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Abstract. In this work, we explore the possibilities for practical Thresh-
old Implementation (TI) with only two shares in order for a smaller
design that needs less randomness but is still first-order leakage resis-
tant. We present the first two-share Threshold Implementations of two
lightweight block ciphers—Simon and Present. The implementation re-
sults show that two-share TI gains in compactness while loses in through-
put compared with three-share schemes. Moreover, the leakage analyses
show that two-share TI retains perfect first-order resistance but is shad-
owed by a strong second-order leakage, making it less worthwhile.
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1 Motivation

Protecting cryptographic hardware against side channel analysis is a difficult
task and usually incurs significant area overheads. Especially masking schemes
aimed at hardware have been found to be flawed or prone to implementation
errors that leave the countermeasure at least partially insecure [11, 16, 19].

Threshold Implementation (TI) has become a popular masking scheme for
hardware implementations in the recent years, due to several advantages over
competing schemes. Unlike secure logic styles [28, 16], it does not require a change
of the design flow. TI is fairly simple to apply to a wide range of ciphers, and its
implementation is not very error-prone, if a known set of requirements and best
practices is followed. Another advantage is that TI actually keeps the promise
of reliable first-order side-channel resistance. It also provides good protection
against higher-order attacks [20, 5].

However, like most other masking schemes, TI incurs large area and time
overheads, and often consumes huge amounts of randomness for remasking,
which can make practical application cumbersome. So far the best results have
an area overhead of approximately three while consuming at least two times the
combined plaintext and key size of randomness per encryption. Such overheads—
the significant increase in area as well as the need for a high-performance random
number generator—make TI an expensive choice, too expensive for a broad range
of practical applications.



Our contribution In this work we explore the possibility of further reducing the
number of shares of threshold implementations to only two shares (2-TI). Such
a reduction of shares enables implementations that only incur an area overhead
of two and at the same time can also reduce the need of required randomness
by a factor of two, making the incurred cost more bearable and thus allowing
side channel protection for a much wider range of applications. Reducing the
number of shares is easily possible by applying the non-completeness require-
ment of TI at the bit-level rather than the state-level, as done by all prevailing
implementations.

While the feasibility of this approach has already been discussed in [23],
this work is the first one to explore the practical aspects, the benefits—and
ramifications—of applying threshold implementation with only two shares to
modern ciphers. Our case study focuses on applying 2-TI on two lightweight
block ciphers, Present[6] and Simon[2]. Lightweight ciphers are usually a good
target for TI, as the algebraic depth of their nonlinear functions is usually quite
low.

Our study shows that two-share TI is first order secure and also reduces the
size of the sequential logic in hardware implementations. The 2-TI-conversion
of nonlinear functions is more cumbersome and usually requires at least one
additional pipeline stage, with negative impact on implementation size and/or
performance. However, we also expose a strong second-order leakage in both of
the designs and argue that this is inherent to two-share TI implementations.

The remaining work is structured as follows: Relevant terminologies and
methods are explained in Section 2. The theoretical discussion of two-share TI
is given in Section 3 and two practical implementations of Simon and Present
are introduced in Section 4 and 5. Section 6 presents implementation results and
the outcome of the leakage analysis and we conclude at Section 7.

2 Preliminaries

2.1 Lightweight Cryptography

For many embedded applications, area and hence power or energy minimal imple-
mentations of cryptography are highly desirable. This has led to a rich literature
on hardware-mininal crypto cores, which often rely on the numerous proposed
“lightweight” block cipher designs, such as Present, Katan, or Simon and Speck.
These lightweight ciphers as well as the area-minimal implementations share one
common characteristic: serialization:

Serialization Serialized implementations are very common for minimizing area
of hardware implementations at the expense of increased run time. Area-critical
functions are identified and broken into subfunctions that can be applied repeat-
edly, in an iterative manner, to achieve the same outcome. Typical examples for
block ciphers is the S-box layer, which due to its high nonlinearity usually is
difficult to minimize in hardware. A classical area-optimized implementation of
an S-box based cipher only features a single S-box, which is iteratively applied
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to different parts of the intermediate state. All modern block ciphers support
this vertical type of serialization by using a single S-box (unlike DES which used
8 different s-boxes). Similar techniques are also applied to decrease the size of
large s-boxes (or in general functions of great algebraic complexity), by breaking
them into subfunctions that are concatenated. Examples include implementa-
tions that compute the AES S-box by exploiting tower field representations by
Canright [7] or the Present S-box into mappings of algebraic degree 2, which
eases side-channel protection and decreases the size, at the cost of doubling the
computation time [22]. We will refer to this serialization as horizontal. While ver-
tical serialization is determined by the cipher at design time (usually determined
by the number of s-boxes), the exploitable horizontal serialization is determined
by the algebraic complexity of the nonlinear layer.

Typical vertical serialization parameters for hardware minimal implementa-
tions are ranging from data path sizes of 8 bit for AES, 4 bit for Present down
to 1 bit for e.g. Simon or Katan. That is, as little as one bit of the the cipher
state are updated per cycle. This of course increases the latency of the crypto
core significantly. However, it also allows to reduce the combinational logic of
the crypto core to low single-digit percentages of the entire design [25, 12]. That
means, in applications where the latency is not critical, the area of a cipher
is almost entirely determined by the registers storing the key and state. As a
result, significant area-improvements can only be achieved by breaking the mem-
ory barrier, for example by externalizing key storage (cf. Ktantan [12]), or, for
FPGAs, hiding state and key in dedicated bulk memory such as block RAMs [15]
or shift registers [1]. Since the remainder of the work uses Present and Simon for
proof-of-concept implementations, we provide more details on these two ciphers
here.

2.2 Present

Present is a hardware-oriented block cipher proposed in 2007, optimized for
low area footprint [6]. It is a substitution-permutation network featuring a 4 ×
4 bit S-box and a permutation layer consisting only of bit shifts, making it low
cost in hardware. It features a block size of 64 bits and a key size of 80 or
128 bits, and has 31 rounds.Present has been optimized for many application
scenarios, but the area-minimal implementations with a 4-bit data-path. It has
also been standardized as a lightweight cryptographic block cipher as ISO/IEC
29192-2:2012. Each round of Present cipher consists of three steps including a
key-addition layer, a substitution layer which is a non-linear function, and a
permutation layer. In the first step, the round key which is consisted of left most
significant 64 bits of the key is xored with the 64-bit current state. In the next
step, the Present S-box is used which is a non-linear 4-bit to 4-bit function shown
in the following table in hexadecimal notation.

The substitution layer can be performed with 16 parallel S-box or using only
one S-box 16 times which depends on the application requirement. In the last
step, the permutation is applied to all the 64-bit data which is just a rewiring.
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x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(x) C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

At the same time, the key is updated in the key schedule part. The key can
be 80-bit or 120-bit; however we use 80-bit key in this paper. In each round the
64 left most bits of the current key, k79k78k77...k17k16, is used in addroundkey.
After using the round key, the 80-bit key register is updated by shifting, using
S-box, and xoring with round-counter. More details about the specification of
the Present is provided in [6].

2.3 Simon

Simon is one of the two lightweight block ciphers [2] introduced by NSA in 2013.
Designed as a Feistel structure, Simon accepts two n-bit words as input plaintext
and n could be 16, 24, 32, 48 and 64. For each input size, Simon has a set of
allowable key sizes ranging from 64 bits to 256 bits. The number of rounds in
Simon ranges from 32 rounds to 72 rounds. For example, Simon128/128 accepts
128 bits of plaintext at a word size of 64 bits and 128 bits of key (two words).
It generates a ciphertext after 68 rounds.

Let’s denote input words of round i as li and ri, the output words are:

ri+1 =li

li+1 =ri + l2i + (l1i ∗ l8i ) + ki
(1)

The upper index in lsi indicates left circular shift by s bits. The addition and the
multiplication are in GF(2) and equivalent as bitwise XOR and AND operation
respectively. Also, assuming that the input words of the key, which are also the
first round keys, are k0 and k1 (and possibly k2 and k3, depending on the key
size), the next round key is computed as:

ki+2 = ki + k−3i+1 + k−4i+1 + ci Two and Three Words

ki+4 = ki + ki+1 + k−1i+1 + k−3i+3 + k−4i+3 + ci Four Words
(2)

where ci is a round constant.

2.4 Masking

Masking is a common technique to prevent side channel leakage [8]. Sensitive
states of a cryptographic implementation are split into shares by adding random-
ness. In an additive masking scheme, a variable x is split into s shares xi with
i ∈ {0, 1, . . . , s− 1} by choosing xi>0 uniformly at random and x0 = x+

∑s−1
i=1 xi.

These shares are then processed separately, ensuring that the sensitive state is
never present in the system, and—more importantly—that processed states are
independent of the secret.
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2.5 Threshold Implementation

Threshold Implementation (TI) was proposed by Nikova et al [21] as a side-
channel countermeasure to address the common problem of glitches that re-
sulted in leakage for many other theoretically sound countermeasure techniques
when applied to hardware. The original proposal only deals with protection
against first-order side-channel leakages. Threshold Implementation has found
widespread adoption in the academic community: several implementations of
symmetric [22, 20, 4, 5, 27] and even asymmetric crypto algorithms [9, 24] have
been successfully protected with TI. Recently, TI has been expanded to protect
against higher-order attacks as well, though potential pitfalls of the scheme in
the multivariate setting have been pointed out [23].

TI combines a set of three requirements with a constructive description of
how to convert an algorithm into a side-channel resistant implementation in
the presence of glitches. Sensitive states are converted into a shared representa-
tion by adding randomness by applying an additive Boolean masking. Functions
F (·) are converted meeting the requirements of correctness, uniformity and non-
completeness.

– Uniformity requires all intermediate states (shares) to be uniformly dis-
tributed. Uniformity is intended to ensures the mean leakages to be state-
independent, a key requirement to thwart first-order DPA. To ensure unifor-
mity in a circuit it suffices to ensure uniformity for the output share of each
function, as well as for the inputs of the circuit.

– Non-Completeness requires subfunctions fi of a shared function F to be
independent of at least one input share for first-order SCA resistance. That
is, a function F (x) shall be split into subfunctions fi(xj 6=i). This requirement
was updated in [3] to require any d subfunctions to be independent of at
least one input share to achieve d-th order SCA resistance. Non-completeness
ensures that the final circuit is not affected by glitches. Since glitches can only
occur in subfunctions fi, and each subfunction has insufficient knowledge to
reconstruct a secret state (since it has no knowledge of at least one share
xi), no leakage can be caused by glitches.

– Correctness simply states that applying the subfunctions to a valid shared
input must always yield a valid sharing of the correct output.

The paper states that a function of algebraic degree t can be implemented using
at least t + 1 input shares for first order side-channel resistance, and td + 1
for d-th order resistance. In practice, virtually all implementations try to keep
the number of shares at or close to 3, thereby requiring implementations of
algebraically more complex functions to be broken into algebraically simpler
subfunctions. The described TI conversion always ensures correctness and non-
completeness. Uniformity can be either achieved by using more input shares
or by adding randomness during the computation. As a result, many of the
published implementations, in order to reduce the size of the circuit, consume
lots of randomness.
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2.6 Leakage Detection

Developed by Cryptography Research Inc., Test Vector Leakage Assessment
(TVLA) methodology [10] based on Welch’s t-test has been recently gaining
popularity in detecting potential side channel leakage due to its efficiency and
reliability. The test procedures have been well studied in [10] and [26]. Unlike
other attacks or leakage models used for key recovery, TVLA only returns a
confidence level to reject the leakage-free hypothesis and fail the device under
test. Essentially, a t-statistic is calculated using two sets of leakage samples as:

t =
µA − µB√

(σ2
A/NA) + (σ2

B/NB)
(3)

where A and B denote the two sets and Nj denotes the number of traces in set
j ∈ {A,B}. µj and σj are the sample mean and sample variance respectively.
The two sets of measurements are obtained with either fixed versus random
plaintext (in a non-specific t-test) or random versus random plaintext (in a
specific t-test). Usually, non-specific t-test is more favorable since it does not
depend on any intermediate value and power model. When the value of t exceeds
a certain threshold, the null hypothesis can be rejected with a small Type I error
probability p. In this paper, we follow the threshold of ±4.5 used in [14] and [18].

In [13], an improved methodology based on paired t-test was suggested due to
its robustness against environmental impact on the sample collections. Indeed,
today’s side channel measurement campaign may take days to collect tens or
even hundreds of millions traces and the environmental noise such as tempera-
ture fluctuation should not be neglected. In a paired t-test, matched pairs which
share the same noise variation are selected from the two sets of measurements.
For example, in a non-specific t-test, the fixed (F) and random (R) input data
are fed into the device according to the sequence FRRFFRRF...FRRFFRRF
such that we can always construct a matched pair FR or RF . Even though the
sequence is deterministic, the predecessor and successor for each measurement
are equally from the either F or R set so that the false-positive bias can be
removed. When n such pairs of measurements are constructed, we have n differ-
ence measurements D = LA − LB where LA is a random variable representing
samples from set A while LB from set B. The paired difference cancels the noise
variation and makes it easier to detect nonzero population difference. Now, the
null hypothesis becomes mean difference µD = 0 instead of µA = µB . Let D̄ and
s2D denote the sample mean and sample variances of the paired differences D1,
..., Dn. The paired t-test statistic is calculated as:

tp =
D̄√
s2D
n

, (4)

The null hypothesis of non-leakage is also rejected if |tp| exceeds the threshold
of 4.5.

With respect to higher order leakage detection, the original traces should
be preprocessed as explained in [26]. For example in a second order t-test, the

6



traces - at each sample points independently - are mean free squared beforehand.
Usually, the global mean of all samples at each time point is used. However, as
suggested in [13], a moving average which is the average of neighboring traces
around each trace is used instead to mitigate the environmental effects.

3 Threshold Implementation with Two Shares

While the constructive approach by Nikova et al. allows to implement any d-th
order algebraic functions in a straightforward way, actual implementations re-
quiring to share functions of degree greater than 2 have put significant effort into
keeping the number of shares as close as possible to three, which is perceived
as the minimum possible to implement nonlinear functions. In particular, [17]
discussed the efficient implementation of 4-bit s-boxes with three shares. Simi-
larly, the current TIs of AES utilize the algebraic structure of the AES S-box
and four [20] or variable with up to five shares [5] to implement the S-box on a
small area.

A natural question is: Why to stop at three shares? If small area is desirable,
using similar techniques as the ones used by the above papers could enable TIs
with just two shares, further reducing the area footprint as well as the need
for randomness. This approach was already discussed in [23]. The approach is
straightforward for the linear operations of an implementation, and has already
been widely used in several TIs for those parts [5, 9]. The simplest nonlinear
operation is a simple two-input and: c = ab which can be processed with two
shares as

c0 = a0b0 c1 = a1b1 c2 = a0b1 c3 = a1b0 (5)

This equation is in violation of the common interpretation of the non-completeness
requirement, since c2 and c3 mix inputs from shares with different indices. How-
ever, non-completeness is not violated as long as a and b are statistically inde-
pendent.

Equation (5) suggests a 4-share output, which is undesirable for a minimal
implementation. To keep the number of shares low, the four shares ci can be
recombined in the next cycle, e.g. c′0 = c0 + c2 and c′1 = c1 + c3. However,
since the recombination would violate non-completeness, it must happen after a
register-stage in the next clock cycle. In other words, a pipelining stage becomes
necessary, increasing the register count and the delay of the output. The share
proliferation gets worse for higher-degree algebraic functions, as stated in [23].
However, hardware-minimal implementations break higher-order algebraic func-
tions into degree-minimal building blocks anyway, making share proliferation a
purely theoretical concern.

To also ensure uniformity and thus gain an implementable basic nonlinear
building block, we implement z = ab+ c in two pipeline stages as

z′0 = a0b0 + c0 z′1 = a1b1 + c1 z0 = z′0 + a0b1 z1 = z′1 + a1b0 (6)
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Note that z′i and zi are computed in separate cycles. Conveniently, the z′i and zi
are uniform. Furthermore, this computation order only needs to store 2 interme-
diate states (unlike eq. (5)). However, this assumes that the inputs are available
in two subsequent clock cycles, which is a valid assumption in many serialized
implementations. Either way, the resulting pipelining of the nonlinear function
increases area overhead of that function, and also introduces a latency according
to the number of pipeline stages needed. Most of this latency can be hidden if
the data path of the implementation is small enough.

3.1 Potential Pitfalls

Share rotation In [22] it was suggested to rotate the shares in every step to
achieve increased side channel resistance. With two shares, this is highly dan-
gerous: if s0 overwrites s1, the resulting leakage is likely to depend on both
shares, hence has a direct dependence on the secret itself. In general, any regis-
ter updates must be handled with great care.

Increased Higher-order leakage The observed higher order leakage can be ex-
plained by the significant dependende of the variance on the value of the share
x. For a simple example we compare a 2-sharing S2 and a 3-sharing S3 of a bit
x into S2(x) = 〈x0, x1〉 and S3(x) = 〈x0, x1, x2〉 respectively. We further assume
a Hamming weight (wt(·)) leakage on the shares.The following table lists the
possible states and the resulting means and variances for both sharings.

x S2(x) S3(x) wt(S2) wt(S3) µ(S2) µ(S3) σ(S2) σ(S3)

0 {00, 11} {000, 011, 101, 110} {0, 2} {0, 2, 2, 2} 1 3/2 2 1

1 {01, 10} {001, 010, 100, 111} {1, 1} {1, 1, 1, 3} 1 3/2 0 1
As proper TI sharings of x, the mean leakage µ(Si) is independent of the value of
x. However, the variance of S2 depends on x, in particular var(S2(x = 0)) = 2 6=
0 = var(S2(x = 1)). This is not true for the 3-sharing S3, where the variances in
both cases are identical as well. This is a strong indication why 2-sharings may
have a strong second-order leakage, which we will actually demonstrate in the
analysis of the reference implementations in Section 6.

4 Application to Simon

Threshold Implementations of Simon with three shares have been proposed in
[27] to counteract first-order side channel attacks. Moreover, their parallel bit-
serialized implementation only consumes 87 slices on Spartan-3 xc3s50 FPGA
which renders it the smallest threshold implementation of a block cipher. The
authors also discussed how the requirement of non-completeness shuts the door
on a two-share hardware implementation of Simon but not on software imple-
mentations.

In this section, we at first apply serialization technique in order to realize a
two-share TI Simon on hardware. The leakage detection analysis and implemen-
tation results will be presented in Section 6.
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4.1 Simon with Two Shares

First of all, we follow the notations used in [27] to describe the cipher. The input
plaintext is initially split into two shares as:

r[a]0 =m[p][1]

l[a]0 =m[p][2]

r[b]0 =m[p][1] + r0

l[b]0 =m[p][2] + l0

(7)

Where r and l represents the two input words, a and b denote two shares of the
variables and subscript i indicates the round of encryption. m[p][1] and m[p][2]
are two fresh random values that mask the plaintext in the very beginning of
the algorithm and no more random numbers are needed for the rest operations.
Then, the round function is denoted as:

r[a]i+1 =l[a]i

l[a]i+1 =r[a]i + l[a]2i + l[a]1i ∗ l[a]8i + l[a]1i ∗ l[b]8i + k[a]i

r[b]i+1 =l[b]i

l[b]i+1 =r[b]i + l[b]2i + l[b]1i ∗ l[b]8i + l[b]1i ∗ l[a]8i + k[b]i

(8)

Where the superscripts 1, 2, 8 on l[∗]i represent left circular shift by correspond-
ing numbers of bits. (Notice that both addition and multiplication are in GF(2)).
Obviously, the computations of l[a]i+1 and l[b]i+1, if directly mapped into com-
binational circuits, are not non-complete since the two shares l[a]8i and l[b]8i are
present in the same circuit and glitches may still cause leakage. We can serialize
the above equations by enforcing them being executed in two steps other than
one. That is, we first compute the intermediate values l[a]i+1,int and l[b]i+1,int

using only half of the terms in the equations as follows:

l[a]i+1,int =r[a]i + l[a]2i + l[a]1i ∗ l[a]8i

l[b]i+1,int =r[b]i + l[b]2i + l[b]1i ∗ l[b]8i
(9)

Then, the round outputs can be further calculated as:

l[a]i+1 =l[a]i+1,int + l[a]1i ∗ l[b]8i + k[a]i

l[b]i+1 =l[b]i+1,int + l[b]1i ∗ l[a]8i + k[b]i
(10)

The serialization not only retains both correctness and uniformity but achieves
non-completeness as well. In Equation (9), the inputs r[a]i, l[a]2i , r[b]i and l[b]2i
are all uniform and therefore the output intermediates are also uniform. Each
function is independent of one share of every input and hence is non-complete.
Similarly, Equation (10) also satisfies the three requirements. Correctness can
be easily proved by substituting l[a]i+1,int and l[b]i+1,int with Equation (9). The
uniformity of inputs k[a]i and k[b]i makes the outputs uniform too. Moreover,
each function is independent of one share of every input and thus the functions
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Fig. 1. Data-path of the Simon with Two Shares.

are non-complete as well. One may argue that l[a]1i and l[b]8i (or l[b]1i and l[a]8i ) are
two shares of li with different rotations and may leak information of li. However,
the multiplication between them is in GF(2) and is equivalent with bitwise AND
operation. Further, in order to ensure the non-completeness, ”Keep Hierarchy”
property of synthesize tool (ISE with XST) is enabled to separate the LUTs for
AND.

4.2 FPGA Implementation

Figure 1 depicts the structure of a FPGA implementation which contains two
copies of the same data-path which consists of two registers Lj and Rj and
the combinational circuits for round functions. Specifically, two clock cycles are
taken to process each round operation. In the first clock cycle, the round inputs
are evaluated with Equation (9) and then the intermediates are overwritten
back into the registers as illustrated by the solid lines in the figure. Note that
r[j]i+1 = l[j]i is stored in Rj while l[a]i+1,int is in Lj . Then, in the second clock
cycle, Equation (10) is evaluated as shown by the dotted line but remember that
since l[j]i is now stored in Rj and hence no extra buffer is needed for it. Note
that here we only present a round-based design which processes the whole block
each clock cycle while [27] proposed bit-serialized designs which process one bit
per clock cycle. It is predictable that our design will be larger, however, our
goal is to show that two-share scheme can reduce the overhead compared with
three-share TI as demonstrated in Section 6.1. The two-share scheme can also
be applied to the bit-serialized design and further decrease the overhead.

The sharing of key schedule is not presented here since it consists of linear
operations only and is trivial to implement.
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5 Application to Present

In this section, we apply two-share Threshold Implementation to Present ci-
pher. In [17], the authors presented the 3-TI Present S-box. To achieve this,
they need to decompose the non-linear S-box of degree 3 into the combina-
tion of two quadratic functions—G function—plus some linear functions, and
then implement them with 3-TI. We follow their idea to use the same decom-
position but then implement them with 2-TI while still retain the uniformity,
non-completeness, and correctness. According to [17], the S-box of Present can
be decomposed as:

S(x) = A(G(G(Bx⊕ c))⊕ d) (11)

Where G(.), A,B and constant vectors of c, d are given as follows:

G(x, y, z, w) =(g3, g2, g1, g0) :

g3 =x+ yz + yw

g2 =w + xy

g1 =y

g0 =z + yw

(12)

A =


1 0 1 0

0 1 0 0

1 0 0 0

1 0 1 1

 , B =


1 1 0 0

0 1 1 0

0 0 1 0

0 1 0 1

 ,c =
[
0 0 0 1

]
,d =

[
0 1 0 1

]
(13)

5.1 Present with Two Shares

A 2-sharing scheme of G(.) can be expressed as follows:

G1(x0, y0, z0, w0, x1, y1, z1, w1) =(g13, g12, g11, g10)

g13 =x0 + y0z0 + y0z1 + y0w0 + y0w1

g12 =w0 + x0y0 + x0y1

g11 =y0

g10 =z0 + y0w0 + y0w1

(14)

G2(x0, y0, z0, w0, x1, y1, z1, w1) =(g23, g22, g21, g20)

g23 =x1 + y1z0 + y1z1 + y1w0 + y1w1

g22 =w1 + x1y0 + x1y1

g21 =y1

g20 =z1 + y1w0 + y1w1

(15)

11



Obviously, the above sharing satisfies both correctness and uniformity—when
the input shares are uniformly distributed. However, non-completeness is not
fulfilled since two shares of the same inputs are fed into the same functions in
some of the above equations.

As before, we serialize the computations into two steps in order to achieve
non-completeness as illustrated in the following equations.

G1
0(x0, y0, z0, w0) =(g103, g

1
02, g

1
01, g

1
00)

g103 =x0 + y0z0 + y0w0

g102 =w0 + x0y0

g101 =y0

g100 =z0 + y0w0

(16)

G2
0(x0, y1, z0, w0, g

1
03, g

1
02, g

1
01, g

1
00) =(g203, g

2
02, g

2
01, g

2
00)

g203 =g103 + y1z0 + y1w0

g202 =g102 + x0y1

g201 =g101

g200 =g100 + y1w0

(17)

G1
1(x1, y1, z1, w1) =(g113, g

1
12, g

1
11, g

1
10)

g113 =x1 + y1z1 + y1w1

g112 =w1 + x1y1

g111 =y1

g110 =z1 + y1w1

(18)

G2
1(x1, y0, z1, w1, g

1
13, g

1
12, g

1
11, g

1
10) =(g213, g

2
12, g

2
11, g

2
10)

g213 =g113 + y0z1 + y0w1

g212 =g112 + x1y0

g211 =g111

g210 =g110 + y0w1

(19)

Where the superscript indicates the level of the circuit. Until now, we achieved
a correct, non-complete and uniform two-share G(.).

5.2 Hardware Implementation

As depicted in Figure 3, in order to provide the non-completeness to the design,
we use registers to separate the two parts of the G. We try to divide the G
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function in two parts that it needs less registers between two parts. The second
part of the shares use not only the outputs of the first part but also some of the
inputs as well. Hence, we divide the two shares of the G function wisely such that
it requires the least number of inputs of the first part as inputs for the second
part. Three 4 bits registers are used before the second part. Furthermore, due to
non-completeness, we use another row of registers in between two G(.) functions
in the S-box as shown in Figure 2.

G_11

G_21 G_22

G_12
R
e
g

R
e
g

R
e
g

Fig. 2. Hardware architectures of 2-share
G module

Bx+c

Bx+c

G G

Ax+d

Ax+d

R
e
g

R
e
g

Fig. 3. Hardware architectures of 2-share
S-box module

Figure 4 shows the whole Present cipher with two shares. After loading the
key in key registers, the 2 shares of the input are stored in 64-bits state registers,
then the S-box and permutation operations respectively operate the input to
update the state registers for the next round. Regarding the Present algorithm,
the result will be ready after 31 rounds.

Considering the hardware design, each G(.) function needs one cycle and
then every S-box needs three clock cycles to compute table lookup. According
to the Figure 4, each 64-bit input stored in the State register needs to use S-box
16 times, plus one more clock cycle for the permutation operation. Therefore,
we need 20 cycles for each round of the Present cipher. The Present cipher has
31 round and thus leads to 620 clock cycles to encrypt a 64-bit input.

We also design an unprotected Present cipher to show the area overhead of
the protected Present versus unprotected one as well as its impact on maximum
frequency and throughput. The comparison results will be shown in Table 1.

6 Practical Results

6.1 Implementation Results

Table 1 summarizes the overhead and performance of two-share implementations
of both ciphers. Note that we only implement Simon128/128 and Present64/80
as an example to show the advantage of two-share scheme. All the designs are
implemented in Verilog and synthesized for Virtex-5 xc5vlx50 using XST.
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Fig. 4. Hardware architectures of the 2-shares Present Cipher.

For Simon, we have three different implementations: unprotected, 2-TI and
3-TI. In terms of slice registers used, two-share TI implementation costs twice as
much as the unprotected one and one third less than the 3-TI implementation.
This is not surprising since increasing by one share will consume one more copy
of registers to store the new share. Similarly, number of LUTs also increases.
Again, we only use round-based designs to show the advantage of 2-TI and
thus the area is not optimal compared with the bit-serialized implementation
in [27]. Also, each round operation costs double clock cycles and therefore the
throughput is greatly reduced compared with the other two designs.

With respect to Present, we only have two implementations. Two-share im-
plementation costs more resources due to the doubling of inputs as well as other
modules in Present cipher; however the results show that the resources used are
more than double of the unprotected Present. This is because we should use
extra registers to guarantee the non-completeness of two-share Present cipher.
For example, we use extra registers in G(.) function as explained in Section 5.

6.2 Leakage Analysis

Next, we discuss the leakage detection results for the two-share implementa-
tions of Simon and Present. We apply the non-specific paired t-test method

14



Design
Slice

(Regs)

Slice

(LUTs)

Max. Frequency

(MHz)

Throughput

(Mbps)

3-TI Simon 777 1302 414 779

2-TI Simon 520 1169 382 360

Unprotected Simon 272 473 421 792

2-TI Present 362 742 490.252 50.61

Unprotected Present 154 234 394.563 40.73

Table 1. Implementation results of two-share Simon and Present.

from [13]. Fixed (F) and random (R) measurements are interleaved using the
FRRF pattern. For second-order analysis, local averages are computed using a
sliding window of 100 traces. The analyzed implementations are ported into a
Virtex-5 xc5vlx50 FPGA on the SASEBO-GII board clocked at 3 MHz. Mea-
surements are taken using a Tektronix DPO-5104 oscilloscope which collects
measurements with sample rate of 100 MS/s. The oscilloscope features a Fast-
Frame functionality that can capture encryptions in bulk and thus 10 million
measurements for each implementation can be taken in several hours.
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Fig. 5. Leakage detection results for the two-share implementation of Simon for first
order (left) and second order (right) leakage over the number of traces. Note that the
dimensions change for both axes.

2-TI Simon For two-share Simon implementation, 10 million measurements are
collected, yielding 5 million fixed-random pairs. Each measurement contains 5000
time samples, covering the 68 rounds of Simon. The first-order paired t-test is
performed using n = 5000, 10000, 15000, ... pairs. Figure 5(a) shows the first
order t-test result on the two-share Simon. The maximum absolute t value across
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the 5000 time samples remains below the threshold of 4.5 with 10 million traces.
We conclude that the two-share Simon implementation is resistant against first-
order DPA and thus a validly implemented threshold implementation.

The results of the second order paired t-test are shown in Figure 5(b). The
step size is reduced to n = 100, 200, ... to magnify the relevant area: The t value
of the second order analysis grows beyond 4.5 with about 500 traces. That is, a
second order leakage is detectable with just hundreds of traces.
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Fig. 6. Leakage detection results for the two-share implementation of Present for first
order (left) and second order (right) leakage over the number of traces.

2-TI Present As before, 10 million traces are captured for the two-share Present
implementation, and then analyzed using paired t-test. The first order t-statistic
is still below 4.5 with 10 million measurements, as shown in Figure 6(a). The
second order t-statistics exceeds the threshold with about 6000 traces as shown
in Figure 6(b). Again, the results suggest that two-share TI holds the promise
of first order resistance, but fares terribly on the second order resistance.

The results from both validate our simulation analysis for the idealized case
from Section 3.1, which suggests strong second-order leakage. The difference in
sensitivity for the two implementations stems from their differing design strate-
gies: 2-TI Simon is round based and does not use pipelining. Hence, it maximizes
the leakage for the fixed-vs-random test: the entire state that is processed per cy-
cle is constant in the fixed case and varies in the other case. For 2-TI Present, the
implementation is serialized, with a 4-bit datapath, hence, a much smaller part
of the implementation is updated per cycle, making the leakage less pronounced.

While two-share TI shows potential in preventing first order leakage with less
overhead, its poor performance on second order leakage resistance compared with
three-sharing makes it less worthwhile.
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7 Conclusion

This work presents the first practical threshold implementations using only two
shares. We showed that lightweight ciphers have several features making them
good targets for threshold implementations. Furthermore, we explain how using
two shares can actually yield smaller cipher implementations that need less ran-
domness and still show perfect first order resistance. While moving to two shares
makes implementing the nonlinear functions of a cipher more cumbersome, re-
sulting in either a loss in throughput, increase in circuit size, or even both, it
allows to reduce the overhead of the sequential part of the implementation by
only doubling the state and key size. Since the area of low-area implementations
usually depends mainly on the combinational part, significant improvements are
possible. To this end, we presented the first two-share threshold implementations
of Simon and Present, which feature perfect first-order resistance.

However, these findings are of little practical impact, as two-share TI features
a glaring second-order leakage. Hence, on one hand, the results highlight that
provable resistance against a “low” order of attack might be meaningless in
practice. On the other hand, the previously observed feature that three-share TI
not only keeps the promised first-order resistance, but also fails gracefully for
higher order analysis, is undervalued and may deserve further analysis.
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