
Blind Password Registration for Verifier-based PAKE?

Franziskus Kiefer†∗ and Mark Manulis∗

† Mozilla, Berlin, Germanymail@franziskuskiefer.de

∗ Surrey Centre for Cyber Security
Department of Computing, University of Surrey, UK

mark@manulis.eu

Abstract. We propose Blind Password Registration (BPR), a new class of cryptographic protocols
that is instrumental for secure registration of client passwords at remote servers with additional pro-
tection against unwitting password disclosures on the server side that may occur due to the lack of the
state-of-the-art password protection mechanisms implemented by the server or due to common server-
compromise attacks. The dictionary attack resistance property of BPR protocols guarantees that the
only information available to the server during and after the execution of the protocol cannot be used
to reveal the client password without performing an offline dictionary attack on a password verifier
(e.g. salted hash value) that is stored by the server at the end of the protocol. In particular, at no
point in time the server is supposed to work with plain passwords. Our BPR model allows servers to
enforce password policies and the requirement on the client to obey them during the execution of the
BPR protocol is covered by the policy compliance property.
We construct an efficient BPR protocol in the standard model for ASCII-based password policies using
some techniques underlying the recently introduced Zero-Knowledge Password Policy Checks (ZKPPC).
However, we do not rely on the full power of costly ZKPPC proofs and in fact show that BPR protocols
can be modelled and realised simpler and significantly faster (as supported by our implementation)
without using them as a building block. Our BPR protocol can directly be used to replace ZKPPC-
based registration procedure for existing VPAKE protocols.

1 Introduction

Cryptographic password authentication, including password authenticated key exchange (PAKE) protocols
and their variants, remains an important research topic since the 1990s [8,22,7], driven by the wide use of
passwords and continuous damage from password compromise attacks. A rich variety of challenges related
to the modelling of PAKE protocols [7,12,4,13,18], efficient design and security analysis [23,3,24,10], possible
deployment in practice [1,2,19,20,38,28] along with the development of metrics for password strength eval-
uation [32,39,27,30] and usability improvements for password authentication [14,21,26] have been addressed
so far, with only little attention paid to the remote registration of passwords, which is the initial step of
any remote password-based protocol and perhaps the most crucial one in terms of security. In many crypto-
graphic password-based protocols this step is often omitted using the assumption that passwords are set up
in a secure way and known to the parties prior to the execution of the protocol.

To see the importance of password registration consider the current approach for remote registration of
client passwords on the Web: the client establishes a server-authenticated confidential channel (e.g., using
TLS) over which the password is sent to the server and then (securely) stored in the password database. In
order to offer better protection against compromised password databases servers are supposed to store only
the randomised password hash and the random salt that was used. In later sessions the client authenticates
itself with the password whereas the server uses stored password hash and salt to perform the check. This
concept resembles what is called a Verifier-based PAKE (VPAKE) protocol [9,18,11] (aka. asymmetric [7]
or augmented PAKE [9]). A large number of break-ins into server databases makes VPAKE a particularly
? This is the full version of the paper “Blind Password Registration for Verifier-based PAKE” published at The 3rd
ACM ASIA Public-Key Cryptography Workshop (ASIAPKC 2016)

valuable concept for remote password-based authentication since in order to recover the actual client password
the attacker must perform a costly dictionary attack on its password hash. However, the increasing number
of successful password leaks [33,15,31] suggests that many servers do not apply randomised password hashing
at all. For this reason, remote password registration should ideally be performed without the need for the
client to send its password to the server; in other words, without trusting the server to securely process and
store client passwords.

This was recently taken as a motivation in [25] to come up with the concept of blind password registration
for VPAKE protocols by which the server only learns the randomised password hash and the random salt but
not the actual password. The major challenge addressed there was to find a solution for blind registration of
password verifiers for VPAKE that can be proven to satisfy the server’s policy on the format of passwords (e.g.
minimal password length, inclusion of characters of different types, etc.) during the registration procedure,
yet without disclosing those passwords in clear. This was realised using new Zero-Knowledge Password
Policy Checks (ZKPPC) that served in [25] as an intermediate registration step and allowed the client to
prove policy-compliance (soundness) of the chosen password without leaking any information about the
password (zero-knowledge) to the server. The security of ZKPPC was defined to prevent malicious clients
from registering passwords that do not comply with the server’s policy and to prevent malicious servers
from learning any information about passwords from the ZKPPC protocol execution. The security model
from [25] focused only on the ZKPPC proofs and did not model the overall security of the blind password
registration procedure, where the client first performs the ZKPPC proof and then discloses to the server
(partial) randomness that was used to compute the randomised password hash and that remained secret
during the ZKPPC execution. Obviously, the zero-knowledge property of ZKPPC is too strong since it also
protects randomness that is disclosed later and so the blind password registration procedure, if modelled as
a stand-alone protocol, can possibly be realised using weaker (and more efficient) primitives than ZKPPC
proofs. In addition, a concrete ZKPPC construction proposed in [25] for password strings consisting of
printable ASCII characters is too inefficient for practical use due to the use of set membership proofs on
committed values over sets of size O(nmax) where the maximum password length nmax is a fixed global
parameter for the ZKPPC protocol. Therefore, while [25] made the first step towards blind registration of
policy-compliant VPAKE passwords, their proposed modelling approach and solutions based on ZKPPC
leave space for further improvements.

In this work we take Blind Password Registration (BPR) to a new level: first, we define a security model
for stand-alone BPR protocols without resorting to any intermediate building blocks like ZKPPC and model
two main requirements — policy compliance and dictionary attack resistance — that a secure BPR protocol
must fulfil (cf. Section 3). In particular, our dictionary attack resistance, which basically says that the attacker
must not be able to retrieve the client password significantly faster from the information obtained out of
BPR executions than by trying each password individually against the password hash and the salt, is a more
natural requirement for BPR protocols than the zero-knowledge requirement formulated for ZKPPC proofs.
Second, we present a truly efficient BPR protocol for policy-compliant VPAKE passwords in Section 4 where
nmax is no longer needed as a parameter and the underlying set membership proofs for committed password
characters proceed with respect to sets of size O(1). This improvement comes from the use of an efficient
shuffling proof from [16] that is used to link proofs of set membership of single characters to the policy
compliance of the combined password without the need to inflate character sets to the maximum password
length nmax. (While more efficient shuffling proofs exist, e.g., [6], they have higher round complexity and their
advantage becomes noticeable only for larger sets than those used to represent ASCII-based passwords.) By
performing set membership proofs over sets of maximum 94 characters we eliminate the factor nmax from the
protocol performance but introduce a smaller cost of the shuffling proof in the password length n, which seems
unavoidable in this approach if the protocol should hide any relation between the policy and the password
other than its compliance. The proposed BPR protocol is compatible with the recent VPAKE protocol from
[25] such that both protocols together can be seen as a framework for remote password registration and
authentication where the client password remains hidden from the server.

2

2 Preliminaries

We recall building blocks we use in our construction and give preliminaries. We start with definitions of
passwords, dictionaries, and policies from [25]. Note that we incorporate small but substantial modifications
to some definitions. We use bold characters C = {Ci} to denote vectors of elements.

2.1 Passwords, Dictionaries and Policies

ASCII-based passwords The character mapping function CHRtoINT : Σ 7→ Z95 maps any of 94 printable
ASCII characters c ∈ Σ to an integer in Z95 using its decimal ASCII code ASCII(c), namely CHRtoINT(c) :=
ASCII(c)− 32 for all 33 ≤ ASCII(c) ≤ 126. Let n = |pw| denote the password length. The password mapping
function PWDtoINT : Σn 7→ Zbn with shift base b ∈ N maps any password string pw = (c0, . . . , cn−1) ∈ Σn to
an integer in the set Zbn , namely

PWDtoINT(pw) :=
n−1∑
i=0

biCHRtoINT(ci).

We specify our protocol using shift base b as a parameter and give concrete values in Section 4.3 where the
implementation and performance of the protocol are discussed. We use pw to denote a password string and
π ← PWDtoINT(pw) for its integer value, and write π =

∑n−1
i=0 b

iπi for encoded characters πi ← ASCII(c)−32.
Note that the password encoding PWDtoINT is an injective function that maps every password string pw to
a corresponding unique integer π. In particular, PWDtoINT(pw) 6= PWDtoINT(pw′) for all password strings
pw, pw′ ∈ {0, 1}∗ with pw 6= pw′.

Password policies A password policy is defined as a tuple f = (R,nmin), where R is a policy expression
over Σ = {d, u, l, s}, where d denotes digits, u upper case letters, l lower case letters, s symbols, and nmin
defines the minimum length of a password. Note that, unlike [25], we do not specify an upper limit on the
password length. A policy expression R over Σ is a simplified regular expression that only specifies the sets
necessary for a string to fulfil the expression. In particular, it specifies the minimum number of occurrences
of elements from Σ in the password string, e.g., R = dl requires pw to have at least one digit and one lower
case letter, and R = ssd requires pw to have at least two symbols and one digit. We write f(pw) = true
to indicate that the policy is satisfied by the password string pw. Further, a character ci ∈ pw is called
significant if it is necessary to fulfil a policy expression R and say the according set Rj ∈ R is the according
significant set. For every Rj ∈ R the first occurrence of a character ci ∈ Rj is considered significant. Note
that Σ, and thus d, u, l and s, in this work can refer to the set of encoded characters, or the set of ASCII
characters, depending on the context.

Dictionaries A password dictionary is denoted by D and contains all possible combinations of ASCII
characters. For a more precise security analysis we also define the following subsets: a dictionary containing
all policy compliant passwords is denoted by Df = {pw ∈ D : f(pw) = true} and its subsets with passwords
of length l ∈ N by Df,l, i.e. Df,l = {pw ∈ D : f(pw) = true ∧ |pw| = l}.

2.2 Password Distributions and Min-Entropy

Intuitively, a password hashing scheme should be considered secure (and a BPR protocol resistant to dictio-
nary attacks) if an attacker can not retrieve the password from its hash more efficiently than by performing
a brute-force attack over the dictionary. Therefore, security definitions for password hashing and dictionary
attack resistance rely on the notion of min-entropy β.

The dictionary D, from which the passwords are chosen, has min-entropy β such that efficient sampling
of the dictionary allows retrieving the password from its hash with probability in β. Although passwords
in cryptographic research are often assumed to be uniformly at random distributed low-entropy secrets, we

3

consider a somewhat more realistic password model. In particular, we use passwords as character strings
where the distribution of characters depends on the used character sets ω, character positions and the
password string itself. We thus use a definition of password min-entropy commonly used in password security
research [37,27,30], which captures the difficulty of brute-force attacks on passwords chosen from certain
dictionaries. As discussed in [37,27], this definition can capture many realistic password creation models. Let
Dω denote the probability distribution in password pw of characters from a character set ω ∈ {Σ, d, u, l, s}.
Min-entropy for pw = (c0, . . . , cn−1) is then defined according to Shannon [36] as

βDf,l = − max
pw∈Df,l

n−1∑
i=0

[DΣ(ci) lg(DΣ(ci))].

Note that definitions for min-entropy of D and Df are equivalent to the definition for Df,l. While this may
be surprising at first glance, one has to consider that while the policy restricts the character space, it does
not restrict the positions where these characters appear, i.e. an adversary cannot exclude any characters at
any position. (Note that we exclude the special case where every character in a password is significant and
the policy expression R does not use all four available character sets.)

2.3 Building Blocks

In this section we define building blocks and give definitions that are used in the remainder of this work.
Due to space limitations more well known definitions can be found in the full version of this work.

Commitments

Pedersen commitments [35] The Pedersen commitment scheme [35] is perfectly hiding and additively homo-
morphic. Its CSetup(λ) algorithm outputs (q, g, h, λ), where g and h are generators of a cyclic group G of
prime order q of length λ and the discrete logarithm of h with respect to g is unknown. Com(x; r) for x, r ∈ Z∗q
outputs commitment C = gxhr and decommitment d = (x, r). Open(C, d) returns x iff C = gxhr.

Password Hashing A password hashing scheme H consists of the following five algorithms:

– PSetup(λ) generates password hashing parameters pP. These parameters contain implicit descriptions of
random salt spaces SP and SH .

– PPHSalt(pP) generates a random pre-hash salt sP ∈R SP .
– PPreHash(pP, pw, sP) outputs the pre-hash value P .
– PHSalt(pP) generates a random hash salt sH ∈R SH .
– PHash(pP, P, sP , sH) outputs the hash value H.

We write H ← HashP(pw, r) to denote H ← PHash(pP, P, sP , sH) with P ← PPreHash(pP, pw, sP), where
r = (sP , sH) combines the randomness used in PHash and PPreHash. See Appendix [11,25] for security
definitions of password hashing.

Password hashing from Pedersen commitments [25] We use the following algebraic password-hashing scheme
from [25]: PSetup(λ) generates pP = (q, g, h, λ) where g, h are independent generators of a cyclic group G
of prime order q of length λ. PPHSalt(pP) generates a pre-hash salt sP ∈R Z∗q . PPreHash(pP, π, sP) outputs
the pre-hash value P = gsPπ. PHSalt(pP) generates a hash salt sH ∈R Z∗q . PHash(pP, P, sP , sH) outputs hash
value H = (H1, H2) = (gsP , PhsH).

4

3 Blind Password Registration

Blind Password Registration (BPR) allows a user to register a password verifier at a VPAKE server and
prove that it contains a password that complies with the server’s policy without disclosing the password.
A BPR protocol is thus executed between a client C and a server S, both holding the server’s password
policy f . (The policy can be exchanged before the actual protocol with other general information about the
registration.) After choosing a policy compliant password pw, C engages in a protocol with S to prove policy
compliance of pw, i.e. f(pw) = true, and sends a password verifier to the server, which can later be used in
VPAKE protocols. VPAKE protocols that can be used with verifiers set-up with our protocol are discussed
in [25]. Blind password registration is formally defined as follows.

Definition 1 (Blind Password Registration). A BPR protocol is executed between a client C and a
server S with server’s password policy f as a common input. At the end of the protocol the server eventually
outputs the password verifier vC for a policy compliant, client chosen password pw.

3.1 Security of Blind Password Registration

We consider two security properties for BPR protocols to capture the requirement that the server learns
nothing about the password in the verifier and that the password verifier vC belongs to a policy compliant
password. The first security notion regarding the server, calledDictionary Attack Resistance (DAR), considers
a passive attack in which the adversary must not be able to retrieve the password from the password verifier
faster than with a brute-force attack over the used dictionary. The second security notion regarding the
client, called Policy Compliance (PC), considers an active attack where the adversary plays the role of the
client and tries to register a non-compliant password at a server. We propose a game-based security model
for BPR protocols over dictionaries Df,n. Recall that a policy dictionary Df contains all passwords pw with
f(pw) = true and a dictionary Df,n contains all passwords pw with f(pw) = true and |pw| = n. We work in
the semi-honest server model where the client can be malicious, but the server is honest in its execution. Note
that security of BPR protocols can only be assessed with respect to the used password hashing scheme HashP
since the attackers ability to recover the password from a compromised server depends on the pre-image
resistance of the hashing scheme.

Participants and Parameters A BPR protocol is executed between a client C from a universe of clients C and
a server Sf chosen from the universe of servers S. The universe of servers S contains servers Sf such that
for every policy f , there exists a server Sf . Note that we usually omit f and write S instead. Both protocol
participants have common inputs, necessary for the execution of the protocol, and the password policy f .
Instances of protocol participants C or S are denoted Ci or Si. Protocol participants without specified role
are denoted by P . A client can only register one password with one server, but can register passwords at an
arbitrary number of servers. Further, a server only allows a single registration from a client such that any
attempt to register a password with a server that already stores a verifier from this client is rejected by the
server. The client C is unique and is used as identifier on the server, i.e. as username to store alongside the
password verifier vC for later VPAKE executions. An entry (C, vC) is only stored on the server if the BPR
protocol is successful. To interact with protocol participants, the adversary has access to an Execute and a
Send oracle.

– Execute(C, S) models a passive attack and executes a BPR protocol between new instances of C and S.
If there exists a verifier vC for client C on server S, the oracle aborts. Otherwise, it returns the protocol
transcript and the internal state of the server S.

– Send(Ci, Si,m) models an active attack and sends message m, allegedly from client instance Ci, to server
instance Si (a new server instance with a unique index i is created if it does not exist yet). If there exists
a verifier vC for client C on server S, the oracle aborts. Otherwise, it returns the server’s answer m′ if
there exists any.

5

Note that we allow the adversary to register passwords with servers such that we do not require the existence
of a client C after a successful registration of (C, vC) on a server (client identities C are unique but not secret
and can therefore be used by the adversary).

Policy compliance is the first natural security property of BPR protocols, requiring that a password set
up with a BPR protocol is compliant with the server’s policy f . The attacker here plays the role of the client
and tries to register a password pw on a server that is not policy compliant.

Definition 2 (Policy Compliance). Let A denote a PPT adversary with access to Execute and Send
oracles. The probability that a server instance Si exists after A terminated that accepted (C, vC) with vC =
HashP(pw; r) and f(pw) = false is negligible in λ.

To model the second security property, Dictionary Attack Resistance (DAR), we define another oracle, which
models the offline dictionary attack on the password verifier vC . DAR models server compromise and requires
that it is impossible for an attacker to recover the client’s password from the password verifier vC in a more
efficient way than traversing the used dictionary. Note that it is always possible for an attacker to brute-force
a password verifier such that the defined definition of DAR is the strongest possible notion.

– Finalise(C, S, pw) takes a client, server pair (C, S) and a password pw as input, and returns 1 iff there
exists a server instance Si that accepted (C, vC) with vC = (H1, H2, sH) and (H1, H2) ← HashP(pw; r)
and Si is a passive session, i.e. no Send was queried for (C, S) on session Si. Otherwise, return 0.

The adversary in the DAR experiment outputs a (C, S, pw) triple after interacting with the Execute and Send
oracle. This triple is handed over to Finalise such that the experiment is successful if and only if Finalise
returns 1, i.e. the adversary is able to compute the password pw from a password verifier vC stored on server
S. Since this is always possible, we have to restrict the time the adversary is allowed to take to compute
the correct password, i.e. he must not be more efficient in computing the password than performing a brute
force attack. We formalise the notion of dictionary attack resistance in the following definition.

Definition 3 (Dictionary Attack Resistance). A BPR protocol using password hashing scheme H is
dictionary attack resistant if for all PPT adversaries A running in time t (excl. time for oracle computations)
and all dictionaries Df there exists a negligible function ε(·) such that:

Pr[(C, S, pw)← AExecute,Send(λ); Finalise(C, S, pw) = 1]

≤ 2−βDf,|pw| · t
tPPreHash

+ ε(λ),

with tPPreHash being the running time of PPreHash.

Note that t used in the above definition measures time that is spend by A on the actual computation of pw.
This time can be estimated as t = tA − tq,E − tq,S , where tA is the overall running time of A, tq,E is the
time for processing qE Execute queries, and tq,S is the time for processing qS Send queries.

Our definition of dictionary attack resistance seems a reasonable compromise between the desired security
and efficiency for BPR protocols. Nonetheless, it is possible to change the balance between security and
efficiency by aiming at a stronger form of dictionary attack resistance that would further hide the password
length, or at a weaker form of dictionary attack resistance that would disclose the sets of significant characters
to the adversary. We discuss both variants in the following.

A Note on Relation to ZKPPC Our model defines a complete blind password registration procedure
for VPAKE protocols, in contrast to [25] that defined only zero-knowledge password policy checks (ZKPPC)
and used them as a building block for VPAKE registration procedure, without modeling the latter. We
observe that according to our security definitions of BPR protocols, ZKPPC proofs do not necessarily lead
to secure BPR constructions. As mentioned in the previous paragraph the generic blind password registration
procedure based on ZKPPC from [25] leaks positions and sets of significant characters. While this is tolerable

6

Client (C, S, f)
Choose pw = (c0, . . . , cn−1) ∈ Df ; compute π ← PWDtoINT(pw);
For all i ∈ [0, n− 1] compute:
πi ← CHRtoINT(ci); Ci = gπihri ; C′i = Cih

r′i ;
Shuffle C′i ← C′ki and define sets C = {Ci}, C′ = {C′i}
Compute the randomised password hash:

(H1, H2)← HashP(π) = (gsP , Hπ
1 h

sH)

For each ci ∈ pw identify appropriate set ωki ;
Execute the following protocols with the server:

PoE: ZKPoK{(π, r̂) : H2/h
sH = Hπ

1 ∧
∏n−1
i=0 C

bi

i = gπhr̂}

PoM: ZKPoK{{πi, ri}i : C′ki = gπihri ∧ πi ∈ ωki}

PoS: ZKPoK{{ki, r′ki}i : C′i = Ckih
r′
ki }

Server (C, S, f)

If |C| = |C′| ≥ nmin:
choose
ChPoM,ChPoM,ChPoS

If PoM, PoE, PoS
succeed, store (C, vC)
with vC = (H1, H2, sH)

C,C′,ω, H1, H2, sH ,
ComPoM,ComPoE,ComPoS

ChPoM,ChPoE,ChPoS

ResPoM,ResPoE,ResPoS

Fig. 1: Our BPR Protocol — A High-Level Overview

in [25] where the actual time needed to retrieve the password from the verifier is not restricted, in our model
this protocol would not satisfy dictionary attack resistance because an attacker would be able to retrieve
passwords from verifiers significantly faster than required by Definition 3. Furthermore, a zero-knowledge
property in the context of password verifiers seems an unnecessarily strong requirement since offline dictionary
attacks can always be performed on the server side. By dropping the zero-knowledge requirement and focusing
on the entire registration process we thus obtain a more realistic security model and are able to construct
more efficient BPR protocols. Note that Definition 3 models the intrinsic VPAKE requirement that a server,
holding a password hash and used random salt, must not be able to recover the password faster than by
brute-forcing the dictionary. While this requirement also applies to ZKPPC-based BPR protocols it was not
explicitly modeled in [25].

4 An Efficient BPR Protocol in the Standard Model

A high-level overview of our BPR protocol is given in Figure 1. The client starts the registration procedure
by choosing an ASCII-based password pw ∈R Df of length n, which is then mapped to an integer π ←
PWDtoINT(pw). The client maps each password character ci ∈ pw to an integer πi ← CHRtoINT(ci) and
computes Pedersen commitments Ci and C ′i for πi whereby each C ′i is a re-randomised version of Ci. The client
builds vector C = {Ci}, shuffles commitments in C ′ = {C ′i}, and proves that C ′ contains commitments to
ASCII characters, including those that are significant to fulfil the password policy f . This proof is performed
using an appropriate proof of membership PoM. The client also computes the randomised password hash
(H1, H2) using π, sends (H1, H2) with the hash salt sH to the server, and proves that π used to compute
(H1, H2) is the same as in the product of shifted commitments Cbii . This proof is performed using an
appropriate proof of equivalence PoE. The product of Cbii used in the verification can be computed by the
server using shift base b and the received commitments Ci ∈ C. Finally, the client proves to the server that
C ′ is a shuffle of C using an appropriate proof of shuffle PoS. The purpose of this proof is to link the
proof that pw contains ASCII characters and fulfils policy f (PoM) with the password hash (H1, H2) of
π (PoE) without leaking positions and ASCII subsets of characters that are significant for f (as discussed
in Section 3.1). The server, after successful verification of all proofs, stores the client’s password verifier
vC = (H1, H2, sH) in its protected password database and terminates the registration protocol. For remote
registration of the password verifier we assume that the BPR protocol is executed over a server-authenticated
secure channel in order to protect transmission of vC ; otherwise an eavesdropping adversary would be able
to recover the password by brute-forcing the dictionary. For example, our BPR protocol can be executed on
top of the TLS channel established between the client and the server (cf. [29] for the technique on how to
securely bind password-based protocols in the application layer to the TLS channel).

7

4.1 Detailed Protocol Specification

While the high-level idea of the protocol is intuitive, the actual specification becomes somewhat technical.
Note that the three proofs PoM, PoE and PoS can be performed in parallel. Further note that all sets
are ordered in the following and set operations are assumed to use elements from the correct positions. We
first describe local pre-computation steps of the client such as password encoding and hashing before giving
a detailed specification of the proofs. The protocol uses a cyclic group G of prime order q with generator
g. Let h, fi ∈R G for i ∈ [−4,m] where m is at least |pw| denote random group elements whose discrete
logarithms with respect to g are assumed to be unknown. In practice, m can be chosen sufficiently large in
order to accommodate all reasonable password lengths. The public parameters of the protocol are (q, g, h,f)
with f = {fi}. We let n = |pw| and count indices i ∈ [0, n− 1] when dealing with password characters from
pw, whereas for the indices of other sets we mostly use the interval [1, x], x ∈ N. Note that index ranges
change frequently in the description of the protocol.

Pre-Computations The client chooses a password string pw = (c0, . . ., cn−1) ∈R Df compliant with the
policy f , encodes it π ← PWDtoINT(pw) using the appropriate shift base b, and iterates over all password
character positions i ∈ [0, n− 1] to perform the following computations:

– encode the character as πi ← CHRtoINT(ci)
– commit to πi by computing Pedersen commitments Ci = gπihri , C ′i = Cih

r′ for ri, r′i ∈R Z∗q
– choose a unique random index ki ∈R [1, n] to shuffle each C ′i ← C ′ki
– if πi is significant for any Rj ∈ R, set ωki ← Rj , otherwise ωki ← Σ
– let li ∈ N denote the index in ωki such that ci = ωki [li]

Note that values (Ci, C ′i, ωki , ki, li, πi, ri, r′i) will be used in the proofs of knowledge. The client then generates
random salts sP , sH ∈R Zp for the password hashing scheme and computes the password verifier vC =
(H1, H2, sH) where (H1, H2) ← (gsP , Hπ

1 h
sH). Further, the client combines previously computed values

C = {Ci}. The shuffled commitments and sets ωki are combined in specific order according to the chosen
index ki, i.e. C ′ = {C ′ki} and ω = {ωki}. With these values the client can start the computation of the three
proofs PoM, PoE and PoS. In the following we describe these three proofs and define their messages. Note
that we do not mention standard checks such as checks for group membership in our description.

Proof of Membership (PoM) This protocol proves that every password character cki ∈ ωki using the
shuffled set of commitments C ′, i.e.

ZKPoK{({πi, ri}i∈[0,n−1]) : C ′ki = gπihri ∧ πi ∈ ωki},

(we use πi ∈ ωki as a short form of ci ∈ ωki with πi ← CHRtoINT(ci) here). Note that C ′ki ∈ C ′.

1. To prove that every C ′ki commits to a value in the corresponding set ωki the client computes the following
values for the first move of the proof:

∀πj ∈ ωki ∧ πj 6= πi : sj ∈R Z∗q , cj ∈R Z∗q
tj = gπjhsj (C ′ki/g

πj)cj

kρi ∈R Z∗q ; tlki = gπihkρi

Values (tki , ski , cki , kρi), with tki = {tj , tlki}, ski = {sj}, and cki = {cj} are stored for future use.1 After
computing the proof for every C ′ki the client sets the message ComPoM = t = {tki}.
2. The server stores received values, checks them for group membership, chooses a random challenge
c ∈R Z∗q and sets ChPoM = c.
1 Note that tlki has to be added at the correct position (lki) in tki .

8

3. After receiving the challenge c from the server, the client computes the following verification values for
all commitments C ′ki (note that sj and cj for all j 6= lki are chosen already):

clki = c⊕
|ωki |⊕

j=1,j 6=lki

cj ; slki = kρki − clki (ri + r′ki),

where i is the index of C ′ki before shuffling. The client then combines s = {ski∪{slki }} and c = {cki∪{clki}}.
2

The response message ResPoM is then set to (s, c).
4. To verify the proof, i.e. to verify that every commitment C ′ki in C ′ commits to a character ci from
either a subset Rj of Σ if significant or Σ if not, the server verifies the following for every set ωi ∈ ω with
i ∈ [1, n]:
– Let cj ∈ ci for ci ∈ c and verify c ?=

⊕|ωi|
j=1 cj

– Let πj ∈ ωi, si ∈ s, ti ∈ t, and ci ∈ c, and verify ti[j]
?= gπjhsi[j](C ′i/gπj)ci[j] for all j ∈ [1, |ωi|]

The verification of the proof is successful iff all equations above are true and ω contains all significant
characters for f .

Proof of Equivalence (PoE) This protocol proves that the password hash H2 contains the same encoded
password π as the product of the shifted commitments

∏n−1
i=0 C

bi

i and that the client knows the discrete
logarithm sP of H1 to base g, in particular:

ZKPoK{(π, r̂) : H2/h
sH = Hπ

1 ∧
n−1∏
i=0

Cb
i

i = gπhr̂}.

1. The first client message ComPoE is set to (tsP , tH , tC∗) for tsP = gksP ; tH = Hkπ
1 ; tC∗ = gkπhkr∗ with

ksP , kπ, kr∗ ∈R Z∗q .
2. The server stores received values and sets ChPoE = c.
3. After receiving challenge c from the server, the client computes the following verification values

ssP = ksP − csP ; sπ = kπ − cπ; sr∗ = kr∗ − c
n−1∑
i=0

biri

and sets ResPoE = (ssP , sπ, sr∗) as response.
4. To verify the proof, i.e. the product of shifted commitments Cbii for Ci ∈ C contains the same password
π as the password hash H2, the server verifies the following:

tsP
?= gssPHc

1 ; tH
?= Hsπ

1 (H2/h
sH)c;

tC∗
?= gsπhsr∗

(
n−1∏
i=0

Cb
i

i

)c
.

The server accepts the proof iff those verifications succeed.

Proof of Shuffle (PoS) Let φ denote a function such that φ(i) = ki shuffles the set C to C ′. We use the
efficient proof for correct shuffling for ElGamal ciphertexts from [16], which is an optimised version of [17],
and adapt it to Pedersen commitments, which translates

ZKPoK{({ki, r′ki}i) : C ′i = Ckih
r′ki}

2 Note again that the set union has to consider the position of lki to add the values at the correct position.

9

into

ZKPoK{Aji : C ′i = hA0i ·
n∏
v=1

CAviv }

for permutation matrix Aji.

1. In the first move, the client (prover) builds a permutation matrix and commits to it. First he chooses
random A′j ∈R Z∗q for j ∈ [−4, n]. Let Aji denote a matrix with j ∈ [−4, n] and i ∈ [0, n], i.e. of size
n + 5 × n + 1, such that a n × n sub-matrix of Aji is the permutation matrix. Further, let φ denote the
permutation function that, on input index i, returns the index ki of the according shuffled element and φ−1

its inverse. This allows us to write the shuffle as C ′i =
∏n
j=0 C

Aji
j = Cκih

r′κi with C0 = h and κi = φ−1(i)
for i ∈ [1, n]. The matrix Aji is defined with Aw0 ∈R Z∗q , A−1v ∈R Z∗q and A0v = r′φ(v) with w ∈ [−4, n] and
v ∈ [1, n]. The remaining values in Aji are computed as follows for v ∈ [1, n]:

A−2v =
n∑
j=1

3A2
j0Ajv; A−3v =

n∑
j=1

3Aj0Ajv;

A−4v =
n∑
j=1

2Aj0Ajv

The client then commits to Aji and sets his output ComPoS = (C ′0, f̃ ,f ′, w, w̃) for f ′ = {f ′v} with v ∈ [0, n].

f ′v =
n∏

j=−4
f
Ajv
j ; f̃ =

n∏
j=−4

f
A′j
j

C ′0 = g

∑n

j=1
πjAj0h

A00+
∑n

j=1
rjAj0

w =
n∑
j=1

A3
j0 −A−20 −A′−3; w̃ =

n∑
j=1

A2
j0 −A−40

Note that C ′0 has the form
∏n
j=0 C

Aj0
j = hA00

∏n
j=1 C

Aj0
j , but our way of computing it saves n− 1 exponen-

tiations.
2. The server chooses c = {cv} with cv ∈R Z∗q for v ∈ [1, n] and sets ChPoS = c.
3. After receiving challenges c from the server, the client computes the following verification values and
sets ResPoS = (s, s′) for s = {sv} and s′ = {s′v} with v ∈ [−4, n]. Let c0 = 1.

sv =
n∑
j=0

Avjcj ; s′v = A′v +
n∑
j=1

Avjc
2
j

4. Finally, the server checks the following equations for a randomly chosen α ∈R Z∗q and C0 = h:

n∏
v=−4

f
sv+αs′v
v

?= f ′0f̃
α

n∏
j=1

f ′j
cj+αc2

j ;
n∏
v=0

Csvv
?=

n∏
j=0

C ′j
cj

n∑
j=1

(s3
j − c3

j)
?= s−2 + s′−3 + w;

n∑
j=1

(s2
j − c2

j)
?= s−4 + w̃

The server accepts the PoS proof if all verifications succeed.

10

4.2 Security Analysis

The security of our BPR protocol is established by the following theorem using Lemma 1.

Theorem 1 (BPR Security). The protocol from Section 4.1 is BPR-secure, i.e. policy compliant and
dictionary attack resistant, if the discrete logarithm problem is hard in the used group G.

To prove Theorem 1, we start with the security of the adopted shuffling approach and prove that PoS is a
zero-knowledge proof of knowledge for the shuffle of C to C ′. The following Lemma 1 is proven in [16] for
ElGamal ciphertexts.

Lemma 1 (PoS is a ZKPoK). The PoS protocol from Section 4.1 is an honest verifier zero-knowledge
proof of knowledge of the following statement if the discrete logarithm problem in the used group is hard,

ZKPoK{Aji : C ′i = hA0i ·
n∏
v=1

CAviv },

where a n× n sub-matrix of Aji is the used permutation matrix and A0i the used re-randomiser.

Proof. This proof follows immediately from the proof in [16]. For completeness we recall the proof here for our
construction. We have to prove soundness and zero-knowledge of the PoS protocol in order to prove Lemma
1. We start with proving the zero-knowledge property. To do so, we compute C ′0, f̃ , {f ′j}, w, w̃, {cj}, {sj}, and
{s′j}, such that they are indistinguishable from a view of an honest verifier, given (q, g, h,f ,C,C ′):

f ′j , cj , sv, s
′
v ∈R Z∗q for v ∈ [−4, n], j ∈ [1, n]

C ′0 =
∏n
j=0 C

sj
j∏n

j=1 C
′
j
cj ; f ′0 =

∏n
v=−4 f

sv
v∏n

j=1 f
′
j
cj ; f̃ =

∏n
v=−4 f

s′v
v∏n

j=1 f
′
j
c2
j

;

w =
n∑
j=1

(s3
j − c3

j)− s−2 − s′−3; w̃ =
n∑
j=1

(s2
j − c2

j)− s−4

To prove soundness of the PoS scheme we show how to construct an extractor E that extracts the matrix
Avj and A′v for v ∈ [−4, n], j ∈ [0, n]. Note that this includes extraction of the permutation matrix, i.e. φ,
and the re-randomisation values r′j , but not the content, i.e. the characters. First, we see that there exists an
extractor E using n+1 linearly independent challenge sets c that is able to extract Aji from sv =

∑n
j=0 Avjcj

that fulfils the equation
∏n
v=−4 f

sv
v =

∏n
j=0 f

′
j
cj , and A′v from s′v = A′v+

∑n
j=1 Avjc

2
j that fulfils the equation∏n

v=−4 f
s′v
v =

∏n
j=1 f

′
j
c2
j for v ∈ [−4, n] and j ∈ [0, n]. In this case we also know that the prover either built

sv and s′v correct, or is able to create (non-trivial) integers {βv} for v ∈ [−4, n] as
∑n
j=0 Avjcj − sv or∑n

j=1 Avjc
2
j − s′v such that

∏n
v=−4 f

βv
v = 1, which is impossible under the discrete logarithm assumption.

Second, equations
∑n
j=1(s3

j − c3
j) = s−2 + s′−3 + w and

∑n
j=1(s2

j − c2
j) = s−4 + w̃ ensure that the n × n

sub-matrix used in Aji is indeed a permutation matrix, using the fact that every n× n permutation matrix
Aab satisfies the following two equations:

n∑
j=1

AjcAjdAje = 1 if (c = d = e) otherwise 0;

n∑
j=1

AjcAjd = 1 if (c = d) otherwise 0.

Eventually,
∏n
v=0 C

sv
v =

∏n
j=0 C

′
j
cj guarantees that, for well-formed sv, the prover knows the used random-

ness to create the shuffled commitments C ′j for j ∈ [1, n]. ut

11

Proof (of Theorem 1). Policy Compliance To prove policy compliance of the construction we first show
that the three proofs in the protocol are sound. This allows us to argue that every attacker winning the
policy compliance experiment allows us to build an attacker against one of the three proofs in the protocol.

Claim (PoE Soundness). PoE is sound, i.e. for every client using H2 = Hπ
1 h

sH and
∏n−1
i=0 C

bi

i = gπ
′
hr̂ with

π 6= π′ and r̂ =
∑n
i=1 ri the probability that the server accepts PoE is negligible.

Proof. Soundness of PoE holds if the probability that

tH
?= Hsπ

1 (H2/h
sH)c and tC∗

?= gsπhsr∗

(
n−1∏
i=0

Cb
i

i

)c

holds for H2 = Hπ
1 h

sH and
∏n−1
i=0 C

bi

i = gπ
′
hr̂ with π 6= π′ and r̂ =

∑n
i=1 ri is negligible. To show that

this holds we assume w.l.o.g. that sπ and sr∗ are chosen such that the second equation holds. In particular
sπ = x − cπ′ for an appropriate value of x. However, we see now that for the first equation to hold, the
adversary would have to compute tH = gsP sπ (H2h

−sH)c, which implies computing y = logg(sPx−sP cπ′+βc)
for some β. By assumption β 6= sPπ

′ such that computation of y is impossible under the discrete logarithm
assumption. Note that the additional proof for knowledge of sP ensures that the client knows the discrete
logarithm to basis g of H1, which allows us to define the equation tH as Hsπ

1 (H2h
−sH)c = gsP sπ (H2h

−sH)c.
ut

Soundness of PoS is proven in the full version. Note that we require that PoS is a proof of knowledge
for re-randomiser r′ and permutation matrix. Given soundness of the three proofs it is easy to construct a
reduction from the policy compliance adversary to the soundness properties of the proofs. Let A denote a
policy compliance attacker that has non-negligible probability to register a non-compliant password pw 6∈ Df .
We construct a successful attacker B on the soundness of PoM by simulating Execute queries honestly for A.
Send queries are all simulated honestly, except for one session, in which B outputs the first part of PoM in
a random Send query as its first message. This Send query returns the challenge that B receives. The second
part of PoM in the second Send query of this session is output by B, which results in a success probability
of SuccA/q, where q is the number of active sessions invoked by A.

Knowing that the set membership PoM is sound we show how to construct a successful extractor B′ on
the permutation PoS using a successful attacker A on the policy compliance experiment. To this end B′
simulates all Execute oracles honestly. Send queries are simulated honestly, except for one session, in which B′
stores the first part of PoS in a random Send query and responds with n+ 1 linearly independent challenges
c for PoS and a random challenge c for PoM and PoE. Gathering the n + 1 messages in the second Send
query from A on that session, B′ can extract r′i and the permutation matrix. Building an attacker on the
soundness of PoE using a successful attacker A on the policy compliance experiment is similar to building
B on PoM. Considering security of PoM and PoE and the soundness of PoS policy compliance follows.

Dictionary Attack Resistance First note that the used password hashing scheme that computes
(H1, H2) = (gsP , gsPπhsH) with sP , sH ∈R Z∗q is secure, cf. [25]. We show in the following that a successful
attacker A on the dictionary attack resistance of the BPR protocol would be able to distinguish between
identical distributions of real and simulated values. It is easy to see that PoM and PoE on its own are
zero-knowledge proofs.

We start by observing that breaking the dictionary attack resistance of the protocol implies that A is
able to find a password pw from a BPR transcript and the server’s information, i.e. the password verifier
vC = (H1, H2, sH), using less than 2βDf,|pw| exponentiations (pre-hash computations). This implies that
there exists at least one index i such that PoM leaks the shuffled character cj ∈ pw for j = φ(i), or PoS
exposes the relationship between C ′j and the according Ci and therefore the set Rj from which ci is chosen.
Let i denote the index of such a character. If A can identify index i, he can distinguish between Xi = (ti =
gπihkρi , si = kρi − ci(rφ−1(i) + r′i), ci) and X0 = (to = gπohso(C ′φ(i)/g

πo)co , so, co) with c, so, co ∈R Z∗q and
ci = c⊕

⊕
co for o ∈ [1, n], o 6= i. This however is impossible since Xi and all Xo are identically distributed.

Similarly, we can argue that distinguishing between a real and a simulated proof of shuffle is impossible.

12

Considering that PoM and PoS do not offer any attack possibilities we see that if A is able to win the
dictionary attack resistance game, we can distinguish between a real and a simulated PoE. However, this is
impossible due to the zero-knowledge property of PoE, i.e. values tsP , tH and tC∗ are identically distributed
in both cases. ut

Claim (PoM Soundness). PoM is sound, i.e. for every client C using pw 6∈ Df the probability that the
server accepts PoM is negligible.

Proof. Note that while PoM is a proof of knowledge, we are not actually interested in the knowledge
soundness as this comes implicitly under the discrete logarithm assumption. Instead it is sufficient in our
case that client C can not make the server accept PoM with a password pw 6∈ Df . Soundness of PoM
implies that if there exists a commitment C ′ki that commits to an encoded character πi not in the respective
set ωki , then

ti[j]
?= gπjhsi[j](C ′ki/g

πj)ci[j]

does not hold with overwhelming probability for given values. This holds under the assumption that the
discrete logarithm problem is hard in G and cki [l] ∈ c is uniformly distributed in Z∗q . The first assumption
is clear and the second one holds as long as c ?=

⊕|ωi|
j=1 ci[j] holds for a uniformly at random chosen c ∈R Z∗q .

Note that this also holds for our case in which we use the same c in all n proofs. Assuming that the
client can convince the server that the equation holds in case πi is not in ωki it is easy to see that this is
equivalent to breaking the discrete logarithm problem in G, i.e. the client can either compute r̂ such that
C ′ki = gπih(r+r′) = gπjhr̂, or he can compute si[j] = πj logh(g) − logh(t) + c logh(C ′kig

−πj). Therefore, the
claim follows since the client can not fool the server in accepting a set membership proof for a character
ci 6∈ ωki in pw and the server additionally verifies that sets ωi are necessary and sufficient to fulfil policy
f . ut

4.3 Performance

In the implementation of the BPR protocol we can adopt several tricks aiming to improve its performance.
First, we can pre-compute and reuse values gπi on the client and server side. The computation of bi can be
performed in a way that allows to re-use previously calculated values and the implementation of the proof
can be optimised allowing the client to use π. Considering this, we can estimate the performance of the BPR
protocol by counting the number of exponentiations as follows. Note that we do not count exponentiations
with exponents smaller than 5. The client in our BPR protocol performs 4n+2

∑
i |ωi|+113 exponentiations.

The server must perform 5n+ 2
∑
i |ωi|+ 16 exponentiations if gπi is pre-computed and re-used. In contrast,

the generic approach for ZKPPC from [25] requires 3n+3
∑
i(|ω∗i |−1)+7 exponentiations on the client side

and 3
∑
i |ω∗i |+8 on the server side. Note that ω∗i in [25] depends on the maximum password length and thus

contains all characters from ωi plus all characters from ωi shifted by j = 1, . . . , nmax positions. Therefore, the
costs of the protocol from [25] are given by 3n+ 2nmax

∑
i(|ωi|−1) + 7 exponentiations on the client side and

2nmax
∑
i |ωi|+8 on the server side. The protocol from [25] is thus much less efficient than our BPR protocol:

in the optimal case where n = nmax the difference can be estimated by 2(n − 1)
∑
i |ωi| − 2n2 − n − 106

additional exponentiations for the client and 2(n− 1)
∑
i |ωi| − 5n− 8 for the server.

Implementation We implement an unoptimised prototype of the BPR protocol over the NIST P-192 elliptic
curve [34] in Python using the Charm framework [5] and measure its performance. To this end we set b = 105

in order to achieve security guarantees for all reasonable password lengths and policies. We also implement
the ZKPPC approach from [25] in order to compare its performance with our BPR implementation. The
performance tests (completed on a laptop with an Intel Core Duo P8600 at 2.40GHz) underline the theoretical
findings from the previous paragraph. In particular, execution of the proposed BPR protocol with a password
of length 10 and policy (dl, 5) needs 0.72 seconds on the client and 0.67 seconds on the server side while the
ZKPPC execution requires 9.1 seconds on the client and 8.9 seconds on the server side with a maximum
password length of 10. Increasing the maximum password length to 20 slows down the client to 22.7 and the

13

server to 22.2 seconds. Our measurements show that our BPR protocol is at least 10 times faster than the
ZKPPC-based registration approach from [25]. With the overall running time of 1.5 seconds for 10-character
passwords, 2.5 seconds for 15-character passwords, and 3.3 seconds for 20-character passwords the proposed
BPR protocol can be deemed practical.

4.4 Discussion
Our BPR protocol is proven secure in a strong security model, but does not hide the length of the password
from the server. Arguably, this is a strong security requirement (cf. Section 3.1) that may not be needed in
many practical scenarios since password policies usually aim at offering some minimum password strength
such that every password of the required minimum length or longer is considered to be secure. With this in
mind, it makes no difference whether the password length is known to an attacker or not since the password
is assumed to be strong enough.

Nonetheless, an attacker knowing the password length can try passwords of the given length and thus use
the reduced search space to speed up the dictionary attack. An initial idea for hiding the password length
in our BPR protocol could be to combine commitments for non-significant password characters into a single
commitment and use only nmin commitments in the proof. This, however, would allow a malicious client
to register passwords that do not comply with the policy unless the client can prove that the exponent of
the combined commitment is of the form

∑
biπj , which is only possible when the length of the polynomial

(and therefore the password length) is known. Our BPR protocol can be modified to hide the password
length at the cost of its efficiency. This can be achieved by defining a constant length l ∈ N larger than any
practical n = |pw|, e.g., l = 50 or l = 100, and apply the following modifications. First, we change the way
shuffling is performed. In particular, C is still randomly shuffled to C ′, but it is ensured that the first |R|
commitments C ′i are for characters that are significant for the policy f . All computations in the protocol are
now performed over the password π∗ = π||0 . . . 0, where π is the original client-chosen, encoded password,
and |π∗| = l. This allows to define set ωi for character commitment C ′i as either some Rj if significant,
or Σ if i ≤ nmin and the character in C ′i is not significant, or Σ ∪ {0} otherwise. The remaining protocol
steps remain unchanged. Through these modifications the original password length remains hidden so that
stronger flavour of dictionary attack resistance can be proven for the modified BPR protocol using min-
entropy βDf = −maxpw∈Df

∑n−1
i=0 [DΣ(ci) lg(DΣ(ci))] for the dictionary Df containing all policy-compliant

passwords of length up to l. Note that this modification trades off stronger security for efficiency due to the
use of l for all shorter passwords.

Our BPR protocol can also be made more efficient if we are willing to sacrifice privacy of character
positions for significant characters and reveal information about corresponding character sets (as in [25]).
In this case the proof PoS becomes redundant and all steps related to it can be removed. This would
significantly reduce the number of exponentiations to about 2n on the client and 4n on the server side. The
resulting BPR protocol would still offer a weaker flavour of dictionary attack resistance that does not hide
positions and sets of significant password characters as discussed in Section 3.1 yet remain more efficient than
the ZKPPC-based registration protocol from [25], which seems to offer comparable security guarantees.

5 Conclusion

In this work we proposed a model for Blind Password Registration (BPR) and an efficient BPR protocol
construction for VPAKE protocols. The two BPR security requirements — dictionary attack resistance and
policy compliance — guarantee that clients can only register policy-conform passwords and that during the
registration process servers can only see password verifiers from which password disclosure becomes subject
to a costly offline dictionary attack. Our BPR protocol for ASCII-based password policies makes fulfils both
security goals under standard assumptions. use of efficient Pedersen commitments and the shuffling proof
from [16], and This protocol can directly be used to realise password registration for the recent VPAKE
protocol from [25] yet in a much more efficient and more secure way than their ZKPPC-based registration
process. Our discussion on various ways to strengthen or (reasonably) weaken the security requirements
implies the possibility of introducing trade-offs between security and efficiency for BPR protocols.

14

References

1. M. Abdalla, E. Bresson, O. Chevassut, B. Möller, and D. Pointcheval. Provably secure password-based authen-
tication in tls. In ASIACCS ’06, pages 35–45, New York, NY, USA, 2006. ACM.

2. M. Abdalla, E. Bresson, O. Chevassut, B. Möller, and D. Pointcheval. Strong password-based authentication in
TLS using the three-party group Diffie Hellman protocol. Int. J. Secur. Netw., 2(3/4):284–296, Apr. 2007.

3. M. Abdalla, D. Catalano, C. Chevalier, and D. Pointcheval. Efficient two-party password-based key exchange
protocols in the uc framework. In CT-RSA’08, volume 4964 of LNCS, pages 335–351. Springer, 2008.

4. M. Abdalla, P.-A. Fouque, and D. Pointcheval. Password-based authenticated key exchange in the three-party
setting. In PKC’05, volume 3386 of LNCS, pages 65–84. Springer, 2005.

5. J. A. Akinyele, C. Garman, I. Miers, M. W. Pagano, M. Rushanan, M. Green, and A. D. Rubin. Charm: a
framework for rapidly prototyping cryptosystems. Journal of Cryptographic Engineering, 3(2):111–128, 2013.

6. S. Bayer and J. Groth. Efficient Zero-Knowledge Argument for Correctness of a Shuffle. In EUROCRYPT’12,
volume 7237 of LNCS, pages 263–280. Springer, 2012.

7. M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated key exchange secure against dictionary attacks. In
EUROCRYPT’00, volume 1807, pages 139–155. Springer, 2000.

8. S. M. Bellovin and M. Merritt. Encrypted Key Exchange: Password-Based Protocols Secure Against Dictionary
Attacks. In IEEE S&P’92, pages 72–84. IEEE, 1992.

9. S. M. Bellovin and M. Merritt. Augmented Encrypted Key Exchange: A Password-Based Protocol Secure against
Dictionary Attacks and Password File Compromise. In ACM CCS’93, pages 244–250. ACM, 1993.

10. F. Benhamouda, O. Blazy, C. Chevalier, D. Pointcheval, and D. Vergnaud. New Techniques for SPHFs and
Efficient One-Round PAKE Protocols. In CRYPTO’13, volume 8042 of LNCS, pages 449–475. Springer, 2013.

11. F. Benhamouda and D. Pointcheval. Verifier-Based Password-Authenticated Key Exchange: New Models and
Constructions. IACR Cryptology ePrint Archive, 2013:833, 2013.

12. Boyko, MacKenzie, and Patel. Provably secure password-authenticated key exchange using diffie-hellman. In
EUROCRYPT’00, volume 1807 of LNCS, pages 156–171. Springer, 2000.

13. R. Canetti, S. Halevi, J. Katz, Y. Lindell, and P. MacKenzie. Universally Composable Password-Based Key
Exchange. In EUROCRYPT’05, pages 404–421. Springer, 2005.

14. S. Chiasson, P. C. van Oorschot, and R. Biddle. A usability study and critique of two password managers.
In Proceedings of the 15th USENIX Security Symposium, Vancouver, BC, Canada, July 31 - August 4, 2006.
USENIX Association, 2006.

15. Dan Goodin. Hack of Cupid Media dating website exposes 42 million plaintext passwords. http://goo.gl/oeT6Mp,
2014. Accessed: 25/03/2015.

16. J. Furukawa. Efficient and Verifiable Shuffling and Shuffle-Decryption. IEICE Transactions, 88-A(1):172–188,
2005.

17. J. Furukawa and K. Sako. An Efficient Scheme for Proving a Shuffle. In CRYPTO’01, volume 2139 of LNCS,
pages 368–387. Springer, 2001.

18. C. Gentry, P. D. MacKenzie, and Z. Ramzan. A Method for Making Password-Based Key Exchange Resilient to
Server Compromise. In CRYPTO’06, volume 4117 of LNCS, pages 142–159. Springer, 2006.

19. F. Hao and P. Ryan. J-PAKE: authenticated key exchange without PKI. Transactions on Computational Science,
11:192–206, 2010.

20. D. Harkins and G. Zorn. RFC 5931 - Extensible Authentication Protocol (EAP) Authentication Using Only a
Password, aug 2010.

21. P. Inglesant and M. A. Sasse. The true cost of unusable password policies: password use in the wild. In CHI,
pages 383–392. ACM, 2010.

22. D. P. Jablon. Extended Password Key Exchange Protocols Immune to Dictionary Attacks. In WETICE’97,
pages 248–255. IEEE Computer Society, 1997.

23. J. Katz, R. Ostrovsky, and M. Yung. Efficient password-authenticated key exchange using human-memorable
passwords. In EUROCRYPT0́1, volume 2045 of LNCS, pages 475–494. Springer, 2001.

24. J. Katz and V. Vaikuntanathan. Round-optimal password-based authenticated key exchange. In Proceedings of
the 8th conference on Theory of cryptography, TCC’11, pages 293–310. Springer, 2011.

25. F. Kiefer and M. Manulis. Zero-knowledge password policy checks and verifier-based PAKE. In ESORICS’14,
volume 8713 of LNCS, pages 295–312. Springer, 2014. (The proceedings version is superseded by the updated
full version in http://eprint.iacr.org/2014/242).

26. T. H. Kim, H. C. Stuart, H. Hsiao, Y. Lin, L. Zhang, L. Dabbish, and S. B. Kiesler. YourPassword: applying
feedback loops to improve security behavior of managing multiple passwords. In ASIACCS’14, pages 513–518.
ACM, 2014.

15

http://goo.gl/oeT6Mp
http://eprint.iacr.org/2014/242

27. S. Komanduri, R. Shay, P. G. Kelley, M. L. Mazurek, L. Bauer, N. Christin, L. F. Cranor, and S. Egelman. Of
passwords and people: measuring the effect of password-composition policies. In Proceedings of the International
Conference on Human Factors in Computing Systems, CHI 2011, Vancouver, BC, Canada, May 7-12, 2011,
pages 2595–2604. ACM, 2011.

28. D. Kuegler and Y. Sheffer. RFC 6631 - Password Authenticated Connection Establishment with the Internet
Key Exchange Protocol version 2 (IKEv2), jun 2012.

29. M. Manulis, D. Stebila, and N. Denham. Secure modular password authentication for the web using channel
bindings. In 1st International Conference on Security Standardization Research (SSR 2014), volume 8893 of
LNCS, pages 167–189. Springer, 2014.

30. M. L. Mazurek, S. Komanduri, T. Vidas, L. Bauer, N. Christin, L. F. Cranor, P. G. Kelley, R. Shay, and B. Ur.
Measuring password guessability for an entire university. In CCS’13, pages 173–186. ACM, 2013.

31. nakedsecurity. Anatomy of a password disaster - Adobe’s giant-sized cryptographic blunder. http://goo.gl/
enB4Oi, 2014. Accessed: 25/03/2015.

32. A. Narayanan and V. Shmatikov. Fast dictionary attacks on passwords using time-space tradeoff. In ACM
Conference on Computer and Communications Security, pages 364–372. ACM, 2005.

33. Nik Cubrilovic. RockYou Hack: From Bad To Worse. http://goo.gl/oJqj4D, 2014. Accessed: 25/03/2015.
34. NIST. National Institute of Standards and Technology. Recommended elliptic curves for federal government use.

http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf, 1999.
35. T. P. Pedersen. Non-Interactive and Information-Theoretic Secure Verifiable Secret Sharing. In CRYPTO’91,

volume 576 of LNCS, pages 129–140. Springer, 1991.
36. C. Shannon. A mathematical theory of communication. Bell System Technical Journal, 27:379–423, 623–656,

July, October 1948.
37. R. Shay, S. Komanduri, P. G. Kelley, P. G. Leon, M. L. Mazurek, L. Bauer, N. Christin, and L. F. Cranor.

Encountering stronger password requirements: user attitudes and behaviors. In SOUPS’10, volume 485. ACM,
2010.

38. S. Shin and K. Kobara. Efficient Augmented Password-Only Authentication and Key Exchange for IKEv2. RFC
6628 (Experimental), June 2012.

39. M. Weir, S. Aggarwal, M. P. Collins, and H. Stern. Testing metrics for password creation policies by attacking
large sets of revealed passwords. In CCS’10, pages 162–175. ACM, 2010.

16

http://goo.gl/enB4Oi
http://goo.gl/enB4Oi
http://goo.gl/oJqj4D
http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf

	Blind Password Registration for Verifier-based PAKE
	!Franziskus Kiefer and Mark Manulis[] Mozilla, Berlin, Germanymail@franziskuskiefer.de[] Surrey Centre for Cyber SecurityDepartment of Computing, University of Surrey, UKmark@manulis.eu
	Introduction
	Preliminaries
	Passwords, Dictionaries and Policies
	Password Distributions and Min-Entropy
	Building Blocks
	Commitments
	Password Hashing

	Blind Password Registration
	Security of Blind Password Registration
	A Note on Relation to ZKPPC

	An Efficient BPR Protocol in the Standard Model
	Detailed Protocol Specification
	Pre-Computations
	Proof of Membership (PoM)
	Proof of Equivalence (PoE)
	Proof of Shuffle (PoS)

	Security Analysis
	Performance
	Discussion

	Conclusion

