFFICIENTS OF s, s′ , AND α.

s′i 0 0 0 1 1 1 -1 -1 -1
si 0 1 -1 0 1 -1 0 1 -1

αi = s′i − si 0 -1 1 1 0 2 -1 -2 0

As indicated by Fig. 1, the procedure GeneralBao(·)
distinguishes between five different cases for each coef-
ficient of α once the correct values of α0, ..., αn−1 are
found.

If αi =



2 then si = −1,

−2 then si = 1,

1 then si = 1 or si = 0,

−1 then si = −1 or si = 0,

0 then si = s′i.

In the latter cases, the attacker can not determine si
uniquely. Let sj be a coefficient which was changed during
a fault attack such that αj,1 = αj = ±1. Assume that sj is
changed again by another fault attack with difference αj,2.

5



Then the attacker can determine sj uniquely if αj,1 6= αj,2
and αj,2 6= 0. The list determined is used for exactly this
purpose: to remember which coefficients were changed but
could not be determined uniquely.

GeneralBao(·):
Input: σ = (z1, z2, c), µ, a, b, list determined, list secret;
signature σ is computed with a faulty secret
Output: determined, secret
1 poly α = 0 #α =

∑n−1
i=0 αix

i

2 For i ∈ {0, ..., n− 1}:
3 For αi ∈ {0,−2,−1, 1, 2}:
4 For αi+1 ∈ {0,−2,−1, 1, 2}:
5 ...
6 For αi+r ∈ {0,−2,−1, 1, 2}:
7 If

(
H(baz1 + z2 − bc− aαced,q , µ) = c

)
:

8 For j ∈ {i, ..., i+ r}:
9 If

(
αj = 2

)
:

10 secret[j] = −1, determined[j] = 2
11 If

(
αj = −2

)
:

12 secret[j] = 1, determined[j] = −2
13 If

(
αj = −1

)
:

14 If
(
determined[j] = 1

)
:

15 secret[j] = 0, determined[j] = 2
16 Else:
17 determined[j] = −1
18 If

(
αj = 1

)
:

19 If
(
determined[j] = −1

)
:

20 secret[j] = 0, determined[j] = 2
21 Else:
22 determined[j] = 1
23 Return secret, determined

Fig. 1. Algorithm to compute coefficients of the secret polynomials
given a signature computed with a faulty secret where maximal r of
the coefficients are changed by a randomization fault.

As described in Sec. II-C, at most k = 118 coefficients
of s have to be determined via fault attacks to compute
the whole secret via the hybrid approach. Hence, next we
analyze the expected number of faults that we have to
induce to determine k = 118 coefficients of s. We assume
that the index of the first of the r changed coefficients is
chosen uniformly random in {0, ..., n−1}. Since r << n,
we assume that the changed (and hence the determined)
coefficients are uniformly distributed over all coefficients
s0, ..., sn−1. Assume the j-th fault attack is induced after
ij coefficients have already been determined uniquely.
Then the number of newly determined coefficients after
the j-th fault attack is given by 2

9r
512−ij−1

n , since n is the
number of coefficients of s and following Table II, the
probability that a coefficient is changed such that it can
be determined uniquely is 2/9. Assume the fault attack
targets one byte. Since each coefficient can be saved in
two bits, this corresponds to four changed coefficients,

i.e., r = 4. Hence, solving the following equation for m
gives us the number of m = 151 (expected) needed faults
to determine k = 118 coefficients of the secret s:

m∑
j=1

2r

9
· 512− ij−1

512
≥ k,

with i0 = 0. In case r = 1, the expected number of needed
fault attacks to uniquely determine k = 118 coefficients of
s is m = 604. Hence, the generalization to targeting more
coefficients is not only more realistic, but also needs a
much smaller number of fault attacks. On the other hand
the runtime of the software to find the polynomial α is
longer, since it takes 512 · 5r times the runtime of the
hash query for every fault attack.

2) Application to BLISS: As described in Sec. II-B3,
the secret keys of the instantiations BLISS-I and
BLISS-II4 are two polynomials s1, s2 with ternary-like
instantiation. Therefore, the attack on the 128-bit instan-
tiations of BLISS can be described in a similar manner
as it was done for the GLP scheme. As before, assume r
coefficients are changed during a fault attack. We assume
that the coefficients of the faulty secret polynomial(s) are
in the set {−3, ..., 3}, since it can be assumed that each
coefficient is saved in three bits. Let α =

∑n−1
i=0 αix

i.
Given a faulty signature σ = (z1, z

?
2 , c) of the message µ,

the attacker runs an algorithm similar to GeneralBao(·),
Fig. 1. The only difference is that the values of α lie in dif-
ferent intervals: in case the fault was induced on s1, the at-
tacker checks H

(
bξa1z1 + ξqc− ξαced,2q + z?2 , µ

)
= c

for αi1 , ..., αir ∈ {−4, ..., 4} for i1, ..., ir ∈ {0, ..., n− 1}.
In case the fault was induced on s2, the attacker
checks H

(
bξa1z1 + ξqc− αced,2q + z?2 , µ

)
= c for

αi1 , ..., αir ∈ {−5, ..., 5} for i1, ..., ir ∈ {0, ..., n−1}5. As
in the attack against the GLP scheme, sometimes the secret
coefficients can be determined uniquely. The probability
that a coefficient of s1 (resp., s2) is determined uniquely
is 2/21 (resp., 4/21). We assume again that the indices of
the changed coefficients are distributed uniformly random
over the original coefficients. Hence, we roughly estimate
the expected number of needed fault attacks by

m∑
j=1

r

7
· 1024− ij−1

1024
≥ k,

with i0 = 0 and notations as in Sec. III-A1. Hence, with
r = 1 an expected number of m = 2934 faults is needed
to determine k = 344 (see Sec. II-C) coefficients of the

4For the higher-security instantiations BLISS-III and BLISS-IV,
d2 ∈ {0.03, 0.06}, i.e., there are a very few coefficients outside
{−1, 0, 1}. Hence, extending our attack to those instantiations will
increase the run time, but the attack still weakens the security.

5To be exact, in case the fault was induced on s2, the attacker checks
the hash values for α0 ∈ {−4, ..., 6} and α1, ..., αn−1 ∈ {−5, ..., 5}.
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secret. We conclude that the attack is less efficient on
BLISS than on the GLP scheme, but it is still applicable.

3) Application to ring-TESLA: The secret polynomial
s =

∑n−1
i=0 six

i of ring-TESLA is chosen with Gaussian
distributed coefficients. Hence, the possible values of α
would be in a very large range. Even if we assume that
the coefficients are with high probability bounded by
|si| ≤ σ (with σ = 52 for instantiation ring-TESLA-I),
the number of needed fault attacks would be huge. Hence,
this attack does not seem to be a threat for ring-TESLA in
particular and for instantiations with Gaussian distribution
in general.

B. Randomization of the Error Polynomial

A similar attack as described in Sec. III-A could be
used to compute the (secret) error polynomial e. Leaking
e is as bad as leaking s, since s can be computed easily
once e is known. Moreover, the success probability of
most of the mathematical lattice analyses would increase
since those algorithms also benefit from reducing the key
space from {−1, 0, 1} to {−1, 0} or {0, 1}. However, the
GLP scheme is not vulnerable to this variant because of
its compression and rounding functions, since then the
equation H(

⌊
az1 + z2 − bc− aαxic

⌉
d,q
, µ) = c holds for

several values of α. Hence, α can not be determined.
Nevertheless, we mention this attack to raise awareness
during the construction and instantiation of schemes. For
example, instantiating ring-TESLA (which does not come
with a compression function) over ternary LWE should be
considered very carefully.

C. Randomization of the Modulus

The randomization of the modulus does not seem to
reveal any information that helps to forge signatures,
because the value of the faulty modulus would remain
unknown. Furthermore, key and signature generation of
lattice-based signature schemes are randomized at several
points by construction. Hence, tools like the Chinese
remainder theorem do not give access to the secret.

D. Randomization of the Randomness

As expected, also the randomization of the random
values, e.g., the product ay (or similar) or the hash output
c, does not reveal information that the attacker can use
to forge signatures, because such values look like (or are)
random values by default.

IV. SKIPPING FAULTS

Skipping faults consist in skipping, i.e., ignoring, se-
lected lines of the program code. This can be achieved
via, e.g., CPU clock glitching [8]. By showing that even
higher-order skipping faults are practical, the relevance
of this kind of fault attacks has recently been strength-
ened [8].

We analyze different ways to exploit skipping faults
during the key generation (Section IV-A), the signature
generation (Section IV-B), and the verification algorithm
(Section IV-C). In the majority of cases, we explain the
fault attacks using the implementations of the signature
schemes. Therefore, we use the publicly available soft-
ware, i.e., we use the C++-implementation of BLISS [14],
the C-implementation of the GLP scheme [19], and the C-
implementation of ring-TESLA [1].

A. During Key Generation

In this section we describe two possible skipping attacks
during the key generation.

1) Skipping of the Modulus Reduction: Let A ←$

Zn×mq , and s, e are chosen with some distribution over Zn
and Zm, respectively. Afterwards compute b = As + e
without reducing modulo q. Solving SVP or CVP in the
lattice Λ = {v ∈ Zn | Aw = v for some w ∈ Zm} is
most often much easier than solving the same problem in
Λq(A), since det(Λ) ≥ det(Λq(A)), especially in case A
is invertible. Hence, skipping the modulo operation during
the key generation algorithm seems to be a security flaw.
However, this fault attack is already prevented in the three
considered signature schemes. We use the implementation
of the GLP scheme to explain the prevention.

As indicated by Code 1, the value t (corresponding
to b in our notation) is computed without the reduction
step. The modulo operation is performed in the subroutine
poly_pack. Skipping Line 78 of Code 1 thwarts the
modulo reduction. Afterwards, only the least 32 bits of
(the faulty) t are saved in r. Hence, skipping Line 78
leads to a randomization fault on b which does not reveal
secret information.
48 poly_mul_a(t, s1);
49 poly_add_nored(t, t, s2);
51 poly_pack(pk, t);

[...]
71 void poly_pack(unsigned char r[3*POLY_DEG],

const poly f)
72 {
73 int i;
74 signed long long t;
75 for(i=0;i<POLY_DEG;i++)
76 {
77 t = (unsigned long long)f[i];
78 t = ((t % PARAM_P) + PARAM_P) % PARAM_P;
79 r[3*i+0] = t & 0xff;
80 r[3*i+1] = (t >> 8) & 0xff;
81 r[3*i+2] = (t >> 16) & 0xff;
82 }
83 }

Code 1. C-code of the GLP scheme for the computation of the public
value b = as+e (mod q) in the subroutine crypto_sign_keypair
and of the modulus operation and compression in the subroutine
poly_pack; the value t corresponds to the value b, the value s1
corresponds to s, and s2 corresponds to e in our notation.

2) Skipping of the Addition: We explain the following
attack using examples from the C-implementation of the
GLP scheme. However, the attack can also be successfully
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applied to ring-TESLA and BLISS. Details about the
attacks against ring-TESLA or BLISS can be found in
Appendix D1.

In the GLP implementation, the public key is computed
as follows, see Code 1: first a and s are multiplied and
saved in the value b (Line 48). Afterwards, the error
e is added to b (Line 49). Hence, skipping the second
operation yields b = as and an attacker can easily recover
s by Gaussian reduction. Note that skipping Line 48 in
Code 1 results in an unallocated variable b, triggering a
segmentation fault. Hence, no (predictable) information is
returned which could be used by an attacker.

Considering the assembly code6 of the addition, see
Code 2, one can see that in Line 962 the command
poly_add_nored@PLT is called. Hence, skipping this
line results in b = as as described above.

958 .loc 1 49 0
959 1254 4C89E2 movq %r12, %rdx
960 1257 4C89F6 movq %r14, %rsi
961 125a 4C89F7 movq %r14, %rdi
962 25d E8000000 call poly_add_nored@PLT
962 00

Code 2. Assembly code corresponding to Line 49 in Code 1 of the
GLP implementation.

Skipping Line 962 (or Line 49 in Code 1) yields b = as
instead of b = as + e. Hence, although the attacker can
compute s, the error vector e will remain unknown. In
the GLP scheme, however, e is used to compute z2. Next
we describe how an attacker can forge signatures anyway:
the attacker chooses randomness y1, y2, computes the hash
value c for a message µ, z1 = y1 + sc, and z2 = y2

(instead of z2 = y2 + ec). The attacker applies rejection
sampling and compresses z2 to z?2 as usual and returns
the signature σ = (z1, z

?
2 , c). The verify algorithm accepts

this signature σ as we show in the following. Due to
the rejection sampling, z1, z

?
2 ∈ Rq,[k−32]. Furthermore,

it holds that
⌊
az1 + z?2 − tc

⌉
d,q

= baz1 + z2 − tced,q =

basc+ ay1 + y2 − asced,q = bay1 + y2ed,q. Thus, by
skipping a single line an attacker can reveal s and also
forge a signature for any message µ.

B. During Signature Generation

The signature generation of the schemes that we con-
sider in this paper is rather simple since it is a short se-
quence of (polynomial) additions and multiplications. Fur-
thermore, the signature generation is randomized. Hence,
there are not many skipping operations which lead to in-
formation about the secret key. We describe two skipping
attacks during the sign algorithm in this section.

6We create a description of the code written in C in assembly
code via the command /usr/bin/gcc -Wall -g -O3 -c
-Wa,-a,-ad -shared -fPIC file.c -o libfile.so >
assemblyoutputoffile.lst

1) Skipping the Rejection Condition: Lyubashevsky
first applied rejection sampling (introduced by von Neu-
mann [32]) to lattice-based signature schemes to assure
that signatures are statistically independent of the secret
used to generate them. Thus, learning-the-parallelepiped-
attacks introduced by Nguyen and Regev [25] and im-
proved by Ducas and Nguyen [15] are prevented. Ducas
and Nguyen need roughly 8000 signatures to reveal the
secret. In case of BLISS, ring-TESLA, and the GLP
scheme, the rejection sampling is implemented as an if-
condition, which would have to be skipped in order to
circumvent the rejection sampling. Skipping this rejection-
sampling-condition in many runs of the sign algorithm
might introduce the same security flaw as used by the
attacks described in [25] and [15]. Since these attacks
exploit the special structure of NTRU-lattices, BLISS
might be especially vulnerable since its keys are chosen
in an NTRU-like manner. However, to find out the exact
number of needed faults, the mentioned attacks have to
be adapted to BLISS, ring-TESLA, and the GLP scheme,
and to be simulated, which we leave for future work.

2) Skipping the Addition of the Randomness: In the
C-implementation of the GLP scheme, z1 and z2 of the
signature are computed in two steps: first s (resp., e) and
c are multiplied. Afterwards, sc and y1 (resp., ec and y2)
are added, as can be seen in Code 3. Hence, skipping
Line 108 or Line 120 in Code 3 yields z1 = sc or z2 = ec,
respectively.
95 poly_setrandom_maxk(y1);
96 poly_setrandom_maxk(y2);

[...]
107 poly_mul(z1,c,s1);
108 poly_add_nored(z1,z1,y1);
109 poly_coeffreduce(z1);

[...]
119 poly_mul(z2,c,s2);
120 poly_add_nored(z2,z2,y2);
121 poly_coeffreduce(z2);

Code 3. C-Code of the GLP implementation for the computation of
the signature values z1 and z2.

As before, the assembly code of the respective code
lines corresponds to jumping to another operation. Hence,
this attack gives the same result as zeroing the whole
randomness as described in Sec. V-B, i.e., by skipping
one line an attacker knows the secret key.

A similar attack is not possible in case of the BLISS or
the ring-TESLA implementation. We explain the reason
on the example of ring-TESLA. Explanations for BLISS
can be found in Appendix D2.

In the implementation of ring-TESLA the value sc is
added to the value y as can be seen in Code 4. Hence,
skipping Line 323 in Code 4 yields z = y (the value
vec_y is the output value in the implementation). Since the
randomness changes for every run of the sign algorithm,
the attacker does not learn anything about the secret.
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323 poly_add(vec_y, vec_y, Sc);

Code 4. C-Code of ring-TESLA for the addition of sc and y.

3) Skipping of the Modulus Reduction: Skipping the
reduction modulo q during the signature generation does
not reveal information about the secret since during the
computation of z = y+sc (the only value that is returned
and depending on the secret) no modulo reduction is
computed in all of the signature schemes. Moreover, the
modulo operation is computed very often during the sign
algorithm, i.e., it is rather difficult to skip all the modulo
operations during the computation via fault attacks.

C. During Verification

To prevent the installation of malicious malware it is
not enough to use cryptographic signatures for software
updates. It is also necessary to ensure that the verification
of these signatures is computed correctly [30]. Hence, we
analyze fault attacks during the verification algorithm in
this section. We identify two ways to force the acceptance
of an invalid signature for any message µ via skipping
attacks. In all three signature schemes that are considered
in this paper, the verify algorithm consists essentially
of computing a hash value c′, checking whether this is
the same as the input value c (called the correctness
check), and checking whether z (resp., z1 and z?2) are
small enough (called the size check). Note that we do
not consider skipping the computation of the encoding
function of the hash value c, since this would lead to
an unallocated value. However, we consider zeroing c in
Sec. V-D.

1) Skipping of Correctness Check: An adversary
chooses c uniformly at random and chooses z (reps., z1

and z?2) small enough and of the expected form (e.g.,
correct number of zero-coefficients), such that the size
check goes through. Afterwards, the attacker computes the
hash value c′. Hence, skipping the correctness check yields
an acceptance of the (invalid) signature of any message.
In the software of ring-TESLA, the correctness check is
implemented as the following single if-condition:

378 if(memcmp(c,c_sig,32)) return -1;

where c_sig corresponds to c′ in our notation and
returning -1 corresponds to not accepting a signature.
In case of BLISS and the GLP scheme, the correctness
checks are implemented as if-conditions for each entry
of c, see as an example the respective lines of the GLP
implementation in Code 5.
184 for(i=0;i<20;i++)
185 if(sm[i] != h[i])
186 goto fail;

Code 5. C-Code of the correctness check in the GLP scheme;
sm[0],...,sm[19] corresponds to c and h corresponds to c′ in
our notation; goto fail corresponds to not accepting a signature.

Therefore, the skip has to be realized as a jump out of
the for-loop after the first iteration. Hence, the invalid
signature is accepted as long as c, z1, and z?2 are chosen
such that c[0] = c′[0].

2) Skipping of Size Check: We explain this attack by
the example of ring-TESLA, but the attack can be applied
similarly to BLISS and the GLP scheme. The attack works
as follows: the attacker chooses y ←$ Rq,[B−U ] and
computes the hash value c for some self-chosen message.
Afterwards, the attacker computes z = a−1(ay1 + t1c)
(recall that the polynomial a is invertible). Easy compu-
tation shows that as long as the size check is skipped,
the signature σ = (z, c) is accepted. In case of ring-
TESLA and GLP the size check is again implemented as a
simple if-condition. This is also the case for BLISS, but
by construction of the verify algorithm two if-conditions
have to be checked for z1 as indicated by Fig. 5

V. ZEROING FAULTS

Zeroing fault attacks assume that the attacker can set
a whole variable or a part thereof to zero. We present
zeroing attacks during the key generation, the sign, and the
verify algorithm. Although it has often been questioned if
this is a realistic attack scenario, zeroing faults habe been
realized in practice [24]. In certain cases, zeroing attacks
can be realized with skipping attacks, which is why we
refer to Section IV in the respective cases.

A. Zeroing the Secret or Error During Key Generation

Zeroing the error polynomial can be implemented as
skipping addition operations during the key generation.
Hence, we refer to Sec. IV-A for more information.

Similarly, one can zero the secret polynomial. Assume
that during the key generation a zeroing fault is induced
such that s = 0, hence the value b = e (mod q) is
returned and the attacker knows the error polynomial
e. In case of the GLP scheme this is enough to forge
signatures (BLISS does not have an error polynomial by
construction): in case of the GLP scheme, the attacker,
knowing e, can compute a (valid) signature for any
message µ by choosing y2 ←$ Rq,[k] and computing
c ← H(bay1 + y2ed,q , µ), z2 = y2 + ec, and its com-
pression z?2 as usual. The value z1 then is z1 = y1 with
y1 ←$ Rq,[k−32]. As in Sec. IV-A, easy computation
shows that (z?2 , z1, c) will be accepted by the verify
algorithm.

In case of ring-TESLA, signatures cannot be forged in a
similar manner, because a signature (c, z) has to fulfill two
equations in order to be verified correctly: ba1z − b1ced,q
and ba2z − b2ced,q. This only occurs if and only if e1c =
e2c, which is very unlikely.

In the publicly available software implementation of
BLISS, GLP, and ring-TESLA, the key generation and
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the sign algorithm do not test whether the keys are of the
correct form. Thus, the respective attacks would not be
detected in the currently available implementations.

B. Zeroing the Randomness During the Signature Gener-
ation

In the following, we describe a zeroing attack on the
randomness of the signature generation. First, we describe
the attack against ring-TESLA. Afterwards, we describe
similar attacks on BLISS and the GLP scheme.

1) Description of the Attack Against ring-TESLA:
Throughout this section we use the following notation:
let the secret polynomial be s =

∑n−1
j=0 sjx

j . Let
(z(1), c(1)), ..., (z(m), c(m)) be signatures for any mes-
sages with z(i) =

∑n−1
j=0 z

(i)
j xj and c(i) =

∑n−1
j=0 c

(i)
j x

j

where c
(i)
j ∈ {0, 1} for i = 1, ...,m. Furthermore, let

y(1), ..., y(m) be the faulty randomnesses with y(i) =∑n−1
j=0 y

(i)
j xj . Finally, let r ∈ {1, ..., n} be the number

of coefficients that are changed to zero during the fault
attack. We assume that the coefficients are changed block-
wise, i.e., the coefficients y

(i)
j , ..., y

(i)
j+r are changed for

i ∈ {1, ...,m} and j ∈ {0, ..., n − 1}, and the attacker
cannot control which block of r coefficients is set to zero.

The idea of the attack is as follows: first the at-
tacker induces a zeroing fault on the randomness and
checks which of the coefficients were changed to zero
(we explain later in this section how this is done).
The attacker collects equations with y

(i)
j = 0, i.e.,

(sj , ..., s0,−sn−1, ...,−sj+1)(c
(i)
0 , ..., c

(i)
n−1)T = z

(i)
j . The

attacker repeats those steps until the set of n′ ≥ n
collected equations is sufficient, i.e., every coefficient of
s0, ..., sn−1 is at least once multiplied with a non-zero
c

(ik)
jk

. Hence, the attacker receives the following system of
equations, which can be solved uniquely:

C · (s0, ..., sn−1)T = (z
(i1)
j1

, ..., z
(in′ )
jn′

)T , (5)

with C =

 c
(i1)
j1

... c
(i1)
0 −c(i1)

n−1 ... −c(i1)
j1+1

... ...

c
(in′ )
jn′

... c
(in′ )
0 −c(in′ )

n−1 ... −c(in′ )
jn′+1

.

Next we describe how an attacker can find out which
coefficients of the randomness were changed to zero
during the i-th fault attack. The equation z(i) = sc(i)+y(i)

is equivalent to z(i) = Rot(s)c(i) + y(i). To simplify the
explanation we assume w.l.o.g. that c(i)

0 = ... = c
(i)
ω−1 = 1

and c(i)
ω = ... = c

(i)
n−1 = 0. Hence, we can write

z
(i)
0 =s0 − sn−1 + ...− sn−ω + y

(i)
0

z
(i)
1 =s1 + s0 − sn−2 + ...− sn−ω+1 + y

(i)
1

. . . (6)

z
(i)
n−1 =sn−1 + sn−2 + ...+ sn−ω−1 + y

(i)
n−1.

We define z(i)
j = ς

(i)
j +y

(i)
j for j = 0, ..., n−1. Since sj ←

Dσ, the expectation value of |sj | is given by E[|sj |] =
σ
√

2/π for j = 0, ..., n− 1. Furthermore, since ‖c‖ = ω,
ς

(i)
j is Gaussian distributed with standard deviation

√
ωσ

and E[|ς(i)
j |] =

√
2ω/πσ. Via the triangle inequality it

holds that

B/2−
√

2ω/πσ ≤ E[|ς(i)
j + y

(i)
j |] ≤

√
2ω/πσ +B/2.

For the parameter set ring-TESLA-II, i.e., with B = 222−
1, ω = 19, and σ = 52, E[|z(i)

j |] is given by

E[|z(i)
j |] ≈

102, if y(i)
j = 0,

221, if y(i)
j 6= 0.

Since the difference between the expectation values is
very large, we assume that the attacker can unambiguously
determine whether or not y(i)

j was changed to zero.
The efficiency of the attack depends also on when the

zeroing attack was induced on the randomness. If the
zeroing is applied before v1 = a1y and v2 = a2y in Fig. 4
are computed, rejection sampling is disabled, since then
coefficients of the polynomials z, w1, w2 are very small
and will pass the if-condition in Line 17. If the zeroing
attack is induced after v1 and v2 are (but before z is)
computed, the rejection condition on z is disabled, but the
condition on w1 and w2 are the same as in the case without
zeroing. Hence, the probability of rejection is given by
(1 − 2L/2d)2n. For the instantiation ring-TESLA-II, i.e.,
n = 512, d = 23, and L = 2766, the fault attack has to
be repeated with probability roughly 0.508.

The number of needed zeroing faults strongly depends
on the value r. Let m be the number of necessary
successful fault inductions to reveal the secret and let S be
the set of equations which will be part of Equation (5). We
assume that every successful fault induction adds r new
equations to the set S, since the hash value c changes for
every sign query. Hence, solving the following equation
for m gives the number of necessary faults:

1

3
·
m∑
k=1

r − 1

2n
(k − 1)− 1

2r
≥ n. (7)

Thus, m ≥ 3n
r−1/2r , where the factor 3 comes from the

rejection probability of 0.34 stated in [1]. Assume the
attacker can set 12 bytes to zero, i.e., r = 4 since each
coefficient of y can be saved in three bytes, then m = 384.
For r = 1, we get m = 1536.

In case t = n, i.e., the complete randomness can
be set to zero, only a single successful fault attack is
necessary, since then the linear system of equations in
Equation (6) can be solved uniquely with high probability.
The reason is that the rows of a rotation matrix are Z-
linearly independent and ±s0, ...,±sn−1 are independent
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random variables with high probability.
2) Application to BLISS or the GLP Scheme: The

attack can also be applied on BLISS and the GLP scheme.
Assume that the zeroing fault was induced on y1 of the
GLP scheme. As explained above, we can recover s.
Afterwards, we can compute e by e = t− as. Because of
the compression function the attack is not effective if y2 is
faulty. Due to the compression algorithm, a maximum of
six coefficients are in the final signature for the proposed
instantiation.

Similarly, we can assume that the zeroing fault was
induced on y1 during the sign algorithm of BLISS. As
explained above, we can then recover s1 and we can
recover s2 by s2 = a1s1. For similar reasons as for the
GLP scheme, the attack does not work effectively in case
y2 instead of y1 is faulty.

3) Application to Signature Schemes over Standard-
Lattices: The attack is far less efficient and only appli-
cable for r = n when applied to schemes defined over
standard lattices instead of ideal lattices.

Let r = n, i.e., the randomness is equal to the zero
vector. Let the notation and assumptions be as described
above. Then the following system of equations gives n ·m
equations and n2 unknowns and can be solved uniquely:(

z(1), ...., z(m)
)T

= Rot(s)
(
c(1), ..., c(m)

)T
.

Still it is less efficient than in the ring setting, since the
attacker needs to induce at least 3n zeroing faults (again
the factor 3 comes from the rejection probability). In
the ring setting with the same assumption r = n, the
attacker needs to induce (on average) three zeroing faults
successfully.

In case r < n, the attack is in general not applicable
to signature schemes over standard lattices, since the
multiplication of matrices is not commutative, a condition
that we need in Equation (5).

C. Zeroing the Hash Value During the Signature Gener-
ation

Zeroing the hash value c during the sign algorithm does
not lead to more information about the secret key since
only the product sc occurs in the final signature. Hence,
the attacker only gets access to the randomness, which
changes for every run of the sign algorithm in BLISS,
ring-TESLA, and the GLP scheme. Hence, knowledge of
one specific random value does not reveal information to
successfully forge signatures. However, Alkim et al. [4]
define the standard-lattice-based signature scheme TESLA
to be deterministic. They use a standard technique to
transform a probabilistic scheme into a deterministic one
by using a secret seed sec, a pseudo random function
(PRF), and a pseudo random generator (PRG), i.e., let

µ be a message then y ← PRG(PRF (sec|µ)). Zeroing
the hash value yields information as described below. Let
σµ = (zµ = Scµ+yµ, cµ) be the signature of µ. Querying
a signature for µ again while inducing a zeroing fault on
cµ yields the faulty signature σ0 = (z0 = yµ,0). Thus,
the attacker can compute zµ− z0 = Scµ. As described in
Sec. V-B3, to determine S uniquely n zeroing faults of this
kind have to be performed. We note that we are aware that
the success of this attack is highly dependent on concrete
implementations of standardizations and on whether and
how countermeasures like timestamps are implemented.
This issue does not exclusively apply to lattice-based
signatures, but since first steps of standardizing lattice-
based crypto are made7, we nevertheless like to emphasize
to take care about this here.

D. Zeroing Fault During the Verification Algorithm

In this subsection, we describe a zeroing attack on the
polynomial computed from the hash value c using the
pseudo code of ring-TESLA. This attack works similarly
on the GLP scheme and BLISS since they use the same
mechanism as it is used in ring-TESLA, although this is
not made explicit in their pseudo code.

The goal of the attacker is to force the verify algorithm
to accept a (unvalid) signature for a message µ. To this
end, the attacker chooses z ←$ Rq,[B−U ], computes c′ ←
H(ba1zed,q , ba2zed,q , µ), and returns (c, z) as signature
of µ. During the verify algorithm, first the value c ←
F (c′) is computed. Assume c was set to zero during a
fault attacks. Hence, w1 = a1z and w2 = a2z, and c′′ ←
H(ba1zed,q , ba2zed,q , µ). Thus, c′ = c′′ and the signature
is accepted.

VI. COUNTERMEASURES AND GUIDELINES

We describe countermeasures to prevent fault attacks for
each kind of attack described in this paper. Additionally to
our guidelines, we refer to the intensive literature about
countermeasures in general [31]. Note that it is crucial
that a countermeasure can not be easily circumvented by
another fault attack. Hence, implementations of counter-
measures should always consider preventions against all
three kinds of attacks.

A. Countermeasures Against Randomization Faults

One way to prevent the randomization attack described
in Sec. III is to check the correctness of the secret key.
As long as the randomization fault is not implemented as
a skipping attack, it can be prevented by simple correct-
ness checks or comparisons. Our approach is somewhat

7The National Institute of Standards and Technology (NIST) an-
nounced the call for quantum-resistant cryptographic algorithms for
new public-key crypto standards at PQCrypto 2016. See https://
pqcrypto2016.jp for more information.
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different: let a−1 be the inverse polynomial of a in Rq,
s′ be the faulty secret, s be the original secret, and
let b′ = as′ + e (mod q). Instead of Line 8 of the
GLP scheme (see Fig. 3), we compute z1 = a−1(b′ −
b)c + s′c + y1 = sc + y1. Hence, we always return a
signature generated with the correct secret key even if
the fault attack described in Sec. III occurred. As long as
implemented with respect to the guidelines mentioned in
the next section, this countermeasure should not induce
vulnerabilities against the described skipping or zeroing
attacks. A disadvantage of this countermeasure is that
the public key b has to be given as input, i.e., the key
sizes are increased. Furthermore, the inverse of a has to
be computed. Similarly to the protection of the secret
polynomial, the error term could be protected if necessary.
Our analysis in Sec. III indicates that aggressive instan-
tiations such as DCK or NTRU are more vulnerable to
randomization attacks. Hence, instantiating BLISS or the
GLP scheme over ring-LWE or ring-SIS would strengthen
the security of those schemes with respect to fault attacks.
Most probably this would lead to a serious efficiency
penalty.

B. Countermeasures Against Skipping Faults

We describe countermeasures to prevent the skipping
attacks presented in Sec. IV.

One way to prevent skipping faults addressing the
addition in general is to define a new variable to save
the resulting sum, e.g., Code 6. Skipping Line 49 of the
countermeasure in Code 6 does not lead to a successful
attack since the value b2 would not be allocated and a
segmentation fault would be triggered. Hence, no infor-
mation about the secret is revealed.

// original // countermeasure
48 poly_mul_a(b, s); poly_mul_a(b1, s);
49 poly_add_nored(b,b,e); poly_add_nored(b2,b1,e);

Code 6. Comparison of the original code of the GLP scheme and an
example of a countermeasure against skipping the addition during key
generation.

A different approach which prevents skipping attacks
in certain cases is to add secret information to random
information and not the other way around, e.g., use the
code shown on the bottom of Code 7 instead of the
original GLP code. Hence, skipping Line 108b in Code 7
results in z1 = y1 instead of z1 = y1 + as. Since y1

changes for every sign query, the attacker does not gain
information about the secret. This is already realized in
the implementations of BLISS and ring-TESLA.

// original
95a poly_setrandom_maxk(y1);

[...]
107a poly_mul(z1,c,s1);
108a poly_add_nored(z1,z1,y1);
109a poly_coeffreduce(z1);

//countermeasure

95b poly_setrandom_maxk(z1);
[...]

107b poly_mul(v1,c,s1);
108b poly_add_nored(z1,z1,v1);
109b poly_coeffreduce(z1);

Code 7. Comparison of the original code of the GLP scheme and
an example of a countermeasure against skipping the addition of the
randomness during signature generation.

Besides the countermeasures mentioned above, it should
be ensured that only correctly formed or totally random
keys are returned. In the following, we describe a method
to prevent the skipping attack presented in Sec. IV-A2.
The goal of this attack is to skip operations during the key
generation algorithm such that the public key is not of the
correct form. A faulty b can either be b = as+e ( mod q),
b = as (mod q), b = e (mod q), or b = 0. To prevent
returning a faulty b, the additional computations shown in
Fig. 2 should be implemented for the GLP scheme (and
similarly for ring-TESLA and BLISS). In case b is not

1 b = as+ e (mod q)
2 u←$ Zq
3 ν = ‖t−as‖+u‖e‖+u
4 If s = νs ∧ e = νe:
5 Return sk = (νs, νe)
6 Else:
7 Restart key generation

Fig. 2. Pseudo code of a countermeasure to check whether the key
pair is generated correctly: the returned key pair is either of the correct
form or the secret and the public key do not correspond to each other.

faulty, ν = 1 and the correct elements s, e are returned.
In case b is faulty, no security flaw occurs because even
if Line 4 is skipped, the secret and the public key do not
correspond to each other. Hence, at worst the signer uses
the invalid keys to sign messages which can not be verified
with the corresponding faulty b.

Due to (Gaussian) sampling of elements, it is rather
difficult to induce a skipping fault to skip the rejection
sampling at the right time. Nevertheless, it is advisable to
make sure that rejection sampling is applied correctly. In
case of ring-TESLA and the GLP scheme the rejection
sampling is implemented as an if-condition such that
the signature is returned if the if-condition is true. In
assembly code this means, that the signature is returned
if the zero flag is equal to 1. Hence, when the if-
condition is skipped by fault, a signature is returned if
and only if the zero flag was set equal to 1 in an earlier
computation. It is reasonable to assume that this happens
with probability 0.5. Hence, formulating the if-condition
as it is done for ring-TESLA and the GLP scheme does not
prevent the skipping attack completely, but it doubles the
(expected) number of necessary fault injections. In case
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of the BLISS implementation, the rejection sampling is
implemented as if-condition(s) such that a signature is
rejected if the if-condition holds true. Hence, skipping
this if-condition means to skip the rejection sampling.
Reformulating the if-condition as it is done for ring-
TESLA and the GLP scheme would make this skipping
attack much more complicated.

C. Countermeasures Against Zeroing Faults

Zeroing faults can often be categorized as randomiza-
tion or skipping faults. Hence, zeroing faults can often be
prevented by the countermeasures described in Sec. VI-A
and VI-B. Assuming that the zeroing fault is not caused by
skipping or randomizing faults, we can prevent a zeroing
attack by simply checking whether the values of the secret
or error polynomial (Sec. V-A), the randomness during
signing (Sec. V-B), the hash value (Sec. V-C), or the
encoding polynomial (Sec. V-D) are zero, since we only
consider first-order faults in this paper.

VII. CONCLUSION

In this paper, we analyzed the lattice-based signa-
ture schemes BLISS, ring-TESLA, and the GLP scheme
and their implementations with respect to fault attacks.
Furthermore, we presented countermeasures against the
described attacks. Hereby, we considered three types of
faults: randomization, skipping, and zeroing faults.

For nine of the 15 considered attacks at least one of
the three schemes was vulnerable. We summarize our
results in Table I. All three schemes are vulnerable against
zeroing faults during the sign algorithm, against zeroing
faults during the verification, against skipping faults dur-
ing the key generation, against two kinds of skipping faults
during the verification algorithm, and (to a variable extent)
against skipping faults during the signature generation
algorithm. Moreover, the GLP scheme is vulnerable to an
additional skipping attack during the sign algorithm and
an additional zeroing attack during the key generation.

We state that the three signature schemes and their
implementations behave rather similar under fault attacks.
However, the different instantiations of the schemes lead
to different vulnerabilities. BLISS and the GLP scheme
are more vulnerable to a randomization attack during the
key generation because of their aggressive instantiation
with ternary secret and error. Moreover, our analysis
shows that ideal-lattice-based schemes are in general more
vulnerable to zeroing attacks during the sign algorithm
than standard-lattice-based schemes.

We propose effective countermeasures for each of the
analyzed attacks. Most of them are very efficient, since
they do not require time-consuming computations. We
leave for future work to compare the original implementa-
tions with implementations that take our countermeasures

into account and to verify the effectiveness of the proposed
preventions by a software simulation.
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APPENDIX

A. Extended Definitions and Security Notions

In this section, we recall security notions of signature
schemes. Furthermore, we depict the signature schemes
GLP, ring-TESLA, and BLISS in detail in respective
figures 3, 4, and 5.

1) Syntax, Functionality, and Security of Signature
Schemes: A signature scheme with key space K, mes-
sage space M, and signature space S, is a tuple Σ =
(KeyGen, Sign,Verify) of algorithms defined as follows.
• The (probabilistic) key generation algorithm on input

the security parameter 1λ returns a key pair (vk, sk) ∈
K. We write (sk, vk)← KeyGen(1λ) and call sk the
signing key and vk the verification key.

• The (probabilistic) signing algorithm takes as input
a signing key sk, a message µ ∈ M, and outputs a
signature σ ∈ S. We write σ ← Sign(sk, µ).

• The verification algorithm, on input a verification
key vk, a message µ ∈ M, and a signature σ ∈ S ,
returns a bit b: If b = 1 we say that the algorithm
accepts, otherwise we say that it rejects. We write
b← Verify(vk, µ, σ).

We require (perfect) correctness of the signature
scheme: For every security parameter λ, every choice of
the randomness of the probabilistic algorithms, every key
pair (vk, sk)← KeyGen(1λ), every message µ ∈ M, and
every signature σ ← Sign(sk, µ), Verify(vk,m, σ) = 1
holds.

2) Definition of Lattice-Based Problems: In this sec-
tion, we recall definitions and notations of the used lattice-
based problems, namely the (decisional) ring learning with
errors problem (R-LWE), the ring short integer solution
problem (R-SIS), and the decisional compact knapsack
problem (DCK).

We start by defining the learning with errors distribution
and the ring learning with errors problem in the following.

Definition 1 (Learning with Errors Distribution): Let
n, q > 0 be integers, s ∈ Rq, and χ be a distribution
over R. We define by Ds,χ the R-LWE distribution which
outputs (a, 〈a, s〉 + e) ∈ Rq × Rq, where a ←$ Rq and
e← χ.

We state the search and the decisional learning with
errors problem.

Definition 2 (Ring Learning with Errors Problem): Let
n, q > 0 be integers and n = 2k for some k ∈ N>0 and
χ be a distribution over R.

Given n, q, and m LWE-samples, the (search) ring
learning with errors problem R− LWEn,m,q,χ is to
find the polynomial s. Given n, q, and samples
(a1, b1), ..., (am, bm), the (decisional) ring learning with
errors problem is to decide whether the samples are

14

https://cryptojedi.org/crypto/index.shtml#lattisigns
https://cryptojedi.org/crypto/index.shtml#lattisigns
https://www.nsa.gov/ia/programs/suiteb_cryptography/
https://www.nsa.gov/ia/programs/suiteb_cryptography/
https://pqcrypto2016.jp/data/pqc2016_nist_announcement.pdf
https://pqcrypto2016.jp/data/pqc2016_nist_announcement.pdf


LWE-samples or whether b1, ..., bm are chosen uniformly
random over Zq[x]/(xn + 1).
Since in this paper we only use the decisional ring
learning with errors problem, we denote this problem
always by LWE.

The decisional compact knapsack problem is essentially
the LWE problem with ternary instantiation.

Definition 3 (Decisional Compact Knapsack Problem):
Let n, q > 0 be integers with n = 2k for some k ∈ N>0, ψ
be the uniform distribution Rq,[1], and s← ψ. We define
by Ds,ψ the distribution which outputs (a, 〈a, s〉 + e) ∈
Rq ×Rq, where a←$ Rq and e← ψ.

Given n, q, and samples (a1, b1), ..., (am, bm) the DCK
problem is to decide whether b1, ..., bm are chosen uni-
formly random over Zq[x]/(xn + 1) or whether they are
sampled with Ds,ψ.

The R-SIS (also abbreviated by SIS) is defined as
follows.

Definition 4 (Short Integer Solution Problem): Let
n, q > 0 be integers and n = 2k for some k ∈ N>0 and χ
be a distribution over R. Given a1, ..., am ←$ Rq,[q] the
R-SIS problem is to find a polynomial s ∈ Rq,[q] such
that a1s+ ...+ ams = 0 (mod q) and ‖s‖ ≤ β ∈ R.

B. The Analyzed Signature Schemes

In this section we depict the signature schemes GLP,
ring-TESLA, and BLISS in Fig. 3, 4, and 5, respectively.

C. Detailed Analysis of the Hybrid Approach

In this section, we give a detailed analysis of the hybrid
approach.

1) Hybrid Approach Applied to the GLP Scheme: In
the following, we explain how to find the smallest k
possible, such that we can apply the hybrid approach
on the GLP scheme. As described in Sec. II-B1, the
error is ternary. Hence, the expected norm of the error is
||e|| =

√
2/3 · n. Furthermore, only a single LWE-tuple

is given, i.e., m = n. Substituting this in Equation (3) for
the standard embedding approach, we get the inequality

δn+1 ≤
Γ(1 + n+1

2 )1/(n+1)√
π2/3n · τ

· qk−n−1). (8)

Equation (4) for the dual embedding approach corresponds
to

δ2n−k+1 ≤
Γ(1 + 2n−k+1

2 )
1

2n−k+1

τ ·
√

2/3nπ
· qk−n−1. (9)

Finally, we can compute that the minimal k such that
the inequality for the standard embedding approach above
is fulfilled is 173 and the minimal value such that the
equation holds for the dual embedding is 118. This is

KeyGen(1λ) :

1 s, e←$ Rq,[1]
2 a←$ Rq
3 b← as+ e (mod q)
4 sk← (s, e), vk← (a, b)
5 Return (sk, vk)

Sign(µ; a, s, e) :

6 y1, y2 ←$ Rq,[k]
7 c← H

(
bay1 + y2ed,q , µ

)
8 z1 ← y1 + sc
9 z2 ← y2 + ec
10 If z1, z2 /∈ Rk−32:
11 Restart
12 Else: z?2 ← compress(az1 − tc, z2, p, k − 32)
13 Return (z1, z

?
2 , c)

Verify(µ; z1, z
?
2 , c; a, b)

14 c′ ← H
(
baz1 + z?2 − bced,q , µ

)
15 If c = c′ ∧ z1, z

?
2 ∈ Rk−32:

16 Return 1
17 Else: Return 0

Fig. 3. Specification of the GLP scheme by Güneysu et al. [18]. The
rounding operator b·ed,q corresponds to the function used in the original
paper with d = log2(k), where k is the parameter used in [18]. For
detailed information about the system parameters and the procedure
compress, we refer to the original work.

roughly the same amount of necessary faults as stated by
others [6], [17], who use 160 faulty signatures.

2) Hybrid Approach Applied to the Signature Scheme
ring-TESLA: The hybrid-approach applied to the scheme
ring-TESLA is very similar to the one of GLP. The only
difference is the distribution of the error and the number
of given LWE-samples. The polynomial e is chosen to be
Gaussian distributed with standard deviation σ. Hence, the
expected length of the corresponding coefficient vector e

of dimension n is given by ‖e‖ =
Γ(n+1

2
)

Γ(n

2
)

√
2σ. We refer

to [12] for more details. The number of LWE-samples is
two, i.e., m = 2n.

Next, we explain how to find the smallest k possible,
such that the uSVP can be solved. Equation (3) for the
standard embedding approach gives

δ2n+1 ≤
Γ(1 + 2n+1

2 )1/(2n+1)

√
π||e|| · τ

· qk−n−1. (10)

Equation (4) corresponds to

δ3n−k+1 ≤
Γ(1 + 3n−k+1

2 )1/(3n−k+1)

√
π||e|| · τ

· qk−n−1. (11)

Hence, the minimal values are k = 405 and k = 442 for
the standard and the dual embedding approach, respec-
tively.
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KeyGen(1λ) :

1 a1, a2 ←$ Rq
2 s, e1, e2 ← Dn

σ

3 If checkE(e1) = 0 ∨ checkE(e2) = 0
4 Restart
5 b1 ← a1s+ e1 (mod q)
6 b2 ← a2s+ e2 (mod q)
7 sk← (s, e1, e2), vk← (b1, b2)
8 Return (sk, vk)

Sign(µ; a1, a2, s, e1, e2) :

9 y ←$ Rq,[B]

10 v1 ← a1y (mod q)
11 v2 ← a2y (mod q)

12 c′ ← H
(
bv1ed,q , bv2ed,q , µ

)
13 c← F (c′)
14 z ← y + sc
15 w1 ← v1 − e1c (mod q)
16 w2 ← v2 − e2c (mod q)
17 If |[w1]2d |, |[w2]2d | /∈ R2d−L ∨z 6∈ RB−U :
18 Restart
19 Return (z, c′)

Verify(µ; z, c′; a1, a2, b1, b2)

20 c← F (c′)
21 w′1 ← a1z − b1c (mod q)
22 w′2 ← a2z − b2c (mod q)

23 c′′ ← H
(⌊
w′1
⌉
d,q
,
⌊
w′2
⌉
d,q
, µ
)

24 If c′ = c′′ ∧ z ∈ RB−U :
25 Return 1
26 Else: Return 0

Fig. 4. Specification of the scheme ring-TESLA by Akleylek et al. [1].
For detailed information about the system parameters and the procedure
checkE, we refer to the original work.

3) Hybrid Approach Applied to the Signature Scheme
BLISS: Since the signature scheme BLISS is based on the
security of SIS and SIS can be seen as an SVP problem,
we can apply the hybrid-approach also on BLISS in a
slightly different manner. Following the notation in Fig-
ure 5, let A ∈ Zn×2n

q be the matrix defined by the rotation
matrices of 2aq and q − 2, i.e., A = (Rot(2aq),Rot(a2))
and let s ∈ Z2n

q be the coefficient vector of the secret
polynomials f and 2g + 1, i.e., s0 = f0, ..., sn−1 =
fn−1, s=2g0 + 1, sn+1 = 2g1, ..., s2n−1 = 2gn−1. For the
instantiation BLISS-I the coefficients are as follows:

si ∈


{−1, 0, 1} if i ∈ {0, ..., n− 1},
{−1, 1, 3} if i = n,

{−2, 0, 2} if i ∈ {n+ 1, ..., 2n− 1},

with |{si = ±1}| = |{si = ±2}| = d1 (excluding sn).
Hence, the expected norm of s can be approximated by
‖s‖ =

√
5d1.

KeyGen(1λ)

1 f, g ←$ Fd1,d2

2 If Nλ(S) ≥ 5C2(dδ1ne+ 4d4δ2ne)κ
3 Restart
4 aq = (2g + 1)/f (mod q)
5 If f not invertible
6 Restart
7 (s1, s2)T ← (f, 2g + 1)T

8 (a1, a2) = (2aq, q − 2)(mod 2q)
9 sk← (s1, s2)T , vk← (a1, a2)

10 Return (sk, vk)

Sign(µ;A = (a1, q − 2);S = (s1, s2)T ) :

11 y1, y2 ← Dσ

12 u = ξa1y1 + y2(mod 2q)

13 c← H
(
bued,2q , µ

)
14 b←$ {0, 1}
15 z1 ← y1 + (−1)bs1c
16 z2 ← y2 + (−1)bs2c
17 Continue with probability 1/ν

18 z?2 ←
(
bued,2q − bu− z2ed,2q mod p

)
19 Return (z1, z

?
2 , c)

Verify(µ;A = (a1, q − 2); z1, z
?
2 , c)

20 c′ ← H
(⌊
ξa1z1 + ξqc(mod 2q)

⌉
d,2q

+ z?2(mod p), µ
)

21 If c = c′ ∧ ||(z1|2dz?2)||2 ≤ B2 ∧ ||(z1|2dz?2)||∞ ≤ B∞:
22 Return 1
23 Else: Return 0

Fig. 5. Specification of the scheme BLISS by Ducas et al. [13]. For
detailed information about the system parameters and the definition
of Nλ(·), we refer to the original work. The set Fd1,d2 is defined
as Fd1,d2 = {h =

∑n−1
i=0 hix

i|hi ∈ {−2,−1, 0, 1, 2}, |{hi ∈
{−1, 1}}| = d1, |{hi ∈ {−2, 2}}| = d2} and ν =(
M exp

(
−||Sc||2/(2σ2)cosh(〈z, Sc〉/σ2)

))
.

Assume that we revealed k coefficients of s by fault
attacks. Write the equation As = 0 (mod q) as A1s1 +
A2s2 = 0 (mod q) with A1 ∈ Zn×kq , A2 ∈ Z2n−k

q ,
s1 ∈ Zkq , and s2 ∈ Z2n−k

q . This can be written as
A2s2 = −b, where −b = −A1s1. Define the set L =
{w ∈ Z2n−k | A2w = −b (mod q)} = Λ⊥q (A2) + u,
where u ∈ Z2n−k such that A2u = −b. Finding s2 ∈ L
is equivalent to solving the closest vector problem (CVP):
CVP(Λ⊥q (A2),u)) = v ∈ Λ⊥q (A2), since the vector
u− v corresponds to s2. Instead of solving CVP in the
kernel lattice Λ⊥q (A2), we can equivalently solve CVP

in the image lattice Λq

(
A2

)
, with A2 ∈ Z2n−k×n−k

q

such that 〈Ker(A2)〉 = 〈Im(A2)〉. Hence, Λ⊥q (A2) =

Λq

(
A2

)
. We solve the CVP by embedding the vector u

in the standard embedding lattice. As before, we define
Λ = Λq(Ast) = {w ∈ Z2n−k+1

q | Astx = w (mod
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q) for some x ∈ Zn−k+1
q }, with Ast =

(
A2 u
0 1

)
∈

Z2n−k+1×n−k+1
q , and dim(Λq(Ast) = 2n − k + 1 and

det(Λq(Ast) = qn. The secret vector s2 is a short
vector in this lattice. We can compute the norm as
‖s2‖ ≤

√
2n−k

2n · 5d1 and d1 = 154. With these values,
the minimal value for k such that Equation (4) is fulfilled
is k = 344 if the attack should not run longer than a day.
The dual embedding approach is not efficiently applicable
for BLISS.

D. More Details on Some Fault Attacks

In this section, we extend our explanations given in the
respective sections.

1) Skipping Faults During the Key Generation: A
similar attack as described in Sec. IV-A2 can be applied
to ring-TESLA and BLISS.

a) Explanation for ring-TESLA: Code 8 shows the
implementation of the computation of the public key
b1, b2. Similarly to the description of the GLP scheme,
skipping Line 230 or 232 yields bi = ais. Hence, we can
easily compute s.
229 poly_mul_fixed(poly_T1,poly_S,poly_a1);
230 poly_add(poly_T1,poly_T1,poly_E1);
231 poly_mul_fixed(poly_T2,poly_S,poly_a2);
232 poly_add(poly_T2,poly_T2,poly_E2);

Code 8. C-code of the signature scheme ring-TESLA for the
computation of the public values b1 and b2; the values poly_T1 and
poly_T2 correspond to b1 and b2, respectively

By definition of the signature generation of ring-TESLA,
this is enough to forge signatures. The error polynomials
e1 and e2 are not necessary during the sign algorithms
since Lines 15 and 16 in Fig. 4 can be substituted by
testing whether the equation baiz − biced,q = baiyed,q
holds for i = 1, 2.

b) Explanation for BLISS: The public key of BLISS
consists of a polynomial a1 = 2aq = 2(2g + 1)/f , where
f, g are polynomials with small coefficients. In the C++
implementation of BLISS the public key is computed via
the commands depicted in Code 9.
161 conv(pX, sk.s1);} \\ pX=f
162 NTL::conv(aq, pX);} \\ aq=f
163 NTL::inv(aq, aq);} \\ aq=1/f
164 NTL::ZZ\_pE tmp;}
165 conv(pX, -(sk.s2));} \\ pX=-(2g+1)
166 NTL::conv(tmp, pX);} \\ tmp=-(2g+1)
167 NTL::mul(aq, aq, tmp);} \\ aq=-(2g+1)/f

Code 9. C++-code of the signature scheme BLISS for the computation
of the public value a1.

Skipping Line 167 in Code 9 results in aq = 1/f . A part
of the public key is a1 = 2aq. Hence, the polynomial
f can be recovered easily. Similar to the GLP scheme,
skipping an operation in the key generation does not
reveal the polynomial g or 2g + 1. However, given f an

attacker can forge signatures for any message µ. A gen-
eral secret-public-key pair of BLISS fulfills the equation
a1s1+(q−1)s2 = q (mod 2q) for s1 = f and s2 = 2g+1.
This can be written as 2s2s1

s1
+ (q − 1)s2 = q (mod 2q).

Hence, s2 = q
q−1 (mod 2q). As long as in the signature

generation of BLISS it is not checked whether s2 is of
the correct form, signatures computed with the secret key
(f, q/q − 1 (mod 2q) will be verified with the public key
(2/f, q − 2).

2) Skipping Faults During the Signature Generation:
We shortly describe the reason why the attack described
in Sec. IV-B2 does not gain any information when it is
applied to BLISS. As Code 10 indicates, the values of
y1 and y2 are written in z1 and z2, respectively. Hence,
skipping the addition in Lines 148-159 of Code 10 yields
z1 = y1 and z2 = y2. Since the randomness y1, y2

changes for every run of the sign algorithm, this does not
reveal information about the secret. Skipping Lines 127-
131 yields z1, z2 with unknown values to the attacker.
126 // Gaussian Sampling
127 for (i=0; i<N; i++) {
128 signOutput.z1[i] = sampler->SamplerGaussian()

;
129 ay[i] = signOutput.z1[i]*W[i];
130 signOutput.z2[i] = sampler->SamplerGaussian()

;
131 }

[...]
140 // Compute s*c
141 mult_by_c(sc1, sk.ls1, false, sk.offset,

signOutput.indicesC);
142 mult_by_c(sc2, sk.ls2, true, sk.offset,

signOutput.indicesC);
[...]

148 // Compute z
149 if (random->getRandomBit()) {
150 for (i=0; i<N; i++) {
151 signOutput.z1[i]-=sc1[i];
152 signOutput.z2[i]-=sc2[i];
153 }
154 } else {
155 for (i=0; i<N; i++) {
156 signOutput.z1[i]+=sc1[i];
157 signOutput.z2[i]+=sc2[i];
158 }
159 }

Code 10. C++-code of the signature scheme BLISS for the
computation of the signature values z1 and z2 (without compression).
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