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Abstract. We introduce “thrifty” zero-knowledge protocols, or TZK.
These protocols are constructed by introducing a bias in the challenge
send by the prover. This bias is chosen so as to maximize the security
versus effort trade-off. We illustrate the benefits of this approach on
several well-known zero-knowledge protocols.

1 Introduction

Since their discovery, zero-knowledge proofs (ZKPs) [3, 10] have found many
applications and have become of central interest in cryptology. ZKPs enable a
prover P to convince a verifier V that some mathematical statement is valid, in
such a way that no knowledge but the statement’s validity is communicated to V .
The absence of information leakage is formalized by the existence of a simulator
S, whose output is indistinguishable from the recording (trace) of the interaction
between P and V.

Thanks to this indistinguishability, an eavesdropper A cannot tell whether
she taps a real conversation or the monologue of S. P and V, however, interact
with each other and thus know that the conversation is real.

It may however happen, by sheer luck, that A succeeds in responding correctly
to a challenge without knowing P’s secret. ZKPs are designed so that such a
situation is expected to happen only with negligible probability: Repeating the
protocol renders the cheating probability exponentially small if the challenge
at each protocol round is random. Otherwise, A may repeat her successful
commitments while hoping to be served with the same challenges.

Classically, the protocol is regarded as ideal when the challenge distribution
is uniform over a large set (for efficiency reasons, the cardinality of this set rarely
exceeds 2128). Uniformity, however, has its drawbacks: all challenges are not
computationally equal, and some challenges may prove harder than others to
respond to.

This paper explores the effect of biasing the challenge distribution. Warping
this distribution unavoidably sacrifices security, but it appears that the resulting
efficiency gains balance this loss in a number of ZKPs. Finding the optimal
distribution brings out interesting optimization problems which happen to be
solvable exactly for a variety of protocols and variants. We apply this idea to



improve on four classical ZK identification protocols that rely on very different
assumptions: RSA-based Fiat-Shamir [8], SD-based identification [18], PKP-based
identification [17], and PPP-based indentification [16].

2 Preliminaries

2.1 Three-Round Zero-Knowledge Protocols

A Σ-protocol [4, 9, 11] is a generic 3-step interactive protocol, whereby a prover
P tries to convince a verifier V that P knows a proof that some statement is true
— without revealing anything to V beyond this assertion. The three phases of a
Σ-protocol are illustrated by Figure 1.

x−−−−−→

P c←−−−−− V
y−−−−−→

Fig. 1. Generic Σ-protocol.

Namely,

– P sends a commitment x to V
– V replies with a challenge c;
– P provides a response y.

Upon completion, V may accept or reject P , depending on whether P ’s response
is satisfactory. In practice, the protocol will be repeated several times until V is
satisfied.

An eavesdropper A should not be able to learn anything from the conversation
between P and V . This security notion is formalized by the existence of a simulator
S, whose output is indistinguishable from the interaction (or “trace”) T between
P and V. Different types of zero-knowledge protocols exist, that correspond to
different indistinguishability notions.

In computational zero-knowledge, S’s output distribution is computationally
indistinguishable from T , whereas in statistical zero-knowledge, S’s output distri-
bution must be statistically close to the distribution governing T : Thus even a
computationally unbounded verifier learns nothing from T . The strongest notion
of unconditional zero-knowledge requires that A cannot distinguish S’s output
from T , even if A is given access to both unbounded computational resources and
P’s private keys. The Fiat-Shamir protocol [8] is an example of unconditional
ZKP.



Definition 1 (Statistical Indistinguishability). The statistical difference be-
tween random variables X and Y taking values in Z is defined as:

∆(X,Y ) := max
Z⊂Z

|Pr(X ∈ Z)− Pr(Y ∈ Z)|

= 1−
∑
z∈Z

min {Pr(X = z),Pr(Y = z)}

We say that X and Y are statistically indistinguishable if ∆(X,Y ) is negligible.

Finally, we expect P to eventually convince V, and that V should only be
convinced by such a P (with overwhelming probability). All in all, we have the
following definition:

Definition 2 (Σ-protocol). A Σ-protocol is a three-round protocol that fur-
thermore satisfies three properties:

– Completeness: given an input v and a witness w such that vRw, P is always
able to convince V.

– Zero-Knowledge: there exists a probabilistic polynomial-time simulator S
which, given (v, c), outputs triples (x, c, y) that follow a distribution indistin-
guishable from a valid conversation between P and V.

– Special Soundness: given two accepting conversations for the same input v,
and the same commitment x, but with different challenges c1 6= c2, there exists
a probabilistic polynomial-time algorithm E called extractor that computes a
witness w = E(c1, c2, v, x) such that vRw.

2.2 Security Efficiency

During a Σ-protocol, P processes c to return the response y(x, c). The amount of
computation W (x, c) required for doing so depends on x, c, and on the challenge
size, denoted k. Longer challenges — hence higher security levels — would usually
claim more computations.

Definition 3 (Security Level). Let P ↔ V be a Σ-protocol, the security level
S(P ↔ V): is defined as the challenge min-entropy

S(P ↔ V) := −min
c

log Pr(c)

This security definition assumes that A’s most rational attack strategy is to
focus her efforts on the most probable challenge. From a defender’s perspective,
verifiers achieve the highest possible security level by sampling challenges from a
uniform distribution.

Definition 4 (Work Factor). Let P ↔ V be a Σ-protocol, the average work
factor W (P ↔ V) is defined as the expected value of W (x, c):

W (P ↔ V) := Ex,c [W (x, c)]



Definition 5 (Security Efficiency). Let P ↔ V be a Σ-protocol, the security
efficiency of P ↔ V, denoted E(P ↔ V), is defined as the ratio between S(P ↔ V)
and W (P ↔ V):

E(P ↔ V) := S(P ↔ V)
W (P ↔ V)

Informally, E(P ↔ V) represents1 the average number of security bits per
mathematical operation.

2.3 Linear Programming

Linear programming (LP) [2, 5–7] problems appear when a linear objective
function must be optimized under linear equality and inequality constraints.
These constraints define a convex polytope. General linear programming problems
can be expressed in canonical form as:

maximize c>x
subject to Ax ≤ b
and x ≥ 0

where x represents the vector of variables (to be determined), c and b are vectors
of (known) coefficients and A is a (known) matrix of coefficients.

Linear programming is common in optimization problems and ubiquitous in
logistics, operational research, and economics. Interestingly, linear programming
has almost never surfaced in cryptography, save a few occasional appearances
in error correcting codes [1], or under the avatar of its NP-hard variant, integer
programming [14].

Every linear problem can be written in so-called “standard form” where the
constraints are all inequalities and all variables are non-negative, by introducing
additional variables (“slack variables”) if needed. Not all linear programming
problems can be solved: The problem might be unbounded (there is no maximum)
or infeasible (no solution satisfies the constraints, i.e. the polytope is empty).

Many algorithms are known to solve LP instances, on the forefront Dantzig’s
Simplex algorithm [5]. The Simplex algorithm solves an LP problem by first
finding a solution compatible with the constraints at some polytope vertex, and
then walking along a path on the polytope’s edges to vertices with non-decreasing
values of the objective function. When an optimum is found the algorithm
terminates — in practice this algorithm has usually good performance but has
poor worst-case behavior: There are LP problems for which the Simplex method
takes a number of steps exponential in the problem size to terminate [6, 15].

Since the 1950’s, more efficient algorithms have been proposed called “interior
point” methods (as opposed to the Simplex which evolves along the polytope’s
vertices). In particular, these algorithms demonstrated the polynomial-time
solvability of linear programs [12]. Following this line of research, approximate
1 i.e. is proportional to



solutions to LP problems can be found using very efficient (near linear-time)
algorithms [13,19].

In this work we assume that some (approximate) LP solver is available.
Efficiency is not an issue, since this solver is only used once, when the ZKP is
designed

3 Optimizing E(P ↔ V)

The new idea consists in assigning different probabilities to different c values,
depending on how much it costs to generate their corresponding y values, while
achieving a given security level. The intuition is that by choosing a certain
distribution of challenges, we may hope to reduce P ’s total amount of effort, but
this also reduces security. As we show, finding the best trade-off is equivalent to
solving an LP problem.

Consider a set Γ of symbols, and a cost function η : Γ → N. Denote by
pj := Pr (i | i ∈ Γj) the probability that a symbol i is emitted, given that i has
cost j. We wish to find this probability distribution.

Let Γj denote all symbols having cost j, i.e. such that η(i) = j. Let γj be the
cardinality of Γj . The expected cost for a given choice of emission probabilities
{pj} is

W = E [η] =
∑
i∈Γ

η(i) Pr(i) =
∑
j

j × γj × pj

W is easy to evaluate provided we can estimate the amount of work associated
with each challenge isocost class Γj . The condition that probabilities sum to one
is expressed as:

1 =
∑
i∈Γ

Pr(i) =
∑
j

γjpj

Finally, security is determined by the min-entropy

S = − log2 max
i

Pr(i) = − log2 max
j
pj

Let ε = 2−S , so that pj ≤ ε for all j. The resulting security efficiency is E =
S/W = (− log2 ε) /W .

We wish to maximize E, which leads to the following constrained optimization
problem:

Given {γj} and ε,


minimize W =

∑
j jpjγj

subject to 0 ≤ pj ≤ ε∑
j γjpj = 1

(1)

This is a linear programming problem [5–7], that can be put in canonical form
by introducing slack variables qj = ε− pj and turning the inequality constraints
into equalities pj +qj = ε. The solution, if it exists, therefore lies on the boundary
of the polytope defined by these constraints.



Note that a necessary condition for an optimal solution to exist is that
ε ≥ 1/

∑
j γj , which corresponds to the choice of the uniform distribution.

Exact solutions to Equation (1) can be found using the techniques mentioned
in Section 2.3.

We call such optimized ZKP versions “thrifty ZKPs”. Note that the zero-
knowledge property is not impacted, as it is trivial to construct a biaised simulator.

4 Thrifty Zero-Knowledge Protocols

The methodology described in Section 3 can be applied to any ZK protocol,
provided that we can evaluate the work factor associated with each challenge
class. As an illustration we analyse thrifty variants of classical ZKPs: Fiat-Shamir
(FS, [8]), Syndrome Decoding (SD, [18]), Permuted Kernels Problem (PKP, [17]),
and Permuted Perceptrons Problem (PPP, [16]).

4.1 Thrifty Fiat-Shamir
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Fig. 2. Security efficiency for biased Fiat-Shamir with n = 3, as a function of ε.
Standard Fiat-Shamir security efficiency corresponds to the dashed line.

In the case of Fiat-Shamir [8] (see [8]), response to a challenge c claims a
number of multiplications proportional to c’s Hamming weight. We have k = n-bit
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Fig. 3. Fiat-Shamir (k = n = 4) optimal probability distribution for challenges
in group j = 0, . . . , 3, as a function of ε. Branching happens at ε = 1/7 and
ε = 1/4. Dashed line corresponds to the standard Fiat-Shamir distribution.

long challenges. Here γj is the number of n-bit challenges having Hamming weight
j, namely

γj =
(
n

j

)
Note that the lowest value of ε for which a solution to Equation (1) exists is
2−n, in which case pj = ε is the uniform distribution, and W = n/2. Hence the
original Fiat-Shamir always has E = 2.

Example 1. Let n = 4. In that case Equation (1) becomes the following problem:

Given ε,


minimize W = 3p1 + 6p2 + 3p3

subject to 0 ≤ p0, p1, p2, p3 ≤ ε
p0 + 3p1 + 3p2 + p3 = 1

Security efficiency is (− log2 ε)/W . Note that the original Fiat-Shamir protocol
has W = 3/2 and security S = 3 bits, hence a security efficiency of E = 2, as
pointed out previously.

Let for instance ε = 1/7, for which the solution can be expressed simply as
p0 = p1 = p2 = ε, and p3 = 1− 7ε, yielding an effort

W = 9ε+ 3(1− 7ε) = 3(1− 4ε)
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Fig. 4. Maximal security efficiency Ê for biased Fiat-Shamir with n = 16, as a
function of security − log ε. Standard Fiat-Shamir security efficiency corresponds
to the dashed line.

Therefore the corresponding security efficiency is − log2 ε
3(1−4ε) , which at ε = 1/7 equals

7 log2 7/9 ' 2.18. This is a 10% improvement over a standard Fiat-Shamir.

Remark 1. We can compute the optimal distribution for any value of ε ≥ 1/8,
i.e. choose the pis that yields the maximum security efficiency Ê(ε). The result
of this computation is given in Figure 2. Corresponding optimal probabilities p̂i
are given in Figure 3.

Remark 2. Figure 2 shows that Ê is not a continuously differentiable function of
ε. The two singular points correspond to ε = 1/7 and ε = 1/4. These singular
points correspond to optimal strategy changes: when ε gets large enough, it
becomes interesting to reduce the probability of increasingly many symbols. This
is readily observed on Figure 3 which displays the optimal probability distribution
of each symbol group as a function of ε.

Example 2. Solving Equation (1) for Fiat-Shamir with n = 16 gives Figure 4
which exhibits the same features as Figure 2, with more singular points positioned
at ε = 2−4, 2−7, 2−9, etc.



Table 1. Challenge effort distribution for SD [18], with a 16× 16 parity matrix
H, over 104 runs.

Challenge Operations by prover Time Optimal pi

0 Return y and σ 0 s ±0.01 0.5

1 Compute y ⊕ s 747.7 s ±2 0.1

2 Compute y · σ and s · σ 181.22 s ±2 0.4

Table 2. Challenge effort distribution for PKP [17], over 107 runs.

Challenge Operations by prover Time Optimal pi

0 Compute W 390 s ±2 0.6

1 Compute W and π(σ) 403 s ±2 0.4

Table 3. Challenge effort distribution for PPP!, over 106 runs.

Challenge Operations by prover Time Optimal pi

0 Return P,Q,W 0.206 s ±0.05 0.5

1 Compute W +Q−1V 6.06 s ±0.05 0.17

2 Compute Q(P (A)) and Q−1V 21.13 s ±0.5 0.1

3 Compute Q−1V 4.36 s ±0.05 0.23

4.2 Thrifty SD, PKP and PPP

The authors implemented2 the SD, PKP and PPP protocols, and timed their
operation as a function of the challenge class. Only the relative time taken by
each class is relevant, and can be used as a measure of W. The methodology
of Section 3 is then used to compute the optimal probability distributions and
construct the thrifty variant of these protocols.

The result of these measurements3 is summarized in Tables 1 to 3. For details
about the protocols we refer the reader to the original descriptions. All in all, we
achieve up to 20% gain in security efficiency using our approach, on both PPP,
PKP and SD.
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A Source Code

The following implementation uses Python 2.7 and the CVXOPT library4 to
solve the constrained optimization problem of Equation (1). Here the γj are
computed for Fiat-Shamir, but could easily be adapted to other settings.
from cvxopt import matrix , solvers
from fractions import Fraction
import math

mul = lambda x,y: x*y

# Binomial coefficient \ binom {n}{k}
def binom (n,k):

return int( reduce (mul ,( Fraction (n-i,i+1) for i in range (k)) ,1))

# Populations \ gamma_k (for Fiat - Shamir )
def get_coeffsp (n):

return [ binom (n,k+1) for k in range (n)]

# Work coefficients k * \ gamma_k (for Fiat - Shamir )
def get_coeffsw (n):

r = get_coeffsp (n)
return [(i+1)*c for i,c in enumerate (r)]

# Solve optimization problem for given n and epsilon
def solve_lp (epsilon , n):

coeffsp = map(float , get_coeffsp (n))
coeffsw = map(float , get_coeffsw (n))

# Put the problem in canonical form , i.e.
# construct matrix A and vectors b, c
# such that the problem is in the form Ax + b <= c
A = []
for i in range (n):

A += [[0.]* i + [1.] + [0.]*(n-i -1)]
A += [map( lambda y:-y, coeffsp )]
for i in range (n):

A += [[0.]* i + [ -1.] + [0.]*(n-i -1)]
A += [ coeffsp ]
A = matrix (A). trans ()
b = matrix ([ epsilon ] * n + [epsilon -1.] + [0.] * n + [1.])
c = matrix ( coeffsw )

# Solve the linear programming problem
sol = solvers .lp(c, A, b)

# Extract solution and append p0
p0 = 1 - sum(i*w for i, w in zip(sol[’x’], coeffsp ))
pi = [p0] + [i for i in sol[’x’]]

# Compute total work (for Fiat - Shamir )
w = sum(i * w for i, w in zip(sol[’x’], coeffsw ))

# Compute total security
sec = -math.log(epsilon , 2)

# Return security , work , efficiency , and optimal probabilities
return (sec , w, sec/w, xi)

# Challenge bits
n = 16

4 http://cvxopt.org/

http://cvxopt.org/


# Number of sampling points
N = 500

# Smallest possible value of epsilon
mineps = 2**( -n)

# Save data to a file by uniformly sampling values of epsilon
f = open(’output %s.txt ’%n, ’w’)
plabel = ’\t’.join ([ ’p%s’%(i) for i in range (n +1)])
f. write (’i\teps\ts\tw\tse\t%s\n’% plabel )

for i in range (N):
s = float (i)/N * n
e = 2**( -s)
s, w, se , xi = solve_lp (e, n)
xi = ’\t’.join(map(str , xi ))
f. write (’%s\t%s\t%s\t%s\t%s\t%s\n’%(i,e,s,w,se ,xi ))

f. close ()
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