
CHAOS MACHINE: DIFFERENT APPROACH TO THE

APPLICATION AND SIGNIFICANCE OF NUMBERS

Maciej A. Czyzewski
mail@maciejczyzewski.me

May 16, 2016

Abstract. In this paper we describe a theoretical model of
chaos machine, which combines the benefits of hash function
and pseudo-random function, forming flexible one-way
push-pull interface. It presents the idea to create a universal
tool (design pattern) with modular design and customiz-
able parameters, that can be applied where randomness
and sensitiveness is needed (random oracle), and where
appropriate construction determines case of application
and selection of parameters provides preferred properties
and security level. Machine can be used to implement
many cryptographic primitives, including cryptographic
hashes, message authentication codes and pseudo-random
number generators. Additionally, document includes sample
implementation of chaos machine named Naive Czyzewski
Generator, abbreviated NCG, that passes all the Dieharder,
NIST and TestU01 test sets. Algorithm was designed and
evaluated to be a cryptographically strong, inasmuch as
indistinguishable from a uniform random function. The
generator was developed to work as cryptographically secure
pseudo-random number generator, collision resistance hash
function or a cryptographic module. One can target a given
period length by choosing the appropriate space parameter,
i.e., for a given parameter m, algorithm is claimed to have
period between 28m to 216m.

Keywords. chaos machine · dynamical system · chaotic
behavior · randomness · control theory · chaotic map ·
pseudo-random function · push-pull interface

Introduction

A lot of research has gone into chaos and randomness theory.
Development in computer software and applications contin-
ues to be very dynamic. Each software problem requires dif-
ferent tools and algorithms to solve it effectively and achieve
best results. As a consequence, we witness the announcement
of new projects in quick succession with multiple updates.
The engineer’s problem is how to decide which method will
suit his needs best.

Random numbers have been one of the most useful ob-
jects in statistics, computer science, cryptography, modeling,
simulation, and other applications though it is very difficult
to construct true randomness. Many applications of ran-
domness have led to the development of several methods for

generating random data. The generation of pseudo-random
numbers is an important and common task in computer pro-
gramming. Cryptographers design algorithms such as RC4
and DSA, and protocols such as SET and SSL, with the as-
sumption that random numbers are available.

Hash is the term basically originated from computer sci-
ence where it means chopping up the arbitrary length mes-
sage into fixed length output. Hash tables are popular data
structures for storing key-value pairs. A hash function is used
to map the key value to array index, because it has numer-
ous applications from indexing, with hash tables and bloom
filters; to spell-checking, compression, password hashing and
cryptography. They are used in many different kinds of set-
tings and accordingly their security requirement changes.

Hash functions were designed for uniqueness, while pseudo-
random functions for randomness1. There is a tendency for
people to avoid learning anything about such subroutines
[Knu73]; quite often we find that some old method that is
comparatively unsatisfactory has blindly been passed down
from one programmer to another, and today’s users have
no understanding of its limitations. Therefore, appears the
idea to create a universal tool (design pattern) with modu-
lar design and customizable parameters, that can be applied
where randomness and sensitiveness is needed (random or-
acle), and where appropriate construction determines case
of application and selection of parameters provides preferred
properties and security level. It should be so easy to use
that an intelligent, careful programmer with no background
in cryptography has some reasonable chance of using such
tool in secure way.

In this paper we describe a theoretical model of chaos
machine, which combines the benefits of hash function and
pseudo-random function, forming flexible one-way2 push-pull
interface, where the construction and selection of parameters
determines usage. It generates sequences of pseudo-random
numbers that are unique and sensitive to the initial condi-
tions and inputs. Therefore, machine can be used to im-
plement many cryptographic primitives, including crypto-
graphic hashes, message authentication codes and pseudo-
random number generators.

1In practice, hash functions are chosen to spread hash values uni-
formly (pseudo-randomly). However, some techniques of hashing does
not require this principle.

2One-way functions are easy to compute but it is very difficult to
compute their inversed functions.

1

Part I

Definition and Analysis of the Model

1. Overview

Chaos theory started more than thirty years ago and changed
our world view regarding the role of randomness and deter-
minism, these theories present some interesting aspects in
cryptography:

• Chaotic systems are highly sensitive to initial conditions
and exhibits chaotic behavior. The main characteristics
of chaotic systems make them intuitively interesting for
their application in cryptography. Edward Lorenz used
to say “Chaos: When the present determines the future,
but the approximate present does not approximately de-
termine the future.”.

• Randomness is the lack of pattern or predictability in
events, a phenomenon located at a single point in space-
time. A pseudo-random process is a process that appears
to be random but is not. Pseudo-random sequences typi-
cally exhibit statistical randomness while being generated
by an entirely deterministic causal process.

1.1. Concept

Idea was to create simple model (design pattern) containing
several elements, that lets programmer to create own con-
structions and tools where randomness and sensitiveness is
needed (random oracle). These main assumptions are pre-
sented as:

• Difusion: a small difference in the input produces a very
different output.

• Deterministic Pseudo-randomness: a deterministic
procedure that produces pseudo-randomness.

• Algorithmic Complexity: a simple algorithm that pro-
duces highly complex outputs.

Where selection of parameters provides preferred proper-
ties and security level. Therefore, machine contains three ex-
ternal variables: initial secret key, time parameter, and space
parameter.

• Initial Secret Key (Starting Variable). Is a fixed-size
input to a chaos machine that is typically required to be
random or pseudo-random. Setting the initial secret key
is an example of using machine as the MAC3 algorithm.

3A message-authentication code (MAC) produces a tag t from a mes-
sage m and a secret key k. The security goal is for an attacker, even
after seeing tags for many messages (perhaps selected by the attacker),
to be unable to guess tags for any other messages.

• Time Parameter (Time Cost). That determines the
number of rounds of computation that machine performs.
The larger the time parameter, the longer the output com-
putation will take. As computational power increases,
users can increase this time parameter to keep the number
of wall-clock seconds required to compute each sequence
near-constant.

• Space Parameter (Memory Cost). Defines the number
of dynamical systems to be used in the machine. Con-
comitantly indicates how many bytes of working space the
buffer will require during its computation, because each
system needs his own space.

Model contains dynamical system of push-pull-reset func-
tions and buffer space. Components below are forming ma-
chine interface:

• Push Function (Input). Is primarily the input function,
it absorbs bit string (typically 32 bits or 16 bits value,
relatively small) and uses in system evaluation (control
theory, it will be discussed later).

• Pull Function (Output). It contains chaotic map and
construction of pseudo-random functions, which can be
freely replaced. The output of pull function is a bit string
of fixed length (e.g., 32 or 16 bits).

• Reset Function (Reset). This function clears the buffer.
After this, operation machine is in the initial state.

Applying our recommendations, programmer can build ef-
fective machine for wide range of applications. An example
is described in the second part of this document.

2. Model

2.1. Dynamical System

Chaos is a non-periodic, long-term non-predictive behavior
that can be generated by certain nonlinear dynamical sys-
tems [KT01]. The chaotic systems are inherently determinis-
tic given the initial state of the system. The chaotic behavior
is a result of the exponential sensitivity of the system to the
initial state that can not be exactly determined in practice.

2.1.1. Discrete & Continues

There is two main models of evolution law [Via01]. The first
one corresponds to transformations f : M → M on a space

2

Figure 1: Machine con-
tains 3 main elements:
push function, buffer
space, pull function.
Its initialized by tuple
(K, t,m), where K is
initial secret key, t is time
parameter and m is space
parameter.

M , the points of which describe the different states of the
system. The orbit of each x0 ∈ M is the sequence (xn)n
defined by xn = f(xn−1) for n > 1.
Another model are continues-time flows f t : M → M ,

t ∈ R, that is, one-parameter families of transformations sat-
isfying f t+s = f t ◦ fs for t, s ∈ R, and f0 = id. The orbit
of x0 ∈ M is the curve xt = f t(x0), where t ∈ R. Assuming
the flow depends smoothly on time t, there is an associated
vector field F on M , defined by:

F (x) =
d

dt
f t(x)|t=0

2.1.2. Computer Limitations

A computer is a finite state machine that may be viewed as
a discrete system. As in the discrete-time case, the solutions
for the function f are no longer curves, but points that hop
in the phase space. The orbits are organized in curves, or
fibers, which are collections of points that map into them-
selves under the action of the map. However, some methods
have been developed to represent real-world continuous sys-
tems as discrete systems [TLB14].

2.1.3. Transition

In our model, each map f , chaotic or not, will be called a
position transition function of dynamical system designated
as T . To watch out for the multidimensionality of point x,
we will write it as a vector x⃗.

Theorem 2.1 (Coordinate Function)
If x⃗ = (x1, . . . , xn) ∈ Rn is a point in the n-space then we
define the i-th coordinate function pi : Rn → R as pi(x⃗) = xi

Theorem 2.2 (Transition Function)
More generally, transition function is a map from one posi-
tion to another. In the theory of dynamical systems, a map
denotes an evolution function used to create discrete dynam-
ical systems. Using definition of point from 2.1, transition
function T : Rn → Rn is defined:

T (x⃗) = T ([x1, . . . , xn]) = [p1, . . . , pn]

Then, transition in dynamical system is described as:

x⃗i = T (⃗xi−1)

..

. BUFFER .

.

. . 1 . 2 3 ... m .

. ../ / \

. / / \... \................ .

. / PUSH . \............. PULL \ .

. \...../ \......./ .

. (chaotic) hybrid system (random) .

..

chaos machine - multiple dynamical systems

Figure 2: Buffer space with the representation of systems.

This map takes a point ⃗xi−1 = (x1, . . . , xn) in the space
and maps it to a new point x⃗i = (p1(⃗xi−1), . . . , pn(⃗xi−1)).

In dynamical system’s theory, the Gingerbreadman map
is a chaotic two-dimensional map which was studied by R.
Devaney [Dev84] since 1984. It is given by the piecewise
linear transformation:{

xn+1 = 1− yn + |xn|
yn+1 = xn

Using theorem from 2.1, it can be written as set of coordi-
nate functions:

p1(x⃗) = 1− x2 + |x1| (1)

p2(x⃗) = x1 (2)

Then, Gingerbreadman map is equivalent to the transition
T : R2 → R2 given by:

x⃗n = T (⃗xn−1) = T ([x1, x2]) = [p1, p2] = [1− x2 + |x1|, x1]

This map takes a point ⃗xn−1 = (x1, x2) in the plane and
maps it to a new point x⃗n = (p1(⃗xn−1), p2(⃗xn−1)). Coordi-
nate function (1) and (2) calculates coordinates of the next
state in chaotic map.

Theorem 2.3 (Dynamical System)
In general sense, dynamical system ϕ : t× Rn → Rn where t
is time (for discrete t = Z or t = N), can be described as:

x⃗i = T (⃗xi−1)

Using the 2.2 theorem and definition of evolution function
ϕ, superscript of function T defines time (or iteration):

ϕi(x⃗) := T (ϕi−1(x⃗)) = T i(x⃗)

Evolution (trace) of discrete dynamical system from the
initial state x⃗0 ∈ Rn:

x⃗0 = T 0(x⃗0) → T 1(x⃗0) → T 2(x⃗0) → T 3(x⃗0) → . . .

3

2.1.4. Vector of Systems

Machine consists of a multiple dynamical systems. Each sys-
tem has its own evolution function ϕ, hence its own transi-
tion function T . The space containing the multiple systems
is called buffer space. It can be defined as a row vector of m
transition functions (1×m matrix):

S =
[
T1 T2 . . . Tm

]
Variable m determines the number of dynamical systems,

known as space parameter. Space above has been presented
visually on the figure 2. Systems must be initialized with the
initial states (points). To do this, we can use initialization
vector, known as initial secret key defined by the variable K:

K =
[
k⃗1 k⃗2 . . . k⃗m

]
Then buffer space is described as follows:

S =
[
T 0
1 (k⃗1) T 0

2 (k⃗2) . . . T 0
m(k⃗m)

]
Where notation Si means i-th dynamical system. Buffer

space can be called as function family of evolution functions.
However, it acts as “entropy pool” (seed pool), which evolves
in time. Therefore, push function is sometimes called an
“entropy collector” (section 2.1.6).

2.1.5. Control Theory

Figure 3: Changes in phase space. Point A′ represents the
original destination, while A chosen.

Control theory is an interdisciplinary branch of engineering
and mathematics that deals with the behavior of dynamical
systems with inputs, and how their behavior is modified by
feedback (figure 3). In our model, it will be a collection of
operations which aims to control evolution function on the
basis of input [Har06]. Below example of Henon map, in
general sense i-th coordinate function pi:

parameter

pi(x⃗) = 1− ax2
1 + x2

next i-th coordinate previous coordinates

Each pi function modifies position and may have own pa-
rameters. Changing these variables will change phase space
of this specific dynamical system. It can be done in two ways:

• Orbit Change (Position Change). This is done by se-
lecting a new position, value x⃗, consequently changing the
orbit. Then i-th dynamical system can be described as
follows: Si = T 0

i (x⃗).

• Trajectory Change (Parameters Change). It involves
selecting a new parameter values for i-th coordinate func-
tion pi of selected dynamical system from the buffer. In
Henon map it would be choosing new parameter a.

New parameters chosen for single transition function
should be stored in parameters space (section 3.4). How-
ever, chosen parameters can be mutual with all transition
functions in buffer. Then additional space is unnecessary.

2.1.6. Hybrid System

Figure 4: Phase space of Si. Initial state x⃗0 = k⃗i. Points
{x⃗1, x⃗2, x⃗3} are selected by the push function - jumps. Pull
function has evolved at {t1, t2, t3} time - flow.

A hybrid system is a dynamic system that exhibits both
continuous and discrete dynamic behavior - a system that can
both “flow” described by a differential equation and “jump”
described by a difference equation or control graph. In chaos
machine, when performed (figure 4):

• Push function (chaotic), jumps are governed by the col-
lection of operations which aims to control evolution func-
tions (section 2.1.5). It modifies inflicted systems, based
on initial secret key and input.

• Pull function (random), flow is governed by transition
function T that operates on buffer space. Its calculating
evolution trace from the current position x⃗ of Si:

T j
i (x⃗) → T j+1

i (x⃗) → · · · → T j+t
i (x⃗)

Where j determines current time (2.3 theorem), variable t
determines the length of time flow, known as time param-
eter. After simplifications:

Si = T j+t
i (x⃗)

In addition, pull function may contain theorem of random
dynamical system; equations of motion. Chaotic trajecto-
ries even look random, and they pass many classic “tests of
randomness”. This in fact generates the principle of equiv-
alence between chaotic and random systems, as discussed
in [Wer13].

4

2.2. Push Function

Push function is primarily the input function of the machine,
it absorbs bit string (typically 32 bits or 16 bits value, rela-
tively small) and uses in system changes. The results are used
later by the pull function. The push procedure is a collec-
tion of operations which aims to control evolution functions.
It modifies inflicted systems, based on initial secret key and
input. In summary, these ideas can be presented as:

• Selection of Group. Which systems from the buffer
space should be changed (section 2.1.4).

• System Changes. Controlling orbits and trajectories of
selected dynamical systems - jumps (section 2.1.6).

Their implementation can be variously interpreted, that
will be discussed in sections below. Fully implemented ma-
chine in python programming language is in section 3.4.

2.3. Pull Function

The output of pull function is a bit string of fixed length
(e.g., 16 or 32 bits), sequences of pseudo-random numbers
that are unique and sensitive to the initial conditions. Push
procedure contains 3 main tasks:

• Selection of Group. Which systems from the buffer
space should be changed (section 2.1.4).

• System Evolution. Calculating evolution trace of se-
lected dynamical systems - flow (section 2.1.6).

• Randomizing. Producing pseudo-randomness from
chaotic data using pseudo-random functions.

3. Interface

Goal for chaos machine is to make design that system design-
ers can fairly easily incorporate into their own systems, and
that is better at resisting the attacks we know about than
the existing, widely-used alternatives. It poses the following
constraints on the design of machine:

• Everything is reasonably efficient. There is no point in
designing a module that nobody will use, because it slows
down the application too much.

• Machine is so easy to use that an intelligent, careful pro-
grammer with no background in cryptography has some
reasonable chance of using it in secure way.

• Interface should have simple design, to be able to imple-
ment many cryptographic primitives (figure 5), includ-
ing cryptographic hashes, message authentication codes,
stream ciphers and pseudo-random number generators.

We found that the chaos machine can be compromised by
exploiting some implementation error. The only preventa-
tive measures we found for machine was to try to make the
interface reasonably simple so that the programmer trying
to use this tool in a real-world product can use it securely
without understanding much about how the chaos machine
works.

chaos machine

PRNG hash function

message digest function MAC

cryptographic module

signature,
random sequence,
password hashing,

etc.

Figure 5: Specially, numbers generated by chaos machine are
useful in the following kinds of applications (interface and the
parameters allow implementing).

3.1. Input/Output

As it was already mention (section 1.1), chaos machine
contains dynamical system of push-pull-reset functions and
buffer space. These components are forming one-way push-
pull interface, making machine intuitively simple to use.

// reset machine

reset();

// push to machine

push(0xDEADBEAF);

push(0xBADDCAFE);

// pull a number

uint32_t x = pull();

// x = 0xB105F00D

An important point which is worth to mention are the pa-
rameters, that regulates machine needs (section 1.1). Num-
ber of iterations of the push and pull function is defined as
the machine time. In example above machine time amounts
three (two push and one pull operation). A machine timeline
is a graphical representation of a period of machine time, on
which push and pull events are marked (figure 7, 8).

3.2. Structure

Appropriate order of push and pull functions in time is called
a construction or design. Programmer that is using the chaos
machine can freely create his own designs. Often, it will be
related to the application. If we have a message, we will
have to perform some operations like push to add them to
the machine. However, it may be done in many ways.

3.2.1. Algorithmic Complexity

Typically, if someone uses machine as hash function, he will
push all data to machine and then pull message digest at the
end. But he can pull after each push or according to another
rule, making chaos machine applicable for stream hashing or
dynamical reseeding (figure 7). For example let’s imagine:

5

We have an input 256 bits message and want to gen-
erate 512 bits of output. If machine operates on 32
bits input/output system, we must provide 256/32
= 8 push and 512/32 = 16 pull functions. It’s worth
to mention that attacker having an output, didn’t
know when at the timeline pull functions have been
called, because he doesn’t know the construction.

Computational complexity increase dynamically with the
machine time. Number of possible combinations can be writ-
ten as:

a+ 1

1
∗ a+ 2

2
∗ a+ 3

3
. . .

a+ b− 1

b− 1
=

(a+ 1)(b−1)

(b− 1)!

Where variables are defined as: a is as number of pull
functions, b is a number of push functions. In result, (a)n is
a Pochhammer symbol.

3.2.2. Types

Type Relationship
Involved Input Data, Push & Pull Sequence
Individual Input Data, Push Sequence

Figure 6: The table presents what influence the process of
output generation.

The butterfly effect4 refers to a concept that small causes
can have large effects. Consequently, pull function can be an
event affecting future events and states. Therefore, there are
two types of machines (figure 6):

• Involved: The push function uses and modifies the states
in the buffer. Each pull leans slightly5 trajectories or orbits
from buffer (butterfly effect in each event).

• Individual: Push only reads states from the buffer or
operates on copy. Therefore, after the same combination
of push functions, pull gives the same sequence.

Visualization of difference between these types was pre-
sented at the figure 8. Sample example of involved type will
be present in the part two of this document.

3.3. Application

Chaos machine lets programmer to create own constructions
and tools where randomness and sensitiveness is needed (fig-
ure 5). Its presents modular design with customizable pa-
rameters. Where appropriate construction determines case
of application, and where selection of parameters provides
preferred properties and security level.
Practical example is provided in second part of this doc-

ument. It includes sample implementation of chaos machine

4It has similar properties to the avalanche effect.
5May contain theorem of random dynamical system, read more about

pullback attractor.

named Naive Czyzewski Generator, abbreviated NCG, that
passes all the Dieharder, NIST and TestU01 test sets.

Below there will be analyzed the most typical applications.
However, its recommend to use machine as an independent
tool, due to the versatility and possibilities of use.

3.3.1. Initialization Tuple

The aim was to create a tool where user defines his needs
by choosing appropriate parameters. For example, by se-
lecting huge space parameter, machine produces long-period
pseudo-random sequences6. Likewise, by increasing the time
parameter, security level increases. Therefore, if security is
a concern, chaos machine should fulfill these principles:

• Initial secret key should be provided or chosen uniformly.

• Space parameter should be big enough to provide space-
hardness and long-period output sequences.

• Time parameter should be carefully selected to the appro-
priate level of security.

Slow one-way functions are useful as so-called password-
based key derivation functions, where the relative high com-
putation time protects against password guessing. The func-
tion can be made arbitrarily slow by increasing time param-
eter. In order to compete with fast pseudo-random number
generators or speedy hash functions, machine should:

• Space parameter should be relatively small to the input
data.

• Time parameter must be very small or even equal to one
iteration.

3.4. Example of Machine

In python, initialization tuple (K, t,m) can be described as:

Chaos Machine (K, t, m)

K = [0.33, 0.44, 0.55, 0.44, 0.33]; t = 3; m = 5

Below example of chaos machine that is using Logistic map7:

p1(x⃗) = rx1(1− x1) (3)

T (x⃗) = T ([x1]) = [p1] (4)

S =
[
T 0
1 (k⃗1) T 0

2 (k⃗2) T 0
3 (k⃗3) T 0

4 (k⃗4) T 0
5 (k⃗5)

]
(5)

This map is one-dimensional, so it need only one coordi-
nate function (3). Therefore, transition function T looks like
(4) and buffer space have 5 transition functions (5).

6If period is calculable or can be approximate.
7Its bad example, because its period is relatively small. The map

itself has the characteristics unsuitable in cryptography.

6

Case: #1

time 1 2 3 4 5 6 7

interface push() | push() | pull() | push() | pull() | pull() | pull()

output X X X X

Case: #2

time 1 2 3 4 5 6 7

interface push() | pull() | pull() | push() | push() | pull() | pull()

output X X X X

Figure 7: Sequence of events plays a major role in output generation. Its management is held by the push-pull interface
which creates a timeline of events. Input data pushed into machine in both cases is the same, parameters are the same, but
output is different (same length, different sequences).

Type: Involved

time 1 2 3 4 5

interface push(X_1) | push(X_2) | pull() -> Y_1 | push(X_3) | pull() -> Y_3

time 1 2 3 4

interface push(X_1) | push(X_2) | skipped | push(X_3) | pull() -> Y_2

Type: Individual

time 1 2 3 4 5

interface push(X_1) | push(X_2) | pull() -> Y_1 | push(X_3) | pull() -> Y_2

time 1 2 3 4

interface push(X_1) | push(X_2) | skipped | push(X_3) | pull() -> Y_2

Figure 8: Timeline above shows the difference between “Involved” and “Individual” type. Word “skipped” mean that none
action was provided. In involved machine pull affects chaotic system (why value Y2 ̸= Y3).

3.4.1. Push Function

In example below, push function is changing orbits and tra-
jectories of all dynamical systems from buffer. Each system
have own column in parameters space (for independent tra-
jectory). In case above we are intrested in parameter r that
should be between 3 and 4 (chaotic behavior). Evolution
parameter is variable that helps in controling evolution func-
tions on the basis of input.

Buffer Space (with Parameters Space)

buffer_space , params_space = [], []

Machine Time

machine_time = 0

def push(seed):

global buffer_space , params_space , machine_time , \

K, m, t

Choosing Dynamical Systems (All)

for key , value in enumerate(buffer_space):

Evolution Parameter

e = float(seed / value)

Control Theory: Orbit Change

value = (buffer_space [(key + 1) % m] + e) % 1

Control Theory: Trajectory Change

r = (params_space[key] + e) % 1 + 3

Modification (Transition Function) - Jumps

buffer_space[key] =

round(float(r * value * (1 - value)), 10)

params_space[key] =

r # Saving to Parameters Space

Logistic Map

assert(max(buffer_space) < 1)

assert(max(params_space) < 4)

Machine Time

machine_time += 1

Pay attention, that buffer space is implemented as matrix
of coordinate spaces (n × m, where n is number of space
dimensions of transition function, or simpler, number of p
functions).

3.4.2. Pull Function

def pull ():

global buffer_space , params_space , machine_time , \

K, m, t

PRNG (Xorshift by George Marsaglia)

def xorshift(X, Y):

X ^= Y >> 13

Y ^= X << 17

X ^= Y >> 5

return X

Choosing Dynamical Systems (Increment)

7

key = machine_time % m

Evolution (Time Length)

for i in range(0, t):

Variables (Position + Parameters)

r = params_space[key]

value = buffer_space[key]

Modification (Transition Function) - Flow

buffer_space[key] =

round(float(r * value * (1 - value)), 10)

params_space[key] =

(machine_time * 0.01 + r * 1.01) % 1 + 3

Choosing Chaotic Data

X = int(buffer_space [(key + 2) % m] * (10 ** 10))

Y = int(buffer_space [(key - 2) % m] * (10 ** 10))

Machine Time

machine_time += 1

return xorshift(X, Y) % 0xFFFFFFFF

To generate pseudo-randomness, pull function use xorshift
algorithm with chaotic data. Additionaly, it includes pullback
attractor that leans trajectory of selected dynamical system.

3.4.3. Reset Function

def reset ():

global buffer_space , params_space , machine_time , \

K, m, t

buffer_space = K; params_space = [0] * m

machine_time = 0

Function above clears buffer, parameters space and resets
machine time. After this, operation machine is in the initial
state. It should be executed at the beginning of usage.

3.4.4. Testing

Initialization

reset()

Pushing Data (Input)

import random

message = random.sample(range (0 xFFFFFFFF), 100)

for chunk in message:

push(chunk)

Pulling Data (Output)

while True:

print("%s" % format(pull(), ’#04x’))

print(buffer_space); print(params_space)

Implemented algorithm above is fully functional example
of (involved) chaos machine, which has the characteristics of
randomness and sensitiveness. This construction may not be
producing a high-quality outputs. However, this example is
using all theoretical knowledge about the chaos machine.

8

Part II

Naive Czyzewski Generator: Implementation of
Chaos Machine

4. Summary

The algorithm8 is a sample9 implementation of (involved)
chaos machine. Emphasis has been placed on period that is
calculable, but also on high sensitivity to initial conditions
and quality of output. Algorithm passes all the Dieharder,
NIST and TestU01 test sets. In addition, it shows resistance
to common cryptographic attacks10.

4.0.1. Disadvantages

The drawback is the limited quantity of the machine param-
eters. On each push action, it engages all possible states
from buffer space. Therefore, hashing for huge buffers does
not make sense (computation complexity increase). When
the buffer space is huge, the algorithm is suitable only for
a use as the pseudo-random number generator. Therefore,
it’s has prefixed “naive” and instead of the word “machine”
occurs “generator”. However, for small values of parameters
algorithm works as fully functioning chaos machine.

4.0.2. Construction

Transition function was constructed on modified logistic map.
Buffer space is formed by the tape, which cells are grouped
into two types. Pull function uses half of the cells by the al-
gorithm with known period length (e.g. linear feedback shift
register). The second half belongs to the set of dynamical
systems. The only requirement is an even number of cells,
in order to divide into equal halves. Therefore, variants are
distinguished in the following way:

Name Algorithm
NCG LFSR
NCGXorshift Xorshift
NCGKISS KISS

The examples above have been tested, in particular the
basic version. However, they can be freely replaced.

8This part was presented at the June 5, 2015.
9The algorithm is not thoroughly discussed. If you want to know

precisely how it works, please go to the section “Appendix” where is
source code in ANSI C.

10Although it is “designed to be cryptographically secure”, no security
proof is given, and only statistical tests argue for its security.

4.0.3. Security

Statistical tests affirm that NCG can compete with ISAAC
(as CSPRNG), Blum Blum Shub or Fortuna algorithm (fig-
ure 9, 10, 11). The NCG was designed and seems to be
cryptographically secure, however there is no security proof.

Ten USA dollars prize to whoever sends me the determin-
istic algorithm reconstructing seed/buffer space states from
generated output sequence of pseudo-random numbers.

Name of Battery Total CPU Time Result
Alphabit 00:00:00.03 Passed
SmallCrush 00:00:07.25 Passed
Crush 00:51:15.84 Passed
BigCrush 05:30:14.75 Passed
pseudoDIEHARD 00:00:22.12 Passed
Rabbit 00:00:06.54 Passed
FIPS-140-2 00:00:12.24 Passed

Figure 9: The result obtained using TestU01 (2.6 GHz Intel
Core i7/clang v3.6.0). They were made for the algorithm
presented in the “Appendix” section.

● ●
● ● ● ●

●

● ● ● ●
● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ●
● ●

● ●

●
● ● ● ●

● ●

● ● ● ● ● ● ● ●
● ●

●
● ● ●

● ● ● ● ●

● ● ● ● ●
●

● ●
●

● ● ●
●

● ● ●
● ● ●

●

● ● ● ●
● ● ● ● ● ●

● ● ● ● ● ● ●

●
●

● ●
● ●

● ● ● ● ● ●
●

●
● ● ● ● ●

0.00

0.25

0.50

0.75

1.00

0 30 60 90
tests

p−
va

lu
e

NCG distribution of results

Figure 10: Normal probability plot (rankit), sorted p-values
from statistical tests.

5. Parameters

The same parameters occur in the theoretical model of chaos
machine. Additionally, in algorithm is located auxiliary func-
tion, it operates on the half of cells in the tape. Its task is to
introduce cyclical fluctuations, in reference implementation

9

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

0 30 60 90
tests

p−
va

lu
e

NCG distribution of results

Figure 11: Results of the Dieharder test sets in chronological
order. An average p-value is 0.49 (blue line).

it’s LFSR11 because its period is determined, but it can be
changed to any other algorithm (table with variants).

Parameter Value Description
K π digits Initial secret key
t (TIME) 1 Time parameter
m (SPACE) 16 Space parameter

Figure 12: Above table of default parameters in algorithm.
The requirement for m is that it must be an even number.

5.1. Time Parameter

This parameter determines the number of rounds of computa-
tion that machine performs. The larger the time parameter,
the longer the output computation will take. We make the
exact time-space trade-offs precise on the figure 13.

1,000

2,000

3,000

0 100 200
timeline

sp
ee

d
ra

te

Space

16

32

64

Time

1

2

3

NCG algorithm benchmark

Figure 13: Plot that shows the impact of parameters to the
speed rate. For each case, benchmark has performed 100,000
times the push and pull function with different input data.
As we can see the algorithm slows 3 times for the 4 times
bigger space parameter.

11A linear-feedback shift register (LFSR) is a shift register whose
input bit is a linear function of its previous state. The taps are XOR-ed
sequentially with the rightmost bit and then fed back into the leftmost
bit.

5.2. Space Parameter

In this machine, space parameter determines the length of
the tape (number of cells). Let’s assume that each cell has
16 bits capacity. Accordingly, half of the cells has a known12

period 216, half unknown. It can be written as:

m/2∏
216 ≤ x ≤

m∏
216

28m ≤ x ≤ 216m

2n/2 ≤ x ≤ 2n

In the reference implementation we have m = 16, which
gives the period 2128, which can be up to 2256. Hence, an im-
plemented algorithm has a period between 2n/2 to 2n. The-
oretically, if we have performed at every 2n/2 push function
with truly random value, it will be possible to produce infi-
nite period length.

6. Application

Main aim of creating this algorithm was to present imple-
mented model of chaos machine. As it was already men-
tioned before, the drawback is the limited quantity of the
machine parameters. When the space parameter is huge, the
algorithm is suitable only for a use as the PRNG.

At the beginning of the use of NCG, we must call the reset
function. Initially, buffer space (entropy pool) is empty, but
in accordance with the chaos machine model it must have an
initial secret key. Code in “Appendix” is not thread safe.

6.1. Pseudo-random Number Generator

To implement generator we need to push seed into machine,
and then pull out the pseudo-random numbers. Period is
counted from the last execution of the push function, because
there is no data from the outside (closed circuit). The same
construction, input data and parameters will produce the
same sequence of numbers, because the process is fully deter-
ministic. However, with sufficient care, a system can be de-
signed to produce cryptographically secure random numbers
from the sources of randomness available in a modern com-
puter. The basic design is to maintain an “entropy pool” of
random bits that are assumed to be unknown to an attacker
[ÖP14]. New randomness is added through push function to
the buffer that evolves states of the machine.

6.2. Hash Function

The algorithm cannot compete with the speed of algorithms
such as murmurhash3, farmhash or cityhash. However, the
algorithm can be effectively used as a message authentication
code where speed is not so important. Calculable period and
excellent quality create narrow range of applications as hash
function.

12If a PRNG’s internal state contains n bits, its period can be no
longer than 2n results, and may be much shorter. LFSR have period
2n, but in this case cells have 16-bit, which gives period 216.

10

Appendix

6.3. Chaos Machine

1 /* NCG written in 2015 by Maciej A. Czyzewski

2
3 To the extent possible under law , the author has dedicated all copyright

4 and related and neighboring rights to this software to the public domain

5 worldwide . This software is distributed without any warranty.

6
7 See <http :// creativecommons .org/ publicdomain /zero /1.0/ >. */

8
9 #include <stdint.h>

10 #include <string.h>

11
12 // S - seed , I - increment , t - mask , i - temporary

13 uint32_t S, I, t, i;

14
15 // The number of rounds in algorithm (time parameter)

16 #define TIME 1

17
18 // The length of the initial states (space parameter)

19 #define SPACE 16

20
21 // Abbreviation for getting values from the tape

22 #define M(i) ((i) % SPACE)

23
24 // Bits rotation formula

25 #define R(x, y) (((x) << (y)) | ((x) >> (16 - (y))))

26
27 // Variables in the algorithm

28 uint16_t a, b, c, d, e;

29
30 // Initial secret key - pi digits (buffer space)

31 uint16_t G[SPACE], K[SPACE] = { 1, 4, 1, 5, 9, 2, 6, 5,

32 3, 5, 8, 9, 7, 9, 3, 2 };

33
34 void push(uint32_t seed) {

35 // Preparation

36 I = seed * 0x3C6EF35F;

37
38 for (S = seed , i = 0; i < SPACE; i++) {

39 // Reinforcement

40 G[M(i)] ^= ((I * (S + 1)) ^ S) >> 16;

41 G[M(i)] ^= ((I * (S - 1)) ^ S) >> 00;

42
43 // Finalization

44 I ^= ((G[M(I - 1)] + G[M(i)]) << 16)

45 ^ ((G[M(I + 1)] - G[M(i)]) << 00);

46 }

47 }

48
49 uint32_t pull(void) {

50 // Variables

51 a = G[M(I + 0)]; b = G[M(I + 1)];

52
53 // Initialization

54 t = (a + I) * (b - S);

55
56 // Chaos

57 e = (G[M(t - b)] << (a % 9)) ^ (G[M(t + a)] >> (b % 9));

58
59 // Rounds

60 for (i = 0; i < TIME * 2; i += 2) {

61 // Absorption

62 c ^= G[M(I + i - 2)]; d ^= G[M(I + i + 2)];

63
64 // Mixing Modification

65 c ^= (d ^= R(e, c % 17)); G[M(I + i - 2)] -= (d += (t & c));

66 d += (c += R(t, d % 17)); G[M(I + i + 2)] += (c += (e & d));

67 }

68

11

69 // Transition

70 G[M(I + 0)] = R(c, t % 17) ^ R(d, t % 17) ^ (t & a) ^ (e & b);

71 G[M(I + 1)] = (b >> 1) ^ (-(b & 1u) & 0xB400u); // LFSR

72
73 // Finalization

74 t += (c ^ (b << 8) ^ (d << 16) ^ (a & 0xFF) ^ ((a >> 8) << 24));

75
76 // Cleaning

77 c = d = 0xFFFF;

78
79 // Increment

80 I += 2;

81
82 return t;

83 }

84
85 void reset(void) {

86 // Copying defaults

87 memcpy(G, K, 2 * SPACE);

88 }

6.4. Pseudo-random Number Generator

6.4.1. Implementation

1 void ncg(const uint32_t seed) {

2 // Cleaning tape

3 reset ();

4
5 // Push to NCG structure

6 push(seed);

7 }

6.4.2. Usage

1 #include <stdio.h>

2 #include <stdlib.h>

3
4 #include "../ src/ncg.c"

5 #include "../ src/include/random.c"

6
7 int main (int argc , char const *argv [])

8 {

9 if (argc < 2) {

10 printf("usage: %s <number > \n", argv [0]);

11 return 1;

12 }

13
14 ncg((uint32_t) atoi(argv [1]));

15
16 while (1) {

17 putc_unlocked(pull(), stdout);

18 }

19
20 return 0;

21 }

6.5. Hash Function

6.5.1. Implementation

1 #define GET_32_INT(n, b, i) \

2 { \

3 (n) = ((unsigned long) (b)[(i)]) \

4 | ((unsigned long) (b)[(i) + 1] << 8) \

5 | ((unsigned long) (b)[(i) + 2] << 16) \

12

6 | ((unsigned long) (b)[(i) + 3] << 24); \

7 }

8
9 #define PUT_32_INT(n, b, i) \

10 { \

11 (b)[(i)] = (unsigned char) ((n)); \

12 (b)[(i) + 1] = (unsigned char) ((n) >> 8); \

13 (b)[(i) + 2] = (unsigned char) ((n) >> 16); \

14 (b)[(i) + 3] = (unsigned char) ((n) >> 24); \

15 }

16
17 void ncg(const uint8_t *initial_message , size_t initial_length ,

18 uint8_t *result , size_t result_length) {

19 // Cleaning tape

20 reset ();

21
22 // Declaration of variables

23 size_t length , offset;

24
25 // Declaration of message

26 uint8_t *message = NULL , *buffer = NULL;

27
28 // Declaration of message chunk

29 uint32_t chunk;

30
31 // Calculate new length

32 for (length = initial_length;

33 length % 4 != 0; length ++);

34
35 // Prepare message

36 message = (uint8_t *) malloc(length * 8);

37
38 // Copy block of memory

39 memcpy(message , initial_message , initial_length);

40
41 // Complement to the full blocks

42 if (length - initial_length > 0) {

43 // Append "1" bit

44 message[initial_length] = 0x80;

45
46 // Append "0" bits

47 for (offset = initial_length + 1; offset < length; offset ++)

48 message[offset] = 0;

49 }

50
51 // Append the len in bits at the end of the buffer

52 PUT_32_INT(initial_length * 8, message + length , 0);

53
54 // Initial_len >> 29 == initial_len * 8 >> 32, but avoids overflow

55 PUT_32_INT(initial_length >> 29, message + length + 4, 0);

56
57 // Process the message in successive 32-bit chunks

58 for (int i = 0; i < length; i += 4) {

59 // Get little endian

60 GET_32_INT(chunk , message + i, 0);

61
62 // Push to NCG structure

63 push(chunk);

64 }

65
66 // Releasing memory

67 free(message);

68
69 // Allocate memory for result

70 buffer = (uint8_t *) malloc(result_length * 8);

71
72 // Process the result in successive 32-bit chunks

73 for (int i = 0; i < result_length / 4 + 1; i++)

74 PUT_32_INT(pull(), buffer , i * 4);

75
76 // Save it on the pointer

77 for (int i = 0; i < result_length; i++)

78 result[i] = buffer[i];

13

79
80 // Releasing memory

81 free(buffer);

82 }

6.5.2. Usage

1 #include <stdio.h>

2 #include <stdlib.h>

3
4 #include "../ src/ncg.c"

5 #include "../ src/include/hash.c"

6
7 int main (int argc , char const *argv [])

8 {

9 const char *initial_message = argv [1];

10 size_t initial_length = strlen(initial_message);

11
12 if (argc < 3) {

13 printf("usage: %s ’string ’ <number > \n", argv [0]);

14 return 1;

15 }

16
17 size_t result_length = atoi(argv [2]);

18 uint8_t *result = (uint8_t *) malloc(result_length * 8);

19
20 printf(">> ");

21 for (int i = 0; i < initial_length; i++)

22 printf("%p ", initial_message[i]);

23 printf("\n");

24
25 ncg((uint8_t *) initial_message , initial_length , result , result_length);

26
27 printf("<< ");

28 for (int i = 0; i < result_length; i++)

29 printf("%p ", result[i]);

30 printf("\n");

31
32 return 0;

33 }

14

References

[Knu73] Donald E. Knuth. Seminumerical Algorithms. Second. Vol. 2. The Art of Computer Programming. 1973. Chap. 3.

[Dev84] Robert L. Devaney. “A Piecewise Linear Model for the Zones of Instability of an Area Preserving Map.” In:
Physica. Vol. 10. 1984, pp. 387–393.

[KT01] Kunihiko Kaneko and Ichiro Tsuda. Complex systems : chaos and beyond a constructive approach with applications
in life sciences. Physics and astronomy online library. Translated from the Japanese. Berlin, London: Springer,
2001. isbn: 3-540-67202-8. url: http://opac.inria.fr/record=b1101628.

[Via01] Marcelo Viana. “Dynamical Systems: Moving into the Next Century”. In: Mathematics Unlimited: 2001 and
Beyond. Springer, 2001, pp. 116–7.

[Har06] D. Harrivel. “Butcher series and control theory”. In: ArXiv Mathematics e-prints (Mar. 2006). eprint: math/
0603133.

[Wer13] C. Werndl. “Are Deterministic Descriptions And Indeterministic Descriptions Observationally Equivalent?” In:
ArXiv e-prints (Oct. 2013). arXiv: 1310.1615 [math.DS].

[ÖP14] B. Ömer and C. Pacher. “Saving fractional bits: A practical entropy efficient code for fair die rolls”. In: ArXiv
e-prints (Dec. 2014). arXiv: 1412.7407 [cs.IT].

[TLB14] C. Thomson, L. Lue, and M. N. Bannerman. “Mapping continuous potentials to discrete forms”. In: 140.3, 034105
(Jan. 2014), p. 034105. doi: 10.1063/1.4861669. arXiv: 1309.7292 [cond-mat.soft].

15

