
1

An Efficient and Scalable Modeling Attack on
Lightweight Secure Physically Unclonable

Function
Phuong Ha Nguyen and Durga Prasad Sahoo, Graduate Student Member, IEEE

Abstract—The Lightweight Secure Physically Unclonable Function (LSPUF) was proposed as a secure composition of Arbiter PUFs
with additional XOR based input and output networks. But later, researchers proposed a Machine Learning (ML) based modeling attack
on x-XOR LSPUF, and they also empirically showed that pure ML based modeling is not computationally scalable if the parameter x
of x-XOR LSPUF is larger than nine. Besides this pure computational attack using only challenge-response pairs (CRPs), there are
other proposals for modeling attacks on LSPUF using timing and power side-channel information, reliability information and photonic
side-channel information of an LSPUF instance. In this paper, we proposed another pure computational attack (i.e. without any side-
channel information) on multibit output LSPUF variants using both cryptanalysis and ML techniques together. We, first, cryptanalyse the
output network of LSPUF to reduce the computational efforts required by previously proposed pure ML based modeling of an x-XOR
LSPUF. Specifically, we model an LSPUF instance, while its output bit is defined as x-XOR PUF, using the ML modeling of y-XOR PUF
where y < x. From the computational complexity view point, our proposed modeling attack is efficient and scalable than previously
proposed pure ML based modeling of LSPUFs with respect to both data and time complexities. We demonstrate the effectiveness of
our proposed attack using the Matlab based simulation of LSPUFs and LSPUFs implemented on Xilinx Artix-7 Field Programmable
Gate Arrays (FPGAs).

Index Terms—Cryptanalysis, hardware–intrinsic security, lightweight secure PUFs, logistic regression, machine learning, modeling
attack, physically unclonable function (PUF).

F

1 INTRODUCTION

PHYSICALLY Unclonable Function (PUF) has emerged
as a promising hardware security primitive, since

first introduced in [1], [2]. The defining characteristic fea-
ture of a PUF is the unpredictable and unclonable instance–
specific input–output (or challenge–response) mapping. The
proposed usages of PUFs include diverse application
scenarios, a few among which are: device identification
and authentication [2], binding software to hardware
platforms [3], secure storage of cryptographic secrets [4],
secure protocol design [5]. A PUF hardware instance
is operated through a challenge/response mechanism:
for a given challenge, corresponding instance-specific
response is generated that depends on the intrinsic and
random physical properties of the embedding hard-
ware [1], [2].

The main security vulnerability of PUFs is the so–
called “modeling attacks” (MA) [6]–[8]. In these attacks,
an adversary tries to build a mathematical model, po-
tentially with high probability of success, of a given PUF
instance using the challenge-response pairs (CRPs) and
typically machine learning algorithms such as Support
Vector Machine (SVM) and Logistic Regression (LR). Ar-
biter PUF [2] is mostly used as strong PUF design and
it is vulnerable to modeling attacks.

The authors are with the Department of Computer Science and Engineering,
Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, INDIA–
721302. E-mail:phuongha.ntu@gmail.com, dpsahoo@cse.iitkgp.ernet.in.

Past experience has shown that reaching an accept-
able balance between design overhead and modeling
attack resistance is extremely challenging for PUFs. As a
potential solution, the Lightweight Secure PUF (LSPUF)
was introduced in [9]. Structurally, a LSPUF consists
of three layers: an input network, a PUF layer and an
output network. The input and output networks are
simple and lightweight logic networks; the PUF layer is
based on a set of lightweight but insecure Arbiter PUFs
(APUFs) [2]. The LSPUF achieves several improvements
over a previously proposed single–output PUF having
structural similarities with it, called the XOR Arbiter PUF
(XOR PUF) [10], in which the PUF output is generated
by simple XOR-ing of the constituent APUFs.

The LSPUF is considered as a landmark design in
the existing PUF literature, because it is significantly
lightweight, and has been shown (through consideration
of the security of the input network, the PUF layer and
output network) to be secure against various attacks (e.g.
reverse engineering, machine learning and statistical
modeling [6], [7], replay attack, and reconfigurability–
specific vulnerabilities). In addition, LSPUF can have
multiple outputs, which is considered a desirable prop-
erty as this enhances the “extractable entropy” [11] of
the PUF. Note that the critical feature responsible for the
security of LSPUF is that the values at output of APUF
layer are hidden from an adversary. If these values are
exposed to an adversary for a given applied challenge,
then since APUFs can be modeled extremely accurately

2

by standard machine learning techniques, the LSPUF can
be easily and accurately modeled.

In [6], [12], [13], the modeling attack on LSPUF is
discussed and it is also shown that the attack becomes
computationally infeasible if the number of APUFs (say
x) being XOR-ed to define a 1-bit LSPUF output is
greater than six [6]. In [12], author shows that x-XOR
PUF is vulnerable to modeling attack when x < 10
using parallel implementation of LR algorithm. Besides
these pure computational attacks, various side-channel
(power, timing and photonic side-channel information)
assisted modeling attacks have also been proposed to
enhance the effectiveness of such modeling attacks [14]–
[17]. The attack presented in [16] is pure side-channel at-
tack, i.e., it does not require any CRP. A modeling attack
based on the reliability information of PUF instance and
Evolution Strategy (ES) is also proposed in [15]. In [18],
we exploited a property of LSPUF’s output network to
develop a cryptanalytic attack on any multibit output
LSPUF, without focusing on modeling attack.

In this paper, we propose an efficient and pure com-
putational modeling attack on multibit output LSPUF
based on cryptanalysis of LSPUF output network and
traditional LR based modeling of XOR PUF. In our previ-
ous work in [18], we proposed only the cryptanalysis of
LSPUF by exploiting the weakness of its output network;
there was no complete modeling attack proposal. In this work,
we extend our cryptanalysis attack in [18] to a modeling
attack of LSPUF, thus reaching higher level of prediction
accuracy. Our proposed attack is purely computational,
of low computational complexity, and does not require
access to any side–channel information such as power
profile. In this paper, we discuss the security analysis of
multibit output LSPUF variants in the modeling attack,
and all security claims and reported attack results are
related to multibit output LSPUF variants. Specifically,
our proposed attack is not applicable to single output
LSPUFs.

1.1 Our Contributions
In brief, our contributions are as follows.

1) We propose a modeling attack based on our pre-
viously proposed cryptanalysis attack on LSPUF
in [18]. In this modeling attack, we use y-XOR
PUF modeling using LR as primitive operation
to model a x-XOR LSPUF, where y < x. Thus,
the time and data complexities of this attack is
significantly less than that of the attack presented
in CCS-2010 [6], and this attack is more scalable
than the modeling attack presented in RFIDSec-
2015 [12] even without parallel implementation of
LR algorithm. Since the modeling accuracy of y-
XOR PUF using LR is comparatively higher than
x-XOR PUF (x > 2) due to less noise in the CRPs
of y-XOR PUF, our proposed modeling attack is
feasible even for x-XOR PUF with large x value.

2) We present an interesting observation regarding the
LR based modeling attack of XOR PUF, exploited

in our proposed model building technique, as: mod-
eling of an XOR PUF using LR [8] enables modeling of
the individual constituent APUFs, is called as “model
separability.” Since LSPUF’s output bits are defined
as XOR-ing of APUF outputs, this observed feature
is also applicable to LSPUF modeling. Although
LR based MA of XOR PUF has been discussed
by several authors [6], [7], and mathematically
analysed in detail [8], as far as we are aware, this
is the first time this particular feature has been ex-
ploited for MA. As would be evident in Section 4.3,
this feature has deep implications in reducing the
complexity of the proposed attack. We consider this
insight of “model separability” to be one of the
major contributions of this paper.

3) In addition, we derive the necessary and sufficient
conditions for multibit output LSPUF structure to
enable accurate MA (cf. Section 4). We call those
particular LSPUF variants susceptible to accurate
MA as “fully modeled LSPUFs”.

4) We demonstrate the proposed attack on the Mat-
lab based simulated LSPUF, and implementation
of LSPUF on a Field Programmable Gate Array
(FPGA) platform. We provide results for 64-bit and
128-bit 9-XOR LSPUFs.

1.2 Organization of the Paper
The rest of paper is organized as follows. In Section 2, we
provide the structural description, mathematical spec-
ification and notion of cryptographic security in the
context of LSPUF, and then describe previous attempts
of modeling LSPUFs. In Section 3, we explain various
properties of LSPUF’s output netwrok. Section 4 present
the detailed security analysis of LSPUF in the context of
modeling attack. Section 5 provides experimental results
to validate our proposed attack. In Section 6, we compare
the proposed attack with all existing attacks on LSPUFs.
We conclude the paper in Section 7.

2 PRELIMINARIES

2.1 Notations
We use following notation system in the rest of the paper.
Lowercase and uppercase letters in bold font refer to
a vector and a matrix, respectively, e.g. a is a vector
while E denotes a matrix. A vector with m-components
is represented as follows: a = (a0, . . . , ai, . . . , am−1)T,
where ai is ith component of vector a. The normal
lowercase letter denotes a scalar, e.g. n. The ⊕ stands for
Exclusive-OR (XOR) operation or modulo-2 addition. Set
is represented by calligraphic uppercase letter, e.g. set D.
The Hamming weight of a binary vector a by HW(a).

2.2 Lightweight Secure PUF (LSPUF)
Figure 1 shows the general architecture of a LSPUF [9],
with n-bit challenge c and m-bit response o = (o0, . . . ,
om−1). Structurally, the LSPUF consists of three main

3

A0

Ai

Ak−1

c

g0

gi

gk−1

ci

r0

ri

rk−1

c0

ck−1

Input network G={g0, . . . , gk−1}

O
u
tp
u
t
n
et
w
or
k
H

om−1

oi

o0

Fig. 1: The achitectural overview of Lightweight Secure
PUF [19].

building blocks: (1) the input network {g0, g1, . . . , gk−1}
producing k n-bit input chunks c0, . . . , ck−1 based on a
single n-bit input c (e.g, ci = gi(c), where i = 0, . . . , k −
1); (2) k instances of n-bit APUFs [2] {A0, A1, . . . , Ak−1},
and, (3) the output network producing m output bits
o0, . . . , om−1 based on the k bits r0, . . . , rk−1 produced
as outputs of the k APUF instances. The output bit
oi, i = 0, . . . ,m− 1 is defined as:

oi =

x−1⊕

l=0

r((i+s+l) mod k), (1)

where rj = Aj(cj), j = 0, . . . , k − 1, and x(< k) and s
are structural parameters chosen by the designer which
eventually determine the level of security offered by an
LSPUF.

Note that it is possible to generate multiple output
bits using a relatively small number of APUF outputs
by the above scheme, a feature considered to be a major
advantage for LSPUF. Also, the use of input network
reduces correlation among the challenge-response pairs
(CRPs) of APUF instances, which increases the security
of LSPUF [19]. However, since the attack developed by
us is agnostic of the structure of the input network, we
would not be discussing it any further in this paper. In
the context of MA, addition of the input network only
modifies the “feature vectors” for the LR algorithm—
it does not change the circuit parameters learned by
the machine learning algorithm (cf. [8, Chapter 4] for
details). In the rest of the paper, without loss of gen-
erality we assume the parameter s = 0 to facilitate
the description of mathematical analysis; however, the
proposed attack is effective even when s 6= 0. We would
also assume m > 1, as mentioned in Section 1.

2.3 Security Notion of LSPUF
Definition 1 (Security Notion [1]). A LSPUF instance
with n-bit challenge c and m-bit response o is considered to be
secure if and only if there is no ideal attack such that: (i) the
probability of predicting m-bit response for a given challenge
is greater than 1

2m ; (ii) the time complexity of the attack is
less than 2n PUF queries, and, (iii) the data complexity, i.e.,
the number of Challenge-Response pairs (CRPs) required to
execute the attack is less than 2n.

An ideal attack is referred to an attack where the
noise in measurement setup is not taken into account.
This assumption is reasonable because the security of a
PUF should be inherent in its design, instead of being
provided by the measurement noise. This assumption
of ideality is not a major concern in our context, as
through proper care in the design and measurement
setup, the effect of noise resulting from experimental and
design bias can be made arbitrarily small. Our proposed
attack has the added advantage of being largely agnostic
to measurement noise, as it requires only CRP values,
rather than current or delay measurements.

2.4 Related Works

Although LSPUF was proposed as a secure PUF compo-
sition, a significant body of research has been done on
its mathematical modeling in [6], [12]–[18] to show many
security threats on LSPUF. Typically, all these modeling
attacks (MA) can be categorized into following classes
based on the type of information and techniques are
employed.
1) Pure ML. In this kind of modeling attack, the ad-
versary builds a model, based on the CRPs of LSPUF,
for each output bit oi of an LSPUF by using x-XOR
PUF modeling approach as reported in [6], [14]. In case
of LR based modeling, adversary needs comparatively
more CRPs for LSPUF than simple XOR PUF modeling
to achieve same level of modeling accuracy due to the
presence of input network, and data complexity of attack
in both cases increase exponentially with the increasing
values of x and challenge size n. So, this attack does not
explicitly employ the weakness in the output network
of LSPUF. As reported in [6], pure ML (specifically LR)
based modeling becomes computationally infeasible if
LSPUF design parameter x ≥ 6, in case of sequential
implementation of LR algorithm. Later in [12], authors
provided parallel implementation of LR algorithm, and
they could build a model for 9-XOR 64-bit LSPUF. So,
in literature we can find the modeling of 9-XOR 64-
bit LSPUF, and beyond that pure ML modeling is not
scalable due to exponential computational-overhead.
2) Combined cryptanalysis and ML. First cryptanalysis
attack on LSPUF was proposed in [18] by us. In this
attack, we have exploited the weakness of LSPUF’s
output network. This was the first attack on LSPUF using
its output network explicitly. We called this attack as the
cryptanalysis instead of modeling because adversary cannot
build a complete model of LSPUF, but he can predict the
m-bit response of LSPUF with probability significantly
larger than 1/2m. Our proposed work in this paper
is the complete modeling attack on LSPUF by using
cryptanalysis approach proposed in [18].
3) Combined Side-channel and ML. In [14], authors
employed the power and timing side-channel of LSPUF
instance to derive information related to the responses of
individual APUFs. They have used a modified version
of LR based APUF modeling to incorporate the side-

4

channel information. In this attack, data complexity is
linearly related to the value of parameter x.
4) ML with Reliability Information. In this attack [15],
adversary’s objective is to build a model for an XOR
PUF by modeling the individual APUFs independently.
An interesting fact is that individual APUF are modeled
based on the output of XOR PUF. This attack does
not employ the CRPs directly in modeling, instead the
reliability information obtained from multiple evaluation
of challenges is exploited. This attack is powerful, but
a limiting point is that modeling requires a reasonable
amount of unreliable challenges and multiple evalua-
tions of those challenges. In practice, for example in PUF-
based protocols, adversary might not have any control
on challenge selection and number of times it is to be
evaluated. Moreover, in XOR PUF design where error
correction circuit or majority voting circuit is used to
improve the reliability, reliability information based on
the multiple evaluations is not directly accessible. This
implies that this attack is only feasible to bare LSPUF
design, and helpful for PUF designer to evaluate the
security of LSPUF design.
5) Photonic Emission analysis with Lattice Basis Re-
duction. In this attack [16] of XOR PUF, authors used
the concept of lattice basis reduction approach to find
the delay parameters of an APUF model. For this attack,
adversary needs to measure the delays of APUF trigger
signals at the output of last switching stage. In this case,
authors exploited the transient photonic emission from
IC back side to measure the path delays. Although in this
attack no extra circuit is required, it needs to open the
IC back side to measure the photonic emission efficiently.
This attack is feasible only when adversary has physical
access to PUF device.
6) Combined Fault Analysis and ML. In this case,
modeling of an XOR PUF is also performed by modeling
individual APUFs. Modeling of individual APUF is per-
formed by directly using the CRPs of APUF and tradi-
tional ML based modeling approach. To collect the CRPs
of individual APUF, adversary introduces fault such that
LSPUF output depends only on the target APUF. In [17],
authors used the laser based fault insertion technique.
To collect CRPs of ith APUF, laser gun can be used
to modify Look Up Table (LUT) values (in FPGA) of
other APUFs such that trigger signal does not reach
to the clock input of arbiter circuit of corresponding
APUF circuit. This attack approach can reduce the data
complexity of attack, but PUF circuit is to be restarted
x times to model individual APUFs of x-XOR LSPUF,
which is an impractical assumption.

As mentioned earlier, in this paper our proposed mod-
eling attack is purely computational with significantly
low data and computational complexities (especially
compared to [6], [12]) even if x ≥ 6, and does not require
access to any side–channel information. To the best of
our knowledge, this is the first modeling attack based on
the output network of multibit output LSPUF variants.
In addition, we can model 9-XOR 128-bit LSPUF without

parallel implementation of LR algorithm as in [12].

3 ANALYSIS OF LSPUF OUTPUT NETWORK
AND ITS VULNERABILITIES

In this section, we present some important observations
about the output network of a multibit output LSPUF
variant (m > 1). Based on these observations, in next sec-
tions we show that all multibit output LSPUF variants do
not satisfy the security notion described in Definition 1.

3.1 Linear Independence of LSPUF Outputs

Let us define the binary matrix E = Em×k = {ei,j},
where entries ei,j = 1 iff output bit oi of LSPUF is depen-
dent on rj (i.e. the jth APUF output), i = 0, . . . ,m − 1,
j = 0, . . . , k − 1, and ei,j = 0 otherwise. An example E
matrix is shown in Table 1a, following Eq. (1), for the
parameter set k =7, m = 6, x = 6 and s = 0. It should be
evident that the rank of the matrix E is m = 6, implying
the output bits o0, . . . , om−1 are linearly independent. We
would get a similar observation for cases where s 6= 0.
This observation is generalized in the following lemma:

Lemma 1. For m < k, the output bits o0, . . . , om−1 of
LSPUF are linearly independent.

Proof. This fact follows from the nature of the matrix
E. We can apply Gaussian Elimination to show that the
rank of the matrix E is m in a straightforward way. It
implies that all actual outputs o0, . . . , om−1 are linearly
independent.

3.2 Virtual Output Bits and Its Properties

In order to develop our attack, we introduce the concept
of specially constructed virtual output bits, by performing
a suitable linear transformation on the output bits of
LSPUF. From Eq. (1), we have the following observation
which is important to develop our attack:

TABLE 1: Example of Matrix E and H for k = 7, m = 6,
x = 6, s = 0.

(a) Matrix E

r0 r1 r2 r3 r4 r5 r6

o0 1 (e0,0) 1 (e0,1) 1 (e0,2) 1 (e0,3) 1 (e0,4) 1 (e0,5) 0 (e0,6)
o1 0 (e1,0) 1 (e1,1) 1 (e1,2) 1 (e1,3) 1 (e1,4) 1 (e1,5) 1 (e1,6)
o2 1 (e2,0) 0 (e2,1) 1 (e2,2) 1 (e2,3) 1 (e2,4) 1 (e2,5) 1 (e2,6)
o3 1 (e3,0) 1 (e3,1) 0 (e3,2) 1 (e3,3) 1 (e3,4) 1 (e3,5) 1 (e3,6)
o4 1 (e4,0) 1 (e4,1) 1 (e4,2) 0 (e4,3) 1 (e4,4) 1 (e4,5) 1 (e4,6)
o5 1 (e5,0) 1 (e5,1) 1 (e5,2) 1 (e5,3) 0 (e5,4) 1 (e5,5) 1 (e5,6)

(b) Matrix H

o0 o1 o2 o3 o4 o5

v0 1 1 0 0 0 0
v1 0 1 1 0 0 0
v2 0 0 1 1 0 0
v3 0 0 0 1 1 0
v4 0 0 0 0 1 1

5

Observation 1 ([18]).

oi ⊕ oi+1 = r((i+s) mod k) ⊕ r((i+x+s) mod k), (2)

where 0 ≤ i ≤ m− 2.

Let us define the virtual output bits v0, . . . , vm−2 as a
linear transformation of the actual outputs o0, . . . , om−1

of LSPUF:

vi = oi ⊕ oi+1 for i = 0, . . . ,m− 2. (3)

Note that we provided the definition of virtual output
bits v0, . . . , vm−2 in [18] to enable a cryptanalysis attack
on multibit output LSPUF variants. At that time, we
could not define the last virtual bit vm−1 and it makes
the reverse linear transformation of o0, . . . , om−1 from
v0, . . . , vm−2 infeasible. Hence, the work presented in [18]
was concluded with a cryptanalysis attack, instead of
modeling attack. In this paper, we provide two different
definitions of last virtual bit vm−1, and then we develop
two different attack strategies to model multibit output
LSPUF variants in Section 4.

To achieve reverse linear transformation, we have to
ensure that virtual output bits v0, . . . , vm−1 are linearly
independent. Now, we show that v0, . . . , vm−2 are lin-
early independent, and later we define vm−1 such that
v0, . . . , vm−1 are linearly independent. Let us define a
binary matrix H = H(m−1)×m = {hi,j}, where entries
hi,j = 1 iff virtual output bit vi of LSPUF is dependent
on oj (i.e. the jth LSPUF output), i = 0, . . . ,m − 2,
j = 0, . . . ,m − 1, and hi,j = 0 otherwise. An example
H matrix is shown in Table 1b for m = 6. It is observed
that the rank of the matrix H is m − 1 = 5. This can be
generalized as the following lemma:

Lemma 2. The virtual output bits v0, . . . , vm−2 are linearly
independent.

Proof. Since all actual outputs o0, . . . , om−1 are indepen-
dent (see Lemma 1) and the rank of matrix H is m− 1,
all virtual outputs v0, . . . , vm−2 are linearly indepen-
dent.

3.3 Reliability of Virtual Outputs
Interestingly, the virtual output bits are less noisy than
actual output bits. For example, let two output bits, o1

and o2, of a LSPUF instance be defined as follows:

o1 = r1 ⊕ r2 ⊕ r3 ⊕ r4 ⊕ r5 ⊕ r6

o2 = r2 ⊕ r3 ⊕ r4 ⊕ r5 ⊕ r6 ⊕ r7.

Let bits r1, . . . , r7 be noisy outputs of APUFs. Then,
o1 and o2 are supposed to be very noisy because they
depend on six noisy APUF outputs. However, if v1 =
o1 ⊕ o2, then v1 is significantly less noisy than either o1

or o2, because the noise in r2, . . . , r6 appears twice (in o1

and o2). Thus, the repeated noisy PUF outputs cancel
themselves out, and it makes the attack more robust
in noisy environment. The impact of this property can
be observed in Table 5 (in Section 5) obtained from the
FPGA implementation of LSPUF.

4 PROPOSED MODELING ATTACK ON LSPUF
4.1 Attack Overview
Our proposed attack consists of two following phases:

1) Modeling Phase. This is the beginning step of
our proposed attack. Objective of this phase is to
build a model, denoted as vsi , for each virtual bit
vi, i = 0, . . . ,m− 1. The virtual output vector v =
(vo, . . . , vm−1)T is defined from the actual output
bits as v = MoT, where o = (o0, . . . , om−1) and
Mm×m is the linear transformation matrix defined
based on definition of virtual outputs v0, . . . , vm−1.
The matrix M is similar to the matrix H (cf. Sec-
tion 3.2 and Table 1b) with an additional row
(last row) for virtual output vm−1. This phase is
summarized in Algorithm 1.

2) Prediction Phase. Objective of this step is to pre-
dict the response o to a given unknown chal-
lenge c. We first predict the virtual output vec-
tor v = (vo, . . . , vm−1) corresponding to c, where
vi ← vsi (c). Subsequently, output o of LSPUF is
computed as o = M−1vT. Algorithm 2 depicts the
details of this phase.

Both the virtual output (say y-XOR PUF) and actual
output (say x-XOR PUF) are represented by XOR oper-
ations, but in this case y < x. It results that ML based
modeling of virtual outputs are more efficient (both in
data and time complexity) than actual outputs. This is
the main motivation of exploiting the models of virtual
output bits in the development of attack, instead of the
models of actual LSPUF’s outputs. Now, we discuss two
different attack strategies based on the definition of the
last virtual bit vm−1, but overall modeling steps are same
in both the cases.

4.2 Attack Strategy-I
Here, we start with the definition of last virtual output
bit vm−1, as this will be the basis of the discussion in
this section. Let a = (a0, . . . , am−1)T with a0, . . . , am−1 ∈
{0, 1}, be a set of binary coefficients, and then vm−1 is
defined as:

vm−1 = a0o0 ⊕ · · · ⊕ am−1om−1. (4)

Let us denote the number of APUFs outputs present
in the expression for vi (cf. Eqs. (3) and (4)) by ti, i =
0, . . . ,m − 1, and t̂ is the threshold for MLMA resistant

Algorithm 1 Model building of an LSPUF instance

Input: A CRP set S of an LSPUF instance
Output: A model of the given LSPUF instance

1: Derive virtual output bits (v0, . . . , vm−1) from the
actual output bits (o0, . . . , om−1) of LSPUF for each
CRP in S

2: for i = 0 to m− 1 do
3: Build a ML based model vsi for each virtual bit vi

w.r.t. the CRP set S

6

Algorithm 2 Response prediction of an LSPUF instance

Input: A challenge c
Output: The predicted response o to challenge c

1: for i = 0 to m− 1 do
2: Compute vi ← vsi (c) { vsi is the model of ith virtual

bit}
3: for i = 0 to m− 1 do
4: Compute oi from the v0, . . . , vm−1

5: o← (o0, . . . , om−1)

XOR PUF. For each virtual output vi, if ti < t̂, then
the model vsi of vi can be built by using machine
learning [6]. For each given challenge c, we use these
models to compute the values vs0(c), . . . , vsm−1(c). Since
the virtual output bits are obtained as a linear transfor-
mation of actual outputs, it is straightforward (by the
reverse linear transformation) to calculate the values of
the corresponding actual outputs for a given c, after
computing all vs0(c), . . . , vsm−1(c) values. In this way the
response o = (o0, . . . , om−1) to a given challenge c can
be predicted.

To perform the reverse linear transformation of actual
outputs from virtual outputs, all the virtual outputs
vi must be linearly independent. Note that Lemma 2
states the linear independence of only the first (m − 1)
components of v. Hence, there should be no binary
coefficient vector b = (b0, . . . , bi, . . . , bm−1)T 6= 0 and
bi ∈ {0, 1}, such that the following equation is satisfied:

bTv = b0(o0 ⊕ o1)⊕ · · · ⊕ bi(oi ⊕ oi+1)⊕ · · · (5)

⊕ bm−1(

m−1⊕

j=0

ajoj) = 0.

Equation (5) can be re-written as:

(b0 ⊕ a0bm−1)o0 ⊕ · · · ⊕ (bi−1 ⊕ bi ⊕ aibm−1)oi ⊕ · · · (6)
⊕(bm−2 ⊕ am−1bm−1)om−1 = 0

Since all output bits o0, . . . , om−1 are linearly indepen-
dent (cf. Lemma 1), Eq. (6) is equal to zero if and only
if:

b0 ⊕ a0bm−1 = · · · = bi−1 ⊕ bi ⊕ aibm−1 (7)
= · · · = bm−2 ⊕ am−1bm−1 = 0.

Notice that Eqs. (2) and (3) together suggest that the
model for each of the bits vi where i = 0, . . . ,m− 2 can
be built by machine learning, as each of them depends
on only two APUF outputs. However, the number of
APUF outputs being XOR-ed to form vm−1 must be less
than t̂ to make it feasible to build a model for vm−1.

Now we discuss the construction of vector a such that
there exists the vector b for which Eq. (6) holds, or there
is no vector b that satisfies Eq. (6). In other words, we
study the construction of last virtual bit output. Since
vi = oi ⊕ oi+1, i ∈ [0,m − 2], we have the following
observation:

Observation 2. oi1 ⊕ oi2 =

i2−1⊕

l=i1

vl where 0 ≤ i1 < i2 ≤

m − 1. Note that if i2 = i1 + 1, then oi1 ⊕ oi2 = vi1 by
definition of virtual outputs.

Next we prove two important theorems.

Theorem 1. (Sufficient condition for linear depen-
dence of virtual outputs) For a given a = (a0, . . . , am−1)T,
virtual outputs v0, . . . , vm−1 are linearly dependent if ai1 =
ai2 = · · · = ait = 1, 0 ≤ i1 < i2 < · · · < it ≤ m − 1,
2 ≤ t ≤ m, and t is an even integer. In other words,
if HW(a) is even, then virtual outputs v0, . . . , vm−1 are
linearly dependent.

Proof. Let t be an even integer and 2 ≤ t ≤ m. Since
ai1 = ai2 = · · · = ait = 1, vm−1 = oi1⊕oi2⊕· · ·⊕oit−1⊕oit
=(oi1 ⊕ oi2)⊕ · · · ⊕ (oit−1 ⊕ oit). Based on Observation 2,
vm−1 can be expressed as

vm−1 = (⊕i2−1
l=i1

vl)⊕ · · · ⊕ (⊕it−1
l=it−1

vl).

Thus, v0, . . . , vm−1 are linearly dependent.

Observation 3. The number of oi terms appearing in any
expression of the form vi1 ⊕ vi2 ⊕ · · · ⊕ vit , 0 ≤ i1 < · · · <
it ≤ m− 2, is even.

This observation follows from the fact that the number
of oi terms presents in vi1 ⊕ vi2 or vi1 is even according
to Observation 1.

Theorem 2. (Sufficient condition for linear indepen-
dence of virtual outputs) For a given a = (a0, . . . , am−1)T,
virtual outputs v0, . . . , vm−1 are linearly independent, if
ai1 = ai2 = · · · = ait = 1, 0 ≤ i1 < i2 < · · · < it ≤ m− 1,
1 ≤ t ≤ m, and t is an odd integer. In other words, if
HW(a) is odd, then virtual outputs v0, . . . , vm−1 are linearly
independent.

Proof. The proof is by contradiction. Assume that t
is an odd integer and vm−1 = oi1 ⊕ · · · ⊕ oit , but
v0, . . . , vm−1 are linearly dependent. Since v0, . . . , vm−2

are linearly independent (cf. Lemma 2), bm−1 must be
equal to 1 (cf. Eq. (5)). This implies that there exists
a b = (b0, . . . , bm−1)T such that bj1 = bj2 = · · · =
bjq = bm−1 = 1 and bTv = vj1 ⊕ · · · ⊕ vjq ⊕ vm−1 = 0,
0 ≤ j1 < · · · < jq ≤ m − 2 and 1 ≤ q ≤ m − 1. This
fact is equivalent to vm−1 = vj1 ⊕ · · · ⊕ vjq . According to
Observation 3, the number of oi terms present in vm−1

must be even, which implies that if vm−1 = oi1⊕· · ·⊕oit ,
then t is even. But this contradicts the fact that t is odd.
This completes the proof.

Theorem 2 lets us construct correct values of vector a,
such that the virtual output bits are linearly independent.
Among the 2m−1 guesses for a (corresponding to odd
values of t), we choose that value of a which enables
building a model for vm−1 with the smallest value of
tm−1 (tm−1 is the number of APUFs outputs present in
the expression of vm−1).

7

Based on relationship between the LSPUF’s parame-
ters k,m and x, we have two important observations as
described in Lemma 3 and Lemma 4.

Lemma 3. (tm−1 in case of even k) If k and x are both
even, with m = k − 1 and vm−1 =

⊕m−1
i=0 oi, vm−1 is

dependent on x APUF outputs; otherwise, if x is odd, vm−1

is dependent on tm−1 = k − x APUF outputs. For example,
when k is even and x = m = k−1, vm−1 = rk−2, i.e., vm−1

is dependent on only one APUF output.

Lemma 4. (tm−1 in case of odd k) If k is odd and x is even,
m = k − 1 and vm−1 =

⊕m−2
i=0 oi, then vm−1 is dependent

on only two APUF outputs; otherwise, if x is odd, vm−1 is
dependent on tm−1 = k − 2 APUF outputs.

Due to the page limitation, we omit the proofs. The
significance of these lemmas is that the adversary can
have many special cases where the attack can be con-
ducted without exhaustively searching for the right vec-
tor a in the entire space.

We summarize all analyzed results for the special cases
for vm−1 in Table 2. If tm−1 < t̂, a model vsm−1 can be

TABLE 2: Expression of tm−1 for m = k − 1

k x tm−1

Even
Even x
Odd k − x

Odd
Even 2
Odd k − 2

built using LR based modeling of tm−1-XOR PUF [7]. We
call a LSPUF as fully modeled if the last bit vm−1 can
be modeled by machine learning techniques, or in other
words if tm−1 < t̂. Otherwise, we consider the model
vsm−1 to be a random guess algorithm and its prediction
accuracy is denoted as p+ = 1/2. Note that, in this case,
the efficiency of the attack is equivalent to that of the
cryptanalysis attack reported in [18].

In next section, we show that the adversary can build
a set of models of APUF outputs from models of vir-
tual outputs, and we call this process reaching the root
of LSPUF security. By using this fact, we develop an
alternative attack strategy with a new definition for last
virtual output bit vm−1.

4.3 Attack Strategy-II
To make the explanation of attack strategy comprehensi-
ble, we recall the main idea of LR-based modeling attack
on x-XORPUF, as presented in [8, Ch. 4]. In x-XOR PUF,
the response r can be computed as follows:

r =

x∏

i=1

sgn(wT
i Φi) = sgn(

x∏

i=1

wT
i Φi),

where wi and Φi are weight vector and feature vector (or
parity vector) of the ith APUF, respectively. The function
sgn(y) = 0 if y ≤ 0, otherwise sgn(y) = 1.

According to the LR algorithm, initially, the w is
randomly generated, where w = (w1, . . . ,wx). After that

w is gradually updated based on the training CRPs that
would approximate the behavior of of x-XOR PUF. It is
evident that when w is constructed, all the sub-vectors
wi, i = 1, . . . , x are built as well. In other words, LR-based
modeling attack constructs not only a mathematical model of
x-XOR PUF, but also mathematical models of individual x
APUFs.

The following observation and lemma are crucial to
develop the Attack Strategy-II:

Observation 4 (Separability property). Each virtual out-
put vi = oi ⊕ oi+1 for i = 0, . . . ,m − 2 depends only on
two APUFs ri and r((i+x) mod k). If the adversary can build
a model vsi for vi using the LR machine learning algorithm
(cf. [8, Ch. 4, Eq. 4.12]), then (s)he can build two different
models rsi and rs((i+x) mod k) corresponding to the ith and
((i+ x) mod k)th APUFs, respectively. In other words, the
models ri and r((i+x) mod k) are “separable”.

Lemma 5. Based on Observation 4, for a LSPUF variant
with m-bit outputs, adversary can build a set of APUF models
D = {rs0, rs1, . . . , rsm−2, r

s
x, . . . , r

s
k−1}.

Proof. The lemma follows from Observation 4, since vi =
ri ⊕ r((i+x) mod k), i = 0, . . . ,m − 2. Note that if m > x
then all APUF models rs0, . . . , rsk−1 are in set D; otherwise
the APUF models rsm−1, . . . , r

s
x−1 are not in D.

Lemma 5 implies an important fact: models of all
(k + m − x − 1) APUFs r0, r1, . . . , rm−2, rx, . . . , rk−1 are
available to adversary after successful modeling of vir-
tual outputs v0, . . . , vm−2, and only (x −m + 1) APUFs
rm−1, . . . , rx−1 are unknown to adversary. Thus, the
security of LSPUF should be re-evaluated based on this
fact.

4.3.1 Defining Last Virtual Bit vm−1

From Eq. (3) and Table 1a, it follows that

vm−1 = aTo =

m−1⊕

i=0

aioi =

m−1⊕

i=0

ai(

k−1⊕

j=0

ei,jrj)

=

k−1⊕

j=0

(

m−1⊕

i=0

aiei,j)rj =

k−1⊕

j=0

djrj ,

where dj =
⊕m−1

i=0 aiei,j . It is evident that dj is associated
to the jth column in matrix E, and in turn determines
whether rj is present in the expression for vm−1, j =
0, . . . , k − 1 (rj is only present in vm−1 if dj = 1). In
addition to the presence of rj in vm−1, it is also crucial
whether rj is in the set D. Suppose rj ∈ D and hence
the adversary has a model of rj . If now rj is present
in the expression of vm−1, then adversary can reduce
the computational burden of modeling vm−1 by simply
ignoring rj from the expression of vm−1, as the model
for rj has been already recovered. This is equivalent
to making dj = 0 in the expression of vm−1, and this
leads to a simplified matrix Em. For example, Table 3a
describes LSPUF variant (k,m, x, s) = (7, 3, 6, 0) and the
Table 3b presents the modified (simplified) matrix Em

8

TABLE 3: Matrix E and Em.

(a) Matrix E

r0 r1 r2 r3 r4 r5 r6

o0 1 1 1 1 1 1 0
o1 0 1 1 1 1 1 1
o2 1 0 1 1 1 1 1

(b) Modified Matrix Em

r0 r1 r2 r3 r4 r5 r6

o0 0 0 1 1 1 1 0
o1 0 0 1 1 1 1 0
o2 0 0 1 1 1 1 0

modified after using the fact that the set D = {r0, r1, r6}.
Formally, matrix Em can be defined based on the matrix
E as:

emi,j =

{
0 if rj ∈ D,
ei,j otherwise.

(8)

For the matrix Em, we have the following important
observation:

Observation 5. It consists of following two cases:
1) If m ≤ x, then

emi,j =

{
1 ∀i ∈ [0,m− 1], j ∈ [m− 1, x− 1],

0 otherwise.
(9)

2) If m > x (or m− 1 > x− 1), then ∀i ∈ [0,m− 1], j ∈
[0, k − 1] : emi,j = 0.

The main reasons for Observation 5 are as follows:
1) In case m ≤ x, all the (x −m + 1) APUF outputs

rj /∈ D are necessarily present in every actual output
o0, . . . , om−1. This fact implies that all correspond-
ing emi,j must be 1. All the APUF outputs rj ∈ D
which are present in each oi will define the corre-
sponding entry emi,j = 0.

2) In case m > x, the set of rj /∈ D is empty and then
all emi,j are equal to 0. In other words, all APUFs
rs0, . . . , r

s
k−1 are in D and then the adversary knows

all the models rs0, . . . , rsk−1.
Let us denote tu as the number of APUFs present in

the expression of vm−1, but their models are not present
in D. Let us focus on the case: m ≤ x. From Eq. (9), and
since dj =

⊕m−1
i=0 aiei,j and HW(a) is an odd number

for any considered a (see Theorem 2), we must have
dm−1 = · · · = dx−1 = 1. In other words, for any chosen
value of vector a, the expression for vm−1 will contain
tu = (x − m + 1) APUF outputs rm−1, . . . , rx−1 which
cannot be directly modeled by the adversary. Since all
2m−1 values of a are equivalent in terms of usage, we
select a = (1, 0, . . . , 0), which implies vm−1 = o0. The
significance of this fact is that for a given LSPUF variant,
we can decide the vulnerability of that LSPUF to MLMA
by comparing the value of tu = (x −m + 1) with t̂— if
tu < t̂, the LSPUF is vulnerable to MLMA.

Now we consider the case: m > x (cf. Observation 5).
Since all emi,j are equal to 0 and dj =

⊕m−1
i=0 aiei,j , from

the view of adversary, vm−1 consists of all known APUFs
for any chosen value of a. In other words, all vectors a
are same to the adversary for executing attack. Hence,
the adversary can choose a = (1, 0, . . . , 0), which implies
vm−1 = o0.

We summarize the Attack Strategy-II of LSPUF in the
following theorem:

Theorem 3. Let (n,m, k, x, s) be a given LSPUF variant
with s = 0 and m > 1, and let its virtual output bits are
defined as:

vi =

{
oi ⊕ oi+1 if i = 0, . . . ,m− 2

o0 if i = m− 1.
(10)

If the number of individually unmodeled APUF outputs in
the expression for vm−1, denoted by tu = (x−m+ 1), is less
than t̂, then the given LSPUF variant is considered as “fully
modeled”. Otherwise, we say that the LSPUF variant can be
only cryptanalyzed. It means that for an unknown challenge c
the adversary can randomly guess vm−1, and use the models
of other virtual bits v0, . . . , vm−2 to obtain the actual output
o of LSPUF.

4.3.2 Model Building of Last Virtual Bit vm−1

Now, we discuss about the building of a model vsm−1 for
vm−1. In the context of modeling attack on PUF, there are
two main sources of noise:

1) noise in the CRPs of PUF used to train a model,
and

2) degree of imperfection (inaccuracy) inherent in the
model itself.

To simplify the explanation of our proposed attack strat-
egy, we assume that there is no noise in the CRPs of LSPUF,
i.e., the reliability of LSPUF output is 100%. In Section 5,
we provide the details of the attack developed based
on LSPUF implemented on FPGA, to demonstrate the
impact of CRP-noise on the modeling accuracy.

As defined in Eq. (10),

vm−1 = o0 = r0 ⊕ · · · ⊕ rm−2 ⊕ rm−1 ⊕ · · · ⊕ rx−1

and tu = (x−m+1). Let pr be the average prediction ac-
curacy for the models rs0, . . . , rsm−2, and pv be the average
prediction accuracy for the models vs0, . . . , v

s
m−2. Since

the adversary cannot access the values of r0, . . . , rk−1,
(s)he cannot estimate the modeling accuracy pr for each
model rsi ∈ D. However, the pr is always close to pv
because the models rsi ∈ D are obtained from the models
vs0, . . . , v

s
m−2. Since the adversary can build the models

vs0, . . . , v
s
m−2 and can access the outputs v0, . . . , vm−2,

(s)he can estimate pv accurately. We consider this as a
method to compute pr in practice, i.e., pr ≈ pv .

Let p+ be the prediction accuracy for model vsm−1.
For the sake of brevity, we provide Fig. 2 to summarize
all the prediction accuracies presented in this section.
Let us recall t̂, which is the threshold for MLMA (LR
is the used ML approach) resistant XOR PUF. Now we
consider several cases in sequence.

4.3.2.1 Case-I m ≤ x − t̂ + 1: In this case tu =
(x−m+1) ≥ t̂. This implies that we cannot build a model
vsm−1 of vm−1 = o0 by using MLMA [6]. As a solution,
we assign a random guess for vm−1 (or for o0). Thus, the
model vsm−1 is simply a random guess algorithm and the
prediction accuracy of vsm−1 is p+ = 1/2.

9

vi = ri ⊕ ri+1,∀i ∈ [0,m− 2]

pvi ≈ pv ≤ pr ≈ pri ≈ pri+1

p+ pr̄

pr0 ≈ . . . ≈ prm−2 ≈ pr ≈ pv

vm−1 = o0 = rs0 ⊕ . . .⊕ rsm−2 ⊕ r̄

pv0 ≈ . . . ≈ pvm−2 ≈ pv and pvm−1 = p+

v = (v0, v1, . . . , vm−1) ≡ o = (o0, o1, . . . , om−1)

psuc = pm−1
v p+

Virtual bit models APUF models

Fig. 2: All prediction accuracies considered in the mod-
eling of vm−1 in Attack Strategy-II.

vm−1 = o0 = r0 ⊕ · · · ⊕ rm−2︸ ︷︷ ︸ ⊕ rm−1 ⊕ · · · ⊕ rx−1︸ ︷︷ ︸

⇒ o0 = rs0 ⊕ · · · ⊕ rsm−2 ⊕ r̄

tu = x−m + 1

Approximated as: Not modeled yet

⇒ r̄ = o0 ⊕ rs0 ⊕ · · · ⊕ rsm−2 ⇒ Build model r̄s for r̄

vsm−1 = rs0 ⊕ · · · ⊕ rsm−2 ⊕ r̄s

Fig. 3: Modeling of the last virtual bit vm−1. The
models rs0, . . . , r

s
m−2 are obtained from the models

of vs0, . . . , vsm−2 according to the separability property
(cf. Observation 4). Model vsm−1 can be obtained as
vsm−1 = rs0 ⊕ · · · rsm−2 ⊕ r̄s.

4.3.2.2 Case-II (x+1−t̂) < m < (x+1): In this case
0 < tu < t̂. Since the rs0, . . . , rsm−2 ∈ D, the adversary only
needs to build the model for r̄ = rm−1⊕· · ·⊕rx−1. Since
the adversary has no information on rm−1, . . . , rx−1,
(s)he has to compute r̄ = o0⊕r0⊕· · ·⊕rm−2 as described
in Fig. 3. Let r̄s be the model for r̄, and it is constructed
as follows:

• Phase 1: For a given challenge c, the response R̄ is
computed as R̄ = o0(c)⊕ rs0(c)⊕ · · · ⊕ rsm−2(c). This
step is repeated for sufficient number of challenges.

• Phase 2: After collecting a sufficiently large set
of CRPs

{
(c, R̄)

}
, the model r̄s is built using

MLMA [7].
The model vsm−1 of vm−1 is then computed as:

vsm−1 = rs0 ⊕ · · · ⊕ rsm−2 ⊕ r̄s. (11)

Now, we discuss about the problems in construction
of vsm−1. Note that for the sake of analysis, we assume
that prediction accuracy of each of these models is
pr < 1. In addition, we assume that the reliability of all

APUFs r0, . . . , rk−1 are 100%, and all the actual outputs
o0, . . . , om−1 are 100% reliable.

It is important to know the reliability or correctness
of the constructed response R̄ of r̄ for a given challenge
c which is used to build the model r̄s. This information
is important to decide whether the adversary can build
the model r̄s or not. The reason is that if the reliability
of constructed R̄ is too less, then the adversary can not
build an accurate model r̄s.

It is evident that for a given challenge c, in case
the reliability of o0 is 100%, and if all the mod-
els rs0, . . . , r

s
m−2 produce correct guesses, i.e., rsi (c) =

ri(c),∀i = 0, . . . ,m − 2, then the correct value R̄ is
produced, i.e., R̄ = o0(c) ⊕ rs0(c) ⊕ · · · ⊕ rsm−2(c) =
o0(c) ⊕ r0(c) ⊕ · · · ⊕ rm−2(c) = rm−1(c) ⊕ · · · ⊕ rx−1(c).
This event happens with a probability ε1 = pm−1

r .
Since the probability of the event ∀i = 0, . . . ,m − 2 :

rsi (c) = ri(c) is ε1 = pm−1
r for a given challenge c, then

the probability that there exists i ∈ [0, . . . ,m−2] such that
rsi (c) 6= ri(c) for a given challenge c is ε2 = 1 − pm−1

r .
Since R̄ is computed as XOR of rs0, . . . , rsm−2, the correct
R̄ can be produced if there is an even number of models rsi
such as rsi (c) 6= ri(c) and the probability of this event is
ε2/2 ≈ 1−pm−1

r

2 in general.
Hence, the probability of the event that a correct R̄ can

be produced for a given challenge c is

ε3 = ε1 +
ε2
2

=
1

2
+
pm−1
r

2
. (12)

This probability ε3 places an important restriction on
the correctness of CRPs computed in Phase 1. Based
on the value of ε3, the adversary can decide whether a
model r̄s can be built or not. For instance, if m becomes
big enough to make pm−1

r ≈ 0, then ε3 ≈ 1/2 and
the adversary has no advantage from knowledge of the
set D even if a very large number of CRPs (c, R̄) is
collected. In other words, the adversary can use random
guess algorithm as a model of vm−1 and the prediction
accuracy of vsm−1 is p+ = 1/2.

Since the adversary cannot access the real output of
r̄, the real prediction accuracy pr̄ of model r̄s cannot be
computed. Actually, pr̄ can be computed as follows:

1) The adversary constructs vsm−1 = rs0⊕· · ·⊕rsm−2⊕r̄s.
2) The adversary collects (c, o0) pairs to compute

the prediction accuracy of model vsm−1 which is
denoted as p+.

3) Since p+ and pr, pr̄ are connected as described in
Eq. (13), the adversary can compute the real pr̄ now.
Note that Eq. (13) is derived as explained for ε3.

p+ = pm−1
r pr̄ +

1− pm−1
r pr̄
2

(13)

=
1

2
+
pm−1
r pr̄

2
≈ 1

2
+
pm−1
v pr̄

2
.

4.3.2.3 Case-III m ≥ x + 1: In this case, tu ≤ 0
or all rs0, . . . , rsx−1 are present in D, and then the model
of vsm−1 = rs0 ⊕ · · · ⊕ rsx−1. As discussed previously, the
prediction accuracy p+ of vsm−1 is p+ = 1/2 +

px
r

2 .

10

4.4 The Relationship Between p+, x and m in Prac-
tice
Theoretically, the prediction accuracy p+ heavily de-
pends on m in Case-II (cf. Section 4.3.2.2), and on x
in Case-III (cf. Section 4.3.2.3). If we take a closer look
at Case-II, we see that it corresponds to m ≤ x. Thus,
eventually, p+ only depends on x. Since p+ is drastically
reduced when x increases, the designer may choose x big
enough to prevent the modeling attack on vm−1. Since all
the APUF outputs o0, . . . , om−1 are not 100% reliable, the
parameters x and m should be less than ten [7], [9], to
make the reliability of LSPUF output o good enough (see
Section 5 for the FPGA implementation results). Thus,
increasing x (and m) is not a good practical solution to
prevent the modeling attack on vm−1. In other words,
our proposed attack is feasible on any practical LSPUF
variants.

4.5 Success Probability of the Proposed Attack
For the sake of simplicity, we assume that modeling
accuracy values of all models vs0, . . . , vsm−2 are same as
pv and the modeling accuracy of vsm−1 is p+. The attack
is said to be successful if the adversary can correctly pre-
dict the entire output o of LSPUF for a given challenge
c. Let us denote the success probability of the proposed
attack as psuc, and it is computed by using Eq. (14).

psuc = pm−1
v p+ (14)

From the experimental result in Section 5, we ob-
served that pv ∈ [0.92, 0.96] for FPGA-based LSPUF and
pv ≈ 0.99 for simulated LSPUF. Even assuming p+ = 1

2 ,
psuc � prand = 1

2m . We have presented the experimental
results of our proposed attack in Section 5. All the results
described in Section 5 confirms the efficiency of our
proposed attack, i.e., psuc � prand = 1

2m .

4.6 Complexity of the Proposed Attack
4.6.1 Time Complexity
Let TML denote the average time to build each of the
vs0, . . . , v

s
m−2 models by using the LR technique [6], and

Tm−1 be the time required to build model vsm−1.
Note that we have proposed two different attack

strategies, and they differ only in the definition of vm−1.
Here, we discuss the modeling complexity of the At-
tack Strategy-II, and complexity analysis for the Attack
Strategy-I is almost similar.

In case of modeling of vm−1, depending on the value
of m and x, we have three cases. For Case-I, the adver-
sary makes a random guess for vm−1, and in Case-III, the
adversary does not need to employ extra effort to build
model vsm−1 because (s)he can use set D for this purpose.
So, in these cases Tm−1 = 0. On the other hand, for Case-
II, the adversary needs to build a model for vm−1 with
the time complexity TMLm−1

, i.e., Tm−1 = TMLm−1
.

Finally, let TI be the time required (in Prediction
Phase) to compute o to a given challenge c based

TABLE 4: Complexities of proposed attack

vsm−1 is a ML-based model vsm−1 is a random guess

Prediction accuracy p+ 1/2
Data complexity N N = max{NML, Nm−1} NML

Time complexity T (m− 1)× TML + Tm−1 + TI (m− 1)TML + TI

Attack accuracy psuc pm−1
v p+

pm−1
v
2

on the output of models vs0, . . . , v
s
m−1 by solving an

m × m system of linear equations (modulo 2), which
has complexity O(m3). Then, the total time required is
T = (m−1)×TML+Tm−1+TI. In practice, usually m� n,
thus the time complexity of the attack is less than that
of exhaustive search, i.e., O(2n) (cf. Definition 1).

4.6.2 Data Complexity
Let NML denote the average number of CRPs to build
each of the vs0, . . . , v

s
m−2 models by using the LR tech-

nique [6], and Nm−1 be the number of CRPs required to
build vsm−1. Let N denote the total data complexity. It
is evident that N = max{NML, Nm−1} number of CRPs
(c,o) are required to build all vs. Note that if vsm−1 is
considered as a random guess algorithm, then Nm−1 = 0,
and in practice N � 2n (cf. Section 5).

We summarize the results of complexity analysis in
Table 4. Next we provide the experimental validation of
the proposed attack strategies.

5 EXPERIMENT AND RESULTS

In this section, we validate the proposed attack strategies
using both simulated and FPGA implemented 64-bit and
128-bit LSPUFs.

5.1 Experimental Setup
To validate the attack, we have implemented 64-bit
and 128-bit LSPUFs on five Xilinx Artix-7 (XC7A100T)
FPGAs. We have also simulated LSPUF to validate the
proposed attack in noise-free scenario. Reliability is an
important quality metric of PUF instances and it has
a direct impact on the modeling accuracy. In case of
simulated PUF instances, we have considered that the
PUF instances are perfectly (100%) reliable. Whereas, in
FPGA implementation, PUF instances are not perfectly
reliable due to the dynamic noise generated during the
PUF evaluation, e.g., variation in the supply voltage
and ambient temperature. Table 5 reports the reliabil-
ity of FPGA implemented LSPUF instances. Reported
reliability is measured at normal operating condition
(at room temperature with standard supply) based on
the CRPs obtained from 11 different evaluations. So,
reader can consider the reported reliability as the best
case reliability, and we have demonstrated the proposed
attack in this scenario.

Another important aspect is how to define the golden
CRPs for a PUF instance, which is not perfectly reliable.
We have used majority voting strategy, to yield golden

11

TABLE 5: Reliability (%) of actual output bits and virtual
output bits of FPGA implemented 9-XOR LSPUF (k =
10,m = 9, x = 9)

n† Type Reliability (%)
i = 0 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 o v

64
oi 97.08 97.10 97.10 97.10 97.05 97.11 97.06 97.07 97.08 96.11
vi 99.31 99.30 99.29 99.34 99.34 99.33 99.37 99.35 99.66 96.50

128
oi 96.87 96.86 96.88 96.87 96.81 96.82 96.82 96.90 96.88 95.81
vi 99.27 99.26 99.24 99.32 99.38 99.38 99.29 99.22 99.58 96.24

† Challenge size of LSPUF in bits.
Note: Reliability is measured using 100000 CRPs. The oi and vi are actual and
virtual output bits of LSPUF, respectively. Last two columns of the table represent
the reliability of entire m-bit actual and virtual responses, respectively.

TABLE 6: Uniformity (%) of output bits of 9–XOR LSPUF
(k = 10, m = 9, x = 9)

Platform n? Actual Output Bits (oi)
o0 o1 o2 o3 o4 o5 o6 o7 o8

Simulated
64 49.90 49.76 50.14 49.97 49.86 50.01 49.79 49.79 49.86

128 49.91 49.90 49.93 50.13 49.98 50.25 49.91 50.05 50.19

FPGA
64 49.37 49.59 49.29 49.53 49.56 49.44 49.67 49.61 49.44

128 49.11 49.24 49.26 49.18 49.58 49.58 49.51 49.30 49.31
? Challenge length of LSPUF in bits.

Note: Uniformity is measured using 100000 CRPs.

CRPs, over the CRPs obtained from 11 evaluations of
LSPUF instance over 11 different time instants at nor-
mal operating condition. In addition, the uniformity of
LSPUF is reported in Table 6. It shows that the distribu-
tion of 0’s and 1’s in the individual PUF output bits are
reasonably uniform.

Now, we provide experimental results to demonstrate
the effectiveness of the proposed attack on these ref-
erence LSPUF designs. To build the models of virtual
output bits, we have used in-house Matlab code for
implementing Logistic Regression (with Rprop+ opti-
mization) based model of XOR PUF [8].

As discussed in Section 3.3, the reliability values of
virtual outputs are significantly greater than that of
actual outputs, and it can be observed in Table 5. From
the reported results in Table 5, it is evident that the
reliability values of o and each oi, i = 0, . . . ,m − 1 are
poor when x = 9 and m = 9. It implies that the reliability
of actual output bit oi is sensitive to the parameter x.
Thus, the value of x cannot be arbitrarily large in practice
to make LSPUF robust against modeling attack, and
based on our experimental results it can be x < 10.

Since reliability of oi is not 100%, reliability of LSPUF
output o depends on the parameter m. It is observed
that x = 9 and m = 9 parameter setting produces a
poor reliability value for o. Hence, in order to achieve
a good reliability for o, m should not be large, e.g.
m < 10. Subsequently, we show that the proposed attack
is feasible for all practical instances of LSPUF. Now, we
illustrate the attack for certain chosen implementations
for LSPUF to make our validation process comprehensi-
ble to readers.

Although the reported results are for PUF instances
mapped on a single FPGA board, we observed similar
results for the PUFs mapped on the other boards, with
the performance figures within ±1% of the reported
results in each case.

5.2 Results of the Proposed Attack

5.2.1 Special Case of Attack Strategy-I

To demonstrate our modeling attack for special cases as
described in Lemma 3 and Lemma 4, we have used an
LSPUF variant with following parameter setting: k =
10, x = 9,m = 9. For this parameter setting, there is a
closed form of a = (1, 1, 1, 1, 1, 1, 1, 1, 1), i.e., virtual bit
vm−1 is the bitwise XOR of all actual output bits, and
it results vm−1 = rk−2 (i.e., v8 = r8). Table 7 shows the
prediction accuracy values of model of the virtual bits
and the LSPUF’s output o.

In Table 7, we have reported a practical accuracy
measurement ttest which is computed using Eq. (15) over
50,000 CRPs.

ttest =
#{Correctly classified test CRP}

#{Test CRP} . (15)

Specifically, the test CRPs are those which are not used
in the training phase of modeling. A test CRP is said
to be correctly classified if the predicted response of test
challenge is same as its actual response. It is evident from
the results that all reported modeling accuracy values
(psuc and ttest) in both the case of simulated and FPGA
implemented LSPUFs are significantly greater than the
accuracy of random guesses prand = 0.19%. Note that
psuc and ttest are prediction accuracy values of entire
LSPUF output o, not for a output bit oi. Due to the noise
in CRPs of FPGA implemented LSPUF, the modeling
accuracy values of both the virtual outputs and actual
outputs are poorer than those of simulated LSPUF.

One point we want to mention here is that we have
used similar number of CRPs in the modeling of both
simulated and FPGA implemented LSPUF instances to
maintain the similar complexity in the model building.
But, it results in the reduction of prediction accuracy of
model in case of FPGA implemented LSPUF, as CRPs
are noisy due to reliability issue. If we use more CRPs in
the modeling of FPGA implemented LSPUF, then we can
achieve better prediction accuracy than the reported one.
We have also followed this strategy for the following
cases.

5.2.2 Case-I of Attack Strategy-II

Recall that Case-I of the Attack Strategy-II (cf. Sec-
tion 4.3.2.1) is the scenario where the adversary cannot
build a model vsm−1 for virtual output bit vm−1 because
tm−1 = x − m + 1 ≥ t̂. To demonstrate this case, we
have implemented a LSPUF variant with parameters
k = 10,m = 2, x = 9 and t̂ = 7, and result is presented
in Table 8. In this context, the adversary uses random
guess algorithm as a model of vm−1. In this case, attack
is not a modeling attack; it is a cryptanalysis attack, as
we reported in [18]. Since psuc and ttest are equivalent,
in this case, we do not have ttest in Table 8. It is evident
from result that psuc > prand = 1

22 × 100% = 25%.

12

TABLE 7: Special case of Attack Strategy-I: Modeling accuracy of 9–XOR LSPUF (k = 10, m = 9, x = 9)

Platform n† N‡
Virtual Output Bits (%) psuc

(%) ttest(%)
prand

(%)pv0 pv1 pv2 pv3 pv4 pv5 pv6 pv7 pv8

0.19
Simulated

64
25000 99.81 99.80 99.83 99.84 99.83 99.76 99.83 99.81 99.93 98.44 98.59
30000 99.87 99.85 99.85 99.86 99.85 99.84 99.89 99.85 99.93 98.81 98.92

128
25000 99.62 99.65 99.59 99.62 99.61 99.61 99.59 99.64 99.84 96.82 97.10
30000 99.73 99.71 99.73 99.69 99.73 99.69 99.71 99.72 99.89 97.63 97.84

FPGA
64

25000 92.95 92.75 92.87 94.11 94.48 94.62 94.45 93.13 95.90 56.83 69.89
30000 93.01 92.73 92.88 94.11 94.48 94.61 94.51 93.19 95.91 56.92 70.16

128
25000 92.37 92.60 92.58 93.64 95.29 95.41 93.88 92.68 95.69 56.13 68.33
30000 92.40 92.69 92.67 93.75 95.32 95.43 93.91 92.73 95.71 56.41 68.69

† Challenge length of LSPUF in bits.
‡ Number of CRPs used to train a model for virtual output bits v0, . . . , v8.

TABLE 8: Case-I: Modeling accuracy of 9–XOR LSPUF
(k = 10, m = 2, x = 9)

Platform n? N† pv0 (%) psuc (%) prand (%)

Simulated
64

25000 99.75 49.88

25.00

30000 99.83 49.92

128
25000 99.50 49.75
30000 99.62 49.81

FPGA
64

25000 93.00 46.50
30000 92.95 46.48

128
25000 92.28 46.14
30000 92.32 46.16

? Challenge length of LSPUF in bits.
† Number of CRPs used to train a model of v0.

5.2.3 Case-II of Attack Strategy-II
To demonstrate the Case-II of Attack Strategy-II, we have
used LSPUF variants with following parameter setting:
k = 10, x = 9,m = 6, 7, 8, 9. Note that to simplify the
experimental effort, we have only implemented LSPUF
instance with k = 10, x = 9,m = 9 on FPGA, and we
have collected the APUFs outputs along with LSPUF
outputs. Other LSPUF instances with m = 6, 7, and 8
are derived from the collected CRPs of APUFs. But, in
case of simulation, all LSPUF instances are implemented
separately.

The results are described in Tables 9 and 10. In this
case, the adversary needs to know ε3 (see Eq. (12)) for
deciding whether a model r̄s can be constructed or not.
To compute the ε3, we need to know the pr which is the
average modeling accuracy of models rs0, . . . , rsm−2. As
mentioned in Section 4.3.2, pr cannot be computed, but
pv (modeling accuracy of vsi , i = 0, . . . ,m−1) can be used
as its approximation, i.e., each pri ≈ pvi , and they are
shown in Table 9. In practice, to compute the noise ε3, the
reliability po0 of output o0 should be taken into account.
The reliability po0 (for FPGA implemented LSPUF) can
be found in Table 5. Without loss of generality, since
the x = 9 for all m = 6, 7, 8 and 9, we assume that po0
values for all LSPUF variants with m = 6, 7, 8 are equal
to that of LSPUF variant with m = 9 which is described
in Table 5. Then ε3 can be computed as follows:

ε3 =
1

2
+
pr0 × · · · × prm−2

× po0
2

. (16)

Note that the prediction accuracy p+ of vsm−1 is com-
puted based on actual output o0 and the model vsm−1 =
rs0 ⊕ · · · ⊕ rsm−2 ⊕ r̄s.

In Table 10, we have described the modeling accuracy
values of vs0, . . . , vsm−1 in term of ttest (cf. Eq. (15)) and
psuc (cf. Eq. (14)). The prand values are also provided for

understanding the efficiency of the attack when it is com-
pared with random guess algorithm. The model vsm−1 is
constructed as described in Section 4.3.2, and it is evident
that if m is small, then the number of CRPs required
(N2) to build the model vsm−1 is large. The reason is that
building the model r̄s becomes more difficult because the
model r̄s consists of many APUFs. However, it is evident
that the psuc and ttest are significantly greater than prand.
This implies that multibit output LSPUF variants are not
secure against our proposed modeling attack.

Note that in Tables 9 and 10, the modeling accuracy
values for pv0 , . . . , pvm−2 are similar for all LSPUF vari-
ants with m = 6, 7, 8, 9, which have the same n. The
reason is that we have the same set of virtual bit models
to simplify the design and experiment efforts. Note that
prediction accuracy in case of FPGA implementation is
comparatively poor than simulation due to large amount
of noise in derived CRPs used for building a model of
vm−1, but noise can be manage by increasing the amount
of training CRPs at the cost of computational time.

5.2.4 Case-III of Attack Strategy-II
We focused on the LSPUF variant with k = 10,m =
9, x = 8. In this case, m > x and then the vsm−1 = rs0 ⊕
· · · ⊕ rsx−1. Specifically, all APUF models are in D and
the adversary does not need to build a model for vm−1,
unlike case-II. The results are reported in Table 11. It
is evident from Table 11 that psuc and ttest values are
significantly greater than prand.

6 DISCUSSION

Now we provide a relative comparison between our
proposed modeling attack on multibit output LSPUF
variants with the previously proposed modeling attacks
in [6], [12]–[18]. Compared to the pure MLMA in [6],
[12], [13], our proposed attack requires a significantly
less number of CRPs and time complexity to achieve
the same level of prediction accuracy psuc, as we have
used the 2-XOR PUF modeling for v0, . . . , vm−2 and
(x −m + 1)-XOR PUF modeling for vm−1 instead of x-
XOR PUF modeling. In [12], authors used the parallel
implementation of LR algorithm to show that they can
scale the modeling attack in [6] upto 9-XOR LSPUF. But,
in our work we have used the traditional implemen-
tation of LR as used in [6]. Thus, if we employ the
parallel implementation of LR in our modeling attack,

13

TABLE 9: Case-II: Modeling accuracy values of component APUFs of 9–XOR LSPUF (k = 10, x = 9) derived from
the models of virtual outputs, reliability (po0) of LSPUF’s output bit o0, ε3 as the correctness of CRPs used for
modeling vm−1, and prediction accuracy p+ of model vsm−1

Platform n† m N1
† Component APUFs (%)

po0 (%) ε3(%) p+(%)pr0 pr1 pr2 pr3 pr4 pr5 pr6 pr7

Si
m

ul
at

ed

64

9 25000 99.77 99.75 99.75 99.78 99.78 99.76 99.79 99.80 100.00 98.18 98.80
8 25000 99.77 99.75 99.75 99.78 99.78 99.76 99.79 100.00 98.38 98.43
7 25000 99.77 99.75 99.75 99.78 99.78 99.76 100.00 98.59 98.18
6 25000 99.77 99.75 99.75 99.78 99.78 100.00 98.83 94.11

128

9 25000 99.50 99.53 99.45 99.50 99.48 99.48 99.46 99.52 100.00 96.00 97.50
8 25000 99.50 99.53 99.45 99.50 99.48 99.48 99.46 100.00 96.46 97.01
7 25000 99.50 99.53 99.45 99.50 99.48 99.48 100.00 96.46 96.01
6 25000 99.50 99.53 99.45 99.50 99.48 100.00 97.50 94.19

FP
G

A

64

9 25000 93.00 92.66 92.86 94.07 94.36 94.54 94.40 93.13 97.08 78.66 76.90
8 25000 93.00 92.66 92.86 94.07 94.36 94.54 94.40 97.08 80.74 75.10
7 25000 93.00 92.66 92.86 94.07 94.36 94.54 97.08 82.57 73.39
6 25000 93.00 92.66 92.86 94.07 94.36 97.08 84.43 73.92

128

9 25000 92.28 92.55 92.55 93.61 95.21 95.30 93.75 92.62 96.87 78.21 76.81
8 25000 92.28 92.55 92.55 93.61 95.21 95.30 93.75 96.87 80.48 74.40
7 25000 92.28 92.55 92.55 93.61 95.21 95.30 96.87 82.51 71.30
6 25000 92.28 92.55 92.55 93.61 95.21 96.87 84.11 70.31

? Challenge length of LSPUF in bits.
† Number of CRPs used to train a model for virtual output bits v0, . . . , vm−2.

TABLE 10: Case-II: Modeling accuracy of 9–XOR LSPUF (k = 10, x = 9)

Platform n† m N1
† Virtual Output Bits (%)

N2
‡ psuc

(%)
ttest
(%)

prand

(%)pv0 pv1 pv2 pv3 pv4 pv5 pv6 pv7 pv8

Si
m

ul
at

ed

64

9 25000 99.77 99.75 99.75 99.78 99.78 99.76 99.79 99.80 98.80 20000 96.91 98.24 0.19
8 25000 99.77 99.75 99.75 99.78 99.78 99.76 99.79 98.43 30000 96.78 97.94 0.39
7 25000 99.77 99.75 99.75 99.78 99.78 99.76 98.18 40000 96.83 97.77 0.78
6 25000 99.77 99.75 99.75 99.78 99.78 94.11 60000 92.98 93.76 1.56

128

9 25000 99.50 99.53 99.45 99.50 99.48 99.48 99.46 99.52 97.50 30000 93.51 96.38 0.19
8 25000 99.50 99.53 99.45 99.50 99.48 99.48 99.46 97.01 45000 92.97 96.00 0.39
7 25000 99.50 99.53 99.45 99.50 99.48 99.48 96.01 80000 92.99 95.14 0.78
6 25000 99.50 99.53 99.45 99.50 99.48 94.19 120000 91.72 93.45 1.56

FP
G

A

64

9 25000 93.00 92.66 92.86 94.07 94.36 94.54 94.40 93.13 76.90 40000 44.34 68.16 0.19
8 25000 93.00 92.66 92.86 94.07 94.36 94.54 94.40 75.10 50000 46.39 66.50 0.39
7 25000 93.00 92.66 92.86 94.07 94.36 94.54 73.39 60000 48.56 65.19 0.78
6 25000 93.00 92.66 92.86 94.07 94.36 73.92 80000 52.40 66.41 1.56

128

9 25000 92.28 92.55 92.55 93.61 95.21 95.30 93.75 92.62 76.81 50000 44.10 66.40 0.19
8 25000 92.28 92.55 92.55 93.61 95.21 95.30 93.75 74.40 60000 45.78 64.38 0.39
7 25000 92.28 92.55 92.55 93.61 95.21 95.30 71.30 90000 47.03 61.80 0.78
6 25000 92.28 92.55 92.55 93.61 95.21 70.31 120000 49.70 61.37 1.56

? Challenge length of LSPUF in bits.
† Number of CRPs used to train a model for virtual output bits v0, . . . , vm−2.
‡ Number of CRPs used to train a model for virtual output bit vm−1.

Note: ttest is computed using 50000 CRPs.

TABLE 11: Case-III: Modeling accuracy of 8–XOR LSPUF (k = 10, m = 9, x = 8)

Platform n† N†
Virtual Output Bits (%) psuc

(%) ttest(%)
prand

(%)pv0 pv1 pv2 pv3 pv4 pv5 pv6 pv7 pv8

0.19
Simulated

64
25000 99.73 99.77 99.80 99.75 99.19 99.79 99.78 99.77 99.31 97.33 98.46
30000 99.74 99.81 99.83 99.79 99.40 99.84 99.78 99.78 99.43 98.12 99.08

128
25000 99.53 99.44 99.42 99.50 99.49 99.45 99.31 99.44 98.41 95.15 97.11
30000 99.65 99.57 99.46 99.62 99.51 99.54 99.32 99.56 98.62 96.30 97.23

FPGA
64

25000 93.16 93.33 93.17 94.31 93.47 95.86 92.56 92.62 82.12 47.76 70.96
30000 93.15 93.33 93.19 94.35 93.48 95.88 92.57 92.57 82.45 48.15 71.21

128
25000 92.75 92.80 92.85 92.04 92.57 93.57 94.30 94.41 81.98 47.07 70.67
30000 92.80 92.90 92.87 92.07 92.59 95.71 94.35 94.46 82.10 47.42 70.89

† Challenge length of LSPUF in bits.
† Number of CRPs used to train a model for virtual output bits v0, . . . , v7.

Note: ttest is computed by using 50000 CRPs.

then our proposed attack will also be more scalable than
its present degree of scalability.

Compared to [14]–[17], we do not require the physical
access and physical tampering of PUF device. Moreover,
we also do not need multiple evaluations of PUF for
each challenge to obtain reliability information of PUF
instance as used to develop attack in [15]. Typically, all
these additional information are not accessible to the
adversary in practical application of PUF like PUF-based
protocols where the adversary can only eavesdrop the
CRPs. Thus, our proposed attack is more feasible in

practical scenarios.

In comparison with our previous work in [18], which
is a cryptanalysis attack, our present work deals with the
modeling attack on the multibit output LSPUF. The mod-
eling attack results in the significantly higher prediction
accuracy than that of cryptanalysis attack [18]. We have
also reported that there are few LSPUF variants where
modeling attack is not computationally feasible, but
we can perform cryptanalysis attack. So, those LSPUF
variants are comparatively less vulnerable than LSPUF
variants that can be modeled.

14

Since our attack is developed by exploiting the prop-
erty of output network of LSPUF with multibit outputs,
this attack cannot be applied to the other PUF designs
without this kind of network. However, from this work,
it is evident that PUF designer should not use this
type of output network to generate multibit outputs
in any future PUF design. Besides the advantages and
disadvantages of various existing attacks, development
of all these attack methodologies is establishing a good
platform for research on secure PUF designs.

7 CONCLUSION

In this paper, we have presented a comprehensive se-
curity analysis of multibit output LSPUF variants in
the light of the combined cryptanalysis and machine
learning based modeling attack. The effectiveness of
our attack is validated using both simulated and FPGA
implemented LSPUF instances. We successfully built the
models for 9-XOR 64-bit and 128-bit LSPUFs, and the
pure computational modeling of 9-XOR 128-bit LSPUFs
is performed for first time in this paper. Based on our
analysis, the multibit output LSPUF variants can be
divided into two following classes: i) only cryptanalyzed
class and ii) fully modeled class. The LSPUF variants
belonging to cryptanalyzed class are still robust against
modeling attacks; however, design parameter selection
of these instances might be infeasible due to practical is-
sues with reliability of the LSPUF implementations. Note
that our proposed modeling attack can be applied only
for multibit output LSPUF variants. However, the signifi-
cance of this work is that we have revealed the weakness
of LSPUF’s output network although it is significantly
lightweight and can efficiently generate multibit outputs.
From this work, it is evident that lightweightness should
not be the main design objective, as it might compromise
the security of design. As we have seen in the literature
that designing secure strong PUFs is a challenging task,
we would not say that we break some PUF designs,
rather this work should be treated as another way to
analyze the security of a PUF design. As a consequence
of this study, we might have good PUF design in future.

REFERENCES

[1] R. S. Pappu, “Physical one-way functions,” Ph.D. dissertation,
Massachusetts Institute of Technology, March 2001.

[2] D. Lim, “Extracting Secret Keys from Integrated Circuits,” Mas-
ter’s thesis, MIT, USA, 2004.

[3] S. Kumar, J. Guajardo, R. Maes, G.-J. Schrijen, and P. Tuyls,
“Extended abstract: The butterfly PUF protecting IP on every
FPGA,” in Proc. of IEEE HOST, June 2008, pp. 67–70.

[4] M.-D. M. Yu, D. M’Raı̈hi, R. Sowell, and S. Devadas, “Lightweight
and Secure PUF Key Storage Using Limits of Machine Learning,”
in Proc. of 13th CHES , vol. 6917. Springer Berlin / Heidelberg,
2011, pp. 358–373.

[5] C. Brzuska, M. Fischlin, H. Schrder, and S. Katzenbeisser, “Physi-
cally Uncloneable Functions in the Universal Composition Frame-
work,” in Advances in Cryptology (CRYPTO), ser. Lecture Notes in
Computer Science, P. Rogaway, Ed. Springer Berlin / Heidelberg,
2011, vol. 6841, pp. 51–70.

[6] U. Rührmair, F. Sehnke, J. Sölter, G. Dror, S. Devadas, and
J. Schmidhuber, “Modeling attacks on physical unclonable func-
tions,” in Proc. of 17th ACM CCS. New York, NY, USA: ACM,
2010, pp. 237–249.

[7] U. Rührmair, J. Sölter, F. Sehnke, X. Xu, A. Mahmoud, V. Stoy-
anova, G. Dror, J. Schmidhuber, W. Burleson, and S. Devadas,
“PUF modeling attacks on simulated and silicon data,” IEEE
Transactions on Information Forensics and Security, vol. 8, no. 11,
pp. 1876–1891, 2013.

[8] J. Sölter, “Cryptanalysis of Electrical PUFs via Machine Learning
Algorithms,” Master’s thesis, Technische Universität München,
2009.

[9] M. Majzoobi, F. Koushanfar, and M. Potkonjak, “Lightweight
secure PUFs,” in Proc. of the 2008 IEEE/ACM ICCAD. Piscataway,
NJ, USA: IEEE Press, 2008, pp. 670–673.

[10] G. E. Suh and S. Devadas, “Physical unclonable functions for
device authentication and secret key generation,” in Proc. of DAC.
New York, NY, USA: ACM Press, 2007, pp. 9–14.

[11] R. van den Berg, B. Skoric, and V. van der Leest, “Bias-based
modeling and entropy analysis of PUFs,” in Proc. of the ACM
TrustED, 2013, pp. 13–20.

[12] J. Tobisch and G. T. Becker, “On the Scaling of Machine Learning
Attacks on PUFs with Application to Noise Bifurcation,” in Proc.
of RFIDsec, 2015, pp. 17–31.

[13] F. Ganji, S. Tajik, and J. Seifert, “Why Attackers Win: On the
Learnability of XOR Arbiter PUFs,” in Proc. of TRUST, 2015, pp.
22–39.

[14] U. Rührmair, X. Xu, J. Sölter, A. Mahmoud, M. Majzoobi,
F. Koushanfar, and W. P. Burleson, “Efficient Power and Timing
Side Channels for Physical Unclonable Functions,” in Proc. of 16th
CHES, 2014, pp. 476–492.

[15] G. T. Becker, “The Gap Between Promise and Reality: On the
Insecurity of XOR Arbiter PUFs,” in Proc. of 17th CHES, 2015.

[16] F. Ganji, J. Krämer, J. Seifert, and S. Tajik, “Lattice Basis Reduction
Attack against Physically Unclonable Functions,” in Proc. of the
22nd ACM SIGSAC CCS, 2015, pp. 1070–1080.

[17] S. Tajik, H. Lohrke, F. Ganji, J. P. Seifert, and C. Boit, “Laser Fault
Attack on Physically Unclonable Functions,” in 12th FTDC, 2015.

[18] D. P. Sahoo, P. H. Nguyen, D. Mukhopadhyay, and R. S.
Chakraborty, “A Case of Lightweight PUF Constructions: Crypt-
analysis and Machine Learning Attacks,” IEEE Trans. on CAD of
Integrated Circuits and Systems, vol. 43, no. 8, pp. 1334–1343, 2015.

[19] M. Majzoobi, F. Koushanfar, and M. Potkonjak, “Techniques for
Design and Implementation of Secure Reconfigurable PUFs,”
ACM Trans. Reconfigurable Technol. Syst., vol. 2, no. 1, pp. 1–33,
2009.

Phuong Ha Nguyen is a Postdoctoral Fellow in
the Computer Science and Engineering Depart-
ment of Indian Institute of Technology Kharag-
pur. He received a Ph.D. in Computer Engineer-
ing from Nanyang Technological University (Sin-
gapore) in 2013 and a Specialist Degree (Red
Diplom) from Moscow State University (Russia)
in 2008. He has work experience at Temasek
Lab@NTU.

His research interests include: Cryptanalysis,
Side Channel Analysis and Physical Unclonable

Functions. He has 15 publications in international journals and confer-
ences. He holds one U.S. patent based on his research work.

Durga Prasad Sahoo has been pursuing Ph.D.
in Dept. of Computer Science and Engineer-
ing, Indian Institute of Technology Kharagpur,
India, since 2012. He received B.Sc., M.Sc., and
M.Tech. in Computer Science from University of
Calcutta in 2007, 2009, and 2011, respectively.

His research interests include Physically Un-
clonable Functions (PUFs), and Secure Embed-
ded System Design.

	1 Introduction
	1.1 Our Contributions
	1.2 Organization of the Paper

	2 Preliminaries
	2.1 Notations
	2.2 Lightweight Secure PUF (LSPUF)
	2.3 Security Notion of LSPUF
	2.4 Related Works

	3 Analysis of LSPUF Output Network and Its Vulnerabilities
	3.1 Linear Independence of LSPUF Outputs
	3.2 Virtual Output Bits and Its Properties
	3.3 Reliability of Virtual Outputs

	4 Proposed Modeling Attack on LSPUF
	4.1 Attack Overview
	4.2 Attack Strategy-I
	4.3 Attack Strategy-II
	4.3.1 Defining Last Virtual Bit vm-1
	4.3.2 Model Building of Last Virtual Bit vm-1

	4.4 The Relationship Between p+, x and m in Practice
	4.5 Success Probability of the Proposed Attack
	4.6 Complexity of the Proposed Attack
	4.6.1 Time Complexity
	4.6.2 Data Complexity

	5 Experiment and Results
	5.1 Experimental Setup
	5.2 Results of the Proposed Attack
	5.2.1 Special Case of Attack Strategy-I
	5.2.2 Case-I of Attack Strategy-II
	5.2.3 Case-II of Attack Strategy-II
	5.2.4 Case-III of Attack Strategy-II

	6 Discussion
	7 Conclusion
	References
	Biographies
	Phuong Ha Nguyen
	Durga Prasad Sahoo

