
Survey of Microarchitectural Side and Covert
Channels, Attacks, and Defenses

Jakub Szefer1

Yale University, New Haven, CT, USA
jakub.szefer@yale.edu

Abstract. Over last two decades, side and covert channel research has
shown variety of ways of exfiltrating information for a computer sys-
tem. Processor microarchitectural side and covert channel attacks have
emerged as some of the most clever attacks, and ones which are difficult
to deal with, without impacting system performance. Unlike electro-
magnetic or power-based channels, microarchitectural side and covert
channel do not require physical proximity to the target device. Instead,
only malicious or cooperating spy applications need to be co-located on
the same machine as the victim. And in some attacks even co-location is
not needed, only timing of the execution of the victim as measured by a
remote attacker over the network can form a side channel for information
leaks. This survey extracts the key features of the processor’s microar-
chitectural functional units which make the channels possible, presents
an analysis and categorization of the variety of microarchitectural side
and covert channels others have presented in literature, and surveys ex-
isting defense proposals. With advent of cloud computing and ability to
launch microarchitectural side and covert channels even across virtual
machines, understanding of these channels is critical.

1 Introduction

One of the first mentions of what we now call side- or covert-channel attacks was
brought up by Lampson in 1973 [36], in his note on the confinement problem of
programs. Since then many research papers have explored side and covert chan-
nels. From processor architecture perspective, there is an intrinsic connection
between the side and covert channels and the characteristics of the underlying
hardware. First, these channels exist because of spatial and temporal sharing of
processor units among different programs as they execute on the processor. Sec-
ond, many decades of processor architecture research have resulted in processor
optimizations which create fast and slow execution paths, e.g. a simple addi-
tion takes much less time to execute than a multiplication operation. Sharing of
functional units, and the fast and slow paths, are both characteristics that have
allowed the explosion in computational power of modern processors.

Meanwhile, more and more researchers are exploiting the functional unit
sharing or the fast and slow paths to present ever more clever side- and covert-
channel attacks. Thus on one hand processor architects are adding new features



to improve performance, and on another security researchers are exploiting these
improvements to show how information can leak, e.g. [7, 31, 63, 50, 61]. Of course,
with growing interest in side- and cover-channel attacks, hardware and software
defenses have been put forth, e.g. [46, 64, 35, 38]. This survey aims to survey both
sides of this arms race and makes number of contributions:

1. elicits key features of the microarchitectural functional units which make the
channels possible,

2. presents an analysis of existing microarchitectural side and covert channels,
and

3. surveys existing defense proposals.

Analysis of the variety of the side and covert channels reveals that in the
presence of sharing of hardware and fast and slow paths, it is the pattern of usage
and sharing of these functional units that determines the channel capacity – the
information leak rate will vary from potentially close to theoretical maximum
to almost zero, depending on how the computer system is used. Thus this work
surveys and condenses the key characteristics of hardware’s role in the side and
covet channels so researchers and developers can better know how their software
will behave and how it may be susceptible to attacks.

The different attacks presented in literature thus far vary wildly in their re-
ported information leakage capacity. In idealized experiments, microarchitectural
side or covert channels can reach capacities of hundreds kilobits per second, e.g.
[31]. In the attacks, however, there are often certain assumptions made about
the attacker and victim that help the attacker, for example that the attacker and
victim are co-located on same processor core (e.g. in case of cache-based attacks
or attacks that leverage the branch predictor). If the attacker is not able to cre-
ate a situation where they are co-located with a victim for a certain amount of
time, the channel capacity can drop significantly. Realistic attacks are in range
from fraction of a bit per second, e.g. [49], to few bits per second, e.g. [73].

To remedy the attacks, researchers have shown many defenses. Nevertheless,
almost all remain academic proposals. In particular, the designs which focus on
eliminating the side and covert channels and their associated attacks often do
so at the cost of performance, which is at odds with the desire to improve effi-
ciently of modern processors that are used anywhere from smartphones, cloud
computing data centers to high-performance supercomputers used for scientific
research. This interplay between microarchitectural side and covert channels on
one side and desire to further improve processor performance through microar-
chitectural enhancements has contributed to lack of practical counter measures
in production hardware.

1.1 Scope of the Survey

This survey focuses on side and covert channels which may exist inside a mod-
ern processor. This includes processor cores and any functional units inside a
multi-core multi-threaded processor such as caches, memory controller, or inter-
connection network. This work does no look at other components of a computer,

2



e.g. hard drives and associated timing covert channels due hard drive disk head
movement [23]. Also, focus in on software attacks on hardware where an at-
tacker process can learn some information about victim process, or cooperating
attacker processes can send information between each other. Hardware attacks,
such as power analysis side channels [33] or electromagnetic side channels [21]
are not in the scope.

1.2 Survey Organization

The survey is organized as follows. Section 2 presets processor microarchitec-
tural features and how they enable information leaks via the side and covert
channels. Section 3 describes side and covert channel classification, in relation to
the processor features. Section 4 discusses the existing side and covert attacks.
Section 5 summarizes various proposals for analysis, detection and defense from
side and covert channels. Discussion is presented in Section 6 and we conclude
in Section 7.

2 Functional Unit Features Leading to Side and Covert
Channels

To understand the problem of microarchitectural side and covert channel at-
tacks, it is first needed to understand the variety of processor microarchitectural
features and how they enable information leaks. Figure 1 shows a two-thread
SMT processor with 5-stage pipelines, along with the memory subsystem com-
ponents. The figure shows a single-core, dual threaded (SMT) pipelines with key
components found in most processors.

The typical processor pipeline is broken into number of stages: instruc-
tion fetch, instruction decode, execute, memory and writeback. At each stage,
pipeline is able to perform different operations, and results of these operations
are stored in the pipeline buffers (shown as gray rectangles in the figure). At
each clock cycle, the pipeline stages take input from the previous stage and pro-
ceed to perform its operation. Thus the instructions and data proceed in the
pipeline until the results are computed and stored back in register file or written
to memory.

Each solid white rectangle in the figure represents a functional unit – a hard-
ware unit responsible for a specific operation or task. Each functional unit has
some inputs, can maintain its state, and generates output. The inputs, state,
and outputs are affected by the programs and system software running on the
system. Each program or system software is composed of code and stream of in-
structions which are one-by-one executed by the processor1. Instruction streams

1 Modern processor support out-of-order (OoO) execution, which allows instructions
to be re-ordered for better performance, but OoO preserves program semantics and
instructions are always retired in program order so that OoO execution is transparent
to programmers.

3



Fig. 1: The prototypical two-thread SMT processor with 5-stage processor pipelines
shown with shared execution stage and key components of the memory subsystem.

from different programs and system software alternate according to system soft-
ware scheduler and hardware policies. Typically, there is strong ring-based pro-
tection system which prevents different applications from reading each other’s
memory or explicitly accessing resources assigned to other programs directly.

However, the sole act of executing an instruction and affecting one or more
functional units’ state can lead to side or covert channel. This is because there
is an intrinsic relationship between processor microarchitectural features which
allow today’s processors to efficiently run various programs, but at the same time
optimizations which lead to the side and covert channels.

Microarchitectural side and covert channels are typically timing-based chan-
nels. Because of the sharing of functional units among different programs, pro-
grams can in general observe timing of the operation of the functional unit and
directly or indirectly its output. Knowing the design of the different functional
units, timing in turns reveals whether the fast or slow execution path was taken.
Finally, knowing one’s own operations, or victim’s operations, and the timing, a
side or covert channel for information leakage can be established.

There are five characteristics of modern processors and their design which
lead to microarchitectural-based channels:

1. execution of different instructions takes different amount of time,
2. shared hardware leads to contention,
3. program’s behavior (executed instructions) affect state of various functional

units,
4. results or timing of instructions is related to state of the functional units,

and

4



5. based on history of executed instructions, entropy in the operation of the
functional units changes.

2.1 Instruction Execution Timing

The job of the processor hardware is to perform different computations. Some
computations are fundamentally simpler than others. Many logical operations
(e.g. AND, OR, NAND, etc.) can be performed in a single processor cycle. Arith-
metic operations such as addition also can be done quickly with use of parallel
prefix adders or similar hardware circuits. Some operations, however, such as
multiplication do not have as efficient hardware implementations. Thus proces-
sor designers have in past designed single- and multi-cycle instructions. As the
names imply, single-cycle instruction takes one processor cycle. A multi-cycle in-
struction takes many cycles. The fundamental complexity of certain operations
means that the program timing will depend on the instructions in that program.
Thus these fast and slow path leads to information leaks when computation is
performed, as execution of different instructions takes different amount of time.

Eliminating the fast and slow paths would mean making all instructions
take as long as the slowest instruction. However, performance implications are
tremendous. Different between logical operation and floating-point is on order of
10x cycles2. Meanwhile, a memory operation (discussed in detail later) can take
over 100s cycles if data has to be fetched from main memory. Consequently there
is inverse relationship between the entropy among execution unit timing and the
performance. Better performance implies higher entropy and more information
leaks.

2.2 Functional Unit Contention

Processors are constrained in area and power budgets. This has led processor
designers to opt to re-use and share certain processor units when having separate
ones may not on average beneficial. One example is hyper-threading, or simulta-
neous multithreading (SMT), where there are usually two pipelines per core, as
shown in Figure 1. However, the two pipelines share the execution stage and the
units therein. Motivation is that, on average, there is a mix of instructions and
it is unlikely that two programs executing in parallel, one on each pipeline, will
need exactly same functional units. Program A may do addition, while program
B is doing memory access, in which case each executes almost as if they had all
resources to themselves. A complication comes in when two of the programs from
each pipeline attempt to perform same operation. If two programs try, for exam-
ple, to perform floating point operations, one will be stalled until floating point
unit is available. The contention can be reflected in the timing. If a program
performs certain operation and it takes longer at some time, then this implies
that some other program is also using that same hardware functional unit, leak-
ing information about what another program is doing. Thus information leaks
during computation when shared hardware leads to contention.

2 The functional units themselves can be pipelined to lower the overheads.

5



Reductions in the contention can be addressed by duplicating the hardware.
Today, there are many multi-core processors without SMT, where each processor
core has all resources to itself. However, equally many processors employ SMT
and research results show that SMT yields large performance gains with small
area overhead. E.g. SMT chip with two pipelines and shared execution stages is
about 6% larger than a singe thread processor [13]. A two thread SMT is likely
to remain in production for many years because of the evident benefits. Better
performance/area ratios as explicit design goals imply at least some functional
unit sharing will exist and in turn contention that leads to information leaks. The
contention also becomes quite important in the memory subsystem, as discussed
later.

2.3 State-dependent Output of Functional Units

Many functional units inside the processor keep some history of past execution
and use the information for prediction purposes. Instructions that are executed
form the inputs to the functional units. The state is some function of the current
and past inputs. And the output depends on the history. Thus, output of a state-
full functional unit depends on past inputs. Observing the current output leaks
information about the past computations in which that unit was involved. We
give a specific example based on the branch predictor.

Branch Predictor is responsible for predicting which instructions should be
executed next when a branch (e.g. if ... then ... else ... statement) is
encountered. Since the processor pipeline is broken down into stages, the branch
instruction is not evaluated unit the second stage. Thus, the hardware needs
to guess which instruction to fetch while the branch is being evaluated, should
it execute instructions from the then path or the else path? Only later the
hardware goes back and potentially nullifies fetched instructions if it was found
that there was as a mis-prediction and instructions from the wrong path were
started to execute.

To obtain good performance, branch predictor attempts to learn the branch-
ing behavior of programs. Its internal state is built using observation of past
branches. Based on the addresses of the branch instructions it builds local and
global histories of past branches. When a branch instruction is encountered,
branch predictor is looked up based on the address of the branch instruction. If
it was seen in the past, there is a taken or not taken prediction. Modern branch
predictors can reach below 2 miss-predictions per 1000 instructions [14]. Because
of global history component of the branch predictors, different program affect
the branch predictor. A pathological program can “train” the branch predic-
tor to mis-predict certain branches. Then, when another program executes, it
may experience many mis-predictions leading to longer execution time and thus
information leaks about which branches were executed.

Eliminating the branch predictor would deal a hit to the performance and it
is unlikely to be removed from modern processors. This is one example of how
information leaks will exist as program’s behavior (executed instructions) affect
state of various functional units, that later affects others programs’ timing.

6



Fig. 2: Example of a two-way set-associative cache. Data from each memory location is
assigned to a specific set, based on the address. Multiple ways allow storing multiple
pieces of data in a same set. The LRU policy is used within each set.

2.4 Memory Subsystem Functional Units

We dedicate a separate section to the memory subsystem as it has some of
the biggest impacts on the programs performance and information leaks. Not
coincidentally, vast number of research papers has focused on side and covert
channels due to some functional unit in the memory subsystem, e.g. [57] [10] [28]
[71] [48] [12] [37] [72] [55] [24] [41] [40] [11] [3] [6] [47] [59] [58].

Caches Recall from Figure 1 that the memory subsystem is composed of dif-
ferent layers of caches. Each L1 cache is located closest to the processor, it is
smallest in size, but accessing data in the L1 cache takes about 1 to 2 processor
cycles. There are separate L1 caches for instructions and data. L2 cache is a
larger cache, but at the cost of taking about 10 processor cycles to access data
in the cache. L2 cache can be per processor core or shared between multiple pro-
cessor cores. L3 cache, also called Last Level Cache (LLC) is the biggest cache
in size up to few MB, but accessing data in L3 takes 10s of cycles. Finally, there
is the main memory, sized in GBs, but requiring 100 cycles or more to access
data.

Processor designers use the cache hierarchy to bring most recently and most
often used data into the cache closest to the processor so that when there is
memory access or instruction fetch, it can be gotten from one of the caches,
rather than requiring going all the way to memory. Unfortunately, the fastest
caches closest to the processor are also smallest, so there needs to be some
policy of which data to keep in the cache. Often, the policy is some variant
of least recently used policy (LRU) that kicks out least recently used data or
instructions and keeps most recently used ones. As programs execute on the
processor and perform memory accesses, they cause processors to bring into the
caches new data, and kick out lest recently used data back to lower cache or
eventually to the main memory.

Keeping track of least recently used data in the whole cache is not practical,
thus caches are broken down into sets, where each memory location can only be
mapped into a specific sets, as shown in Figure 2. Multiple memory addresses
are mapped to a set. A cache typically has two or more ways, e.g. in a two-

7



way set associative cache, there are two locations that data from specific set
can be placed into. The LRU policy is kept for each set. For example, if memory
addresses 0x0, 0x2 and 0x4 are accessed in that order, then when 0x4 is accessed,
it will kick out 0x0 from the two-way set associative cache shown in Figure 2 as
0x0 was least recently used from set 0.

Such design of the caches lends itself easily to contention and interference,
which in turn leads to information leakage. The typical information leakage is
due to timing that reveals whether some data is in the cache or not. Accessing
data in L1 takes 1 to 2 cycles, while data in memory can take up to 100 cycles.
Eliminating such leakages is difficult. Ideally, the cache replacement logic could
search whole cache for least recently used data, rather than just within a set.
The Z-cache is one step towards that, however, its complexity has prevent it
from being implemented [51]. Proposals for randomized caches (discussed in
more detail later) have also been put forward [64]. However, currently if caches
are removed, each memory access could take 100 or more cycles, which is not
realistic to eliminate the cache hierarchy. Again, execution of different (memory)
instructions takes different amount of time leading to potential for side or covert
channels.

Prefetcher Another component of the memory subsystem is the prefetcher
which is used in microprocessors to speed up the execution of a program by
speculatively brining in data or instructions into the caches. The goal of a pro-
cessor cache prefetcher is to predict which memory locations will be accessed in
near future and prefetch these locations into the cache. By predicting memory
access patterns of applications the prefetcher brings in the needed data into the
cache, so that when the application accesses the memory, it will already be in
the cache or a stream buffer3, avoiding much slower access to the main memory.

Hardware prefetchers attempts to automatically calculate what data and
when to prefetch. The prefetchers usually work in chunks of size of the last level
cache (LLC) blocks. Sequential prefetchers prefetch block x+1 when block x is
accessed. An improvement, which is most often used in today’s processors, is
the stride prefetcher which attempts to recognize sequential array accessed, e.g.
block x, block x+20, block x+40, etc. [52].

Because hardware stride prefetcher fetches multiple blocks ahead, it will
sometimes bring in data that the application is not going to use. However, de-
pending on the physical memory allocation, that prefethed data may actually be
used by another application. When the application accesses memory and mea-
sures timing, the blocks which were prefetched based on pattern detected for the
other application will be accessible more quickly. In addition, if the exact details
of the prefetcher algorithm are known, it is possible to trace back which addresses
and how many addresses were accessed by the other application. Prefetcher re-

3 Some prefetchers place prefetched data in a dedicated stream buffer to limit cache
pollution, stream buffer nevertheless is like a cache and accessing data in stream
buffer is much faster than going to main memory.

8



Fig. 3: Example of a dual-core platform where two processing cores share one memory
controller and the main memory (DRAM).

moval would have largest penalty for regular applications that have many array
accesses.

Memory Controller The memory controller and the DRAM controller in the
main memory are responsible for managing data going to and from the processor
and the main memory. The memory controller contains queues for request from
the processor (reads and writes, usually coming form the last level cache), it has
to schedule these request and arbiter between different caches making request
and deal with the DRAM device resource contention.

The memory control which is a share resource, becomes a point of contention,
as shown in Figure 3. In this example, two processor cores are each connected
to the same memory controller and memory chip. Requests from each processor
core need to be ordered and queued up by processing by the memory. Dynam-
ically changing memory demand from one processor core will affect memory
performance of the other core. While the memory controller attempts to achieve
fairness, it is not always possible to balance out memory traffic from different
cores. In particular, today’s DRAM is typically divided up into pages and data
from within DRAM is first brought into a row buffer before being actually pro-
cessed (reads sent data back to the requesting processor from the buffer, or writes
update it with incoming data). Many of today’s chips use open-page policy that
gives some preference to reads or writes to currently opened page (i.e. on in the
row buffer). Memory accesses with lots of spatial locality may get preference
as they hit in the open page – giving overall better performance as opening /
closing new pages is expensive in terms of energy and time. Because of such
optimization, again shared hardware leads to contention which in turn can be
basis for side or covert channels.

Interconnect Modern processors have replaced a typical bus that connected
multiple processors and memory with more advance interconnects, such as In-
tel’s Quick Path Interconnect (QPI). The interconnect is used by to send data
between processors and also for memory accesses in non-uniform memory archi-
tectures (NUMA) where main memory is divided up and separate DRAM chips

9



Fig. 4: Example of 4-processor setup with point-to-point (QPI-like) interconnect be-
tween them. Each processor has its own associated memory, but all processors can
access the other memories via the interconnect, a typical NUMA configuration for
systems with a single global address space.

and memory controllers are located near each processor, as shown in Figure 4.
Such arrangement gives each processor fast access to local memory, yet still large
total system memory. However, timing of memory accesses can reveal informa-
tion, such as accessing data in the DRAM chip close to the processor is faster
than accessing remotely located DRAM at another core. In addition, locking
and atomic operations can lock down the interconnect making memory accesses
stall. Thus memory access timing can reveal state of the interconnect and leak
information about what other processes are doing.

3 Side and Covert Channel Classification

With the understanding of the processor functional units and their operation,
we proceed to explore the different channels and actual attacks and defenses.
First, we begin by classifying different types of attacks.

A covert communication channel is a communication channel that was not
intended or designed to transfer information between a sender and a receiver.
A side channel is similar to a covert channel, but the sender does not intend to
communicate information to the receiver, rather sending (i.e. leaking) of infor-
mation is a side effect of the implementation and the way the computer hardware
is used.

Covert channels are important when considering intentional information ex-
filtration where one program manipulates state of the system according to some
protocol and another observers the changes to read the “messages” that are sent
to it. Covert channels are a concern because even when there is explicit isola-
tion, e.g. each program runs in its own address space and can’t directly read and

10



write another program’s memory, the covert channel through processor hardware
features allows the isolation mechanisms to be bypassed.

Side channels are important when considering unintentional information leaks.
When considering side channels, there is usually the “victim” process that uses
a computer system and the way the system is used can be observed by an “at-
tacker” process.

Side and covert channels can be generally categorized as timing-based, access-
based, or trace-based channels. Timing-based channels rely on timing of various
operations to leak information, e.g. [6, 34, 9]. For example, one process performs
many memory accesses so that memory accesses of another process are slowed
down. Access-based channels rely on accessing some information directly, e.g.
[47, 44, 27, 73, 49]. For example, one process probes the cache state by timing its
own memory accesses. Trace-based channels rely on measuring exact execution
of a program, e.g. [3]. For example, attacker obtains sequence of memory accesses
and whether they are cache hits or misses based on the power measurements.

Trace-based channels usually require some physical proximity, for example,
to obtain the power traces. In this work, we focus on microarchitectural channels
and attacks that can be done remotely, thus the focus is narrowed down to the
timing-based and access-based channels.

In context of the processor, both timing-based and access-based channels
have a timing component that is observable by a potential attacker. Especially,
while access-based attacks are built on operations that access certain resource,
such accesses perturb timing of another process’ operations. In particular, we
differentiate these as internal timing and external timing attacks, shown in Fig-
ure 5. In internal timing, the attacker measures its own execution time. Based on
knowledge of what it (the attacker) is doing, e.g. which cache lines it accessed,
and the timing of its own operations, the attacker can deduce information, e.g.
which cache lines were being accessed by other applications on that processor.
In external timing, the attacker measures execution time of the victim, e.g. how
long it takes to encrypt a piece of data; knowing the timing and what the victim
is doing the attacker can deduce some information, e.g. was there addition or

Fig. 5: Relation between channel types and attack types.

11



multiplication done during the encryption, potentially leaking bits of information
about the encryption key4.

4 Existing Side- and Covert-Channel Attacks

Variety of clever internal and external timing attacks have been demonstrated
in literature in past years. We present grouping of the attacks based on whether
they target computer system without or with virtualization. Naturally, more at-
tacks have been presented for non-virtualized systems as these have been around
for longer5.

4.1 Attacks in Non-Virtualized Settings

Caches Traditional side [34] and covert [67] channels based on timing have been
explored since 1990s. One of first theoretical uses of processor cache memory as a
side-channel was shown in 2002 [45]. Timing attacks based on shared data caches
have been widely studied since in literature, focusing on attacks on cryptographic
protocols and algorithms, and leveraging processor data caches [57] [10] [28] [71]
[48] [12] [37] [72] [55] [24] [41] [40] [11] [3] [6] [47] [59] [58]. These side and
covert channels leverage the underlying properties of the caches where accessing
specific memory location is guaranteed to place data in a specific cache set.
When one program’s (attacker’s) data gets kicked out of the cache, which can be
measured using timing, that means that another program (victim) has accessed
data that maps to the same cache set. The hardware properties, combined with
frequent AES or other cryptographic implementations that use table lookups
during operation, allow attackers to make educated guesses about which table
locations were accessed by the victim, and thus guess bits of cryptographic keys.

In addition to data caches (D-cache), channels through instruction caches
(I-cache) have been demonstrated [1] [2]. I-cache channels rely on the fact that
instruction cache misses increase the execution time of the applications. As ex-
ample, researchers have mounted these attacks against OpenSSL RSA implemen-
tation and took advantage of the fact that OpenSSL uses different functions to
compute modular multiplications and square operations when doing RSA com-
putations. The different functions leave different footprints in the I-cache. At-
tacker is able to fill I-cache with its own instructions, when the victim (OpenSSL
RSA) runs it kicks out different instruction form I-cache and attacker now knows
if multiplication or square function was executed in the victim.

Most of the attacks focus on first level caches, but recent work [70] utilized
shared last level cache (LLC) attack to extract cryptographic keys. The L1 caches

4 External timing channels often require many iterations to correlate timing informa-
tion, however, basic principle is the same that attacker observes a victim’s timing
and the victim’s timing depends on the operations it performs.

5 IBM mainframes and similar computer systems have had virtualization-like features
long before today’s commodity PCs; however very few attacks, if any, have been
explored in that setting.

12



are smallest, so it is easiest to manipulate their contents by accessing data or
instructions. Higher level caches (L2, LLC) are larger, can be shared among
different processor cores, and store both instructions and data. This contributes
to more noise in cache based attacks, leading to lesser bandwidth for side or
covert channels through these caches. Nevertheless, attacks get better every year.

Data Path Units Beyond caches, integer and floating-point units have been
found to be sources of information leaks [7]. These are classical examples of
contention that causes different timing and can leak information. When two or
more programs access a share resource that is busy, one of them is stalled. Stalls
mean longer execution time, and allow the program to conclude that another
program is using the unit. More recently, similar idea has been applied to the
new AES instructions in Intel’s processors [61].

In addition, covert channels using exceptions on speculative load instructions
and shared functional units in simultaneously multithreading (SMT) processors
have been shown [63]. SMT processors allow multiple processor pipelines share
some hardware, on assumption that on average not all programs will do exactly
same functional units so fewer units are implemented. However, when the average
case does not hold, contention arises causing timing channels.

Control Path Units Side-channel attacks through branch prediction units [5]
[4] [31] have been shown as well. Similarly to caches where hits (data is found
in the cache) or misses (data is not in the cache) cause different timing, branch
prediction hits and misses give different timing. Attackers can “train” a branch
predictor by forcefully executing branches that tend to hit (or miss) at certain
address and then when another process runs its branches at the trained addresses
will be predicted to hit (or miss). The hit or miss timing can be measured to
form a covert channel.

System Bus and Interconnect Channels have also been presented based on
the Quick Path Interconnect (QPI) lock mechanism in Intel’s processors [61].
Some channels become rediscovered over time, e.g. with first processor bus con-
tention channel presented in 1995 [26] and recently applied to the modern mem-
ory bus [50].

The interconnect and memory bus are a shared resource, and these channels
are further example of how sharing of a resource leads to contention, which affects
timing and forms a channel. These attacks rely on the fact that the interconnect
can be locked for use by a specific program when it is doing a type of atomic
operation, or bus is not available when another “memory hog” program has
many memory requests.

4.2 Attacks in Virtualized Settings

With advent of cloud computing, researchers have moved their attention to side
and covert channels in virtualized environments. The attacks in non-virtualized

13



settings can be extended to virtualized settings. The attacks tend to be less ef-
fective as (in addition to the operating system) there is the hypervisor and many
other virtual machines. This creates a noisy environment. However, researches
have been able to overcome this. It can be expected that variety of the channels
from non-virtualize environments will become viable in virtualized environment,
even if there are no such current attacks listed below.

Caches One of the first channels was a cross-VM covert channel that exploited
the shared cache [49]. Such cross-VM side channels have been used to extract
private keys from VMs [73]. Researchers have moreover leveraged L2 caches
to create covert channels in virtualized environments [69]. Interesting resource-
freeing attacks improve an attacker’s VM’s performance by forcing interference
with a competing VM [60]. Leveraging some hypervisor software features in com-
bination with hardware memory, researchers have utilized sharing of redundant
pages in memory deduplication [39] [53] as channels as well.

Like their non-virtualized counterparts, these channels rely on the fact that
programs can fill the caches with data by making memory accesses, and later
read back data and time the reads to see which memory was kicked out by
another program, allowing them to make educated guess about which data or
instructions were executed.

System Bus and Interconnect Researchers have exploited the memory bus
as a high-bandwidth covert channel medium. Specifically, memory controllers
have been shown to be sources of potential channels and leaks [68]. Again, like
their non-virtualized counterparts, bus contention can open up timing channels.

4.3 Attack Analysis

The attacks that researchers have presented, and keep presenting, have a di-
rect correlation between number of attacks and their bandwidth vs. how much
performance improvement the associated functional unit offers. Caches stand
out as the major source of attacks, and they are also a major performance im-
proving feature. Caches were first ones explores for attacks in non-virtualize
environments, and also first ones in virtualize environments. Memory controller
and related functional units also are a source of attacks, but to a lesser degree.
Finally there are units such as branch predictor which give very small band-
width channels. It’s difficult to quantify the contribution of the different units
to the performance of the processor as they it is heavily dependent on the soft-
ware that is running on the computer. Nevertheless, intuitively, there are many
more memory operations than branch instructions, so the branch predictor has
smaller effect on the performance – and in turn has smaller bandwidth as source
of information leaks.

Timing channels arising due to contention are also quite frequent, and are
more often exploited for covert channels. Re-use of functional units and their
sharing leads to contention as processors are designed for the average case where

14



not all software needs all functional units at the same time, meanwhile attacks
create pathological code that forcefully tries to use same functional units as other
code at the same time so as to bring about the contention.

Researchers and software writers should focus on analyzing their applications
to understand what operations and functional units they use, to determine how
different side and covert channels may affect them. The more the software uses
functional units that have most impact on performance, the more it is susceptible
to attacks.

4.4 Estimates of Existing Attack Bandwidths

Large number of research papers do not clearly state specific bit per second rates,
but rather show that they were able to recover a number of secret key bit or bits
of sensitive information for their target application. Nevertheless, some of the
bandwidths can be well estimated by looking at the researchers’ experiments and
their experimental setup. Most of the rates are in ranges of kilobits per second
(Kbps) in optimal or idealized setting, and reduce to bits per second (bps) or
less in realistic settings.

One of the first side-channel attacks was the 0.001 bps Bernstein’s AES cache
attack using L1 cache collisions [9]. Bonneau improved the attack to about 1 bps
[11]. Around same time, Percival reported attacks with about 3200 Kbps using
L1 cache-based covert channel, 800 Kbps using L2 cache-based covert channel,
which reduce to few Kbps when they were done in a realistic setting [47]. Recently
about 0.5 bps channels due to branch predictor [20] were presented.

Other set of researchers have focused on virtualization and virtual machines.
Ristenpart, et al., showed 0.006 bps memory bus contention channel across VMs
[49], and also 0.2 bps cross-VM L2 access-driven attack [49]. Xu, et al., presented
262 bps L2 cache-based covert channel in a virtualized environment [69]. Zhang,
et al., show 0.02 bps L1 cache-based covert channel across VMs, using IPIs to
force attacker VM to interrupt victim VM [73]. Wu, et al., show 100 bps channel
on Amazon’s EC2 due to shared main-memory interface in symmetric multi-
processors [68]. Hunger, et al., show up to 624 Kbps channel when sender and
receiver can have a well optimized and have aligned clock signals [31]. These are
summarized in Table 1.

4.5 Attack Bandwidth Analysis

The Trusted Computer System Evaluation Criteria (TCSEC), or more com-
monly The Orange Book, sets the basic requirement for trusted computer sys-
tems [43]. The Orange Book specifies that a channel bandwidth exceeding a rate
of 100 bps is a high bandwidth channel. It can be seen from Table 1 that many
idealized attacks are well above that rate, but there is also a quite large variance
with the reported or estimated bandwidths for actual attacks. The cache based
attacks are highest in bandwidth as potential attackers are able to affect specific
cache sets by executing memory accesses to particular addresses that map to the
desired set. Other functional units let potential attackers affect the units state

15



Attack Functional Unit Channel Bandwidth

Non-virtualized Environments

[9] L1 cache 0.001 bps
[20] Branch predictor 0.5 bps
[11] L1 cache 1 bps
[47] L2 cache 800 Kbps (idealized)
[47] L1 cache 3200 Kbps (idealized)

Virtualized Environments

[49] Memory bus 0.006 bps
[73] L1 cache 0.02 bps
[49] L2 cache 0.2 bps
[68] Memory controller 100 bps
[69] L2 cache 262 bps
[31] Various 624 Kbps (idealized)

Table 1: Bandwidth estimate for various side and covert channel attacks reported in literature

less directly. For example, many branch instructions are needed to re-train the
branch predictor, which leads to lesser bandwidth channel.

Figure 6 shows the selected attacks and their bandwidths as a function of
year in which they were presented. Bandwidth in bps on y-axis is plotted on
log-scale for easier reading. It may seem unusual that as years progress, new
published attacks do not necessarily have bandwidth better than prior attacks
(due to expectation that new research should beat prior work). It should be
noted however, that some of the newer attacks are based on functional units that
contribute less to the performance, so the bandwidth is less. The contributions
of these attacks are clever ways of, for example, leveraging branch predictor. To
help see overall trend, a trend line was added to the figure to show the overall
trend of the attacks and their bandwidths. Clearly, bandwidths are getting higher
and have reached the bounds set by TCSEC for “high bandwidth channels.”

When considering idealized attacks (shown as triangles in the figure) which
are on the order of 100s Kbps, the ”high bandwidth” boundary has long been
passed in their case. These attacks, however, are usually specific to a single pro-
gram, which often is the AES encryption algorithm. The attacks ten to be also
synchronous, where the attacker and victim are executing synchronized (e.g.
attacker and victim alternate execution on same processors). The synchronous
attacks tend to have better bandwidth. For example, the L1 cache-based covert
channel across VMs used IPIs to exactly force execution of the attacker to in-
terleave with the victim. Dedicated attacker can thus come up with clever ways
of improving bandwidth by having more synchronous attacks, approaching the
idealized attack scenarios.

16



Fig. 6: Scatter plot of attacks from Table 1 along with a trend line showing roughly
10x improvement in attack bandwidth over last 10 years for the non-idealized attacks
(squares). Idealized attacks (triangles) show much greater bandwidth, but these are
for specific cases, such as attacks on particular table lookup based AES software im-
plementation.

5 Analysis and Defense of Processor-based Side and
Covert Channels

Microarchitectural side and covert channel research is not all on attacks, with
much effort put into detection and defense against such attacks. Detection of,
and defending against, side and covert channels is a difficult task. We first look
at detection-related work, and then explore potential defense, many of which
can be deploy today, but at cost of performance.

5.1 Analyzing Side and Covert Channels Susceptibility

Microarchitectural side and covert channels arise because of the functional unit
sharing and the fast and slow execution paths. Whenever there is contention or
re-use of the units, attackers can leverage that for timing channels. However, the
side and covert channels are not only due to hardware, but also due to how the
software uses the hardware. A simple example is that if there is only one program
using floating point unit, there will not be contention and an information leak.
Only when another program that uses that unit (and uses it at the same time)
will floating point unit leak information. Thus, detection has focused on design-
time approaches that attempt to understand how much information could leak
and run-time approaches that try to detect unit sharing or the fast and slow
execution paths. The two are compared in Figure 7.

Design-Time Approaches One of the first works looked at shared resource
matrix methodology to identify storage and timing channels [32]. Researchers

17



have tried to define formal basis for hardware information flow security by pro-
viding a method to separate timing flows from other flows of information [42].
Also, a side-channel vulnerability factor has been presented as a metric for mea-
suring information leakage in processors [17] [16].

Such approaches are designed to be deployed at design time, but thus far it
is not clear if any processor manufactures use them. The intuition is that design-
time only approaches are fundamentally needed, but the side and covert channels
depend both on the hardware and how it is used. Thus run-time approaches
complement them. Nevertheless, it would be desired that processors come with
some metrics of side and covert channel susceptibility, but today that is not
available.

Run-Time Approaches A number of run-time approaches have been pro-
posed. Detection based on entropy-based approach [22] or dynamically tracking
conflict patterns over the use of shared processor hardware have been shown
[15]. Attempts to detect malware through analyzing existing performance coun-
ters have been proposed [18], or by using other hardware supported lower-level
processor features [54].

One new innovative run-time approach that stands out uses groups of VMs
and L2 cache contention to detect attackers VMs [72]. The key idea in their
proposal is to invert the usual application of side channels, and use the timing
to observe if other expected VMs are executing or if there is an unexpected
VM accessing memory. According to authors, by analyzing cache usage through
memory timings, “friendly” VMs coordinate to avoid portions of the cache and
can detect the activity of a co-resident “foe” VM.

These approaches attempt to measure and understand how the software is
using the hardware. By obtaining insights into the running software, it is possible
to detect if there may be contention between different programs leading to side or
covert channel, or if there is malware that has unusual sequences of instructions
being executed signaling that it may be a piece of malware leveraging such
channels.

Fig. 7: Design-time analysis takes into account the hardware properties. Run-time ap-
proaches can combine both hardware and software properties, but are done post-design
and are not able to influence the re-design of hardware, which could minimize the side
and covert channel capacities.

18



5.2 Defending Side and Covert Channels

The analysis of the hardware and software has lead researchers to propose a
variety of defenses. Since the channels depend both on the hardware, and the
software that is running on that hardware, the defenses have focused on hardware
approaches and software approaches.

Hardware Approaches To mitigate side and covert channels, hardware archi-
tectural changes have been proposed including partitioning or time-multiplexing
caches [46] [64], which have since been improved [35]. Cache design which dy-
namically reserves cache lines for active threads and prevents other co-executing
threads from evicting reserved lines have also been shown [19]. Such approaches
essentially reservers a subset of the cache for the protected program. Other pro-
grams are not able to interfere with these reserved cache blocks. This prevents
internal-timing, but external-timing attacks are still possible since measuring the
protected program’s timing from outside still can reveal some patterns about
memory it is accessing. In addition, other applications cannot use the reserved
cache blocks, effectively cutting down on cache size and the performance benefits
it brings.

One of the best proposals focus on new type of randomized caches [65].
Today’s commodity hardware has caches where the mapping between memory
and cache sets is fixed and same for all applications. Recall in Figure 2 memory
address 0x0, 0x2, 0x4, etc. all mapped to set 0, regardless of which application is
running. Randomized caches in effect change this mapping for each application,
e.g. application A has 0x0 mapped to set 1 and application B has 0x0 mapped
to set 0. This thwarts internal-timing, but external-timing may still be an issue.
While not designed with security as a goal, the Z-cache [51] may have some of
the similar properties where it searchers among many cache sets to find least
recently used block for replacement. Thus, effective set size is larger, reducing
applications’ contention for same set.

Most recently, work has turned to on-chip networks and ensuring non-interference
[66] or providing timing channel protection [62]. In [66] authors re-design the
interconnect to allow precise scheduling of the packets that flow across the inter-
connect. Data from each processor are grouped together and carried together in
“waves” while strictly non-interfering with other data transfers. In [62] observe,
as we do, that shared resources imply that applications affect each other’s timing
through interference and contention. The defense proposal is again to partition
the network temporally and limit how much each processor can use the network
so as to limit the interference.

Hardware-supported mechanism have also been added for enforcing strong
non-interference [56]. The authors propose “execution leases” which allow to
temporally partition the processor’s resources and lease them to an application
so that others cannot interfere with the usage of these resources. This temporal
partitioning again focuses on un-doing the original design where resources are
shared at very fine granularity, and instead making it coarser, leaving to small

19



Fig. 8: Main hardware approaches to microarchitectural side and covert channel defense.

potential leaks. The tradeoff is the performance impact of locking parts of pro-
cessor for exclusive use of an application. The longer application can keep the
resources, the better leak protection, but also more negative impaction perfor-
mance of other applications.

Processor architects have also proposed the introduction of random noise to
hardware counters [38]. The key to any timing attacks is to be able to obtain
a timing reference, either within the application or somewhere from outside. In
[38] authors’ approach is to limit the granularity and precision of timekeeping
and performance counters mechanisms. By introducing more uncertainty in the
timing, potential attackers are limited in their ability to get a good point of
reference. Nevertheless, many applications are networked and can use external
sources of timing. Both inside and outside the computer system needs to be
considered even when focusing on microarchitectural channels.

Software Approaches Researchers have suggested clearing out leftover state in
caches through frequent cache flushes [44]. This is clearly performance degrading
technique, nevertheless it is able to prevent side and covert channels, as all
application data and code is flushed from memory on context switch and when
application runs again it observes the long timing of main memory accesses. If
the scheduling periods are long, application is able to fill up the cache and benefit
from it. However, when scheduling periods are short, essentially the application
will have to get all data from memory as the caches are flushed constantly.
External timing attacks are prevented, and internal-timing can also be thwarted
if the scheduling periods are short.

Outside of processor caches, to deal with the branch predictor based channels,
clearing branch predictor on a context switch has been suggested [5] as well.
Again, periodical clearing of the predictor state makes the current predictions
not depend on past inputs seen by the predictor, thus reducing information leak.
However, such a defense is also a performance hit as branch predictors rely on
learning the branching history of the running programs to give good branch
predictor hit rate.

Addition of noise has also been suggested. For example, [29], explores re-
ducing channels by introducing fuzzy time. In it, a collection of techniques is
introduced that reduce the bandwidths of covert timing channels by making all
clocks available to a process noisy; this includes system time stamp counters and

20



Fig. 9: Main software approaches to microarchitectural side and covert channel defense.

inputs from disk drives or network cards. In [25], authors introduce similar fuzzy
time noise to defeat bus contention channel.

Other works focus on making the time and all events deterministic, such as in
deterministic OSes designs [8]. Rather than randomize the timing and add noise,
all events are delivered at deterministic instants. Such approaches are not easily
applied to caches or hardware features, but do help in virtualized environments
where the hypervisor can control precisely delivery of packets or other timing
information.

An example of pro-active attempt is the lattice scheduler which is a process
scheduler that schedules applications using access class attributes to minimize
potential contention channels [30]. In general applications can be scheduled such
that the contention is minimized. While existing schedulers do not do this, taking
hardware into consideration a scheduler can run different processes on different
cores, or time multiplex them such as to limit the contention. Of course, this
assumes availability of many processes to be run and fairness of today’s OS or
hypervisor schedulers may be violated.

6 Discussion

Based on the analysis, we make a number of observations and recommendations
for researchers and software writers:

1. Sharing of functional units by different programs and fast and slow execution
paths lead to side and covert channels that attackers can exploit.

It has been shown by the authors of the surveyed works that a wide variety
of functional units can be sources of internal and external timing channels that
attackers can leverage to leak information. Ever more clever attacks emerge each
year, showing that processor caches were the early targets of analysis and attacks
and now other functional units in the processor are getting exploited. As long
as software uses instructions which timing could be affected by contention in
the functional units, there will be vulnerabilities. Likewise, timing differences
between execution of different operations lead to vulnerabilities as well.

2. Covert and side channel capacities continue to increase, with real and ideal-
ized attacks reaching beyond 100 bps.

21



Given current hardware implementation, software running on commodity sys-
tems should assume that existing side and covert channels have passed the lower
bounds set by TCSEC for “high bandwidth channels.” This is true for virtualized
environments. Especially, the strong isolation mechanisms in today’s hypervisors
are not able to prevent variety of side and covert channels. In addition, virtual-
ization may make things worst, as users are outsourcing their computations to
the cloud where they are co-located with unknown other users.

3. New functional units cannot be assumed free from side or covert channel
vulnerabilities.

Section 2 listed variety of functional units and how performance optimizations
embedded in these units are unlikely to be removed, thus leaving theses units as
potential sources of side and covert channels. It would be hoped that even if old
functional units cannot be changed, new ones could be better designed. Mean-
while, as discussed in the section on attacks, even the newest units such as the
dedicated AES hardware can be basis for contention and lead to timing-based
channels. For example, switching from software based AES implementations, to
avoid cache channels, to hardware AES instructions does not fully solve infor-
mation leaks. Thus when re-coding software to avoid one type of side or covert
channel vulnerability, care must be taken to understand what new channels may
be opened up.

4. Many functional units exist which do not have shown attacks, but which do
contribute to to the fast and slow execution paths can could become future
side and covert channels.

Analysis of the processor hardware reveals units such as the prefetcher that
keep internal state base on past inputs and their output is dependent on these
inputs, potentially leaking information. Recall, hardware prefetchers attempt to
automatically calculate what data and when to prefetch into the cache in an-
ticipation that an application will use them. Because hardware stride prefetcher
fetches multiple blocks ahead, it will sometimes bring in data that the (victim)
application is not going to use. However, depending on the physical memory
allocation, that prefethed data may actually be used by another (attacker) ap-
plication. When the attacker application accesses memory and measures timing,
the blocks which were prefetched based on pattern detected for the victim appli-
cation will be accessible more quickly by the attacker. Such is a simple theoretical
example of a prefetcher attack.

5. Flushing state of different functional units, modified scheduling of applica-
tions to avoid contention, resource partitioning and adding noise are software
defenses available today.

Despite the above dangers, much research has been put into detection and pre-
vention of side channels. Fuzzy timing, clearing state of functional units, spatial
and temporal partitioning and randomization are all techniques available to to-
day’s software. They should be leveraged when writing software and system

22



software. With move to cloud computing, OS should assume it may be running
inside a virtual machine and should employ these mechanisms. Likewise, hy-
pervisors have no way to verify intent of the guest VMs and can leverage the
mechanisms to protect VMs.

Clearly, side and covert channels in today’s processors are a source of po-
tential danger. Ongoing work is begin done by architecture and hardware com-
munities to bring about hardware free of information leaks. Until the hardware
becomes available, researchers and software writers should be mindful of what
operations their applications perform and how they could be affected by the
side and covert channels due to sharing of functional units or the fast and slow
execution paths inside the processor.

7 Conclusion

Over last two decades, side and covert channel research has shown variety of,
often very clever, ways of exfiltrating information for a computer system. Pro-
cessor microarchitectural side and covert channel attacks have emerged as some
of the most clever attacks, and ones which are difficult to deal with, without
impacting system performance. This survey extracted the key features of the
processor’s microarchitectural functional units which make the channels possi-
ble, presented an analysis and categorization of the variety of microarchitectural
side and covert channels others have presented in literature, and surveyed exist-
ing defense proposals.

Processor architects continue to come up with new processor optimizations
which create a fast and slow execution paths or re-use and sharing of functional
units for better energy efficiently, power or area. Meanwhile, more and more
researchers are exploiting the functional unit sharing or the fast and slow paths
to present ever more clever side and covert channel attacks. This work surveyed
both sides of this arms race, which continues today. Especially, with advent
of cloud computing and ability to co-locate VMs with other VMs on a cloud
computing data center servers, understanding of these channels is critical as
users have less and less control over environment where the software runs.

References

1. Aciiçmez, O.: Yet another microarchitectural attack:: exploiting i-cache. In: Pro-
ceedings of the 2007 ACM workshop on Computer security architecture. pp. 11–18.
ACM (2007)

2. Acıiçmez, O., Brumley, B.B., Grabher, P.: New results on instruction cache attacks.
In: Cryptographic Hardware and Embedded Systems, CHES 2010, pp. 110–124.
Springer (2010)

3. Acıiçmez, O., Koç, Ç.K.: Trace-driven cache attacks on aes (short paper). In: In-
formation and Communications Security, pp. 112–121. Springer (2006)

4. Acıiçmez, O., Koç, Ç.K., Seifert, J.P.: Predicting secret keys via branch prediction.
In: Topics in Cryptology–CT-RSA 2007, pp. 225–242. Springer (2006)

23



5. Aciiçmez, O., Koç, Ç.K., Seifert, J.P.: On the power of simple branch prediction
analysis. In: Proceedings of the 2nd ACM symposium on Information, computer
and communications security. pp. 312–320. ACM (2007)

6. Acıiçmez, O., Schindler, W., Koç, Ç.K.: Cache based remote timing attack on the
aes. In: Topics in Cryptology–CT-RSA 2007, pp. 271–286. Springer (2006)

7. Aciicmez, O., Seifert, J.P.: Cheap hardware parallelism implies cheap security. In:
Fault Diagnosis and Tolerance in Cryptography, 2007. FDTC 2007. Workshop on.
pp. 80–91. IEEE (2007)

8. Aviram, A., Hu, S., Ford, B., Gummadi, R.: Determinating timing channels in
compute clouds. In: Proceedings of the 2010 ACM Workshop on Cloud Computing
Security Workshop. pp. 103–108. CCSW ’10, ACM, New York, NY, USA (2010),
http://doi.acm.org/10.1145/1866835.1866854

9. Bernstein, D.J.: Cache-timing attacks on aes (2005)
10. Bogdanov, A., Eisenbarth, T., Paar, C., Wienecke, M.: Differential cache-collision

timing attacks on aes with applications to embedded cpus. In: CT-RSA. vol. 10,
pp. 235–251. Springer (2010)

11. Bonneau, J., Mironov, I.: Cache-collision timing attacks against aes. In: Cryp-
tographic Hardware and Embedded Systems-CHES 2006, pp. 201–215. Springer
(2006)

12. Brumley, B.B., Hakala, R.M.: Cache-timing template attacks. In: Advances in
Cryptology–ASIACRYPT 2009, pp. 667–684. Springer (2009)

13. Burns, J., Gaudiot, J.L.: Smt layout overhead and scalability. Parallel and Dis-
tributed Systems, IEEE Transactions on 13(2), 142–155 (Feb 2002)

14. Championship Branch Prediction (2014), http://www.jilp.org/cbp2014/, accessed
August 2015

15. Chen, J., Venkataramani, G.: Cc-hunter: Uncovering covert timing channels on
shared processor hardware. In: Proceedings of the 47th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture. pp. 216–228. IEEE Computer Society
(2014)

16. Demme, J., Martin, R., Waksman, A., Sethumadhavan, S.: A quantitative, experi-
mental approach to measuring processor side-channel security. Micro, IEEE 33(3),
68–77 (2013)

17. Demme, J., Martin, R., Waksman, A., Sethumadhavan, S.: Side-channel vulner-
ability factor: a metric for measuring information leakage. In: ACM SIGARCH
Computer Architecture News. vol. 40, pp. 106–117. IEEE Computer Society (2012)

18. Demme, J., Maycock, M., Schmitz, J., Tang, A., Waksman, A., Sethumadhavan,
S., Stolfo, S.: On the feasibility of online malware detection with performance
counters. ACM SIGARCH Computer Architecture News 41(3), 559–570 (2013)

19. Domnitser, L., Jaleel, A., Loew, J., Abu-Ghazaleh, N., Ponomarev, D.: Non-
monopolizable caches: Low-complexity mitigation of cache side channel attacks.
ACM Transactions on Architecture and Code Optimization (TACO) 8(4), 35
(2012)

20. Evtyushkin, D., Ponomarev, D., Abu-Ghazaleh, N.: Covert channels through
branch predictors: a feasibility study. In: Proceedings of the Fourth Workshop on
Hardware and Architectural Support for Security and Privacy. p. 5. ACM (2015)

21. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: Concrete results.
In: Cryptographic Hardware and Embedded SystemsCHES 2001. pp. 251–261.
Springer (2001)

22. Gianvecchio, S., Wang, H.: Detecting covert timing channels: an entropy-based
approach. In: Proceedings of the 14th ACM conference on Computer and commu-
nications security. pp. 307–316. ACM (2007)

24



23. Gold, B., Linde, R., Cudney, P.: Kvm/370 in retrospect. In: Security and Privacy,
1984 IEEE Symposium on. pp. 13–13. IEEE (1984)

24. Grabher, P., Großschädl, J., Page, D.: Cryptographic side-channels from low-power
cache memory. In: Cryptography and Coding, pp. 170–184. Springer (2007)

25. Gray III, J.W.: On introducing noise into the bus-contention channel. In: Research
in Security and Privacy, 1993. Proceedings., 1993 IEEE Computer Society Sympo-
sium on. pp. 90–98. IEEE (1993)

26. Gray III, J.W.: Countermeasures and tradeoffs for a class of covert timing channels
(1994)

27. Gullasch, D., Bangerter, E., Krenn, S.: Cache games–bringing access-based cache
attacks on aes to practice. In: Security and Privacy (SP), 2011 IEEE Symposium
on. pp. 490–505. IEEE (2011)

28. Henricksen, M., Yap, W.S., Yian, C.H., Kiyomoto, S., Tanaka, T.: Side-channel
analysis of the k2 stream cipher. In: Information Security and Privacy. pp. 53–73.
Springer (2010)

29. Hu, W.M.: Reducing timing channels with fuzzy time. In: Research in Security
and Privacy, 1991. Proceedings., 1991 IEEE Computer Society Symposium on. pp.
8–20. IEEE (1991)

30. Hu, W.M.: Lattice scheduling and covert channels. In: Research in Security and
Privacy, 1992. Proceedings., 1992 IEEE Computer Society Symposium on. pp. 52–
61. IEEE (1992)

31. Hunger, C., Kazdagli, M., Rawat, A., Dimakis, A., Vishwanath, S., Tiwari, M.:
Understanding contention-based channels and using them for defense. In: High
Performance Computer Architecture (HPCA), 2015 IEEE 21st International Sym-
posium on. pp. 639–650. IEEE (2015)

32. Kemmerer, R.A.: Shared resource matrix methodology: An approach to identifying
storage and timing channels. ACM Transactions on Computer Systems (TOCS)
1(3), 256–277 (1983)

33. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Advances in Cryptol-
ogyCRYPTO99. pp. 388–397. Springer (1999)

34. Kocher, P.C.: Timing attacks on implementations of diffie-hellman, rsa, dss, and
other systems. In: Advances in CryptologyCRYPTO96. pp. 104–113. Springer
(1996)

35. Kong, J., Aciiçmez, O., Seifert, J.P., Zhou, H.: Hardware-software integrated ap-
proaches to defend against software cache-based side channel attacks. In: High
Performance Computer Architecture, 2009. HPCA 2009. IEEE 15th International
Symposium on. pp. 393–404. IEEE (2009)

36. Lampson, B.W.: A note on the confinement problem. Communications of the ACM
16(10), 613–615 (1973)

37. Leander, G., Zenner, E., Hawkes, P.: Cache timing analysis of lfsr-based stream
ciphers. In: Cryptography and Coding, pp. 433–445. Springer (2009)

38. Martin, R., Demme, J., Sethumadhavan, S.: Timewarp: rethinking timekeeping and
performance monitoring mechanisms to mitigate side-channel attacks. In: ACM
SIGARCH Computer Architecture News. vol. 40, pp. 118–129. IEEE Computer
Society (2012)

39. Mi lós, G., Murray, D.G., Hand, S., Fetterman, M.A.: Satori: Enlightened page
sharing. In: Proceedings of the 2009 conference on USENIX Annual technical con-
ference. pp. 1–1 (2009)

40. Neve, M., Seifert, J.P.: Advances on access-driven cache attacks on aes. In: Selected
Areas in Cryptography. pp. 147–162. Springer (2007)

25



41. Neve, M., Seifert, J.P., Wang, Z.: A refined look at bernstein’s aes side-channel
analysis. In: Proceedings of the 2006 ACM Symposium on Information, computer
and communications security. pp. 369–369. ACM (2006)

42. Oberg, J., Meiklejohn, S., Sherwood, T., Kastner, R.: A practical testing frame-
work for isolating hardware timing channels. In: Proceedings of the Conference on
Design, Automation and Test in Europe. pp. 1281–1284. EDA Consortium (2013)

43. DoD 5200.28-STD, Department of Defense Trusted Computer System Evaluation
Criteria (1983), http://csrc.nist.gov/publications/history/dod85.pdf

44. Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: the case
of aes. In: Topics in Cryptology–CT-RSA 2006, pp. 1–20. Springer (2006)

45. Page, D.: Theoretical use of cache memory as a cryptanalytic side-channel. IACR
Cryptology ePrint Archive 2002, 169 (2002)

46. Page, D.: Partitioned cache architecture as a side-channel defence mechanism.
IACR Cryptology ePrint Archive 2005, 280 (2005)

47. Percival, C.: Cache missing for fun and profit (2005)
48. Rebeiro, C., Mukhopadhyay, D., Takahashi, J., Fukunaga, T.: Cache timing attacks

on clefia. In: Progress in Cryptology-INDOCRYPT 2009, pp. 104–118. Springer
(2009)

49. Ristenpart, T., Tromer, E., Shacham, H., Savage, S.: Hey, you, get off of my cloud:
exploring information leakage in third-party compute clouds. In: Proceedings of
the 16th ACM conference on Computer and communications security. pp. 199–
212. ACM (2009)

50. Saltaformaggio, B., Xu, D., Zhang, X.: Busmonitor: A hypervisor-based solution
for memory bus covert channels. Proceedings of EuroSec (2013)

51. Sanchez, D., Kozyrakis, C.: The zcache: Decoupling ways and associativity. In:
Microarchitecture (MICRO), 2010 43rd Annual IEEE/ACM International Sympo-
sium on. pp. 187–198. IEEE (2010)

52. Shen, J.P., Lipasti, M.H.: Modern processor design: fundamentals of superscalar
processors. Waveland Press (2013)

53. Suzaki, K., Iijima, K., Yagi, T., Artho, C.: Software side channel attack on memory
deduplication. SOSP POSTER (2011)

54. Tang, A., Sethumadhavan, S., Stolfo, S.J.: Unsupervised anomaly-based malware
detection using hardware features. In: Research in Attacks, Intrusions and De-
fenses, pp. 109–129. Springer (2014)

55. Tiri, K., Acıiçmez, O., Neve, M., Andersen, F.: An analytical model for time-driven
cache attacks. In: Fast Software Encryption. pp. 399–413. Springer (2007)

56. Tiwari, M., Li, X., Wassel, H.M., Chong, F.T., Sherwood, T.: Execution leases: A
hardware-supported mechanism for enforcing strong non-interference. In: Proceed-
ings of the 42nd Annual IEEE/ACM International Symposium on Microarchitec-
ture. pp. 493–504. ACM (2009)

57. Tromer, E., Osvik, D.A., Shamir, A.: Efficient cache attacks on aes, and counter-
measures. Journal of Cryptology 23(1), 37–71 (2010)

58. Tsunoo, Y.: Cryptanalysis of block ciphers implemented on computers with cache.
preproceedings of ISITA 2002 (2002)

59. Tsunoo, Y., Saito, T., Suzaki, T., Shigeri, M., Miyauchi, H.: Cryptanalysis of des
implemented on computers with cache. In: Cryptographic Hardware and Embedded
Systems-CHES 2003, pp. 62–76. Springer (2003)

60. Varadarajan, V., Kooburat, T., Farley, B., Ristenpart, T., Swift, M.M.: Resource-
freeing attacks: improve your cloud performance (at your neighbor’s expense). In:
Proceedings of the 2012 ACM conference on Computer and communications secu-
rity. pp. 281–292. ACM (2012)

26



61. Wang, Y., Ferraiuolo, A., Suh, G.E.: Timing channel protection for a shared mem-
ory controller. In: High Performance Computer Architecture (HPCA), 2014 IEEE
20th International Symposium on. pp. 225–236. IEEE (2014)

62. Wang, Y., Suh, G.E.: Efficient timing channel protection for on-chip networks. In:
Networks on Chip (NoCS), 2012 Sixth IEEE/ACM International Symposium on.
pp. 142–151. IEEE (2012)

63. Wang, Z., Lee, R.B.: Covert and side channels due to processor architecture. In:
Computer Security Applications Conference, 2006. ACSAC’06. 22nd Annual. pp.
473–482. IEEE (2006)

64. Wang, Z., Lee, R.B.: New cache designs for thwarting software cache-based side
channel attacks. In: ACM SIGARCH Computer Architecture News. vol. 35, pp.
494–505. ACM (2007)

65. Wang, Z., Lee, R.B.: A novel cache architecture with enhanced performance and
security. In: Microarchitecture, 2008. MICRO-41. 2008 41st IEEE/ACM Interna-
tional Symposium on. pp. 83–93. IEEE (2008)

66. Wassel, H.M., Gao, Y., Oberg, J.K., Huffmire, T., Kastner, R., Chong, F.T., Sher-
wood, T.: Surfnoc: a low latency and provably non-interfering approach to secure
networks-on-chip. ACM SIGARCH Computer Architecture News 41(3), 583–594
(2013)

67. Wray, J.C.: An analysis of covert timing channels. In: Research in Security and
Privacy, 1991. Proceedings., 1991 IEEE Computer Society Symposium on. pp. 2–
7. IEEE (1991)

68. Wu, Z., Xu, Z., Wang, H.: Whispers in the hyper-space: High-speed covert channel
attacks in the cloud. In: USENIX Security symposium. pp. 159–173 (2012)

69. Xu, Y., Bailey, M., Jahanian, F., Joshi, K., Hiltunen, M., Schlichting, R.: An
exploration of l2 cache covert channels in virtualized environments. In: Proceedings
of the 3rd ACM workshop on Cloud computing security workshop. pp. 29–40. ACM
(2011)

70. Yarom, Y., Falkner, K.E.: Flush+ reload: a high resolution, low noise, l3 cache
side-channel attack. IACR Cryptology ePrint Archive 2013, 448 (2013)

71. Zenner, E.: A cache timing analysis of hc-256. In: Selected Areas in Cryptography.
pp. 199–213. Springer (2009)

72. Zhang, Y., Juels, A., Oprea, A., Reiter, M.K.: Homealone: Co-residency detection
in the cloud via side-channel analysis. In: Security and Privacy (SP), 2011 IEEE
Symposium on. pp. 313–328. IEEE (2011)

73. Zhang, Y., Juels, A., Reiter, M.K., Ristenpart, T.: Cross-vm side channels and
their use to extract private keys. In: Proceedings of the 2012 ACM conference on
Computer and communications security. pp. 305–316. ACM (2012)

27


