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Abstract. Concurrent signatures allow two entities to generate two signatures in such a way that both
signatures are ambiguous till some information is revealed by one of the parties. This kind of signature
is useful in auction protocols and a wide range of scenarios in which involving participants are mutually
distrustful. In this paper, to have quantum-attack-resistant concurrent signatures as recommended by
National Institute of Standards and Technology (NISTIR 8105), the first concurrent signature scheme
based on coding theory is proposed. Then, its security is proved under Goppa Parameterized Bounded
Decoding and the Goppa Code Distinguishing assumptions in the random oracle model. We should
highlight that our proposal can be a post-quantum candidate for fair exchange of signatures without a
trusted third party in an efficient way (without a highly degree of interactions).
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1 Introduction

Concurrent signatures allow two entities named as an initial signer and a matching signer to generate two
ambiguous signatures which are not binding to their real signers till some information called the keystone is
released. The main feature of these kinds of signatures is that either both entities are successful at the end
of an exchange or not. The notion of concurrent signatures was introduced by Chen, Kudla and Paterson
in 2004 [15], and also a provably secure concrete scheme based on Schnorr ring signature scheme [25] was
presented. This primitive is a solution to the problem of fair exchange of digital signatures without employing
a trusted third party such as auction protocols or fair tendering of contracts [15]. For example, consider a
scenario in which B has a contract and put it to tender, and parties A or C would like to propose their price
to win the contract. This procedure can be abused by B since it can show A’s proposal (the proposed price
signed by A) to C to enable it to give a better proposal. With employing concurrent signatures, A present its
proposal (the proposed price signed by concurrent signatures by parties A and B), while it keeps the keystone
secret. Party B sends another concurrent signature as payment instruction to A to show that B accepts A’s
proposal. In this case, there is no advantage for B to show A’s proposal to C since A’s signature is ambiguous
and C cannot be convinced who generates the proposal, A or B. If A is the winner, to complete the payment
procedure, A needs to release the keystone and at the same time A is committed to do the contract with its
proposed price.

Following the work presented by Chen et al. [15], many subsequent concurrent signature schemes have
been proposed [14, 9, 28], where their security is based on hard problems in number theory.

In 1994, Shor gave results to show that quantum computers can break security of cryptographic algorithms
based on number theory [27]. Recently, lots of research on quantum computers has been done to show that
mathematical problems which are difficult for conventional computers can be solved by quantum mechanical
phenomena. Therefore, if large-scale quantum computers are ever built, widely-used public-key cryptographic
algorithms such as concurrent signatures will be broken. This event seriously will compromise security of
digital communications and interactions on the Internet. Post-quantum cryptographic algorithms are secure
versions of previous cryptographic ones against both quantum and classical computers. In 2016, National
Institute of Standards and Technology (NIST) in an internal report [7] emphasizes the need of switching
to post-quantum cryptography. As a consequence, to make classical concurrent signatures resistant against
quantum computer threat, it is necessary to have alternative constructions [18, 24, 5] for this primitive. In
this paper, we focus on presenting concurrent signatures from coding theory.
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In 1978, McEliece introduced the concept of code-based cryptography, and also presented the first code-
based public key encryption scheme from the general decoding problem [18]. The proposed scheme [18]
cannot be transformed to a signature scheme since it is not invertible. Niederreiter [20] modified McEliece
code-based cryptosystem in 1986 such that it can be used to generate a signature scheme. Courtois, Finiasz
and Sendrier [8] proposed the first practical code-based signature scheme called CFS scheme in 2001. They
adapt the full domain hash approach of Bellare and Rogaway [3] to Niederreither encryption scheme [20]
in a way that a message is concatenated with a counter before hashing to make hash values decodable.
Although authors presented some security arguments, it does not support provable security. In 2008, Dallot
[10] gave a slight modification to their signature scheme in a way that the counter is replaced with a random
value, this new scheme is named modified CFS or Dallot scheme, and proved its security under Goppa
Parameterized Bounded Decoding [4] and Goppa Code Distinguishing [26] assumptions in the random oracle
model [3]. Following the work presented by Dallot [10], several code-based signature schemes with additional
properties such as identity-based [6], one-time signatures [2], ring signatures [31], threshold ring [30, 19, 11],
blind signatures [21], signcryption scheme [17] and undeniable signature [1] have been proposed, but there is
no code-based scheme for concurrent signatures.

Contribution. A concurrent signature is a useful protocol that allows secure, efficient and fair exchange
of signatures for legal contracts without requiring a trusted third party. Since security of existing concurrent
signature schemes [14, 9, 28] is based on hard problems in number theory, and also it has been proved that
cryptography primitives based on number theory are not resistant against quantum attacks [27], in this
paper, a concurrent signature scheme from coding theory is proposed. Then, its security is proved under hard
problems in coding theory, Goppa Parametrized Bounded Decoding and the Goppa Code Distinguishing
problems, in the random oracle model [3]. To the best of our knowledge, this is the first provably secure
concurrent signature scheme from coding theory. To do so, we apply the paradigm “the signer or the matching
signer generates a signature” to the Dallot signature scheme [10] to generate ambiguous signatures for two
signers and also we use the encryption scheme presented by Niederreiter [20] as a keystone fix generation
algorithm. As a consequence, the proposed construction are ambiguous till the keystone is released by one of
the signers.

1.1 Organization of the paper

The rest of this paper is organized as follows. Section 2 presents background and complexity assumptions
employed as the signature foundation, the outline of concurrent signature algorithm, its protocol and its
security model. Our proposed scheme along with its formal security proof and efficiency analysis are given in
Section 3 and 4, respectively. Section 5 presents conclusion.

2 Background

In this section, first the used notations in the paper are introduced, then, we review several fundamental
backgrounds employed in this research, including coding theory, complexity assumptions, Dallot signature
scheme, concurrent signature algorithms and protocol and its security model.

2.1 Notations

In this subsection, the notations used in the paper are defined.

– ⊕ : X-OR operation.
– |y|: the number of bits of the string y.
– wH(y): the Hamming weight of a word y or the number of non-zero positions of y.
– yT : transpose of a vector y.
– ⊥: an empty string.
– θ ← B(y1, ...): the operation of assigning the output of algorithm B on inputs y1, ... to θ.

– y
$← Y : the operation of assigning a uniformly random element of Y to y.
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2.2 Coding Theory

Let F2 be the field with two elements and a binary code C(n, k) be a linear subspace of dimension k of Fn2 ,
where k and n ∈ N. Elements of Fn2 and C are named words and codewords, respectively. Code C(n, k) is
presented by a (n−k)×n binary parity check matrix H such that for a codeword x ∈ Fn2 belonged to C(n, k),
we have HxT = 0 and the syndrome of a word x ∈ Fn2 is defined as s = HxT , where s ∈ Fn−k2 . A syndrome
s is said to be t-decodable if there exists a word x ∈ Fn2 such that HxT = s and wH(x) ≤ t, where t = n−k

logn
2

is the error correcting capability of the code C(n, k).
Goppa codes are a subclass of alternant codes [16], and widely used in code-based cryptography. Goppa

codes G(n, k) of t error correcting capability are of length n = 2m and dimension k = n−mt, where m and
t ∈ N. It is assumed that DECH be the decoding algorithm of Goppa code G(n, k) with the parity check
matrix H.

2.3 Complexity assumptions

Hard problems and security assumptions used in the paper are defined as follows [10, 12, 26].

Definition 1. Goppa Parameterized Bounded Decoding (GPBD) problem. Given a random (n − k) × n
binary matrix H and a syndrome s ∈ Fn−k2 , output a word x ∈ Fn2 such that wH(x) ≤ n−k

logn
2

and HxT = s.

Definition 2. Goppa Parametreized Bounded Decoding (GPBD) assumption. The GPBD problem is (τ, ε)-
hard if there is no algorithm C which runs in time at most τ and with probability at least ε breaks the GPBD
problem.

Definition 3. Goppa Code Distinguishing (GD) problem. Given a (n − k) × n binary parity check matrix
H, output a bit b ∈ {0, 1} indicating if H is a random binary parity check matrix or a Goppa code random
binary parity check matrix.

The advantage of the distinguisher C is defined as follows.

AdvGDC (n, k) = Pr[1← C(H) | H $← G(n, k)]−
Pr[1← C(H) | H $← B(n, k)]

(1)

Definition 4. Goppa Code Distinguishing (GD) assumption. The GD problem is (τ, ε)-hard if there is no
algorithm C which runs in time at most τ breaks the GD problem with probability AdvGDC (n, k) ≥ ε.

2.4 Dallot signature scheme

In this subsection, we review the modified CFS signature proposed by Dallot [10], Dallot scheme, whose
security is based on the GD and GPBD assumptions in the random oracle model [3].

1. Setup: The system parameters are as follows. Let n, k, m and t ∈ N be parameters for a Goppa code of
length n = 2m, dimension k and error correcting capability t = n−k

logn
2

such that t-decoding has complexity

at least 2λ for a security parameter λ. Let g : {0, 1}∗ → {0, 1}n−k be a random oracle.
It is assumed that H̃ be a (n − k) × n parity check matrix of a random binary Goppa code and DECH̃
be its t-decoding algorithm. The public key is pk = H = UH̃P , and the secret key is sk = (DECH̃ , U, P ),
where U is a random binary non-singular (n − k) × (n − k) matrix and P is a random n × n binary
permutation matrix. Therefore, public parameters are Para = {n, k,m, t, g}.

2. Sign: To create a signature θ on the message M ∈ {0, 1}∗, the signer picks a number r randomly chosen
from {1, ..., 2n−k}, computes β = g(r,M) and x = DECH̃(U−1β)P . If x = ⊥, it chooses another r, and
repeats the signing procedure. The signature θ on the message M is (r, x,M).
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3. Ver: Given H, Para and a signature θ = (r, x,M), if HxT = g(r,M) and wH(x) ≤ t, the signature θ on
the message M is valid and outputs 1; otherwise, it outputs 0 and the signature is invalid.

Correctness. The correctness of the signature θ = (r, x,M) is verified as follows:

HxT

= (UH̃P )(DECH̃(U−1β)P )T

= (UH̃P )PT (DECH̃U−1β)T

= UU−1β
= g(r,M).

(2)

2.5 Concurrent signature algorithms

A concurrent signature scheme consists of Setup, KGen, ASign, AVer and Ver algorithms as follows.

– Setup: Given a system security parameter λ, it outputs the set of users U , the message space M, the
signature space R, the keystone space K, the keystone fix space X , a function KGen : K → X and
other public parameters, π. It also outputs users’ public keys pk and each user has its secret key sk; i.e.
(Para, (sk, pk))← Setup(λ), where Para = {U ,M,R,K,X , π,KGen}.

– KGen: Given the system’s parameter Para, a random keystone κ ∈ K, it returns the keystone fix x ∈ X
such that x = KGen(κ).

– ASign: Given the system’s parameter Para, signer’s secret key ski and its corresponding public key pki,
designated user’s public key pkj , a keystone fix x ∈ X and the message M ∈M or equivalently an input
tuple (Para, ski, pki, pkj , x,M), it outputs an ambiguous signature θ = (r, x, y), where r ∈ R, x, y ∈ X ;
i.e. θ ← ASign(Para, ski, pki, pkj , x,M).

– AVer: Given the system’s parameter Para, users’ public keys pki and pkj , the signature θ = (r, x, y) and
the message M , returns 1 if θ is valid; otherwise, it returns 0; i.e. {0, 1} ← AVer(Para, pki, pkj , θ,M).

– Ver: Given the system’s parameter Para, users’ public keys pki and pkj , the signature θ = (r, x, y),
the keystone κ ∈ K and the message M , and returns 1 if 1 ← AVer(Para, pki, pkj , θ,M) and also
x = KGen(κ) holds; otherwise, it returns 0; i.e. {0, 1} ← Ver(Para, pki, pkj , θ, κ,M).

2.6 Concurrent signature protocol

In a concurrent signature protocol, there are two participants A and B. The participant, here A, who generates
the keystone and the first ambiguous signature is called the initial signer and the one, here B, who answers
to the initial signer by generating another ambiguous signature is called the matching signer. The protocol
works as follows. The Setup algorithm is run by A and B to specify system’s public parameters, A’s pub-
lic key pkA and its corresponding secret key skA and B’s public key pkB and its corresponding secret key skB .

– The initial signer A selects a random keystone κ ∈ K, computes the keystone fix x = KGen(κ), and then
runs ASign algorithm for the input tuple (Para, skA, pkA, pkB , x,MA) to obtain an ambiguous signature
θA = (rA, x, yA), where rA ∈ R, x, yA ∈ X . Then, A sends θA to B.

– The matching signer B checks if A’s ambiguous signature θA is valid or not using AVer algorithm. If it is
valid, B runs ASign algorithm for the input tuple (Para, skB , pkB , pkA, x,MB) to obtain an ambiguous
signature θB = (rB , x, yB), where rB ∈ R, x, yB ∈ X . Then, B sends θB to A. Note that B uses the same
keystone fix x ∈ X in its signature.

– The initial signer checks that if B’s ambiguous signature θB is valid or not using AVer algorithm. If not,
A aborts; otherwise, A sends the keystone κ ∈ K to B. Note that Ver algorithm outputs valid on inputs
(θA, κ) and (θB , κ).



5

2.7 Security model of concurrent signature schemes

A concurrent signature scheme should be existentially unforgeable under an adaptive-chosen-message attack
in the multi-user setting, ambiguous and fair [23].

Unforgeability. To give a formal definition for unforgeability of concurrent signature schemes, the following
game between an adversary A and a challenger C is considered to be played [23].

1. Setup: Algorithm C runs the Setup algorithm with a security parameter λ to obtain system’s parameter
Para and user’s key pair (pk, sk), then it sends (pk, Para) to A.

2. The adversary A in addition to making queries to random oracles adaptively issues a polynomially
bounded number of questions to the Private Key Extract, KGen, KReveal and ASign oracles as follows.

– Private Key Extract: Adversary A can ask for the secret key of each user with public key pk, and C
in its response returns its corresponding secret key, sk.

– KGen: Adversary A can ask C to choose a keystone κ ∈ K, and returns its corresponding keystone fix
x = KGen(κ) to A. Note that A can choose the keystone κ by itself and generate the corresponding
keystone fix x using KGen algorithm.

– KReveal: Adversary A can ask for the keystone κ ∈ K of each keystone fix x ∈ X which was returned
by KGen. In response, C returns κ if x was a previous KGen output; otherwise, it returns invalid.

– ASign: Adversary A can ask for an ambiguous signature on the tuple (pki, pkj , x,M), where M ∈M
is the message, x ∈ X is the keystone fix and pki and pkj are users’ public keys. Then, C returns
θ = (r, x, y)← ASign(Para, ski, pki, pkj , x,M), where x, y ∈ X and r ∈ R.

Note that adversary A can generate concurrent signatures in form of (θ, κ) using KGen, ASign and
KReveal algorithms for messages and any pairs of users.

3. Eventually, A returns an ambiguous signature θ∗ = (r∗, x∗, y∗) on the message M∗ with respect to public
keys pk∗i and pk∗j such that 1 ← AVer(Para, pk∗i , pk

∗
j , θ
∗,M∗), and wins the forgery game if one of the

two following conditions hold:

Condition 1. Adversary A has not made ASign query for input of (pk∗i , pk
∗
j , x
∗,M∗) and (pk∗j , pk

∗
i ,

x∗,M∗), and also it has not made Private Key Extract query on pk∗i and pk∗j .

Condition 2. Adversary A has not made ASign query on input (pk∗i , pkj , x
∗,M∗) and Private Key

Extract query on input pk∗i , and the keystone fix x∗ was generated by A or KGen oracle.

The formal definition of existential unforgeability of concurrent signatures is given in Definition 5.

Definition 5. A concurrent signature scheme is (τ, qro, qpk, qkr, qs, ε)-existentially unforgeable against adap-
tive chosen message attack in the multi-user setting if there is no adversary which runs in time at most τ ,
makes at most qro random oracle queries, qpk Private Key Extract queries, qkr KRveal queries, qs ASign
queries, and can win the forgery game with probability at least ε.

Condition 1 of the winning of the adversary in the forgery game models the forgery of an ambiguous
signature in a way that it does not know both initial and matching signer’s secret keys, and unforgeability
in this case ensures that nobody other than those can generate ambiguous signatures. Condition 2 models
the forgery in which the adversary knows secret key of one of the signers and tries to cheat the other, and
unforgeability in this case guarantees an initial signer or a matching signer cannot forge concurrent signatures
on behalf of each other.
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Remark 1. To prove unforgeability of the scheme, it is enough to show that it is unforgeable against Condition
2, since the adversary A in Condition 2 is more powerful than the adversary in Condition 1 since it has the
secret key of one of the two signers (here sk∗j ) in the concurrent signature protocol in addition to capabilities
of the adversary in Condition 1.

Ambiguity. To give a formal definition for ambiguity of concurrent signature schemes, the following game
between an adversary A and a challenger C is considered to be played [23].

1. Setup: This is the same as the Setup in the unforgeability game.

2. The adversary A in addition to making queries to random oracles adaptively issues a polynomially
bounded number of questions to the Private Key Extract, KGen, KReveal and ASign oracles as ex-
plained in the unforgeability game.

3. Adversary A asks for an ambiguous signature of the tuple (pki, pkj , x,M). In response, C chooses b ∈ {i, j}
at random, and returns either θi = (ri, x, yi) ← ASign(Para, ski, pki, pkj , x,M) or θj = (rj , x, yj) ←
ASign(Para, skj , pkj , pki, x,M).

4. Eventually, A outputs b′ ∈ {i, j}, and wins the ambiguity game if b′ = b and A has not made a KReveal
query on any values of x, yi or yj .

The formal definition for ambiguity of concurrent signatures is given in Definition 6.

Definition 6. A concurrent signature scheme is ambiguous if there is no polynomially bounded adversary
which can win the ambiguity game with probability non-negligibly greater than 1

2 .

Fairness. To give a formal definition for fairness of concurrent signature schemes, the following game between
an adversary A and a challenger C is considered to be played [23].

1. Setup: This is the same as the Setup in unforgeability game.

2. The adversary A in addition to making quires to random oracles adaptively issues a polynomially bounded
number of questions to the Private Key Extract, KGen, KReveal and ASign oracles as explained in the
unforgeability game.

3. Eventually, A returns a keystone κ∗ ∈ K along with the ambiguous signature θ∗ = (r∗, x∗, y∗) on the
message M∗ with respect to public keys pk∗i and pk∗j such that 1 ← AVer(Para, pk∗i , pk

∗
j , θ
∗,M∗), and

wins the fairness game if one of the two following conditions holds:

Condition 1. Adversary A has not made KRveal query on input x∗ which was returned by KGen algo-
rithm, and also 1← Ver(Para, pk∗i , pk

∗
j , θ
∗, κ∗,M∗).

Condition 2. Adversary A generates another ambiguous signature θ′ = (r′, x∗, y′) on the message M ′

for the public keys pk∗i and pk∗j such that 1 ← AVer(Para, pk∗i , pk
∗
j , θ
′,M ′), and also for (κ∗, θ∗),

1← Ver(Para, pk∗i , pk
∗
j , θ
∗, κ∗,M∗), but 0← Ver(Para, pk∗i , pk

∗
j , θ
′, κ∗,M ′).

The formal definition for fairness of concurrent signatures is given in Definition 7.

Definition 7. A concurrent signature scheme is fair if the success probability of a polynomially bounded
adversary in the fairness game is negligible.

Note that the definition of fairness under Condition 1 guarantees that only the participant who creates the
keystone can reveal it to generate a binding signature, and fairness under Condition 2 ensures that each valid
ambiguous signature generated using the same keystone fix will become binding by revealing the keystone.
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3 Our code-based concurrent signature scheme

In this section, first details of our proposed concurrent signature scheme is presented; then, its security is
proved under GPBD and GD assumptions in the random oracle model [3].

3.1 Details of the proposed concurrent signature scheme

In this subsection, we present the details of a concurrent signature scheme. A concurrent signature consists
of the following algorithms:

1. Setup: The system parameters are as follows. Let n, k, m and t ∈ N be parameters for a Goppa code of
length n = 2m, dimension k and error correcting capability t = n−k

logn
2

such that t-decoding has complexity

at least 2λ for a security parameter λ. Let g : {0, 1}n−k×{0, 1}∗ → {0, 1}n−k and h : {0, 1}n−k → {0, 1}n
be random oracles, where the latter maps its inputs to vectors such that wH(h(.)) ≤ t. It is assumed that
H̃ be a (n − k) × n parity check matrix of a random binary Goppa code and DECH̃ be its t-decoding

algorithm. The public key is pk = H = UH̃P , and the secret key is sk = (DECH̃ , U, P ), where U is a
random binary non-singular (n−k)×(n−k) matrix and P is a random n×n binary permutation matrix.
Therefore, public parameters are Para = {n, k,m, t, g, h}.

2. KGen: Given κ, wH(κ) ≤ t, as its input, computes x = h(Hiκ
T ) such that wH(x) ≤ t and returns x.

3. ASign: To generate an ambiguous signature θ on the message M ∈ {0, 1}∗ and the keystone fix x, the
signer i chooses a random number r from {1, ..., 2n−k}, and computes α = g(r,M,Hi, Hj) ⊕Hjx

T and
y = DECH̃i

(U−1i α)Pi. If y = ⊥, it chooses another r, and repeats the signing procedure. The signature θ
on the message M is (r, x, y).

4. AVer: Given Para, Hi, Hj and a signature θ = (r, x, y), the signature θ on the message M is valid and
outputs 1 if and only if Hiy

T ⊕Hjx
T = g(r,M,Hi, Hj), wH(x) ≤ t, and wH(y) ≤ t; otherwise, it outputs

0 and the ambiguous signature is invalid.

5. Ver: Given θ = (r, x, y) and the keystone κ, the concurrent signature is valid if h(Hiκ
T ) = x, and also

Hiy
T ⊕Hjx

T = g(r,M,Hi, Hj), wH(x) ≤ t, wH(κ) ≤ t, and wH(y) ≤ t; otherwise, it is invalid.

3.2 Analysis of the proposed scheme

In this subsection, first the correctness of the proposal is verified and then its properties are proved in the
random oracle model (see [3] for the background). In order to prove unforgeability of the proposed scheme,
we need to show that it is unforgeable against adversary A (as defined in Definition 5).

To prove ambiguity and fairness of our proposed scheme, two lemmas will be given and our main result
on the security of the proposed scheme is summarized in Theorem 1.

Correctness. The correctness of the proposed scheme is as follows, and we use α = g(r,M,Hi, Hj)⊕Hjx
T

in what follows.

Hiy
T ⊕Hjx

T

= (UiH̃iPi)(DECH̃i
(U−1i α)Pi)

T ⊕Hjx
T

= (UiH̃iPi)P
T
i (DECH̃i

U−1i α)T ⊕Hjx
T

= UiU
−1
i α⊕Hjx

T

= α⊕Hjx
T

= g(r,M,Hi, Hj)⊕Hjx
T ⊕Hjx

T

= g(r,M,Hi, Hj).

(3)

If θ = (r, x, y) is a valid ambiguous signature on the messageM , the relationHiy
T⊕Hjx

T = g(r,M,Hi, Hj)
holds. If the signature is generated by the jth signer, we can show its correctness in a similar way.
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Lemma 1. If the GPBD problem is (τGPBD, εGPBD)-hard and GD problem is (τGD, εGD)-hard, then the
proposed scheme is (τ, qh, qg, qpk, qkg, qkr, ε)-unforgeable against adversary A such that

εGPBD ≥
ε−εGD−qs(2qs+qg)2−(n−k)−2−(n−k)−((n

t))
−1

qgqh
,

τGPBD ≤ τ + qs(2mt
2) + qkg(mt

2),
(4)

where n, k, t and m are system’s constants. In addition, qg, qh, qpk, qkg, qkr queries are the number of queries
to oracles g(.), h(.) Private Key Extract, KGen, KRveal and ASign, respectively.

Proof. It is assumed that there is an adversary A against unforgeability of the scheme with success probability
ε. We construct another algorithm C to solve GPBD problem with success probability εGPBD. Given a random
binary matrix H∗ and a random vector s∗, algorithm C outputs z∗ such that H∗(z∗)T = s∗ and wH(z∗) ≤ t.
Note that substituting the public key of the signer with a random binary matrix H∗ changes the success
probability of the simulator C with advantage at most εBD to solve the permuted Goppa code distinguishing.

The algorithm C runs Setup on a security parameter λ, and gets a random instance of the GPBD problem,
(n, k,m, t,H∗, s∗), to set signer’s public key, Hi, to H∗ and generate the public parameters Para = {n, k,m, t}
and invokes the adversary A on Para and Hi = H∗. The adversary A runs in time at most τ , makes qg and
qh queries to the random oracles g(.) and h(.), respectively, and makes qpk queries to the Private Key Extract
oracle, qkg queries to the KGen oracle, qkr KRveal queries and qs queries to the ASign oracle, and can win the
unforgeability game with probability at least ε1 = ε−εBD. Algorithm C maintains initially empty associative
tables Tg[.] and Th[.] to simulate random oracles g(.) and h(.), and answers A’s oracle queries as described
below.

– g(.) queries: If Tg[.] is defined for query (r,Hi, Hj ,M), then, C returns its value; otherwise, C chooses

Tg[r,Hi, Hj ,M ]
$← {0, 1}n−k , and returns g(r,Hi, Hj ,M) to A.

– h(.) queries: If Th[.] is defined for the query HκT , then, C returns its value; otherwise, C chooses

Th[HκT ]
$← {0, 1}n such that its hamming weight is less than or equal to t, wH(h(HκT )) ≤ t, and

returns h(HκT ) to A.

– KGen queries: Algorithm C first chooses a random keystone κ such that wH(κ) ≤ t, computes HκT ,
makes h(.) query on the input HκT . If Th[.] has been defined for query HκT , then, C returns its value;

otherwise, Th[HκT ]
$← {0, 1}n, wH(h(HκT )) ≤ t, and returns x = h(HκT ) to A, and maintains the tuple

(κ, x) in a list named as K-list.

– KReveal queries: For each keystone fix x generated by a previous KGen query, C looks for the tuple (κ, x)
in the K-list, and returns κ; otherwise, C returns invalid.

– Private Key Extract queries: Algorithm C returns the secret key corresponding to the requested public
key H if H 6= H∗. If H = H∗, C outputs invalid.

– ASign queries: For a query (Hi, Hj , x,M), C computes an ambiguous signature following the real ASign al-

gorithm. If Hi = H∗, C chooses a random r from {1, ..., 2n−k}, selects y
$← {0, 1}n−k such that wH(y) ≤ t

and computes α = H∗yT ⊕Hjx
T . If Tg[r,H

∗, Hj ,M ] has already been defined, then, C halts, returns ⊥,
and sets bad ← true; otherwise, it sets Tg[r,H

∗, Hj ,M ] ← α, and returns the signature θ = (r, x, y) on
the message M with respect to public keys H∗ and Hj to A.

– Finally, A outputs a signature θ∗ = (r∗, x∗, y∗) on the message M∗ with respect to public keys H∗ and
H∗j with probability ε1, and wins if adversary A has not made ASign query on input (H∗, H∗j , x

∗,M∗),
Private Key Extract query on input H∗ and the keystone fix x∗ was generated by A or by KGen.

The probability of A in returning a forged signature θ∗ is ε2 = Pr[E0] Pr[E1|E0] which is computed as
follows. First of all, we define events E0 and E1.

– E0 : Algorithm C does not abort as a result of ASign simulation.
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– E1: Adversary A wins the forgery game under Condition 2.

To lower-bound the probability Pr[E0] and Pr[E1|E0], we need to compute the probability Pr[¬bad], where
events bad indicate that C aborts in ASign simulation. These probabilities are computed as follows.

Claim 1. Pr[E0] = Pr[¬bad] ≥ 1− qs((qs + qg)2
−(n−k))− qs22−(n−k).

Proof. The probability of the event E0 is computed as follows.

– Case 1. If the tuple (r,H∗, Hj ,M) generated in one ASign simulation has been occurred by chance in
a previous query to the oracle g(.), we have bad← true. Since there are at most qg + qs entries in the
table Tg[.] and the number of r, uniformly distributed in Fn−k2 , is 2n−k, the probability of this event
for one ASign query is at most (qg + qs)2

−(n−k). Hence, the probability of this event for qs queries is
at most qs(qg + qs)2

−(n−k).

– Case 2. If C previously used the same randomness r, uniformly distributed in Fn−k2 , in one ASign
simulation, we have bad← true. Since there are at most qs ASign simulations, this probability is at
most qs2

−(n−k). Therefore, for qs ASign queries the probability of this event is at most qs
22−(n−k).

Claim 3. Pr[E1|E0] ≥ ε1.

Proof. The value of Pr[E1|E0] is the probability that A wins the forgery game provided that C does
not abort as a result of A’s ASign queries. If C did not abort as a result of A’s queries, all its responses
to those queries are valid. Therefore, by hypothesis A will win the forgery game with probability at least
ε1.

Therefore, the probability that A returns a tuple (r∗, x∗, y∗, g) is at least

ε1 − qs(2qs + qg)2
−(n−k).

Since g and h are random oracles, the probability of the event that x∗ = h((H∗κ∗T )) is less than 1

(n
t)

and

also the probability that g = g(r∗, H∗, H∗j ,M
∗) is less than 2−(n−k), unless they are asked during the attack.

Hence, in what follows it is likely that queries (r∗, H∗, H∗j ,M
∗) and (H∗κ∗T ) are asked during a successful

attack. The lower bound of probability of wining the forgery game after making queries to g and h oracles is
at least

ε1 − qs(2qs + qg)2
−(n−k) − 2−(n−k) − (

(
n

t

)
)
−1

.

Algorithm C employs A, guesses fixed indices 1 ≤ υ1 ≤ qh and 1 ≤ υ2 ≤ qg, and hopes that υ1 be the

index of the query (H∗κ∗T ) to oracle h and υ2 be the index of the query (r∗, H∗, H∗j ,M
∗) to the oracle g.

Then, C responses with x∗ for the query (H∗κ∗T ) and with s∗ ⊕ H∗j x∗
T for the query (r∗, H∗, H∗j ,M

∗).

The probability of these events is 1
qgqh

. Since the tuple (r∗, x∗, y∗) is a valid signature, we have wH(x∗) ≤ t,
wH(y∗) ≤ t and

H∗y∗T ⊕H∗j x∗
T = g(r∗, H∗, H∗j ,M

∗).

With substituting the value of g(r∗, H∗, H∗j ,M
∗) = s∗ ⊕H∗j x∗

T , we have

H∗y∗T ⊕H∗j x∗
T = s∗ ⊕H∗j x∗

T

H∗y∗T = s∗

with probability at least

ε1 − qs(2qs + qg)2
−(n−k) − 2−(n−k) − (

(
n
t

)
)
−1

qgqh
,

where ε1 = ε− εGD. As a consequence, y∗ is a t-decodable of s∗.
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Algorithm C’s run-time τGPBD is A’s run-time, τ , plus the time required to respond to hash queries,
qkg KGen queries and qs ASign queries. Each KGen simulation takes one syndrome computation and each
ASign simulation takes two syndrome computations whose cost is mt2. Therefore, C’s run-time is τGPBD ≤
τ + qkg(mt

2) + qs(2mt
2). This completes the proof.

Lemma 2. The proposed concurrent signature scheme is ambiguous in the random oracle model.

Proof. The algorithm C runs Setup on a security parameter λ, and invokes the adversary A on Para and
users’ public keys. Adversary A issues a polynomially bounded number of random oracle queries, Private
Key Extract, KGen, KRveal and ASign queries adaptively as described in the unforgeability game. Then, C
chooses two public keysHi andHj , and makes ASign query on (Hi, Hj , x,M). In response, C chooses b ∈ {i, j}
at random, and returns θb = (rb, x, yb)← ASign(Para, skb, Hb, H¬b, x,M). Adversary A returns b′ = b with
probability 1

2 . To show the value of this probability, we compute the probability of ith signer in generating

θi. Given (Hi, Hj , x,M), the ith signer selects ri
$← {1, ..., 2n−k}, computes α = g(ri,M,Hi, Hj)⊕Hjx

T and
yi = DECH̃i

(U−1i α)Pi, and the signature is (ri, x, yi). As a consequence, the probability of the ith signer in

creating an ambiguous signatures is 1
2n−k and the value of this probability is the same for the jth signer.

Therefore, the probability of A in guessing the signature created by the ith signer is indistinguishable from
the one generated by the jth signer, and A guesses the real signer of the ambiguous signature with probability
1
2 .

Lemma 3. The proposed concurrent signature scheme is fair in the random oracle model.

Proof. The algorithm C runs Setup on a security parameter λ, and invokes the adversary A on Para and
users’ public keys. The adversary A runs in time at most τ , makes qg and qh queries to the random oracles g(.)
and h(.), qpk queries to the Private Key Extract oracle, qkg queries to the KGen oracle, qkr KRveal queries
and qs queries to the ASign oracle, and C answers A’s oracle queries as described in the unforgeability game.
Finally, it is assumed that A wins the fairness game with non-negligible probability, and returns a keystone
κ∗ ∈ K along with signature θ∗ = (r∗, x∗, y∗) on the message M∗ with respect to public keys H∗i and H∗j such
that 1 ← AVer(Para,H∗i , H

∗
j , θ
∗,M∗). Since A wins the fairness game, one of the two following conditions

holds:

Condition 1. Adversary A has not made KRveal query on input x∗ returned by KGen algorithm, and
1← Ver(Para, pk∗i , pk

∗
j , θ
∗, κ∗,M∗).

Condition 2. Adversary A generates another ambiguous signature θ′ = (r′, x∗, y′) on the message M ′ for
the public keys pk∗i and pk∗j such that 1 ← AVer(Para, pk∗i , pk

∗
j , θ
′,M ′), and also for (κ∗, θ∗), 1 ←

Ver(Para, pk∗i , pk
∗
j , θ
∗, κ∗,M∗), but 0← Ver(Para, pk∗i , pk

∗
j , θ
′, κ∗,M ′).

In the following cases, A’s output analysis are given based on the aforementioned conditions.

– Case 1 (Analysis of Condition 1). In this case, it is assumed that A with non-negligible probability
returns a valid ambiguous signature θ∗ = (r∗, x∗, y∗) along with a keystone κ∗ such that for (κ∗, θ∗),
1← Ver(Para,H∗i , H

∗
j , θ
∗, κ∗,M∗) which this is equivalent to that C has output the tuple (κ∗, x∗) with

non-negligible probability such that x∗ = h(H∗i κ
∗T ), where κ∗ is a keystone and x∗ is the output of KGen

algorithm without making KReveal query on x∗. The probability of A in returning the pair (κ∗, x∗) with-
out making KReveal query on x∗ is qhqkg2

−(n−k) and so negligible. This contradicts the assumption that
A returns this pair with non-negligible probability.

– Case 2 (Analysis of Condition 2). In this case, it is assumed that A outputs θ′ = (r′, x∗, y′) as an-
other valid ambiguous signature for public keys H∗i and H∗j on the message M ′ such that for θ′,1 ←
AVer(Para,H∗i , H

∗
j , θ
′,M ′), while 0← Ver(Para,H∗i , H

∗
j , θ
′, κ∗,M ′) on the input (θ′, κ∗). Since θ∗ is a

valid ambiguous signature, AVer for that returns 1, and by assumption Ver algorithm on input (κ∗, θ∗)
outputs 1, so x∗ = h(H∗i κ

∗T ) is hold. Because θ∗ and θ′ shares the same value x∗ and also AVer on input
θ′ returns 1, then 1 ← Ver(Para,H∗i , H

∗
j , θ
′, κ∗,M ′) which it is a contradiction with the assumption

which states that 0← Ver(Para,H∗i , H
∗
j , θ
′, κ∗,M ′).
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Theorem 1. The proposed concurrent signature scheme is secure under GPBD and GD assumptions in the
random oracle model.

Proof. The proof follows directly from Lemmas 1, 2 and 3.

4 Efficiency Analysis

Each signer’s public key, H, is a 2m ×mt matrix which takes mt2m bits to be stored, and also the signature
θ in our scheme consists of three elements x, y and r, where x and y are n = 2m-bit vectors of weight t

which each one takes log
(2m

t )
2 bits to be stored, and r is a randomly chosen element from {1, ..., 2mt} which it

takes mt bits to be stored. Hence, the size of the signature θ is 2 log
(2m

t )
2 +mt. Computational cost of signa-

ture scheme is computed as follows. Keystone generation, KGen algorithm, takes one syndrome computation
which costs mt2 bit operations. Ambiguous signature generation, ASign algorithm, requires one syndrome
computation and t! decodings which the former costs mt2 and the latter needs m3t2 bit operations. As a
consequence, ambiguous signature generation costs t!(m3t2) + mt2. Ambiguous signature verification, AVer
algorithm, needs two syndrome computation, and so it costs 2mt2. Signature verification, Ver algorithm,
needs three syndrome computations and so it costs 3mt2. In Table 1, KGen, ASign, AVer and Ver compu-
tational costs and signature size are summarized.

Table 1. Computation costs of our scheme

Computational KGen ASign AVer Ver Signature
Costs Cost Cost Cost Cost Size

The proposal mt2 t!m3t2 2mt2 3mt2 2 log
(2

m

t )
2

+mt2 +mt

To have an efficient signature scheme, it is recommended that the number of decoding computations for
signing messages are reduced, so the parameter t should be small. In 2001, Courtois et al. [8] proposed to
use m = 16 and t = 9, but these parameters are not resistant against the generalized birthday attack [13].
In 2009, Finiasz and Sendrier [13] recommended m = 22 and t = 9, and with these parameters, the security
level is 281.7 and the generalized birthday attack is prevented. For parameters m = 22 and t = 9, each signer’s
public key is about 99MBytes, signature size will be 557 bits, KGen takes 210.8 bit operations, and ASign,
AVer and Ver costs 238.19, 211.8 and 212.38 bit operations, respectively. The size of public keys in code-based
cryptography (Dallot scheme [10] and our scheme) is large, and can be reduced following the proposals in
[29, 22].

5 Conclusion

In this paper, a code-based concurrent signature scheme is proposed, and its security is proved under Goppa
Parameterized Bounded Decoding and the Goppa Code Distinguishing assumptions in the random oracle
model. We should emphasize that this post-quantum primitive is useful where efficient, secure and fair
exchange of signatures without a trusted third party is required, and is widely employed in electronic e-
commerce services and auction protocols. However, the size of public keys in our proposal or Dallot scheme
[10] is large, many efforts are made to reduce the public key size [29, 22]. As a future work, we focus on
presenting other forms of concurrent signature schemes based on coding theory such as its extension to the
multi-party case in which several parties can exchange signatures in a fair way concurrently.
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