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Abstract. The Groth-Sahai proof system (EUROCRYPT 2008, SIAM Journal of Computing 41(5) [GS12])
provides e�cient non-interactive witness-indistinguishable (NIWI) and zero-knowledge (NIZK) proof sys-
tems for languages over bilinear groups and is a widely-used versatile tool to design e�cient cryptographic
schemes and protocols.
We revisit randomization of the prover in the GS proof system. We �nd an unnoticed bug in the “optimized”
randomization in the symmetric bilinear setting with several assumptions, say, the DLIN assumption or the
matrix-DH assumption. This bug leads to security issues of the GS NIWI proof system with “optimized”
randomization for multi-scalar multiplication equations and the GS NIZK proof system with “optimized”
randomization for certain cases of pairing product equations and multi-scalar multiplication equations.
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1 Introduction

Non-interactive witness-indistinguishable (NIWI) protocols and non-interactive zero-knowledge (NIZK)
protocols [BFM88] are fundamental tools in cryptology and allow us to design complex cryptographic
primitives/protocols in modular approach, e.g., group signatures [BMW03,BSZ05], universal designated-
veri�er signatures [SBWP03], and policy-based signatures [BF14].

In 2008, Groth and Sahai [GS12] proposed a new framework for NIWI/NIZK proof systems for lan-
guages related to bilinear groups, pairing product equations (PPEs), multi-scalar multiplication equa-
tions (MMEs), and quadratic equations (QEs). Designers of cryptographic protocols rapidly adopted
the Groth-Sahai (GS) proof systems, because they have been longing for e�cient and practical NI-
WI/NIZK proof systems for such languages, and they have constructed more e�cient protocols. After
the GS proof system appeared, several e�cient (and complex) cryptographic primitives proposed by
employing the GS proof system and its improvements as a basic tool.

1.1 Our Results

We revisit randomization of a prover in the GS proof system and found an unnoticed bug in the “op-
timized” randomization in the symmetric setting; the “optimized” randomization is sometimes insu�-
cient to hide the witness. This case happens when we construct a NIWI proof system for MMEs based
on the DLIN assumption (or the matrix DH assumptions). This bug leads to security issues as follows:

– We disprove perfect witness-indistinguishability with a hiding CRS (composable witness-indistinguishability)
of GS for MMEs based on the DLIN assumption [GS12, Section 6.3];

– We disprove computational witness-indistinguishability of GS′ for MMEs based on the DLIN as-
sumption [GS12, Section 10].

– We point out that the simulation for composable zero-knowledge property fails in the case of the
NIZK proof systems [GS12, Section 11] for certain cases of MMEs and PPEs based on the DLIN
assumption, because the NIZK proof systems employed the NIWI proof system for MMEs.



Table 1 and Table 2 summarize the e�ect of the bug in the NIWI and NIZK proof systems instantiated
from the DLIN assumption.

Remark 1.1. It is easy to remove the bug by avoiding the “optimized” randomization.

Remark 1.2. We check the security the NIWI proof systems with “optimized” randomization for special
MMEs, which is employed in the NIZK proof systems for special PPEs, in the generic-group model See
Appendix A for the details.

Table 1. Properties of the NIWI GS proof systems with “optimized” randomization based on the DLIN assumption

Languages GS [GS12, Section 6.3] GS′ [GS12, Section 10]
PPE Composable WI Composable WI
MME Not composable WI Not computational WI
QE Composable WI Composable WI

Table 2. Properties of the NIZK GS proof systems with “optimized” randomization based on the DLIN assumption

Languages Properties
PPE with T = OT Composable ZK
PPE with T =

∑
i e(Pi,Qi ) Simulation Fails

MME with T = O Simulation Fails
MME with T , O Simulation Fails
QE with T = 0 Composable ZK
QE with T , 0 Composable ZK

1.2 Related Works

Groth and Sahai [GS12] proposed the GS proof system in the prime/composite-order bilinear groups.
They instantiated the proof systems from the subgroup decision, symmetric external Di�e-Hellman
(SXDH), and decision-linear (DLIN) assumptions. Ghada�, Smart, and Warinschi [GSW10] revisited
the GS proofs; they corrected some errors of some functions in the conference version of [GS12] and
adapted the GS proof system to the Type-2 pairing group with the symmetric DLIN assumption.

Freeman [Fre10], Seo [Seo12], and Seo and Cheon [SC12], and Herold, Hesse, Hofheinz, Ràfols, and
Rupp [HHH+14] studied projecting (and canceling) bilinear groups in order to translate cryptographic
schemes/protocols in the composite-order bilinear groups into those in the prime-order bilinear groups.
As byproducts, they improved e�ciency of the GS proof system in the prime-order bilinear groups by
removing redundancy in the GS proof system. Escala, Herold, Kiltz, Ràfols, and Villar [EHK+13] studied
several matrix-DH assumptions in the symmetric bilinear groups and proposed the GS proof system in
the symmetric bilinear groups based on the matrix-DH assumptions. Escala and Groth [EG14] improved
the e�ciency of the GS proof system instantiated from the SXDH assumption.

To the best of our knowledge, there are no papers pointing out the bug of the “optimized” random-
ization. Papers referring [GS12] basically employed the GS proof system as the tool in the black-box
manner. A few exceptions are papers studying the GS proof system itself or its properties. We notice
that Seo [Seo12, Section 5.1] and Jutla and Roy [JR14, Section 5] avoided the bug of the “optimzied”
randomization.
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1.3 Organization

Section 2 brie�y reviews de�nitions of NIWI and NIZK proof systems. Section 3 is a reminder of bilinear
groups. Section 4 reviews the GS proof systems and an instantiation based on the DLIN assumption.
Section 5 gives concrete attacks against the GS NIWI proof systems for MMEs based on the DLIN
assumption and discusses the e�ect of the bug. Appendix A discusses the security of the NIWI proof
systems for special MMEs in the generic-group model.

1.4 Notation

Let N ∈ N be a positive integer. For two matrices X ∈ Zm×n1
N and Y ∈ Zm×n2

N , (X | Y ) ∈ Zm×(n1+n2)
N is

the concatenation of the columns of X and Y . For two matrices X ∈ Zm1×n
N and Y ∈ Zm2×n

N , (X ;Y ) ∈
Z(m1+m2)×n
N is the concatenation of the rows of X and Y . In what follows, #„

X represents column vector
(X1, . . . , Xk )> and x represents row vector (x1, . . . , xk ). Let K be a ZN -module. For a vector #„

X ∈ Kk ,
we denote a space spanned by #„

A as 〈 #„
X 〉 = {w

#„
X | w ∈ ZkN }.

2 Non-Interactive Proof Systems

We brie�y review the syntax of non-interactive zero-knowledge and witness-indistinguishable proof
systems.

Group-dependent languages: Let R be an e�ciently computable ternary relation instead of binary re-
lation, which consists from (gk, x,w) ∈ {0, 1}∗ × {0, 1}∗ × {0, 1}∗. We call gk a setup key, x a statement,
and w a witness. By �xing gk, we de�ne Lgk as a language induced by the relation R and gk, that is,
Lgk = {x ∈ {0, 1}∗ | ∃w such that (gk, x,w) ∈ R}.

Non-interactive proofs: A non-interactive proof system for a relation R (with setup) consists of the
following algorithms; The group generation algorithm, Ggroup, on inputs 1λ outputs (gk, sk), which
is a pair of gk, the description of groups, and sk, some secret information of gk; The binding CRS
generation algorithm, Gbind, takes gk, sk as input and outputs a common reference string, crs; The
prover algorithm, P, takes gk, crs, string x, and witness w, and outputs a proof, π; and the veri�cation
algorithm, V, takes gk, crs, x, π and outputs its decision 0/1, where 0 and 1 represents rejection and
acceptance, respectively. We say that (Ggroup,Gbind, P,V) is a non-interactive proof system for R (with
setup Ggroup) if it is complete and sound de�ned below.

In the following, we take “parameter-switching” approach to show the security. In the soundness
setting, we employ the binding CRS generation algorithm Gbind and we show the soundness on the
CRS output by Gbind. In the WI setting, we employ the hiding CRS generation algorithm Ghide instead
of Gbind.

We follow the de�nitions in [GS12].

Perfect completeness: We say that the system is perfectly complete if the following holds: For any un-
bounded adversary A, we have that

Pr
[
(gk, sk) ← Ggroup(1λ ); crs ← Gbind(gk, sk); (x,w) ← A(gk, crs); π ← P(gk, crs, x,w) :

V(gk, crs, x, π) = 1 if (gk, x,w) ∈ R

]
= 1.

Perfect culpable soundness: The soundness is relaxed by employing a promise version of the problem
corresponding to a language L [GOS06,Gro06]. Let Lco ⊂ {0, 1}∗ \ L. The system is perfectly Lco-sound
if any adversary A cannot output a pair of an improper string and a valid proof (x, π) for x ∈ Lco. We
note that the adversary might be able to produce a valid proof π on x ∈ ({0, 1}∗ ∩ L) \ Lco.
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Formally, we say that the system is perfectly Lco-sound if for any unbounded adversary A, the
following holds:

Pr
[
(gk, sk) ← Ggroup(1λ ); crs ← Gbind(gk, sk); (x, π) ← A(gk, crs) :

V(gk, crs, x, π) = 0 if x ∈ Lco

]
= 1.

If Lco = {0, 1}∗ \ L, we say the system perfectly sound.

Composable witness-indistinguishability: We say that the system is composable witness-indistinguishable
if any PPT adversary cannot distinguish a binding CRS produced by Gbind and a hiding CRS produced
by Ghide and if any unbounded adversary cannot distinguish a proof proved by the prover on a wit-
nesses w0 of x or a proof on a witness w1 of x when the CRS is hiding.

Formally, the system is said to be composable witness-indistinguishable if the followings hold: For
any PPT adversary A,

Pr
[
(gk, sk) ← Ggroup(1λ ); crs ← Gbind(gk, sk) : A(gk, crs) = 1

]

≈c Pr
[
(gk, sk) ← Ggroup(1λ ); (crs, τ) ← Ghide(gk, sk) : A(gk, crs) = 1

]

and for any unbounded adversary A,

Pr
[
(gk, sk) ← Ggroup(1λ ); (crs, τ) ← Ghide(gk, sk); (x,w0,w1) ← A(gk, crs); π ← P(gk, crs, x,w0) : A(π) = 1

]

= Pr
[
(gk, sk) ← Ggroup(1λ ); (crs, τ) ← Ghide(gk, sk); (x,w0,w1) ← A(gk, crs); π ← P(gk, crs, x,w1) : A(π) = 1

]
,

where we require (gk, x,w0), (gk, x,w1) ∈ R.

Composable zero-knowledge: We say that the system is composable zero-knowledge if any PPT adversary
cannot distinguish a binding CRS produced by Gbind and a hiding CRS produced by Ghide and if any
powerful adversary cannot distinguish a proof generated by the prover on a witnesses w of x ∈ L from
a proof simulated by the simulator P̃ employing τ when the CRS is hiding.

Formally, the system is said to be composable zero-knowledge if the followings hold: For any PPT
adversary A,

Pr
[
(gk, sk) ← Ggroup(1λ ); crs ← Gbind(gk, sk) : A(gk, crs) = 1

]

≈c Pr
[
(gk, sk) ← Ggroup(1λ ); (crs, τ) ← Ghide(gk, sk) : A(gk, crs) = 1

]

and for any unbounded adversary A,

Pr
[
(gk, sk) ← Ggroup(1λ ); (crs, τ) ← Ghide(gk, sk); (x,w) ← A(gk, crs, τ); π ← P(gk, crs, x,w) : A(π) = 1

]

= Pr
[
(gk, sk) ← Ggroup(1λ ); (crs, τ) ← Ghide(gk, sk); (x,w) ← A(gk, crs, τ); π ← P̃(gk, crs, τ, x) : A(π) = 1

]
,

where we require (gk, x,w) ∈ R.

3 Bilinear Groups

We review bilinear groups and their properties. We employ additive notion for A�ne groups through-
out of the paper because it �ts with linear algebra.

De�nition 3.1 (bilinear groups). A bilinear group for a commutative ring ZN = ZN is G = (ZN ,G1,

G2,GT , e), where (Gi,Pi ) (for i = 1, 2,T ) is a description of a cyclic group of order N , Pi is a generator
of Gi (for i = 1, 2,T ), and e : G1 × G2 → GT is a map satisfying the following properties:
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– (bilinearity:) For any Q1 ∈ G1, Q2 ∈ G2, α, β ∈ ZN , we have e(αQ1, βQ2) = αβ · e(Q1,Q2).
– (Non-degeneracy:) PT = e(P1,P2).

We will write zero elements in Gi by Oi for i = 1, 2,T .

De�nition 3.2 (Bilinear group generator). Let λ > 1 be an integer. A bilinear group generator Gλ takes
a security parameter 1λ and outputs a bilinear groupG = (ZN ,G1,G2,GT , e).

We call a bilinear group with G1 = G2 and P1 = P2 a symmetric bilinear group. We also call a
bilinear group generator which outputs a symmetric bilinear group always a symmetric bilinear group
generator.

De�nition 3.3 (DLIN assumption). Fix i = 1 or 2. We say that the decision linear (DLIN) assumption
holds relative to Gλ and Gi if for any PPT adversary A, its advantage

AdvGλ,Gi,A(λ) :=
�����
Pr[A(G,Pi, αPi, βPi, z1αPi, z2 βPi, (z1 + z2)Pi ) = 1]
− Pr[A(G,Pi, αPi, βPi, z1αPi, z2 βPi, z3Pi ) = 1]

�����
is negligible in the security parameter λ, where the probability is taken overG = (ZN ,G1,G2,GT , e) ←
Gλ , α, β, z1, z2, z3 ← ZN , and the coins of A.

4 Review of the Groth-Sahai Proof System

We brie�y review the Groth-Sahai proof systems [GS12].
Let G = (ZN ,G1,G2,GT , e) be a bilinear group. Consider ZN -modules A1, A2, and AT . Let f :

A1× A2 → AT be a bilinear map. For two vectors #„a = (a1, . . . , ak )> ∈ Ak
1 and #„

b = (b1, . . . , bk )> ∈ Ak
2 ,

we denote
∑

i∈[1,k] f (ai, bi ) ∈ AT by #„a > ·
#„
b . We consider an equation de�ned as

t = #„a > · #„y + #„x > ·
#„
b + #„x > · Γ #„y ,

where #„x ∈ Am
1 and #„y ∈ An

2 are variables, #„a ∈ An
1 , #„

b ∈ Am
2 , Γ ∈ Zm×nN , and t ∈ AT are constants.

Groth and Sahai considered four types of equations:

– Pairing Product Equations (PPEs): A1 = G1, A2 = G2, AT = GT , and f (X,Y ) = e(X,Y ) ∈ GT .
– Multi-scalar Multiplication Equations (MMEs) over G1: A1 = AT = G1, A2 = ZN , and f (X, y) =

yX ∈ G1.
– Multi-scalar Multiplication Equations (MMEs) over G2: A1 = ZN , A2 = AT = G2, and f (x,Y ) =

xY ∈ G2.
– Quadratic Equations (QEs): A1 = A2 = AT = ZN and f (x, y) = xy ∈ ZN .

4.1 CRS and Commitments

The group key gk de�nes a bilinear groupG = (ZN ,G1,G2,GT , e). The CRS crs de�nes (ZN , A1, A2, AT , f ,
B1, B2, BT , F, ι1, p1, ι2, p2, ιT , pT ,

#„
U,

#„
V ,H1, . . . ,Hη ) speci�ed below.

A part of the CRS speci�es three ZN -modules B1, B2, and BT , and bilinear function F : B1 × B2 →

BT . We denote zero of Bi as OBi . For two vectors #„a = (a1, . . . , ak )> ∈ Bk
1 and #„

b = (b1, . . . , bk )> ∈ Bk
2 ,

we de�ne “•” by #„a > •
#„
b =

∑
i∈[1,k] F (ai, bi ) ∈ BT .

In addition, the CRS contains #„
U ∈ Bm̂

1 , #„
V ∈ Bn̂

2 , and ZN -linear functions ιi : Ai → Bi for i = 1, 2,T .
The commitment key for A1 consists of #„

U ∈ Bm̂
1 and ι1 : A1 → B1. That for A2 consists of #„

V ∈ Bn̂
2 and

ι2 : A2 → B2. The CRS implicitly de�nes ZN -linear functions pi : Bi → Ai for i = 1, 2,T .
The �nal part of the CRS is matrices H1, . . . ,Hη to randomize the proof. The matrices generate all

solutions of #„
U> • H

#„
V = OBT , that is, 〈H1, . . . ,Hη〉 = {H ∈ Z

m̂×n̂
N |

#„
U> • H

#„
V = OBT } in the WI

setting.
We require the following properties :
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– For any #„a ∈ Ak
1 and #„

b ∈ Ak
2 , ιT ( #„a > ·

#„
b ) = ι1( #„a )> • ι2(

#„
b ).

– For any #„
A ∈ Bk

1 and #„
B ∈ Bk

2 , pT (
#„
A> •

#„
B ) = p1(

#„
A)> · p2(

#„
B ).

– In the soundness setting, binding CRS yields 〈 #„
U 〉 ⊆ ker(p1) and 〈 #„

V 〉 ⊆ ker(p2).
– In the WI setting, hiding CRS yields ι1(A1) ⊆ 〈

#„
U 〉 and ι2(A2) ⊆ 〈

#„
V 〉.

– Binding CRS and hiding CRS are computationally indistinguishable under certain assumption, say,
the DLIN assumption.

Commitments: To commit x ∈ A1 with randomness r ← Zm̂N , we compute Cx = ι1(x) + r
#„
U . For

simplicity of the notation, we write the commitments of #„x ∈ Am
1 with randomness R = (r1; . . . ; rm ) ∈

Zm×m̂N by
#„
C = ι1( #„x ) + R

#„
U ∈ Bm

1 .

To commit y ∈ A2 with randomness s ← Zn̂N , we compute Dy = ι2(y) + s
#„
V . For simplicity of the

notation, we write the commitments of #„y ∈ Bn with randomness S = (s1; . . . ; sn ) ∈ Zn×n̂N by

#„
D = ι2( #„y ) + S

#„
V ∈ Bn

2 .

4.2 Proof and Veri�cation

Prover: The prover �rst commits #„x ∈ Am
1 and #„y ∈ An

2 into #„
C ∈ Bm

1 and #„
D ∈ Bn

2 by using randomness
R ∈ Zm×m̂N and S ∈ Zn×n̂N , respectively. The prover picksT ← Zn̂×m̂N and r1, . . . , rη ← ZN and computes

#„
Π := R>ι2(

#„
b ) + R>Γι2( #„y ) + R>ΓS

#„
V −T>

#„
V +

∑η
i=1riHi

#„
V ∈ Bm̂

2
#„
Θ := S>ι1( #„a ) + S>Γ>ι1( #„x ) +T

#„
U ∈ Bn̂

1 .

Finally, the prover sends π = (
#„
C,

#„
D,

#„
Π,

#„
Θ) as commitments and proofs.

Veri�er: Upon receiving commitments #„
C = (C1, . . . ,Cm )> and #„

D = (D1, . . . , Dn )> and proofs #„
Π =

(Π1, . . . , Πm̂ )> and #„
Θ = (Θ1, . . . , Θn̂ )>, the veri�er checks if Ci, Θi ∈ B1 and Di, Πi ∈ B2, and

ι1( #„a )> •
#„
D +

#„
C> • ι2(

#„
b ) +

#„
C> • Γ

#„
D = ιT (t) +

#„
U> •

#„
Π +

#„
Θ> •

#„
V . (1)

4.3 Groth and Sahai’s Optimization in Symmetric Case

We next review the simpli�cation for the symmetric case in [GS12, Section 6.3].
We suppose that m̂ ≥ n̂ and #„

V = (U1, . . . ,Un̂ )>.
We de�ne padding functions rpad and cpad that pads matrices by 0. 1

De�nition 4.1 (Padding functions rpad and cpad). For any ZN -moduleM with zero 0M , we de�ne two
padding functions:

– rpadM :M n̂×k →Mm̂×k that pads a matrix with m̂ − n̂ 0M-rows
– cpadM :Mk×n̂ →Mk×m̂ that pads a matrix with m̂ − n̂ 0M-columns

For brevity of notations, we omit the subscriptions from rpad and cpad.

Apparently, they areZN -linear. Notice that, for any K ∈ Zn̂×m̂N , cpadZN (K>) = rpadZN (K )>, rpadB (K
#„
U ) =

rpadZN (K )
#„
U , and K>

#„
V = cpadZN (K>)

#„
U = rpadZN (K )>

#„
U .

1 This operations are denoted by (·)′ in [GS12].
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Groth and Sahai de�ned a new proof as
#„
Φ := rpad(

#„
Θ) +

#„
Π

= rpad
(
S>ι1( #„a ) + S>Γ>ι1( #„x ) +T

#„
U

)
+ R>ι2(

#„
b ) + R>Γι2( #„y ) + R>ΓS

#„
V −T>

#„
V +

∑η
i=1riHi

#„
V

= R>ι2(
#„
b ) + R>Γι2( #„y ) + cpad(S)>ι1( #„a ) + cpad(S)>Γ>ι1( #„x ) + R>Γcpad(S)

#„
U

+
(
rpad(T ) − rpad(T )>

) #„
U +

∑η
i=1ricpad(Hi )

#„
U .

The veri�er checks if

ι1( #„a )> •
#„
D +

#„
C> • ι2(

#„
b ) +

#„
C> • Γ

#„
D = ιT (T ) +

#„
U> •

#„
Φ. (2)

instead of eq. (1).
We denote byGSSym the simpli�ed GS NIWI proof system in this subsection. The following theorem

says the distribution of #„
Φ is uniformly random conditioned on the veri�cation equation. Thus, the

system GSSym is composable WI.

Theorem 4.1 (Adaption of [GS12, Theorem 8]). In theWI setting where ι1(A1) ⊆ 〈
#„
U 〉 and ι2(A2) ⊆ 〈

#„
V 〉

and H1, . . . ,Hη generates all matrices H such that
#„
U> • H

#„
V = OBT , all satisfying witnesses

#„x , #„y , R, S
yield proofs

#„
Φ ∈ 〈

#„
U 〉n̂ × 〈

#„
V 〉m̂−n̂ that is uniformly distributed conditioned on the veri�cation equation

(1).

Corollary 4.1. Suppose that hiding CRS and binding CRS are computationally indistinguishable under
certain assumption. Then, GSSym is composable WI.

4.4 “Optimized” Randomization

In [GS12, Section 6.3], Groth and Sahai observed that if • is symmetric, #„
U> •

(
rpad(T )− rpad(T )>

) #„
U =

OBT for any T ∈ Zn̂×m̂N . 2 They then removed the randomization term
(
rpad(T ) − rpad(T )>

) #„
U from

the proof #„
Φ . Formally speaking, they de�ned an “optimized” proof as

#„
Φ ′ := R>ι2(

#„
b ) + R>Γι2( #„y ) + cpad(S)>ι1( #„a ) + cpad(S)>Γ>ι1( #„x ) + R>Γcpad(S)

#„
U

+
∑η

i=1ricpad(Hi )
#„
U (3)

We denote by GS′Sym the GS NIWI proof system GSSym employing this “optimized” randomization.

Witness indistinguishability: If m̂ = n̂, that is, if #„
V =

#„
U , then the randomization term

∑η
i=1ricpad(Hi )

#„
U

is uniformly distributed over { #„
R ∈ 〈

#„
U 〉m̂ |

#„
U> •

#„
R = OBT and there is no problem.

However, if m̂ > n̂, the above argument shows that “optimized” randomization forgets to randomize
the top n̂ elements of the proof with Un̂+1, . . . ,Um̂ . Therefore, the composable WI property may be
violated. We will investigate attacks in Section 5.

5 Concrete Attacks against NIWI Proof Systems for MMEs

We notice that there are two versions of the NIWI proof systems for MMEs based on the DLIN assump-
tion; one is a direct adaption of GS′Sym in [GS12, Section 6.3] and the other is that in [GS12, Section 10].

2 #„
U> •

(
rpad(T ) − rpad(T )>

) #„
U =

#„
U> • rpad(T )

#„
U −

#„
U>rpad(T )> •

#„
U =

#„
U> • rpad(T )

#„
U − (

#„
U> • rpad(T )

#„
U )> = OBT

by the symmetric property of •.
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5.1 Review of the Parameters of the GS Proof System for MMEs based on the DLIN Assumption

The parameters are de�ned in [GS12, Section 10]. LetG = (ZN ,G,GT , e) be a symmetric-bilinear group.
De�ne B = G3 and BT ⊆ G

3×3
T . De�ne F : B × B → BT by a mapping a pair P = (P1,P2,P3) and

Q = (Q1,Q2,Q3) to

1
2
(
P
> ·Q +Q> ·P

)
=

1
2

*..
,

2e(P1,Q1) e(P1,Q2) + e(P2,Q1) e(P1,Q3) + e(P3,Q1)
e(P1,Q2) + e(P2,Q1) 2e(P2,Q2) e(P2,Q3) + e(P3,Q2)
e(P1,Q3) + e(P3,Q1) e(P2,Q3) + e(P3,Q2) 2e(P3,Q3)

+//
-
.

Let U1 = (αP,O,P) and U2 = (O, βP,P), where α, β ← ZN . Let U3 = (W1,W2,W3) ∈ B = G3

with

U3 =



z1U1 + z2U2 for soundness
z1U1 + z2U2 − (O,O,P) for WI,

for randomly chosen z1, z2 ← ZN . We de�ne #„
U = (U1,U2,U3)> ∈ B3 and #„

V = (V1,V2)> = (U1,U2)> ∈
B2. From the DLIN assumption, we cannot e�ciently distinguish U3 for soundness from U3 for WI.
The hiding CRS generator outputs #„

U with U3 for WI and the binding CRS generator outputs #„
U with

U3 for soundness.
For simplicity of notation, we de�ne U∗ = U3 + (O,O,P). We de�ne three ZN -linear functions

ι1 : X ∈ G 7→ (O,O, X ) ∈ B,

ι2 : y ∈ ZN 7→ yU∗ ∈ B,

ιT : Z ∈ G 7→ F
(
ι1(Z ), ι2(1)

)
∈ BT .

Notice that, in the WI setting, ι1(G) ⊂ 〈
#„
U 〉 and ι2(ZN ) ⊂ 〈

#„
V 〉.

We omit the de�nitions of projecting functions p’s.
Finally, Groth and Sahai prepared a matrix H1 =

(
0 1
−1 0
0 0

)
as the basis of the solutions of {H ∈ Z3×2

N |

#„
U> • H

#„
V = OBT }.

Remark 5.1. Precisely speaking, they chose H1 =
( 0 1 0
−1 0 0

)
in [GS12, page 1223]. It should be transposed.

5.2 Distinguishing Attack against GS′
Sym

for MMEs

We recall the structure of the proof (3):
#„
Φ ′ := R>ι2(

#„
b ) + R>Γι2( #„y ) + cpad(S)>ι1( #„a ) + cpad(S)>Γ>ι1( #„x ) + R>Γcpad(S)

#„
U + r1cpad(H1)

#„
U .

We can simplify it as
#„
Φ ′ = R>ι2(

#„
b ) + R>Γι2( #„y ) + R>ΓS

#„
V + rpad

(
S>ι1( #„a ) + S>Γ>ι1( #„x )

)
+ r1H1

#„
V .

Since the last element of the output of rpad(·) is always OB and r1H1
#„
V = (r1U2,−r1U1,OB)> does

nothing on the last B-element, the proof reveals the last B-element of R>ι2(
#„
b )+R>Γι2( #„y )+R>ΓS

#„
V .

Theorem 5.1. GS′Sym for MMEs is not perfect WI in the WI setting. Thus, it is not composable WI.

Proof. We show that if we can solve the DL problem inG, we can distinguish the proof. Let us consider
an equation #„a > · #„y + #„x > ·

#„
b + #„x > ·Γ #„y = t ∈ Gwith #„

b , #„0 or Γ , O. We suppose that there exist two
witnesses ( #„x 0,

#„y 0) and ( #„x 1,
#„y 1) with #„x 0 ,

#„x 1. The simplest example is the equation P · y+ X · 1 = O
with witnesses (P,−1) and (O, 0).
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Suppose that the prover chooses two randomness R = (R1 | R2 | R3) ∈ Zm×3
N and S = (S1 | S2) ∈

Zn×2
N and generates two commitments

#„
C = ι1( #„x ) + R

#„
U and #„

D = ι2( #„y ) + S
#„
V .

The prover then constructs the proof as

#„
Φ ′ = rpad

(
S>ι1( #„a ) + S>Γ>ι1( #„x )

)
+ R>ι2(

#„
b ) + R>Γι2( #„y ) + R>ΓS

#„
V + r1H1

#„
V

=
*..
,

∗1
∗2

R>3 ι2(
#„
b ) + R>3 Γι2( #„y ) + R>3 ΓS

#„
V

+//
-
.

We additionally observe that R>3 ι2(
#„
b ) + R>3 Γι2( #„y ) + R>3 ΓS

#„
V = R>3 (ι2(

#„
b ) + Γ

#„
D) ∈ B = G3.

Given #„
C , #„

D, and #„
Φ ′ = (Φ′1,Φ

′
2,Φ

′
3)> ∈ B3, we decide which witness is used as follows: Since we

are powerful enough to solve the DL problem in G, we can compute R(0) = (R(0)
1 | R(0)

2 | R(0)
3 ) and

R(1) = (R(1)
1 | R(1)

2 | R(1)
3 ) ∈ Zn×3

N satisfying #„
C = ι1( #„x 0) + R(0) #„

U = ι1( #„x 1) + R(1) #„
U . Notice that

R(0) , R(1) holds since #„x 0 ,
#„x 1. Now, we can check if

Φ′3 − (R(β)
3 )>(ι2(

#„
b ) + Γ

#„
D) = OB

or not.
We note that the probability that ι2(

#„
b )+Γ

#„
D =

#   „
OB is negligible since #„

b , #„0 or Γ , O holds from
our choice of the equation. Meanwhile, the LHS of the check equation is (R3 − R

(β)
3 )>(ι2(

#„
b ) + Γ

#„
D).

Therefore, when R , R(β) , the probability that (R3 −R
(β)
3 )>(ι2(

#„
b )+Γ

#„
D) is not OB is overwhelming.

On the other hand, when R = R(β) , the LHS is always zero. Hence, the system is not perfect WI in the
WI setting. ut

Remark 5.2. We did not �nd an e�cient attack. We left determining whether the system is computa-
tionally WI in the WI setting as an open problem.

5.3 Distinguishing Attack against a Variant of GS′
Sym

for MMEs

Let us quote the de�nitions of commitments and proofs from [GS12, Section 10, pp.1224-1225].

Commit to the scalars #„x ∈ Zmp and the group elements
#„

Y ∈ Gm as

#„c = ι′( #„x ) + R #„v
#„
d = ι(

#„

Y) + S #„u

for randomly chosen R← Matm×2(Zp ), S ← Matn×3(Zp ).
(...)
For each multi-scalar multiplication equation #„a ·

#„

Y+ #„x ·
#„

B+ #„x ·Γ
#„

Y = T2 we use the symmetric
map F. (...) The proof is for random r1 ← Zp :

#„
φ := R>ι(

#„

B) + R>Γι(
#„

Y) + (S′)>ι′( #„a ) + (S′)>Γ>ι′( #„x ) + R>ΓS′ #„u + r1H1
#„u .

They considered an MME #„a ·
#„

Y + #„x ·
#„

B + #„x · Γ
#„

Y = T2, where A1 = ZN , A2 = G, and AT = G.
Removing inconsistency of dimensions, we obtain

#„
φ := (R′)>ι(

#„

B) + (R′)>Γι(
#„

Y) + S>ι′( #„a ) + S>Γ>ι′( #„x ) + (R′)>ΓS #„u + r1H ′1
#„u ,

9



where R′ is rpad(R). By replacing ( #„x ,
#„

Y, #„a ,
#„

B, R, S, Γ) with (
#„

X, #„y ,
#„
A,

#„
b , S, R, Γ>), we have, for the

MME #„
A> · #„y +

#„

X> ·
#„
b +

#„

X> · Γ #„y = T ,

#„c := ι( #„

X) + R #„u
#„
d := ι′( #„y ) + S #„v
#„
φ := (S′)>ι(

#„
A) + (S′)>Γ>ι(

#„

X) + R>ι′(
#„
b ) + R>Γι′( #„y ) + (S′)>Γ>R #„u + r1H ′1

#„u .

Meanwhile, in GS′Sym, the proof is de�ned as

#„
Φ ′ := R>ι2(

#„
b ) + R>Γι2( #„y ) + cpad(S)>ι1( #„a ) + cpad(S)>Γ>ι1( #„x ) + R>Γcpad(S)

#„
U + r1cpad(H1)

#„
U .

We conclude that they alternatively de�ned the proof as
#„
Φ ′′ := R>ι2(

#„
b ) + R>Γι2( #„y ) + cpad(S)>ι1( #„a ) + cpad(S)>Γ>ι1( #„x ) + cpad(S)>Γ>R

#„
U + r1cpad(H1)

#„
U .

We call this proof system as GS′′Sym for MMEs.
As in the case of #„

Φ ′, we observe that
#„
Φ ′′ = R>ι2(

#„
b ) + R>Γι2( #„y ) + rpad

(
S>ι1( #„a ) + S>Γ>ι1( #„x ) + S>Γ>R

#„
U

)
+ r1H1

#„
V

= R>
(
ι2(

#„
b + Γ #„y )

)
+ rpad

(
S>ι1( #„a ) + S>Γ>ι1( #„x ) + S>Γ>R

#„
U

)
+ r1H1

#„
V .

The proof #„
Φ ′′ reveals R>3

(
ι2(

#„
b + Γ #„y )

)
where R3 is the last column of R, since r1H1

#„
V does nothing

on the last element.
In addition, we notice that ι2(0) = 0U∗ = OB and, with overwhelming probability over the coins of

CRS generation, for z , 0 ∈ ZN , ι2(z) = zU∗ , OB . From those observations, we can mount a stronger
attack as follows:

Theorem 5.2. GS′′Sym for MMEs is not computational WI.

Proof. We consider an equation #„a > · #„y + #„x > ·
#„
b + #„x > · Γ #„y = t. We suppose that there exist two

witnesses ( #„x 0,
#„y 0) and ( #„x 1,

#„y 1) with #„y 0 ,
#„y 1. We additionally suppose that #„

b + Γ #„y η ∈ Z
m
N is #„0 if

η = 0 and not #„0 otherwise. The simplest example is the equation X · 1 + X · 1 · y = O with witness
(P,−1) and (O, 0).

Suppose that the prover employs two randomness R = (R1 | R2 | R3) ∈ Zn×3
N and S = (S1 | S2) ∈

Zm×2
N and obtain two commitments

#„
C = ι1( #„x ) + R

#„
U and #„

D = ι2( #„y ) + S
#„
V .

The prover then constructs the proof by computing

#„
Φ ′′ = R>ι2(

#„
b ) + R>Γι2( #„y ) + rpad

(
S>ι1( #„a ) + S>Γ>ι1( #„x ) + S>Γ>R

#„
U

)
+ r1H1

#„
V

=
*..
,

∗1
∗2

R>3
(
ι2(

#„
b + Γ #„y )

)+//
-
.

LetΦ′′3 := R>3
(
ι2(

#„
b + Γ #„y )

)
.

When #„
b + Γ #„y =

#„0 , then Φ′′3 is R>3 ι2( #„0 ) = OB ; while if #„
b + Γ #„y ,

#„0 , then Φ′′3 , OB with
overwhelming probability over the choice of R3. Therefore, with overwhelming probability, we can
distinguish the case that #„

b + Γ #„y =
#„0 from the case #„

b + Γ #„y ,
#„0 . This breaks the computational WI

property. ut
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5.4 E�ects of the Bug: On NIZK Proof Systems Based on the DLIN Assumption

In [GS12, Section 11], Groth and Sahai discussed constructions of NIZK proof systems for MMEs and
special PPEs. We review them and summarize the e�ects of the bug.

– NIZK proof system for MMEs: This system employs the NIWI proof system for MMEs. Therefore,
the simulation fails.

– NIZK proof system for PPEs with t =
∑

i e(Pi,Qi ) for known Pi , Qi : This system employs the
NIWI proof system for a special MME, 1 · X − δ · Q = O ∈ G. 3 Therefore, perfect simulation fails.

We check the security of the NIWI proof system for the special MME, 1 · X − δ · Q = O ∈ G, in
the generic group model by using GGA (Generic Group Analyzer) [BFF+14, BFF+15, Fag15]. 4 GGA says
that if Q is chosen randomly by the challenger, then the real proof employing witness (Q, 1) and the
simulated proof employing witness (O, 0) are indistinguishable in the generic group model. For the
detail, see Appendix A.
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A On the security of GSSym for special MME

Let us consider an equation
−Q · y + X · 1 = O ∈ G

and two witnesses (X, y) = (Q, 1) and (O, 0).

A.1 The special case based on the DLIN assumption

In the WI setting, we have

#„
U =

*..
,

(α, 0, 1)P
(0, β, 1)P

(z1α, z2α, z1 + z2 − 1)P

+//
-
.

Let U =
(
α 0 1
0 β 1

z1α z2β z1+z2−1

)
. For valid commitments C, D ∈ G3, we can take c1, c2, c3, d1, d2 ∈ ZN s.t.

C = c1U1 + c2U2 + c3U3 and D = d1U1 + d2U2. Since −Q · y + X · 1 = O ∈ G, we can write X = yQ.
Finally, we observe that C = ι1(X ) + r

#„
U and D = ι2(y) + s

#„
V . Hence, we have rP = (C − ι1(X ))U−1

and sP = (D − ι2(y))U−1. By using r and s, we can represent #„
Φ ′ as( (

z1α(−z1yq + c1), z1α(−z2yq + c2) + αρ, z1α(yq + c3)
)
P(

z2β (−z1yq + c1) − βρ, z2β (−z2yq + c2), z2β (yq + c3)
)
P(

(z1 + z2)(−z1yq + c1) + q (z1y − d1) − ρ, (z1 + z2)(−z2yq + c2) + q (z2y − d2) + ρ, (z1 + z2)(yq + c3)
)
P

)
,

where q is the discrete logarithm of Q.
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Listing 1.1. MME-DLIN-GivenQ.ggt

(* MME-DLIN-GivenQ.ggt *)
(* Symmetric Pairing *)
maps G * G -> GT.

(* U, V, Q, C, and D *)
input [
alpha,beta,z1*alpha,z2*beta,z1+z2-1,q,
c1*alpha+c3*z1*alpha,c2*beta+c3*z2*beta,c1+c2+c3*(z1+z2-1),
d1*alpha,d2*beta,d1+d2

] in G.

(* \Phi with y = 0 *)
input_left [
alpha*c1*z1,alpha*c2*z1-alpha*r,alpha*c3*z1,
beta*c1*z2+beta*r,beta*c2*z2,beta*c3*z2,
-d1*q+c1*z1+c1*z2+r,-d2*q+c2*z1+c2*z2-r,c3*z1+c3*z2

] in G.

(* \Phi with y = 1 *)
input_right [
alpha*c1*z1-alpha*q*z1*z1,alpha*c2*z1-alpha*r-alpha*q*z1*z2,alpha*c3*z1+alpha*q*z1,
beta*c1*z2+beta*r-beta*q*z1*z2,beta*c2*z2-beta*q*z2*z2,beta*c3*z2+beta*q*z2,
-d1*q+c1*z1+c1*z2+r+q*z1-q*z1*z1-q*z1*z2,
-d2*q+c2*z1+c2*z2-r+q*z2-q*z1*z2-q*z2*z2,
c3*z1+c3*z2+q*z1+q*z2

] in G.

We analyze the proofs are indistinguishable in the generic-group model when Q is randomly
chosen. To analyze the problem in the generic group model, we employ GGA (Generic Group Ana-
lyzer) [BFF+14, BFF+15, Fag15]. 5 Our code for GGA is in Listing 1.1 which re�ects calculations in the
above. We run the script and obtain

$ gga nonparam MME-DLIN-GivenQ.ggt
common input:
(...)
The assumption is valid for all primes

as we wanted.

5 Available at https://github.com/generic-group-analyzer/gga.
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