
Privacy Preserving Network Analysis of
Distributed Social Networks

Varsha Bhat Kukkala, Jaspal Singh Saini, and S.R.S. Iyengar

Indian Institute of Technology Ropar, Punjab, India - 140001
varsha.bhat@iitrpr.ac.in, jaspal.singh@iitrpr.ac.in,

sudarshan@iitrpr.ac.in

Abstract. Social network analysis as a technique has been applied to
a diverse set of fields, including, organizational behavior, sociology, eco-
nomics and biology. However, for sensitive networks such as hate net-
works, trust networks and sexual networks, these techniques have been
sparsely used. This is majorly attributed to the unavailability of network
data. Anonymization is the most commonly used technique for perform-
ing privacy preserving network analysis. The process involves the pres-
ence of a trusted third party, who is aware of the complete network, and
releases a sanitized version of it. In this paper, we propose an alterna-
tive, in which, the desired analysis can be performed by the parties who
distributedly hold the network, such that : (a) no central third party is
required; (b) the topology of the underlying network is kept hidden. We
design multiparty protocols for securely performing few of the commonly
studied social network analysis algorithms. The current paper addresses
a secure implementation of the most commonly used network analysis
measures, which include degree distribution, closeness centrality, PageR-
ank algorithm and K-shell decomposition algorithm. The designed pro-
tocols are proven to be secure in the presence of an arithmetic black-box
extended with operations like comparison and modulo.

Keywords: social network analysis, secure multiparty computation, cen-
trality measures

1 Introduction

Understanding the structure that emerges due to the interaction between various
social entities has intrigued many scientists. This emergent structure, known as
a social network, is observed to exhibit certain common characteristics, such as
scale free degree distribution [1], high clustering coefficient [2], community struc-
ture [3], core-periphery structure [4] and several others. The study investigating
the topological characteristics of networks is termed as social network analysis
(SNA). A study of these properties has helped infer the functional underpinnings
of several complex networks [5–7].

The behavior of individuals observed locally, when clubbed with the global
network structure, reveals the emergent collective behavior. Hence, it is the net-
work topology that allows for inferences to be made on several functional aspects

of the system. As a result, a multitude of tools, techniques and algorithms are
available, which take the network structure as their input and provide a range of
inferences about the network. It is therefore important that we have the network
structure prior to applying the techniques of SNA. However, there are several
networks of interest which are not easily accessible. Firstly, the network may
be distributedly held, such that each person has a partial or local view of the
global network. This local view can hold sensitive information of the individual,
preventing her from disclosing it. An example would be that of a hate network
on a set of individuals. Nodes in such a network would comprise of individuals,
while an edge between two nodes would express the feeling of hatred between
the corresponding individuals. A hate network is the ignored counterpart of the
well studied friendship network. The underlying network is considered to be di-
rected, such that, a directed edge from node A to node B, denoted as (A,B),
would express person A’s hatred towards person B. In such a network, it is
clear that no individual would have knowledge of the global network. Each in-
dividual is only aware of the directed edges that she has to other individuals in
the network (local view), leading to the network structure being distributedly
held by several individuals. Secondly, even if an individual/organization has the
global network, legal policies might not allow her to reveal the network. For ex-
ample, human contact network collected through a database of hospital records
cannot be disclosed publicly [8]. The current technique employed in collecting
distributedly held sensitive data include surveys and interviews [9] conducted
by a trusted third party. Once the network data is obtained, it is sanitized to
ensure re-identification of the individuals is not possible. It is then released for
data analysis [10, 11]. This process, known as anonymization, is believed to pre-
serve privacy and at the same time, allows for an inferential study to be made
on the network.

Even though anonymization is a widely opted for technique to perform SNA
on private networks, there are several studies that point to its shortcomings [12–
15]. Firstly, there have been numerous instances where sanitized data released
in public has been de-anonymized [16, 13]. The released network structure data
is combined with some auxiliary information to re-identify nodes in the original
network. Secondly, during anonymization, graph structure is slightly perturbed
in order to resist re-identification attacks [17, 18]. This perturbation leads to
restructuring of the original network, which might not be desirable in certain
cases. What would be ideally desired is to be able to perform the required anal-
ysis while the network is kept hidden, since it is the results of the analysis that
we are interested in rather than learning the network structure. For example, if
it is just the average shortest path length of a hate network that we are inter-
ested in computing, then releasing the network structure would provide access
to more than the required information. In this paper, we explore the possibility
of performing SNA on a network without having to reveal its topology.

The problem of securely computing a network parameter while keeping the
network structure hidden, can be seen as an instance of multiparty computation
(MPC). It involves designing protocols that allow a bunch of individuals to
compute a function, a network parameter in our case, while hiding each of their
private input, which would be the distributedly held network structure. Hogg
and Adamic [19] have discussed on how MPC can be used to address the privacy
concerns of the individuals on whom the social network is knit. The idea of MPC
was first introduced by Yao [20], where he proposed a method for two millionaires
to determine who amongst them is richer, without revealing each other’s wealth.
The idea was generalized to a multiparty setting as follows: designing a protocol
to securely determine a globally known function y = F (x1, x2, . . . , xn), where xi
is the private input supplied by party Pi. Security here means that the individuals
participating in the protocol, referred to as parties, do not learn any additional
information, apart from what is computable using just their respective input and
output. MPC has been extensively applied in a myriad of problems including
computational geometry, voting, bench-marking, etc. In this paper, we provide
secure implementation of protocols that compute a network parameter without
releasing the network structure.

1.1 Our Contribution

Determining a network parameter p is modeled as securely computing a function
F (x1, x2, . . . , xn) = p, where xi is the private input provided by party Pi. The
private input of a party Pi is a graph Gi(Vi, Ei), such that G(V,E) =

⋃n
i=1Gi =

(
⋃n
i=1 Vi ,

⋃n
i=1Ei). The graph G captures the global network, whose param-

eter we are interested in computing.
The protocols in the paper are designed considering two different scenarios, based
on the type of input provided by the parties. The parties could be individuals
who are themselves a part of the network. When a node in the network corre-
sponds to a party in the protocol, we term such parties as internal agents. For
example, consider the trust network on all employees of an organization, where
an edge (A,B) represents that individual A trusts individual B. Each employee
participates as an internal agent in the protocol and reports the trust she has
with other employees as her private input. Alternatively, we could have a set of
parties who collectively hold the network on a globally known set of individuals.
In this case, each party has a sub-graph on the set of individuals. For exam-
ple, consider the financial transaction network on a set of individuals, where we
assume that an individual is allowed to have accounts in multiple banks. An
edge (A,B) represents that there has been a minimum m number of transactions
between node A and node B, which could be within the same bank or across
different banks. Here, the parties who collectively hold the network information
are the banks that the individuals have accounts in. Such parties are termed as
external agents. The protocols designed in the paper support modeling parties
as either internal or external agents.
The paper provides implementation details for securely computing degree distri-
bution, closeness centrality using Dijkstra’s algorithm, PageRank or eigenvector

centrality using the random surfer model, and K-shell decomposition algorithm.
We also provide details of several sub-protocols that have been commonly used
while computing the above network parameter protocols. These have been de-
scribed in Appendix A as discretionary sub-protocols .
The designed protocols are proven to be secure in the presence of an extended
arithmetic black-box FABB , which is defined in Section 4. All the proposed
network parameter protocols except PageRank protocol are perfectly secure,
while PageRank protocol is statistically secure, given a perfectly secure FABB
functionality. We calculate the cost involved in each of the proposed protocols,
in terms of the number of operations invoked of the FABB functionality, which
include addition, multiplication, equality/comparison and private modulo reduc-
tion operations. The exact communication cost, computation complexity and the
number of rounds involved would depend on the implementation of the assumed
arithmetic functionality.

2 Related work

Many recent works have focused on securely implementing graph algorithms.
Brickell and Shamatikov [21] looked at the problem of securely computing single
source shortest path and all pair shortest path. The proposed protocol is re-
stricted to a two party setting, where the solution is computed on the union of the
graphs held by the two parties. Moreover, the adversarial model assumed is that
of the semi-honest model. Aly et al. [22] propose a set of protocols for securely
computing shortest path problems in the multiparty setting. The authors pro-
pose a secure implementation of Bellman-Ford and Dijkstra’s algorithm for the
shortest path problem. Additionally, they consider the maximum flow problem
and propose secure implementations of the Edmonds-Karp and Push-Relabel
algorithms. In a successive work, Aly and Vyve [23] consider the problem of
securely finding the cycle with the least averaged cost, better known as the min-
imum mean cycle problem. They also address the minimum cost flow problem in
the information theoretic model, which involves minimizing the cost involved in
sending a flow from a source node to a destination node over a graph whose edges
have a capacity metric. It also provides an efficient implementation of Dijkstra’s
algorithm, which we use as a building block in this paper. There are works that
propose data oblivious algorithms, such as the one proposed by Blanton et al.
[24], which hide the input dependent memory access pattern. Data oblivious al-
gorithms for breadth-first search, single-source single-destination shortest path,
minimum spanning tree and maximum flow problems are proposed by Blanton
et al. [24].

Apart from the works that have focused on graph algorithms, the theme of
secure SNA has also been briefly studied. Keith Frikken and Philippe Golle de-
scribe a cryptographically secure method to compute the underlying anonymized
network [25]. Here, the entire network is distributedly held by a set of parties,
such that each row in the adjacency matrix corresponds to the input of a party.

The work assumes existence of additional authorities, who take responsibility of
collecting data securely, using which they reconstruct the graph. Another work
that proposes the construction of the graph is given by Bhat et al. [26], which
is limited to the semi-honest model. The latest work in this direction is done
by Tassa and Cohen [11], where they provide a secure implementation of an
algorithm for network anonymization through clustering. The focus in all of the
above works is to determine the structure of the underlying graph while preserv-
ing privacy. The motive of the current work is to make the required inferences
without revealing the network structure.

Kerschbaum and Schaad [27] propose a technique for computing the closeness
and betweenness of nodes in a distributedly held network. Their protocol assumes
a threshold homomorphic encryption scheme, like that of Paillier’s cryptosystem.
Betweenness computation, in the specific case of supply chain networks, has
been looked at by Fridgen and Garizy [28]. This is modeled for the semi-honest
parties and has less stringent a definition of privacy, as the leaked neighborhood
information is allowed for in the definition. It also relies on encryption schemes
to exchange data and is secure in the cryptographic model. Tassa and Bonchi
[29] propose a secure technique for determining the influence of a person in a
social network, by combining the network data with the activity logs of the
individuals in the network. They provide a multiparty protocol for the above,
which is limited to the semi-honest adversarial model. Even though the aim of
the paper is the same as ours, of finding influential nodes, their’s relies on the
availability of activity logs of individuals. Our approach of finding important
nodes in the network is based entirely on the network structure and relies on
the standard techniques of measuring centrality ranking of nodes. The algorithm
used to find central nodes are application specific and hence we discuss a few of
the important ones.

3 Preliminaries

In this section, we present some basic terminologies used throughout the pa-
per. Section 3.1 discusses on some basic graph theoretic notation used in the
paper and Section 3.2 provides a brief introduction to the field of multiparty
computation.

3.1 Graph theory

A graph/network G(V,E) is an ordered pair, where V represents the set of
nodes/vertices and E represents the set of edges, which is a relation on V .
Attributing to the directional nature of the edges, a graph is sometimes also
termed as a directed graph or a directed network. A graph is said to be undirected
if (u, v) ∈ E ⇐⇒ (v, u) ∈ E for every u, v ∈ V . If a real value (called weight)
is attached with each edge, then the graph is termed as a weighted graph.

A graph G(V,E) can be represented using a square adjacency matrix A =
(aij)n×n, where aij is the ith row jth column entry of the matrix, representing

the edge between node i, j ∈ V . In case of an unweighted graph, the value
of aij = 1 if (i, j) ∈ E, otherwise aij = 0. On similar lines, we can define a
symmetric/undirected adjacency matrix and a weighted adjacency matrix. The
ith row of the adjacency matrix A is termed as the ith adjacency vector, which
is represented using the notation vi, hence A = [vi]n×1.

3.2 Multiparty computation

The following section formalizes the basic definitions and notions that are im-
perative to designing any secure multiparty protocol and aid in providing the
rigorous proof for the same. The notations used here are borrowed from the com-
prehensive work [30] written by Cramer et al. The section consists of only those
definitions and terminologies that are essential and we suggest [30] for further
reading.

An MPC protocol consists of parties P1, P2, . . . , Pn, where n is the number
of parties. Each party Pi possess a private input xi, and the parties are inter-
ested in securely computing some globally known function F (x1, x2, . . . , xn) =
(y1, y2, . . . , yn), where yi denotes the output of the protocol sent to party Pi.

Modeling behavior of parties and adversary
The behavior of parties during the execution of the protocol could be broadly
classified as honest, semi-honest, or malicious. A party is termed honest if she
sincerely follows the protocol and does not collude with any other party. A party
that is not honest is said to be corrupt. Corruption is further modeled as semi-
honest or malicious, as discussed below.

A corrupt party is said to be semi-honest if she does not deviate from the
specified protocol. However, the party may collaborate with others and try ac-
cessing private information, which would violate privacy of the remaining honest
parties. Such parties are also known as honest-but-curious because they are hon-
est in not deviating from the protocol but are curious to learn information about
the honest parties. A party is said to be malicious when no assumptions are made
regarding her behavior. Such a party is given the liberty to behave arbitrarily
during the protocol execution. These parties are in a sense stronger than their
counterparts in the semi-honest model and hence it is a tougher challenge to
prove security in the malicious adversarial model. In order to model the cor-
ruption of the parties, we assume the existence of a central attacker called the
adversary, who has control over all the corrupt parties. The extent of control
depends on the assumption of the adversarial model. The protocols designed in
this paper derive its security properties from the security of the extended arith-
metic functionality FABB defined in Section 4.

Security in MPC protocol
The aim of a multiparty protocol is to allow the distributed computation of
a desired function while guaranteeing the security of the protocol. To deem a
protocol secure, it is required that a few conditions be met, which include:

– Correctness: The output generated by the protocol must be the desired value
of the function F on the inputs x1, x2, . . . , xn.

– Privacy: The protocol must be designed such that a party learns nothing but
the intended result. It should be noted that, any information that the party
can gather by just using its input and output does not amount to breach
in privacy. In an ideal world, the parties have access to their private input
and the designated output. Any information that the party can deduce from
the input and output alone is termed as allowed leakage. The information
that the party gathers during the run of the protocol i.e. her view is termed
as the actual leakage. For privacy to hold, the actual leakage of the set of
corrupt parties must be within their allowed leakage.

– Robustness: Just as privacy is concerned with knowledge gained, robustness
focuses on the influence gained by a corrupt party. The influence that an
adversary gains during the execution of the protocol is called actual influence,
while that possible in an ideal world is called allowed influence. Allowed
influence would include input substitution i.e. a party Pi can input x′i to
the protocol rather than her true input xi, whereas actual influence could
represent any possible deviation from the described protocol. A protocol is
said to be robust if the effect of an actual influence is obtainable from allowed
influence.

A protocol is said to be private if the information in the view of the party is
no more than the input and output of the party. Therefore, a protocol is private
if there exists an algorithm S (also known as a simulator) which inputs the al-
lowed leakage of the corrupt parties ({xi, yi}i∈C) and outputs the views of the
set of corrupt parties denoted by C. The values generated by the simulator are
called the simulated values. The proof of robustness is given on similar lines as
well. A protocol π is said to be robust if there exists a simulator S which inputs
the actual influence of corrupt parties, and it outputs an equivalent allowed in-
fluence of the corrupt parties. Generally we assume that input substitution is
the only allowed influence unless otherwise stated.

Security models
The security of a protocol is categorized based on the behavior of the adversary
and on the computational power of the adversary. If a protocol π is proven to
be secure in the semi-honest adversarial model, then it is said to be passively
secure. If π assumes the malicious adversarial model, it is said to be actively se-
cure. Next, we differentiate the security of a protocol based on the computational
capabilities of the adversary. If a protocol π is proven to be secure under the
assumption that the adversary is computationally bounded with attacks that are
feasible in polynomial time complexity only, we say that the protocol is computa-
tionally secure. If π makes no assumptions about the computational capabilities
of the adversary, then the protocol is said to be perfectly secure if the simulated
values are perfectly indistinguishable from the actual leakage, while it is said to
be statistically secure if the simulated values are statistically indistinguishable

from the actual leakage.

Universal composability theorem
Before stating the Universal Composability (UC) theorem, we define an ideal
functionality. The exact formulation of an ideal functionality is given in terms of
interactive systems, which can be found in [30]. Intuitively, an ideal functionality
F is a secure protocol with the required input/output behavior. The actual
leakage of F is precisely the allowed leakage, and the actual influence of F is
precisely the allowed influence. Hence, when designing protocols for a required
functionality, our aim is always to design a protocol as secure as its corresponding
ideal functionality. Generally, if X is the function that we desire to compute,
then FX would represent the ideal functionality for computing X and πX would
denote the protocol designed to be as secure as FX .

Let the protocol πG represent the implementation of an ideal functionality
FG, such that πG is as secure as FG. Let FH be another ideal functionality
corresponding to the protocol πH � FG, such that πH � FG is as secure as FH .
Here, � represents the composition operation, which implies that the protocol πH
invokes the ideal functionality FG as a sub-protocol. Then, UC theorem states
that πH �πG is as secure as FH . UC theorem allows us to replace ideal function-
alities in a complex protocol, involving the composition of several sub-protocols,
by their respective secure implementations. This eases the process of proving the
security of a protocol composed with various other secure sub-protocols.

4 Building Blocks

The proposed network parameter protocols are designed using the arithmetic
black-box FABB . The ideal functionality FABB allows the n parties to perform
the following operations over a field Fp:

1. Store: A party P can store an element a ∈ Fp in the arithmetic black-box.
We depict this operation using the following notation:

[b] ←P a, the element a is now securely stored in the memory
location named b in the arithmetic black box FABB .

2. Addition: If [a] and [b] are stored in FABB , then the parties can store [a]+p [b]
in FABB , where +p represents addition modulo p. We will denote an addition
operation as follows:

[c]← [a] + [b], where c contains the sum ([a] +p [b])
3. Multiplication: If [a] and [b] are stored in FABB , then the parties can store

[a]∗p [b] in FABB , where ∗p represents multiplication modulo p. The notation
for the multiplication operation would be:

[c]← [a] ∗ [b], where c contains the product ([a] ∗p [b])
4. Release: All the parties must be able to release a secret [a] stored in FABB

to all or a set of parties. We use the following notation to depict a public
release of a secret and a private release of a secret to a particular party P
respectively:

b← [a]
b←P [a]

where b represents the value stored in the location a of FABB

There are many implementations of the arithmetic black-box, including Shamir
secret sharing [31, 32] and Pallier cryptosystem [33]. One can use these imple-
mentations, depending on the security requirement and efficiency expectations.
We further append the operations of the arithmetic black-box with the following
set of operations:

1. Comparison: All the parties can securely compare [a] and [b]. We will use
the following notation to compare two secrets:

[c]← [a]
?
< [b], where c stores 1 if ([a] < [b]), else c stores 0

2. Equality: Similar to the comparison sub-protocol defined above, the equality
protocol allows parties to securely check whether two stored values are equal.
We use the following notation to denote a secure equality operation:

[c]← [a]
?
= [b], where c is 1 if [a] equals [b], else c equals 0

3. Private Modulo Reduction: The n parties holding [a] and [b] can securely
compute [a] mod [b]. The notation we use to signify this operation is as
follows:

[c]← [a] mod [b], where c contains [a] mod [b]

An implementation of the above operations can be found in [32]. The arith-
metic black-box appended with the above mentioned operations will be termed
as the extended arithmetic black-box and will be represented by the ideal func-
tionality FABB itself.

Let A = (aij)k×k represent a matrix, then [A] signifies that all the entries of
the matrix are stored individually in the FABB functionality.

Further, we use a secure implementation of Dijkstra’s Algorithm for comput-
ing single source shortest paths, from an adjacency matrix stored in the FABB
functionality [22, 23]. This protocol will be used for securely computing closeness
centrality of a node in a network, given in Section 5.2. We will use the following
notation to signify a call to the sub-protocol for computing single source shortest
path:

[d1, d2, . . . , d|V |]← Dijkstra([A], [u])
where A is the adjacency matrix corresponding to the graph G(V,E) under

consideration, u represents the source vertex, di represents the distance from
node u to node i. [d1, d2, . . . , d|V |] is the shorthand notation for [d1], [d2], . . . , [d|V |].

5 Secure Network Parameter Computation

Social network analysis (SNA) focuses on computing several network param-
eters to probe into the structural aspects of the network. In this section, we
look at how a few well studied network parameters can be securely computed,

thus facilitating the study of previously inaccessible sensitive networks. The net-
work parameters explored in this section include degree distribution, closeness
centrality, Google PageRank and K-shell decomposition algorithm.

5.1 Degree distribution

Studying the degree distribution of a social network is one of the primary and
simple steps in SNA. Unlike the binomial degree distribution in random graphs,
real world complex networks depict the peculiar scale-free degree distribution
[34–36]. Networks with scale-free degree distribution have very few nodes with
high degree and majority of the nodes with low degree. The scale-free degree
distribution is defined as:

P (degree = k) ∝ k−γ

The above distribution is determined by the parameter γ. Most real world com-
plex networks including WWW [37], Internet [38] and various online social net-
works [39] depict scale-free degree distribution with γ between 2 and 3. Hence,
investigating the degree distribution of unexplored sensitive networks can be an
interesting direction to pursue. Consider, as an example, the hate network on
employees of an organization. As discussed previously, each employee is assumed
to have the knowledge of only those whom she hates in the network. That is,
she is aware of only her out-going links in the network. Hence, there is no indi-
vidual who has the global picture of the network. Additionally, an employee is
unaware of the in-links to her, that is identity of employees who hate her. It is
the in-degree distribution that would reveal the overall hatred present in the net-
work. One can study the correlation between the distribution of hatred amongst
employees in an organization and the overall productivity. In general, it would
make a good study to observe the most widely occurring hatred distributions
across several organizations.

In this section, we propose a protocol πID for securely computing the in-
degree distribution of a directed network, held distributedly by a set of parties.
The proposed protocol can be easily modified for computing out-degree distri-
bution in directed networks and degree distribution in undirected networks.

In-degree distribution
The protocol πID assumes [A] as its input, where A stores an unweighted

adjacency matrix stored in the FABB functionality. The construction of [A] from
a set of parties is discussed in Appendix A. In steps 1-2 of the protocol, the parties
securely compute the in-degree of every node in the graph, and the in-degree of
node i ∈ |V | is stored in idi. In steps 3-7, we compute the number of nodes
having in-degree j, which is represented as dj . The proposed protocol requires
Θ(|V |2) addition and Θ(|V |2) comparison operations.

Theorem 1. The protocol πID securely implements FID with perfect security
in the presence of the FABB functionality.

Proof sketch. The sequence of FABB operations invoked by the πID protocol is
a function of only the public value n i.e. the number of vertices in the graph
under consideration. The correctness of the protocol follows trivially from the
structure of the πID protocol. The security of the protocol follows from the UC
theorem and the FABB functionality. ut

Protocol 1 in degree distribution() πID
Input: [A], where A stores an unweighted adjacency matrix
Output: [d0], [d1], [d2], . . . [d|V |−1], where di stores the number of vertices in the graph,

represented by the adjacency matrix A, having i as their in-degree
1: for i = 1 to |V | do
2: [idi]←

∑|V |
j=1[aji]

3: for i = 1 to |V | do
4: for j = 0 to |V | − 1 do

5: [dij]← ([idi]
?
= j)

6: for j = 0 to |V | − 1 do

7: [dj]←
∑|V |

i=1[dij]

5.2 Closeness centrality

Since its introduction in 1950 by Bavelas [40], closeness centrality measure
has been one of the most widely utilized centrality measures. Closeness centrality
of a node u in a graph G is defined as:

C(u) =
1∑|V |

i=1 d(u, i)

where d(u, i) represents the distance of node i from node u in graph G, which
may be directed or undirected.

High closeness centrality nodes correspond to highly influential individuals
in a social network [41]. A recent study [42] claims that clients are as responsible
as sex-workers for the spreads of AIDS, since clients too correspond to highly
central individuals in the sexual network. This hypothesis on sensitive networks,
can be tested using the secure closeness centrality protocol we propose in this
section. Further we provide the implementation details for securely computing
the closeness centrality of a single node in the network. This protocol can be
easily extended for computing the closeness measure of a set of nodes in the
network.

The closeness centrality protocol πC inputs [A] and [i], where A stores an
adjacency matrix and i stores the index of a vertex. In step 1, we compute the

distance of node i from all the nodes in the network. This can be computed
using the Dijkstra() protocol given in Section 4. In step 2, we securely add
these distances to obtain the reciprocal of the closeness centrality of node [i].
The number of operations used in the protocol πC is asymptotically the same as
the Dijkstra’s implementation, which uses Θ(|V |3) additions operations, Θ(|V |3)
multiplications operations and Θ(|V |2) comparisons/equality checks.

Protocol 2 closeness centrality() πC
Input: [A], where A stores an adjacency matrix

[i], where i stores the index of a vertex, which is an element of {1, 2, . . . |V |}
Output: [ci], reciprocal of the closeness centrality of node [i]
1: [di1, di2, . . . , din]← Dijkstra([A], i)

2: [ci]←
∑|V |

j=1[dij]

Theorem 2. The closeness centrality protocol πC securely implements FC with
perfect security in the presence of the FABB functionality.

The proof follows on similar lines to that of Theorem 1.

5.3 Google PageRank

Larry Page and Sergey Brin developed the PageRank algorithm to better order
the results fetched for a query on a search engine [43, 44]. The idea was to rank
web pages on the Internet, based on the number and ranks of the in-links of
the page. According to Google PageRank centrality, a node in a graph is said
to be important if the nodes pointing to it are important. In social networks,
high page rank valued individuals are correlated to highly influential and pop-
ular individuals [45]. Consider a supply chain network of several organizations,
where an edge (u, v) would denote that organization u is a supplier (of raw
material or an end product) to organization v. This is yet another example of
a private network where parties (or organizations) would be unwilling to dis-
close their business relations [28]. Yet every organization would be interested in
learning how influential it is, based on the strategic position it occupies in the
network. In this section, we provide a secure implementation of an algorithm
to determine the PageRank value of nodes, in a network distributedly held by
individuals/organizations. There are numerous algorithms in the literature for
computing the PageRank value of nodes, but in this paper we employ the random
surfer algorithm.

Firstly, we discuss three sub-protocols, which will aid in realizing the secure
PageRank algorithm.

The protocol no zero outdegree() inputs an unweighted adjacency matrix
[A]. The protocol increases the out-degree of a node with zero out-degree to
|V |, by adding outgoing links to all the nodes from the zero out-degree node.

The protocol returns this modified adjacency matrix. It uses Θ(|V |2) addition
operations and Θ(|V |2) equality checks.

Protocol 3 no zero outdegree() πNOD
Input: [A], where A stores an unweighted adjacency matrix
Output: [A], where A stores a modified input matrix, such that a row consisting of
|V | zeroes is converted into a row of |V | ones

1: for i = 1 to |V | do
2: [di] =

∑|V |
j=1[aij]

3: for j = 1 to |V | do
4: [aij]← [aij] + ([di]

?
= 0)

Lemma 1. The protocol πNOD securely implements FNOD with perfect security
in the presence of the FABB functionality.

Proof sketch. The correctness and privacy of the protocol follows directly from
the protocol structure and it is easy to observe that the sequence of instructions
is dependent only on the number of vertices. ut

The protocol random number() inputs a number k, where k ∈ Fp, and out-
puts [r], where r ∈R {1, 2, . . . , k}. It uses Θ(n) addition operations, Θ(n) mul-
tiplication operations, Θ(n) comparison operations and Θ(1) private modulo
reduction operations.

Protocol 4 random number() πRAND
Input: k ∈ Fp

Output: [r], where [r] ∈R {1, 2, . . . , k}
1: [r]← 0
2: for i = 1 to n do
3: [ri]←Pi ri, where ri ∈R {0, 1, 2, . . . , k − 1}
4: [r]← [r] + ([ri] ∗ ([ri]

?
< [k]))

5: [r]← ([r] mod [k]) + 1

Lemma 2. Let r1, r2, . . . , rl ∈R Zm for some m, l ≥ 1, where the set Zm equals

{0, 1, . . . ,m− 1}, then

((
l∑
i=1

ri + c

)
mod m

)
∈R Zm, for any c ∈ Zm.

The proof of the above lemma can be found in [30]

Lemma 3. The protocol πRAND securely implements FRAND with perfect se-
curity in the presence of the FABB functionality.

Proof sketch. In the ith iteration of the for loop in step 2, if ri < k then ri is
added to r, and otherwise the value of r remains unchanged. After n iterations
of the for loop at step 2, at least one honest party Pj would have added a
random number rj ∈R Zk. Hence, from lemma 2 the output of the protocol r is
a random element of Zk. This completes the proof of correctness. The security
follows directly from the fact that addition, comparison and private modulo
reduction operations are provided by the FABB functionality. ut

The protocol random neighbour() inputs an unweighted matrix [A] and a
vertex [cur]. The protocol outputs a random neighbor [u] of vertex [cur] i.e.
[u] ∈R {v | ([cur], v) ∈ E}. This protocol uses Θ(n|V |2) additions operations,
Θ(|V |2) multiplications operations and Θ(|V |2) comparison/equality checks.

Protocol 5 random neighbour() πRN
Input: [A] , where A stores an unweighted adjacency matrix, such that each row has

at least one non-zero entry
[cur], where cur stores the index of a vertex

Output: [u] ∈R {v|([cur], v) ∈ E} i.e. u stores a random neighbour of [cur]
1: [u]← [0]
2: for i = 1 to |V | do
3: [temp]← (i

?
= [cur])

4: for j = 1 to |V | do
5: for k = 1 to n do
6: [rjk]←Pk rjk, where rk ∈R Zp

7: [rj]←
∑n

k=1[rjk]

8: [min]← [p− 1]
9: for j = 1 to |V | do

10: [check]← [temp] ∗ ([rj]
?
< [min]) ∗ ([aij]

?
= 1)

11: [min]← [min] + [check] ∗ ([rj]− [min])
12: [u]← [u] + ([j]− [u]) ∗ [check]

Lemma 4. The protocol πRN securely implements FRN with statistical security
in the presence of the FABB functionality.

Proof sketch. No change is made to the value of variable u in (|V |−1) iterations
of the for loop on step 2. The only iteration where u is updated is when the index
variable i equals the input vertex cur. To pick a random neighbor of cur, we
associate a random number rj with acur,j entry of the matrix, for 1 ≤ j ≤ |V |.
The vertex u is updated with the index of the neighbor of cur associated with the
least random number. Since all the random numbers are independently generated
and no two random numbers are the same (which occurs with only negligible
probability), we can conclude that we store a neighbor of vertex cur uniformly
at random in u. ut

Next we present a secure implementation of the PageRank computation al-
gorithm. The algorithm inputs l, α and [A], where l represents the length of the
random walk we take on the underlying network [A] and (1−α/p) is the telepor-
tation probability in the random surfer model, with p being the size of the field
Fp. In steps 1-2 we initialize a variable [counti] for every vertex i ∈ V . At the end
of the protocol run, the variable counti will contain the number of times vertex
i was visited during the random walk. In steps 4-5 we pick a random vertex r
and assign it to be the starting location of the random walk. In each iteration of
the while loop on step 6, we hop from the current vertex [cur] to a vertex v after
updating the value countcur. The vertex v is selected to be a random neighbor of
cur with probability (α/p) and it is selected to be a random vertex in the network
with probability (1 − α/p). The proposed protocol piPR uses Θ(nl|V |2) addi-
tions, Θ(l|V |2) multiplications, Θ(l|V |2) comparison/equality checks and Θ(l)
private modulo reduction operations.

Protocol 6 page rank() πPR
Input: l, the length of the random walk

α, such that (1− α/p) is the teleportation probability
[A], which is an unweighted adjacency matrix

Output: [count1], [count2], . . . [count|V |], where counti stores the number of times ver-
tex i is visited during the random walk

1: for i = 1 to |V | do
2: [counti]← [0]

3: [A]← no zero outdegree([A])
4: [r]← random number([|V |])
5: [cur]← [r]
6: while l > 0 do
7: for i = 1 to |V | do
8: [counti]← [counti] + ([cur]

?
= i)

9: for i = 1 to n do
10: [ri]←Pi ri, where ri ∈R Zp

11: [r′]←
∑n

i=1[ri]

12: [flag]← ([r′]
?
< α)

13: [u]← random neighbor([A], [cur])
14: [v]← [u] ∗ [flag]
15: [u]← random number(|V |)
16: [v]← [v] + [u] ∗ ([1]− [flag])
17: [cur]← [v]
18: l = l − 1

Theorem 3. The protocol πPR securely implements FPR with statistical secu-
rity in the presence of the FABB functionality.

The proof of the above theorem follows directly from lemma 3, lemma 4 and
the correctness of the protocol πPR.

5.4 K-shell decomposition

Core-periphery structure is one of the most prominent and well studied mesoscale
structures found in real world complex networks, including social networks. It
was first introduced in 2000 by Borgatti and Everett [4]. A network is said to
possess core-periphery structure if: the nodes in the network can be partitioned
into two disjoint sets, namely, core and periphery ; the set of core nodes are
densely connected; periphery nodes are sparsely connected; periphery nodes are
easily reachable from the core nodes. The set of core nodes are observed to be
influential spreaders, since they play a key role in information diffusion [46].

In the year 2003, Batagelj and Zaversnik [47] used the K-shell algorithm for
identifying the core-periphery structure in an undirected unweighted network.
The K-shell algorithm assigns a shell number to each node, such that, higher the
shell number, higher is the coreness coefficient of the node. The algorithm begins
by assigning shell number 0 to isolated nodes. Then we prune nodes of degree
1, until the degree of all the nodes in the network is greater than 1. The nodes
which are pruned are assigned shell number 1. Further the algorithm prunes
nodes of degree 2 or less and assign these nodes shell number 2, and so on. The
exact formulation of the K-shell algorithm can be found in [47]. In this section,
we provide a secure implementation of the K-shell algorithm, which can be used
for finding the set of influential spreaders securely in a distributedly held social
network.

The protocol begins by initializing a few variables. For every vertex i, the
variable marki is initialized to 0, and is further set to 1 when node i is assigned
its shell number. The variable shelli is initialized to 0 and is later updated to the
shell number of node i. The variable cur shell stores the current shell number,
which is assigned to the nodes pruned in the current step. In each iteration of the
for loop on step 5, we securely assign the shell number for precisely one node with
its shell number. In steps 8-11, we find the least degree node u in the graph, which
is to be pruned next. The value of cur shell is updated in step 12 to the maximum
of cur shell and degu. In steps 13-15, we update the value shellu and marku
to the correct values of shell number of vertex u and 1 respectively. Finally, in
line 16-19, we update the adjacency matrix under consideration by removing the
node u and all its adjacent edges from the network. The proposed secure K-shell
algorithm uses Θ(|V |3) addition operations, Θ(|V |3) multiplication operations
and Θ(|V |3) comparison/equality operations.

Next we present a proof of correctness of the k-shell decomposition protocol.
A vertex u is said to be marked if marku = 1 and it is said to be unmarked
otherwise. At the start of the protocol all the vertices in the graph are unmarked.

Lemma 5. In the protocol πKD, after |V | iterations of the for loop on step 8,
the variable u contains the index of the least degree unmarked vertex in the graph
represented by the adjacency matrix A.

Proof sketch. In steps 8-11, we traverse trough the list of all the vertices. We
store the “current” minimum degree unmarked vertex stored in u. In case we

find an unmarked vertex v with degree lower than that of u, then we update u
as v and we further update degu, which stores the degree of the “current” least
degree unmarked vertex. ut

Let u(k) represent the least degree unmarked vertex selected after the for
loop on step 8 in the kth iteration of the for loop on step 5.

Lemma 6. In the kth iteration of the for loop in step 5 of the protocol πKD,
the variable shellu(k) is updated with correct shell number of vertex u(k).

Proof sketch. This can be proved by using induction over the number of marked
vertices. Let us assume that (k−1) vertices have been marked and updated with
their correct shell number. Then the vertex u(k) is marked in the kth iteration
of the for loop on step 11. The variable shellu(k) is updated with the maximum
of shellu(k−1) and |{v is unmarked|{u(k), v} ∈ E}| i.e. the number of unmarked
neighbors of u(k), which is the correct shell number for u(k) in accordance with
the k-shell decomposition algorithm. ut

Protocol 7 kshell decomposition() πKD
Input: [A], where A is an unweighted undirected adjacency matrix with no self loops
Output: [shell1], [shell2], [shell3], . . . [shell|V |], where shelli stores the shell number of

vertex i
1: for i = 1 to |V | do
2: [marki]← 0
3: [shelli]← 0

4: [cur shell]← 0
5: for iter = 1 to |V | do
6: [degu]← |V |
7: [u]← 0
8: for i = 1 to |V | do
9: [degi]←

∑|V |
j=1[aij]

10: [u]← [u] + (([i]− [u]) ∗ ([marki]
?
= 0) ∗ ([degi]

?
< [degu]))

11: [degu]← [degu] + (([degi]− [degu]) ∗ (i
?
= [u]))

12: [cur shell]← [degu] + (([cur shell]− [degu]) ∗ ([cur shell]
?
> [degu]))

13: for i = 1 to |V | do
14: [shelli]← ([cur shell] ∗ (i

?
= [u])) + [shelli]

15: [marki]← (i
?
= [u]) + [marki]

16: for i = 1 to |V | do
17: for j = 1 to |V | do
18: [aij]← [aij] + ((0− [aij]) ∗ (i

?
= [u]))

19: [aji]← [aji] + ((0− [aji]) ∗ (i
?
= [u]))

Theorem 4. The protocol πKD securely implements FKD with perfect security
in the presence of the FABB functionality.

Proof sketch. The correctness of the algorithm follows directly from Lemma
6. The protocol πKD has a well defined sequence of addition, multiplication
and equality/comparison operations, which can be securely performed using the
FABB functionality. ut

6 Conclusions

Multiparty computation has been extensively applied in the domains of com-
putational geometry, voting, bench-marking, etc. In this paper, we discuss on
how MPC tools and techniques can be of interest to performing social network
analysis. Study of sensitive networks, including financial transaction networks,
sexual networks, trust networks and enmity networks, has largely been ham-
pered by the unavailability of data due to privacy issues. It is mostly the case
that these sensitive networks have the data distributedly held. In this paper, we
present a set of MPC protocols which can be used to securely compute some
network parameters on a distributedly held network. Network measures securely
implemented include degree distribution, closeness centrality, PageRank and K-
shell decomposition algorithm. To further build on this idea, one can securely
implement other network parameters like reciprocity, homophily, betweenness,
etc. Another important dimension to this work can be to improve on the effi-
ciency of various network parameter protocols, using available MPC efficiency
improvement techniques. One can further study the practical feasibility of the
proposed MPC protocols for performing secure SNA on large sensitive networks.
The broad aim of the paper is to highlight the possibility of exploring problems
lying in the intersection of the two domains, namely, multiparty computation
and private social networks.

References

1. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. science
286(5439) (1999) 509–512

2. Barrat, A., Weigt, M.: On the properties of small-world network models. The Eu-
ropean Physical Journal B-Condensed Matter and Complex Systems 13(3) (2000)
547–560

3. Girvan, M., Newman, M.E.: Community structure in social and biological net-
works. Proceedings of the national academy of sciences 99(12) (2002) 7821–7826

4. Borgatti, S.P., Everett, M.G.: Models of core/periphery structures. Social networks
21(4) (2000) 375–395

5. Eguiluz, V.M., Chialvo, D.R., Cecchi, G.A., Baliki, M., Apkarian, A.V.: Scale-free
brain functional networks. Physical review letters 94(1) (2005) 018102

6. Kim, Y., Choi, T.Y., Yan, T., Dooley, K.: Structural investigation of supply net-
works: A social network analysis approach. Journal of Operations Management
29(3) (2011) 194–211

7. Easley, D., Kleinberg, J., et al.: Networks, crowds, and markets: Reasoning about
a highly connected world. Significance 9 (2012) 43–44

8. Liljeros, F., Giesecke, J., Holme, P.: The contact network of inpatients in a regional
healthcare system. a longitudinal case study. Mathematical Population Studies
14(4) (2007) 269–284

9. Rocha, L.E., Liljeros, F., Holme, P.: Simulated epidemics in an empirical spa-
tiotemporal network of 50,185 sexual contacts. PLoS Comput Biol 7(3) (2011)
e1001109

10. Heatherly, R., Kantarcioglu, M., Thuraisingham, B.: Preventing private informa-
tion inference attacks on social networks. Knowledge and Data Engineering, IEEE
Transactions on 25(8) (2013) 1849–1862

11. Tassa, T., Cohen, D.J.: Anonymization of centralized and distributed social net-
works by sequential clustering. Knowledge and Data Engineering, IEEE Transac-
tions on 25(2) (2013) 311–324

12. Narayanan, A., Shmatikov, V.: De-anonymizing social networks. In: Security and
Privacy, 2009 30th IEEE Symposium on, IEEE (2009) 173–187

13. Narayanan, A., Shi, E., Rubinstein, B.I.: Link prediction by de-anonymization:
How we won the kaggle social network challenge. In: Neural Networks (IJCNN),
The 2011 International Joint Conference on, IEEE (2011) 1825–1834

14. Bhaskar, R., Laxman, S., Smith, A., Thakurta, A.: Discovering frequent patterns in
sensitive data. In: Proceedings of the 16th ACM SIGKDD international conference
on Knowledge discovery and data mining, ACM (2010) 503–512

15. Kleinberg, J.M.: Challenges in mining social network data: processes, privacy, and
paradoxes. In: Proceedings of the 13th ACM SIGKDD international conference on
Knowledge discovery and data mining, ACM (2007) 4–5

16. Narayanan, A., Shmatikov, V.: Robust de-anonymization of large sparse datasets.
In: Security and Privacy, 2008. SP 2008. IEEE Symposium on, IEEE (2008) 111–
125

17. Xue, M., Karras, P., Chedy, R., Kalnis, P., Pung, H.K.: Delineating social network
data anonymization via random edge perturbation. In: Proceedings of the 21st
ACM international conference on Information and knowledge management, ACM
(2012) 475–484

18. Fard, A.M., Wang, K.: Neighborhood randomization for link privacy in social
network analysis. World Wide Web 18(1) (2015) 9–32

19. Hogg, T., Adamic, L.: Enhancing reputation mechanisms via online social net-
works. In: Proceedings of the 5th ACM conference on Electronic commerce, ACM
(2004) 236–237

20. Yao, A.C.C.: Protocols for secure computations. FOCS 82 (1982) 160–164

21. Brickell, J., Shmatikov, V.: Privacy-preserving graph algorithms in the semi-honest
model. In: Advances in Cryptology-ASIACRYPT 2005. Springer (2005) 236–252

22. Aly, A., Cuvelier, E., Mawet, S., Pereira, O., Van Vyve, M.: Securely solving simple
combinatorial graph problems. In: Financial Cryptography and Data Security.
Springer (2013) 239–257

23. Aly, A., Van Vyve, M.: Securely solving classical network flow problems. In:
Information Security and Cryptology-ICISC 2014. Springer (2014) 205–221

24. Blanton, M., Steele, A., Alisagari, M.: Data-oblivious graph algorithms for secure
computation and outsourcing. In: Proceedings of the 8th ACM SIGSAC sympo-
sium on Information, computer and communications security, ACM (2013) 207–218

25. Frikken, K.B., Golle, P.: Private social network analysis: How to assemble pieces
of a graph privately. In: Proceedings of the 5th ACM workshop on Privacy in
electronic society, ACM (2006) 89–98

26. Kukkala, V.B., Iyengar, S., Saini, J.S.: Secure multiparty graph computation.
In: 2016 8th International Conference on Communication Systems and Networks
(COMSNETS), IEEE (2016) 1–2

27. Kerschbaum, F., Schaad, A.: Privacy-preserving social network analysis for crim-
inal investigations. In: Proceedings of the 7th ACM workshop on Privacy in the
electronic society, ACM (2008) 9–14

28. Fridgen, G., Garizy, T.Z.: Supply chain network risk analysis - A privacy preserving
approach. In: 23rd European Conference on Information Systems, ECIS 2015,
Münster, Germany, May 26-29, 2015. (2015)

29. Tassa, T., Bonchi, F.: Privacy preserving estimation of social influence. In: EDBT.
(2014) 559–570

30. Cramer, R., Damgard, I., Nielsen, J.B.: Secure multiparty computation and secret
sharing-an information theoretic appoach. Book Draft (2012)

31. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: Proceedings of the twen-
tieth annual ACM symposium on Theory of computing, ACM (1988) 1–10

32. Damg̊ard, I., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally secure
constant-rounds multi-party computation for equality, comparison, bits and expo-
nentiation. In: Theory of Cryptography. Springer (2006) 285–304

33. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: International Conference on the Theory and Applications of Cryp-
tographic Techniques, Springer (1999) 223–238

34. Strogatz, S.H.: Exploring complex networks. Nature 410(6825) (2001) 268–276
35. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Reviews of

modern physics 74(1) (2002) 47
36. Dorogovtsev, S.N., Mendes, J.F.: Evolution of networks. Advances in physics 51(4)

(2002) 1079–1187
37. Adamic, L.A., Huberman, B.A.: Power-law distribution of the world wide web.

Science 287(5461) (2000) 2115–2115
38. Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the inter-

net topology. In: ACM SIGCOMM computer communication review. Volume 29.,
ACM (1999) 251–262

39. Mislove, A., Marcon, M., Gummadi, K.P., Druschel, P., Bhattacharjee, B.: Mea-
surement and analysis of online social networks. In: Proceedings of the 7th ACM
SIGCOMM conference on Internet measurement, ACM (2007) 29–42

40. Bavelas, A.: Communication patterns in task-oriented groups. Journal of the
acoustical society of America (1950)

41. Wasserman, S., Faust, K.: Social network analysis: Methods and applications.
Volume 8. Cambridge university press (1994)

42. Hsieh, C.S., Kovář́ık, J., Logan, T.: How central are clients in sexual networks
created by commercial sex? Scientific reports 4 (2014)

43. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking:
bringing order to the web. (1999)

44. Brin, S., Page, L.: Reprint of: The anatomy of a large-scale hypertextual web
search engine. Computer networks 56(18) (2012) 3825–3833

45. Franceschet, M.: Pagerank: Standing on the shoulders of giants. Communications
of the ACM 54(6) (2011) 92–101

46. Kitsak, M., Gallos, L.K., Havlin, S., Liljeros, F., Muchnik, L., Stanley, H.E., Makse,
H.A.: Identification of influential spreaders in complex networks. Nature physics
6(11) (2010) 888–893

47. Batagelj, V., Zaversnik, M.: An o (m) algorithm for cores decomposition of net-
works. arXiv preprint cs/0310049 (2003)

48. Kissner, L., Song, D.: Privacy-preserving set operations. In: Advances in
Cryptology–CRYPTO 2005, Springer (2005) 241–257

Appendix A Discretionary Sub-Protocols

This section presents various functionalities which will be used to store adja-
cency matrices of various forms in the FABB functionality. These set of im-
plementations are termed as discretionary sub-protocols. These include a set of
four protocols for constructing the adjacency matrix, force boolean() protocol
for converting the input adjacency matrix into a symmetric adjacency matrix,
remove self loops() protocol for removing self-loops of the input adjacency ma-
trix and check symmetricity() protocol to check if the input adjacency matrix
represents a directed or an undirected network.

A.1 Adjacency Matrix Construction

A network can be represented using adjacency lists, an adjacency matrix or an
incidence matrix. For security concerns, we deal with only the adjacency matrix
representation of a network. As depicted in the work presented by Kerschbaum
and Schaad [27], sometimes the network is held by external agents (individuals
not a part of the network), who collaborate to perform SNA securely. Whereas,
sometimes the individuals who are a part of the network themselves (internal
agents) may be the ones collaborating, as shown in the work by Keith Frikken and
Philippe Golle [25]. In this section we propose four variations of the adjacency
matrix construction protocol, which can be employed depending on whether
the network to be constructed is weighted/unweighted and whether the parties
are internal or external agents. The aim of these protocols is to construct the
adjacency matrix A of the underlying graph G. It is assumed that the vertex
set V is public, which if not the case, can be securely computed using secure set
intersection protocols [48]. The scenario of internal and external agents results
in the input of all the n parties to be given in one of the following two forms:

1. External agents: Each party Pi has a graph Gi as her private input, such
that G =

⋃n
i=1Gi

2. Internal agents: Each party Pi represents a vertex in G and has her adjacency
vector vi as the private input

Protocol 8 weighted external adjacency construction() π
(1)
adj

Output: [A], where A stores a weighted adjacency matrix
1: for j = 1 to |V | do
2: for k= 1 to |V | do
3: [min]← [p− 1]
4: for i = 1 to n do
5: [a

(i)
jk]←Pi a

(i)
jk

6: [min]← [min] ∗ ([min]
?
< [a

(i)
jk]) + [a

(i)
jk] ∗ ([1]− ([min]

?
< [a

(i)
jk]))

7: [ajk]← [min]

Protocol 9 weighted internal adjacency construction() π
(2)
adj

Output: [A], where A stores a weighted adjacency matrix
1: for i = 1 to |V | do
2: for j = 1 to |V | do
3: [aij]←Pi aij

Protocol 10 unweighted external adjacency construction() π
(3)
adj

Output: [A], where A stores an unweighted adjacency matrix
1: for i = 1 to n do
2: for j = 1 to |V | do
3: for k= 1 to |V | do
4: [a

(i)
jk]←Pi a

(i)
jk

5: [ajk]← [1]−
∏|V |

i=1([1]− [a
(i)
jk])

6: [A]← force boolean([A])

Protocol 11 unweighted internal adjacency construction π
(4)
adj

Output: [A], where A stores an unweighted adjacency matrix
1: [A]← weighted internal adjacency construction()
2: [A]← force boolean([A])

Further the graph G in each case mentioned above could be weighted or
unweighted. Thus, the arising four variations can be handled as mentioned below:

1. Weighted adjacency matrix construction by external parties: In the weighted
adjacency matrix case, the weight of an edge e is defined as the minimum
of the weights of e in the graphs Gi for 1 ≤ i ≤ n. The proposed protocol
uses Θ(n|V |2) addition operations, Θ(n|V |2) multiplication operations and
Θ(n|V |2) comparison operations.

2. Weighted adjacency matrix construction by internal parties: In this protocol
each party stores her adjacency vector entries in the FABB functionality.

3. Unweighted adjacency matrix construction by external parties: This protocol
uses Θ(|V |3) addition operations and Θ(|V |3) multiplication operations.

4. Unweighted adjacency matrix construction by internal parties: This protocol
can be easily constructed using the weighted internal adjacency construction()

and force boolean() protocols. The cost involved in protocol π
(4)
adj is the same

as the πBOOL or force boolean() protocol i.e. Θ(|V |2) addition operations
and Θ(|V |2) equality checks.

A.2 Additional Security Sub-protocols

In this section, we present a set of sub-protocols that can be used to enforce a
few additional constraints on the input network.

The protocol check symmetricity() inputs an adjacency matrix [A]. It checks
if aij equals aji for 1 ≤ i, j ≤ n. If even one check fails, the protocol returns
0, else it returns 1. This protocol uses Θ(|V |2) additions and Θ(|V |2) equality
checks.

The force boolean() protocol takes as input an adjacency matrix [A]. The
protocol checks if each entry of the adjacency matrix is 0/1, if not the case, then
the corresponding entries are rounded to 1. Hence, the output of the algorithm is
an adjacency matrix corresponding to an unweighted graph. This protocol uses
Θ(|V |2) addition operations and Θ(|V |2) equality checks.

To ensure that a network does not contain any self-loops, we need to force
all the diagonal entries of the corresponding adjacency matrix to 0. Protocol
remove self loops() inputs an adjacency matrix [A] and outputs the modified
adjacency matrix with no self-loops.

Protocol 12 check symmetricity() πSYM
Input: [A], where A stores an adjacency matrix
Output: [r], where r stores 1 if A is symmetric and 0 otherwise
1: [temp]← [0]
2: for i = 1 to |V | − 1 do
3: for j = (i+1) to |V | do
4: [temp]← [temp] + [1]− ([aij]

?
= [aji])

5: [r]← ([temp]
?
= [0])

Protocol 13 force boolean() πBOOL
Input: [A], where A stores an adjacency matrix
Output: [A], where A stores an unweighted adjacency matrix
1: for i = 1 to |V | do
2: for j = 1 to |V | do
3: [aij]← [1]− ([aij]

?
= 0)

Protocol 14 remove self loops() πSL
Input: [A], where A stores an adjacency matrix
Output: [A], where A is the same as the input but with self-loops removed
1: for i = 1 to |V | do
2: [aii]← 0

