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Abstract. Proposed by the 3rd Generation Partnership Project (3GPP) as a standard for 3G and
4G mobile-network communications, the AKA protocol is meant to provide a mutually-authenticated
key-exchange between clients and associated network servers. As a result AKA must guarantee the
indistinguishability from random of the session keys (key-indistinguishability), as well as client- and
server-impersonation resistance. A paramount requirement is also that of client privacy, which 3GPP
defines in terms of: user identity confidentiality, service untraceability, and location untraceability. More-
over, since servers are sometimes untrusted (in the case of roaming), the AKA protocol must also protect
clients with respect to these third parties. Following the description of client-tracking attacks e.g. by
using error messages or IMSI catchers, van den Broek et al. and respectively Arapinis et al. each pro-
posed a new variant of AKA, addressing such problems. In this paper we use the approach of provable
security to show that these variants still fail to guarantee the privacy of mobile clients. We propose an
improvement of AKA, which retains most of its structure and respects practical necessities such as key-
management, but which provably attains security with respect to servers and Man-in-the-Middle (MiM)
adversaries. Moreover, it is impossible to link client sessions in the absence of client-corruptions. Fi-
nally, we prove that any variant of AKA retaining its mutual authentication specificities cannot achieve
client-unlinkability in the presence of corruptions. In this sense, our proposed variant is optimal.
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1 Introduction

Authenticated key-exchange (AKE) protocols allow two parties to communicate securely over an insecure
channel, such as the Internet, a radio-frequency (RF) channel, or a mobile telecommunications network.
In general, AKE protocols consist of two parts: (1) an authenticated key-exchange procedure, which allows
two parties to derive a set of session keys; (2) a record layer protocol, allowing the two parties to exchange
confidential, authentic data by using the derived keys. Such protocols are essential to ensure that sensitive
data or services are securely provided from to a legitimate client.

In the context of mobile networks, mobile clients subscribe to an operator, and consequently become
entitled to specific services. Whenever the clients then require a specific service, they run an authenticated
key-exchange protocol called AKA with a location-specific server, which then provides the service.

The AKA protocol is executed between three entities: the mobile clients, the server and the operator. The
second entity is trusted to run the AKA protocol with the clients, bit are not entitled to know the client’s,
nor the operator’s secret values. In 3GPP syntax, the server is the Visted Location Register (VLR) and
the operator is the related Home Location Register (HLR). The AKA protocol was introduced by the Third
Generation Partnership Project (3GPP), which wrote and has been maintaining the specifications of 3G
telecommunication systems. The protocol relies on a suite of seven cryptographic algorithms. Two proposals
for the latter exist: one relies on AES (the suite is called MILENAGE) and another relies on the Keccak hash
function (this suite is called TUAK).

The minimal security requirement for this scenario is ensuring that no mobile client illicitly gains access
to mobile services without being entitled to it. Similarly, we require that no attacker can make another client
pay for mobile services they are not using.



An important additional concern is that of client privacy with respect to third-party outsiders; recent
concerns of illicit eavesdropping and mass-surveillance especially indicate that third parties should not be
able to identify, nor trace, mobile clients. The AKA protocol explicitly requires three flavors of user privacy [3]:
user identity confidentiality, user untraceability, and user location confidentiality. The first of these notions
demands that an adversary that is eavesdropping on radio access links cannot recover the permanent identifier
associated to each client (called an IMSI). This notion is specific to the AKA protocol, and it is somewhat
limited, since users may also be tracked by learning another user-specific value, namely the sequence number.
In particular, protecting only the permanent identifier does not enforce a very strong notion of privacy. The
second notion of privacy required by the 3GPP specifications is that of user untraceability, which refers to an
attacker’s ability of learning whether multiple services were used by the same user. Finally, the third notion
is specific to mobile networks, requiring that external attackers cannot learn the area where the victim clients
are when they run the AKA protocol (since the servers running AKA are area specific).

In order to deliver services to mobile clients, these users run the AKA protocol with a local server, specific
to a given area; if mutual authentication succeeds (i.e. both parties ensure the legitimacy of their conversation
partner), then both parties derive a set of keys. Then, the client and server both use the obtained session keys
to ensure the confidentiality and authenticity of any further data exchanged between them (in particular,
any mobile service required by the client).

The 3GPP AKA protocol uses a symmetric-key infrastructure and several sensitive parameters to identify
legitimate clients. Most secret information is shared between the client and its operator, but not with any
of the local-area servers running the AKE protocol with the client. Each user is associated with three static
values: a permanent identifier IMSI, a secret client key sk, and an operator key skop; and two ephemeral
values, updated at every protocol run: a temporary identifier TMSI and a sequence number Sqn. Note that,
while all the clients subscribing to the same operator share its operator key skop, this key is not stored in
clear on the client’s smartphone; instead, the users store a value TopC that is pseudorandom, depending
on sk and skop: thus, two different clients sharing a same operator key, the related values TopC they store
are different and unlinkable. Moreover, note that the TMSI value is shared exclusively between clients and
servers (not operators), and they are sent by servers to the clients across a channel that is secured by using
the derived session keys. Each TMSI value is unique per server, and since each server is associated with a
single area (as denoted by a Local Area Identifier – LAI), the tuple consisting of the TMSI and the relevant
LAI is unique per client.

The AKA protocol was designed to guarantee the three notions of privacy outlined before. The permanent
identifier IMSI of each client is not meant to be used in regular protocol runs; instead, the unique tuple of a
TMSI and the identifier LAI of the area that the protocol was last used from will uniquely identify a client.
Services are transmitted across the secure channel; thus, the combined security of the derived session keys and
of the record-layer algorithms, and the privacy of the client running the authenticated key-exchange protocol
are supposed to guarantee client untraceability. Finally, by hiding the current location area identifier, one
ensures that only the client’s immediate, past location is revealed.

There are three distinct areas that our work is related to: previous results concerning the privacy of
the AKA protocol; provable security results in (symmetric-key) privacy; related work on key-exchange and
secure-channel establishment protocols. We review these and state our contributions in the following.

The Privacy of AKA. Though initially the designers of AKA provided a security proof using BAN logic [11],
subsequent vulnerabilities belied these security guarantees. The attacks of [24] and [26] indicate that servers
can actually be impersonated within the protocol run; the second paper also indicates that well-known
weaknesses of the GSM protocol, such as the use of weak encryption and the lack of mutual authentication,
can pose security problems for AKA. Zhang and Fang [18] pointed out that the use of sequence numbers,
together with potential corrupted server redirection, allow attackers to illicitly trace and impersonate clients.

A known privacy problem of the AKA protocol is the “IMSI catcher” attack [6], which exploits the fact
that the permanent identifier IMSI is sent as a back-up for a faulty tuple (TMSI, LAI). By either observing
such faulty behaviour (due to transmission errors or to server database problems), or by causing it, MiM



attackers can easily track clients, in blatant violation of the user identity confidentiality requirement. This
is a problem in all generations of mobile communication networks.

Very recently, van den Broek et al. [7] proposed a countermeasure to IMSI catchers, which essentially
replaces IMSI values by an unlinkable pseudonym, denoted PMSI. Aside from any practical issues, such as
requiring the operator’s presence at every protocol run, we show that an active adversary can still easily
desynchronize the PMSI value, and then track clients. As a second drawback, [7] neither specifies, nor
addresses any other threats to privacy.

Arapinis et al. [20] showed that failure messages (in authentication/resynchronization) can be used to
trace users. A subsequent paper by some of the same authors [19] cleverly identifies ways in which a specific
implementation deviates from 3GPP recommendations and thus allow linkability of client sessions.

Though several improvements of AKA have been proposed, only two analyse the security of the resulting
construction. A first one [17] describes AP-AKA, a stateless protocol which can thwart replay-based imper-
sonation attacks and lowers the impact of server corruptions, but at the cost of no privacy at all. A second
modification [20] retains the stateful nature of AKA, but the proof they provide models the parties’ state in
an idealized way, considering it to be random. We show weaknesses in both proposals in Section 3.3.

Lee et al. [16] propose no improvement to the protocol itself, but do cryptographically analyse the privacy
of AKA, focusing only on the identification phase. Their restricted model takes into account known attacks,
but they “merge” servers and operators into a single party. This forcibly implies that the server is assumed
to be honest; furthermore, server corruptions are not taken into account. Their PRF agility property seems
akin to the generalization we make to the function G, and they prove a weak degree of privacy in the absence
of corruptions.

Secure AKE models. Bellare and Rogaway first proposed a security model for AKE mechanisms in [14],
also in a symmetric setting. Their framework was later extended with the contribution of Pointcheval [12]. A
further model for generic session-oriented protocols was proposed in [15] and extended in [22]. Although we
use BPR-methodologies in our analysis, we cannot simply “import” their model, and use a slightly modified
version thereof.

Privacy models. The privacy model due to Vaudenay [23] was the first to define several adversarial classes
for untraceability in the presence of corruptions. His framework was specifically designed for RFID privacy; his
approach, however, features adversarial classes and attacks which are universal in authentication scenarios.
In particular, Vaudenay captured adaptive corruptions, and classified adversaries in terms of their behaviour
upon corruption. The AKA protocol is all the more adapted to his framework since it uses only symmetric
keys, as does RFID authentication.

His framework was later refined and extended by Hermans et al. [9], who used Vaudenay’s classification
of adversaries according to two criteria: (i) whether the adversary is aware of the result of authentication
sessions (wide adversaries) or not (narrow adversaries); (ii) any constraints in the corruption behaviour (the
adversaries range from weak –no corruptions– to forward –corruptions “end” the game– and strong). In our
work, we use the game-based definition of Hermans et al.

Two important impossibility results indicate that strong privacy requires key exchange [23] and that in
symmetric-key authentication protocols, if the server authenticates to the client during the protocol, there
exists an attack that allows an adversary to distinguish between two clients [21]. In particular, simply drop-
ping the last message of the server to one of two clients, then corrupting the clients, and finally simulating
them with the and dropped message lets the adversary distinguish between those clients. This attack, how-
ever, tacitly assumes that (a) clients do not “reset” if the authentication session is aborted, or alternatively
that (b) the adversary can actually corrupt the clients before they time out.

Our contributions. We have two main contributions. The first is to show that both the current version
of AKA protocol and two of the more promising improvements proposed in the literature suffer from several
flaws, regarding both client-privacy and the security with respect to the server. Our second main contribu-
tion is to present a variant of the AKA which provably guarantees the five properties listed below. As an



additional important result, we also prove that achieving a stronger degree of client-unlinkability (see below)
is impossible while the AKA protocol retains its current structure.

– Key-indistinguishability: a BPR-like [12] guarantee that the derived session keys are indistinguishable
from random values of equal length. The adversary here is an active Man-in-the-Middle (MiM).

– Impersonation security: the guarantee that a MiM attacker cannot impersonate either the server (to the
client), or the client (to the server).

– Wide-weak client-unlinkability: a property guaranteeing that two sessions run by the same client are
not linkable with respect to a MiM attacker which may learn whether the server accepts the client’s
authentication or not, but which cannot corrupt clients to learn their keys.

– State-confidentiality: the demand that (malicious) servers cannot learn the client’s secret key, the cor-
responding operator’s secret key, nor the client’s state (in particular, the sequence number). We assume
that the server interacts with both operators and with clients, but we only guarantee security for the
authenticated key-exchange protocol (we do not address the record-layer primitives).

– Soundness: the demand that (malicious) servers cannot make the client accept the server’s authentication
(thus completing the key-derivation process), unless they are explicitly given authenticating information
by a legitimate operator.

An implicit, but also important contribution is formalizing these five security and privacy properties, thus
providing a framework for analyzing this protocol. Considering the ease with which certain active attacks
(such as active IMSI catcher attacks) can be performed against the AKA protocol, we also assess its resistance
to active attacks. We describe a client-unlinkability attack and then an attack against the soundness of AKA.
We also present several attacks against two promising improvements on the AKA protocol in the literature.
The precise formalization of our notions furthermore allows us to find a gap in an impossibility result
regarding client-unlinkability in the presence of corruptions for mutually authenticated protocols [21], and
formulate a different impossibility result, which is more precise, and also more generic in the case of the AKA
protocol. Another main contribution of this paper is to extend the narrow-forward-privacy impossibility
result for a broader class of protocols including AKA and its variants.

Our improved variant of the protocol mostly retains the symmetric character of the current version.
However, we bypass IMSI catcher attacks by never revealing IMSI values, instead sending them encrypted
with a public-key IND-CCA-secure encryption scheme. We assume each operator has a PKE key-tuple, and
each client stores the public key of the operator. This minimizes key-management problems. We note that,
just as for the AKA protocol, we only use the (encrypted) IMSI value as an alternative for the randomly-
chosen temporary identifier values TMSI. However, we choose to update the current TMSI value by using
authenticated encryption (AES-GCM) as part of the server’s authentication message. The PKE scheme is
also used when moving from area to area: thus, if the client switches from one server (in a given location) to
another (in another location), the TMSI is not used. This allows us to reveal only the current area that the
server is in, rather than the client’s past location (as is the case for the current version of AKA).

We retain the structure of the authenticated key-exchange part of AKA, using the client- and operator-
state to authenticate the two parties and the derived session keys. We show that while this feature of the AKA
protocol reamins in use, no client-untraceability can be achieved in the presence of corruptions. By removing
the need for re-synchronization, we also implicitly prevent attacks which link client sessions depending on
whether or not the re-synchronization procedure is used.

Table 1 compares our proposal to the AKA protocol and to two more promising variants.

2 Privacy model

2.1 3GPP Privacy requirements

AKA Infrastructure. The mobile context for which the AKA protocol was designed contains three entities:
(1) clients, which register with operators and are allowed to access a subset of services; (2) operators, which



Defeating: Security:
Attack n◦1 Attack n◦2 Attack n◦3 Prop. n◦1 Prop. n◦2 Prop. n◦3 Prop. n◦4 Prop. n◦5

3G AKA x [7] x [20] x x x x ? ?
Arapinis X [20] X [20] x X x x ? X∗ [20] 4

Van Den Broek X [7] x X X x x ? ?
Our variant X X X X X x X X

Attack n◦1: IMSI Catcher § 3.3. Prop. n◦1: Confidentiality of the previous location §2.
Attack n◦2: Linkability of failure messages § 3.3. Prop. n◦2: ww-unlink §2.2.
Attack n◦3 : Our traceability attack § 3.3. Prop. n◦3: nf-unlink §2.2.
Prop. n◦4: State-confidentiality & soundness §2.2. Prop. n◦5: Key-indistinguishability & Client- and Server-impersonation §2.2.

Fig. 1. Comparison between several AKA variants.

know the secret parameters of all their registered clients; and (3) local servers, which are tasked with providing
services to mobile clients, but are not trusted to know the clients’ personal information. In the AKA literature,
opeators are usually called home local registers (HLR), while servers are known as VLR.

The security demands of 3G/4G networks are client-centric, revolving around the following parameters
related to mobile clients (users) C:

IMSI : a permanent identifier, unique per customer and highly trackable;
TMSI : a temporary identifier, unique per server, and updated after each successful protocol run;
LAI : a unique local-area identifier per server; client store (TMSI, LAI) tuples whenever a server issues a new

TMSI;
skC : the client’s unique client key;
skop : the key of the operator C subscribes to;
SqnC,SqnOp,C : the client’s state SqnC has an equivalent operator state SqnOp,C, which should not be “too

far” from the client’s state. The state is updated by the client upon authenticating the server (correct
verification of the authentication challenge); the server updates state upon authenticating the challenge
(verification of the authentication response).

We refer the reader to Section 3.2 for more details about the protocol description.
The identifier and key-management schemes are as follows. Clients may know the permanent value IMSI,

the temporary identifiers TMSI and LAI, the keys skC, skop and a function of skC and skop (they do not store
skop in clear, as discussed in section 3.2). Operators know the tuple: (IMSI, skC, skop). Servers keep track
of tuples (TMSI, LAI, IMSI). Furthermore, both servers and operators know the sequence number that the
operator associated to each client. The clients update their own sequence numbers, which are highly related
to the operator’s sequence number.

Very notably, servers must both authenticate and exchange session keys with mobile clients, despite not
knowing their secret material.

Client Privacy. The Third Generation Partnership Project (3GPP), which designed the AKA protocol in
the TS.33.102 specification [3], lists the following privacy requirements:

– user identity confidentiality: specifically, ”the property that the permanent user identity (IMSI) of a
user [...] cannot be eavesdropped on the radio access link.”

– user untraceability: namely, ”the property that an intruder cannot deduce whether different services
are delivered to the same user by eavesdropping on the radio access link.”

– user location confidentiality: in particular, ”the property that the presence or the arrival of a user in
a certain area cannot be determined by eavesdropping on the radio access link.”

The requirements quoted above are quite informal; moreover, the nomenclature is confusing, since in
the provable-security literature, untraceability refers to adversaries tracing clients in distinct protocol runs



(rather than it being service-related). We discuss the three requirements below, then formalize them into
cryptographic requirements.

User identity confidentiality concerns only the client’s permanent IMSI value (not, e.g. the client’s sequence
number) with respect to passive attackers (rather than active ones). However, mobile networks are notoriously
prone to Man-in-the-Middle (MiM) active attacks like the IMSI catcher [6], which allows a third party (the
MiM) to recover a client’s IMSI. Another highly-trackable client-specific parameter is the sequence number
Sqn, whose updating procedure is very simplistic and its output, predictable even without a secrey key. As
a consequence we require the stronger property of provable unlinkability, which ensures that even an active
MiM cannot link two AKA protocol runs to the same client.

For user untraceability, no attacker must know whether the same service (i.e. any message-exchange over
the secure channel) is provided to a client multiple times. From the point of view of provable security, this is
equivalent to key-indistinguishability if the authenticated-encryption algorithms are assumed to be secure.

User location confidentaility demands that eavesdroppers A cannot detect the presence of a client in
a given area; however, the definition does not specify what information A links to each client (e.g. the
IMSI, the sequence number, etc.). Attackers are aware of the current LAI; the difficulty lies in learning which
clients enter the area. Unfortunately the AKA protocol always reveals the past location of any arriving client,
making unique (or rare) itineraries stand out. We formalize a strong degree of location privacy as a part of
client-unlinkability.

Our formalizations of client unlinkability and key-indis-tinguishability consequently guarantee 3GPP’s
three privacy requirements.

Implicit requirements. As discussed in Section 1, the AKA protocol implicitly addresses security with
respect to malicious servers, which are restricted as follows: (1) the servers have no access to the tuple
(skC, skop); (2) the (hence necessary) operator-server communication must be minimized in order to minimize
costs.

We formulate the following two implicit requirements:

– State-Confidentiality: Servers must not learn any client-related long-term state.
– Soundness: Clients must reject authentication-challenges not explicitly provided by the operator to the

server.

2.2 Security models

Due to their orthogonality, it is hard to formalize the notions of key-indistinguishability and client-unlinkability
in the same generic framework. One difficulty is the fact that the unlinkability notion requires the adversary
to have access to clients without knowing their identities. Following established approaches [23,10], in the
unlinkability model, we associate clients with identifiers, or handles, denoted VC% (Virtual Client), and this
changes the syntax of the oracles we use. Thus, we differentiate between the model for security (including
notions of key-indistinguishability, client- and server-impersonation resistance against a MiM adversary, and
state-confidentiality and soundness with respect to malicious servers), and that of client-unlinkability. We
use similar oracles, with a slightly different syntax, for the two types of definitions, and thus obtain security
guarantees based on traditional Bellare, Pointcheval, and Rogaway models [12].

Set up and participants. We consider a set P of participants, which are either a server Si or a mobile
client Ci of the type respectively VLR or ME/USIM. By contrast operators Op are not modeled as active
parties. In all security games apart from state-confidentiality and soundness with respect to the server, the
operators Op are black-box algorithms within the server S; in those two games, the operators are oracles,
which the adversary (i.e. the server) may query. We assume the existence of nC clients, nS servers, and nOp
operators. If the operators are contained within the servers, we assume that all copies of the same operator
Op are synchronized at all times. We associate each client with: a long-term, static secret state consisting of a
tuple (skC, skop), an ephemeral state stC consisting of a sequence number SqnC, a tuple of a static, permanent
identifier IMSI and an ephemeral, temporary identifier TMSI, and finally a tuple of a current, and a past local



area identifier, denoted past.LAIP and curr.LAIP respectively. Servers are associated with a permanent local
area identifier LAI and a unique network identifier IDSi ; they also keep track of a list of tuples (TMSI, IMSI)
associated with clients. Each of the at most nS servers has black-box access to algorithms (or oracles in the
case of state-confidentiality and soundness) Op1, . . . ,OpnOp

, which are initialized with long-term keys (skOpi
)

and keep track of a list of tuples (IMSI, skC,SqnOp,C). In our model, we also assume that the key space of all
operators is identical (otherwise it becomes easier to distinguish between clients of different operators).

Client Unlinkability Client-Unlinkability.
Informally, we call a protocol Π client-unlinkable if no adversary can know whether two executions

of Π were run by the same, or by two different clients. Two sessions associated with the same client are
called linked. Following previous works of Vaudenay [23] and Hermans et al. [10], we give the adversary
access to a basic left-or-right oracle, which associates an anonymized handle virtual client VC to one of two
possible clients (input by the adversary). We extend this framework to account for client mobility, giving the
adversary access to a relocation oracle. Consequently, if an attacker can distinguish between clients based
on their location, they will win the unlinkability game, which we detail below.

At the onset of this game, the set of clients is empty and the challenger instantiates two lists Ldrawn
and Lfree. We initialize operators by choosing their secret keys. The adversary can then initialise servers by
choosing their locations, and it can create clients to populate the system it attacks. For each newly-created
client, the past location past.LAIC is set to a special symbol ⊥ and the current location is adversarially-chosen.

The adversary then interacts with clients by means of several oracles. The lists Ldrawn and Lfree correspond
to the two possible states of any one client. Clients can be “drawn” or “free”; at creation, all clients are “free”,
and they may become “drawn” if used as input to a left-or-right Client-Drawing oracle. In particular, we
use a left-or-right Client-Drawing oracle (similar to that in [23,10]), which allows the adversary to interact
with one of two clients (the interacting client being chosen depending on a secret bit b). Clients input to the
Drawing oracle are moved to the Ldrawn list; further Drawing queries can then be made concurrently as long
as the input clients are in the Lfree list5. Upon drawing one of two possible clients, the adversary is given a
handle on the chosen entity; following the notation of [23], we call this a virtual client and we associate it
with the handle VC. Virtual clients can then be freed by the adversary (this would remove them from the
Ldrawn list and re-add them to the Lfree list). Only free clients can be drawn. This oracle associates a handle
to either the left or the right input client, depending on a secret bit b.

The client unlinkability property is defined in terms of the following security experiment Expc.unlink
A (1λ),

for a security parameter (in unary) 1λ.
– The challenger randomly chooses a bit b ∈ {0, 1}.
– The adversary may use the oracles below (with restrictions depending on its adversarial class), and the

challenger answers the queries.
– The adversary finally outputs a guess d of the bit b.

We say the adversary wins if and only if d = b, and we define the adversary’s advantage of winning this
game against a protocol Π as:

Ac.unlink
Π (A) := |Pr[A wins Expc.unlink

A (1λ)]− 1
2 |.

Recalling the adversarial classes of [23,10], we call an adversary narrow if it may not use the Result oracle,
permitting it to know whether the server has authenticated the client or not. The opposite of narrow are
wide adversaries. Orthogoal to the use of the Result oracle, we also classify adversaries in terms of their use
of the Corrupt oracle, which gives them access to the client’s data. Thus, adversaries are weak if they cannot
use the corruption oracle; they are forward if any corruption query may only be followed by more corruption
queries6. Finally, adversaries are classified as strong if their access to oracles is unrestricted.
5 In particular, we want to avoid trivial attacks, in which an adversary can distinguish a client simply because it is

not in its original state (having already started the protocol run beforehand).
6 In particular, the adversary may no longer free drawn clients, nor interact with servers or clients



We note that the 3GPP requirements outlined in Section 2.1 restrict their adversaries to “eavesdroppers
on the radio link”, which seems to indicate that they target weak adversaries that are either narrow or wide.
Moreover, they restrict their adversaries to being passive only; in this paper, we also consider active weak
attackers and thus obtain a better privacy guarantee.

Formalization. We quantify adversaries in terms of the following parameters: the adversarial class, which
we abbreviate to α-c.unlink, with α ∈ {nw,ww, nf,wf} (for narrow- and wide-weak, and narrow-, respectively
wide-forward adversaries); their execution time is t; the maximum number qexec of sessions instantiated per
client C; the maximum number qid of user identification per session; and the maximum number qG of queries
to the function G. We formalize the following definitions.

Definition 1. (Weak Unlinkability) A protocol Π is (t, qexec, qid, qG , ε)-nw/ww-client-unlinkable if no narrow/wide-
weak-adversary running in time t, creating at most qexec sessions and qid user identification per session, and
making at most qG queries to the function G, has an advantage Advw.c.unlink

Π (A) ≥ ε.

Definition 2. (Forward Unlinkability) A protocol Π is (t, qexec, qid, qG , ε)-nf/wf-client-unlinkable if no narrow/wide-
forward-adversary running in time t, creating at most qexec sessions and qid user identification per session,
and making at most qG queries to the function G, has an advantage Advf.c.unlink

Π (A) ≥ ε.

Oracles. The adversary interacts with the system by means of the following oracles, in addition to a function
G, which we model as a PRF and which ”encompasses” all the cryptographic functions of the AKA protocol:

– CreateCl(Op, LAI) → (Ci, IMSI, stCi
): this oracle creates a new, legitimate, free client, labelled Ci at a

location LAI for which a server is already defined (else the oracle outputs ⊥). The client’s IMSI, its
sequence number SqnCi , and its secret key skCi are chosen uniformly at random from sets ID, ST , and
S respectively; the past location and TMSI are set to a special symbol ⊥. The client’s operator key skop
is set to the key of the operator Op. The adversary is given the parameters IMSI, stCi

, and the label Ci
(used later to select clients).

– CreateS(LAI) → Si: this oracle generates a new server Si at location LAI, if this location is not already
defined for another server (else the oracle returns ⊥).

– Launch(VC,Sj)→ (s,m): this oracle instantiates a new session (labelled by a unique identifier s) between
the client associated with VC and the server Sj , and outputs an initial protocol message m from Sj to
VC. This oracle keeps track of tuples (s,VC,Sj).

– DrawCl(Ci,Cj) → VC: on input a pair of client labels, this oracle generates a handle VC, which is a
monotonic counter, if the following conditions are met: (a) both clients were free when the query was
made; (b) both clients have the same current location value. If either condition is not met, the oracle
outputs ⊥. Else, depending on the value of the secret bit b, the challenger associates the handle VC either
with Ci (if b = 0) or with Cj (if b = 1). The challenger stores the triple (VC,Ci,Cj) in a table T .

– FreeVC(VC) → ⊥: on input the virtual handle VC, this oracle retrieves the values Ci,Cj associated to VC
in the table T , aborting any ongoing protocol runs.

– Relocate(VC, LAI∗) → ⊥: this oracle modifies the current location of the two clients Ci,Cj associated
with VC in T , to LAI∗. In particular, the challenger does the following for each of the clients: (1) it sets
past.LAI := curr.LAI; (2) it sets curr.LAI := LAI∗. Any protocol sessions still running for VC are aborted.

– Send(P, s,m)→ m′: for the first input, the adversary can input either a handle VC or a server identity S.
In the former case, the oracle simulates sending the message m from the adversary to the client associated
with VC in session s, returning either the party’s message m′ or ⊥ if either s is not associated with VC
or if VC does not exist. Parties may also return m′ = ⊥ as an error message. If the first input of this
oracle is set to S, the oracle simulates sending the message from the adversary to the server S.

– Execute(VC,S, s) → τ : this oracle simulates a complete protocol run between the client associated with
VC and the server S. in the presence of a passive adversary. In particular, by alternating SendToCl and
SendToS queries on genuinely-output messages, this oracle generates and outputs the transcript τ of the
execution between the server S and the client C for which session s was created.



– Result(P, s) → {0, 1}: if P = VC, this oracle returns a bit indicating whether the client associated with
VC has accepted the server that VC ran session s with. If P = S, then the bit indicates whether the
server accepted the client. For the AKA protocol, an acceptance bit is equivalent to the confirmation of
the key-exchange. If the session is incomplete or session s is not associated with P, the oracle returns ⊥.

– Corrupt(C) → {sk, stC, IDC, (past.LAI, curr.LAI)}: For a client C, this oracle returns the full state (static
and ephemeral), the identifiers and the location information of client C.

Key-indistinguishability and Impersonation The notion of key-indistinguishability refers to the session
keys computed as a result of authenticated key exchange, requiring that they be indistinguishable from
random bitstrings of equal length. We use a subset of our previously-defined oracles, this time without
anonymizing clients by use of handles. Additionally, the adversary may also know the ephemeral state (in
our case, the sequence number) of both clients and servers. Since the state is updated in a probabilistic way,
we give the adversary a mean of always learning the updated state of a party without necessarily corrupting
it (the latter may rule out certain interactions due to notions of freshness, see below). Corruption results in
adversarially controlled parties.

In this model, participants (clients and servers) may run concurrent key-agreement executions; we denote
the j-th execution of the protocol of party P as Pj . Each client C is associated with a unique identifier
UID (which in the case of AKA is the IMSI); the identity of the server is of the form Si. We simplify the
key-indistinguishability model by abstracting location data (since it does not affect the security of the session
keys).

We associate each instance Pi with a session ID sid, a partner ID pid, and an accept/reject bit accept. The
partner ID pid is set to either the server Si or to a user identifier UID; the session ID sid includes four values:
the user ID given by client UID (and implicity skUID), the server identifier IDSi , the randomness generated by
the server, and the sequence number used for the authentication. Finally, the accept/reject bit is initialized
to 0 and turns to 1 at the successful termination of the key-agreement protocol. We call this ”terminating in
an accepting state”. A successful termination of the protocol yields, for each party, a session key K (which
for the AKA protocol consists of two keys), the session identifier sid, and the partner identifier pid of the
party identified as the interlocutor. We allow adversaries to learn whether instances have terminated (by
sending Send queries) and whether they have accepted or rejected their partners. We also assume that the
adversary will learn the session and partner identifiers for any session in which the instance has terminated
in an accepting state.

Partners. Each instance of each party keeps track of a session ID string, denoted sid, consisting of the four
values listed above. We define partners as party instances that share the same session ID. More formally:

Definition 3. [Partners.] Two instances Pi and P′j are partnered if the following statements hold:

(i) One of the parties is a user and the other is the server.
(ii) The two instances terminate in an accepting state.
(iii) The instances share the same sid.

In this case, the partner ID of some party P denotes its (intended) partner.

Formalization. In the key-indistinguishability game, we no longer need to formalize the drawing and freeing
of clients; thus we do not use those oracles. We furthermore do not use the Relocation oracle. Instead, we give
the adversary access to a Key-Reveal oracle, which returns session keys for an ongoing session terminated in
an accepting state. The central oracle in this game is a real-or-random type of Testing oracle, which allow
the adversary to know either a tuple of real session keys or a tuple or random keys of equal size. If the
adversary can tell whether the keys are real or random, then she is said to win the key-indistinguishability
game.

At the outset of the game, the challenger first generates the keys of all the nOp operators and instantiates
a number nS of servers. Each server can then access synchronized copies of the nOp operators internally. Each



copy of an operator Op run internally by a server S takes as input the identity of that specific server S (this
models the fact that operators and servers communicate via an unspecified secure channel). The adversary
is then allowed to query any of the oracles below. We implicitly assume that the TestK.Ind oracle keeps state
and, once it is queried a first time, it will return ⊥ on all subsequent queries (we only allow a single query).
However, we do allow the adversary to interact with other oracles after the TestK.Ind query as well.

Eventually, the adversary A outputs a bit d, which is a guess for the bit b used internally in the TestK.Ind

oracle. The adversary wins if and only if: b = d and A has queried a fresh instance to the TestK.Ind oracle. We
consider the following definition of a fresh instance for the key-indistinguishability. We note that this notion
is classical in symmetric-key protocols.

Definition 4. [Freshness: key-indistinguishability.] An instance Pi is fresh if neither this instance, nor
a partner of Pi is adversarially-controlled (its long-term key skP has not been corrupted) and the following
queries were not previously executed:

(i) Reveal(.), either on the instance Pi, or on of its partners.
(ii) Corrupt(.) on any instance, either of P, or of their partners.

The advantage of A in winning the key-indistinguishability game is defined as:

AdvK.Ind
Π (A) := |Pr[A wins]− 1/2|.

Definition 5. [Key-indistinguishability.] A key-agreement protocol Π has (t, qexec, qid, qserv, qOp, qG , ε)-
key-indistinguishability if no adversary running in time t, creating at most qexec party instances, with qid user
identification per instance, corrupting at most qserv servers, making at most qOp OpAccess queries per operator
per corrupted server, and making at most qG queries to the function G, has an advantage AdvK.Ind

Π (A) ≥ ε.

We also define the related notions of client- and server-impersonation security, which involves a slightly
different notion of freshness.

Definition 6. [Freshness: Imp.Sec.] An instance Pi, with session ID sid and partner ID pid, is fresh if:
neither this instance nor a partner of Pi is adversarially-controlled; and if there exists no instance P′j sharing
session sid with the partner pid = Pi (the related transcript is denoted as (m,m′,m′′)) such that the following
events occur::

(i) The message m is sent by the adversary A to Pi via a Send(m) query at time clock = k, yielding
message m′ at time clock = k + 1.
(ii) The message m′ is sent by A to P′j via a Send(m′) query at time clock = k′ > k+1, yielding message
m′′ at time clock = k′ + 1.
(iii) The message m′′ is sent by A to Pi via a Send(m′′) query at time clock = k′′ > k′ + 1.

We note that the messages need not be exactly sequential (i.e. the adversary could query other oracles in
different sessions before returning to session sid). Furthermore, the notion of freshness only refers to relays
with respect to the partner client pid. We do not restrict the adversary from forwarding received messages
to other server or client instances.

The goal of an impersonation adversary is to make a fresh party instance terminate in an accepting state.
In this case, the TestK.Ind oracle is not used. More formally, the game begins by generating the operator keys
and servers as before; then the adversary A gains access to all the oracles except TestK.Ind. When A stops, she
wins if there exists an instance Si for client-impersonation (resp. an instance Ci for the server-impersonation)
that ends in an accepting state and is fresh as described above. The advantage of the adversary is defined
as her success probability, i.e.

AdvC.Imp
Π (A) := Pr[A wins],AdvS.Imp

Π (A) := Pr[A wins]).



Definition 7. [Impersonation security.] A key-agreement protocol Π is (t, qexec, qid, qserv, qOp, qG , ε)-impersonation-
secure if no adversary running in time t, creating at most qexec party instances, with qid user identification
per instance, corrupting at most qserv servers, making at most qOp OpAccess queries per operator per cor-
rupted server, and making at most qG queries to the function G, has an advantage AdvC.Imp

Π (A) ≥ ε or
AdvS.Imp

Π (A) ≥ ε.

Oracles: K.Ind and Imp.Sec. The adversary interacts with the system by means of the following oracles, in
addition to a function G, which we model as a PRF.

– CreateCl(Op)→ (UID, stUID): This oracle creates a client with unique identifier UID. Then the client’s
secret key skUID and the sequence number SqnUID. The tuples (UID, skUID, skop,SqnUID) are associated
with the client UID and with the corresponding operator Op (i.e. each “copy” of Op in each server does
this). The operator sets stOp,UID := SqnUID and then keeps track of stOp,UID. The adversary is given UID
and stUID.

– NewInstance(P) → (Pj ,m): this oracle instantiates the new instance Pj , of party P, which is either a
client or a server. Furthermore, the oracle also outputs a message m, which is either the first message in
an honest protocol session (if P is a server) or ⊥ (if P is a client). The state st of this party is initiated
to be the current state of P, and it is initiated with the current value of TMSI, LAI.

– Execute(P, i,P′, j)→ τ : creates (fresh) instances Pi of a server P and P′j of a client, then runs the protocol
between them. The adversary A receives the transcript of the protocol.

– Send(P, i,m)→ m′: simulates sending message m to instance Pi of P. The output is a response message
m′ (which is set to ⊥ in case of an error or an abort).

– Reveal(P,i) → {K,⊥}: if the party has not terminated in an accepting state, this oracle outputs ⊥; else,
it outputs the session keys computed by instance Pi.

– Corrupt(P)→ skP: if P is a client, this oracle returns the long-term client key skP, but not skop (in this we
keep faithful to the implementation of the protocol, which protects the key even from the user himself).
If P is corrupted, then this party (and all its instances, past, present, or future), are considered to be
adversarially controlled. If P is a server, then this oracle returns the identifier Si, giving the adversary
access to a special oracle OpAccess.

– OpAccess(S,C) → m: for a corrupted server S, this oracle gives the adversary one access to the server’s
local copy of all the operators, in particular returning the message that the operator Op would have
output to the server on input a client C.

– StReveal(P, i, bitS) → x: for a client P, if bitS = 0, then this oracle reveals the current state of Pi; else,
if bitS = 1, then the oracle returns the state the operator stores for P.

– TestK.Ind(P,i) → K̂: this oracle is initialized with a secret random bit b. It returns ⊥ if the instance Pi is
unfresh or if it has not terminated in an accepting state (with a session key K). If b = 0, then the oracle
returns K̂ := K, else it returns K̂ := K′, which is a value drawn uniformly at random from the same
space as K. We assume that the adversary makes a single TestK.Ind query (a standard hybrid argument
can extend the notion to multiple queries).

Further security notions: Security w.r.t. servers In this section, we define two further notions, namely
soundness and state-confidentiality with respect to servers. In these games the adversary is a malicious, but
legitimate server S, and this is the only server we consider. We note that 3GPP specifications allow servers
to communicate with each other, but how they do this is not apparent. We use the OpAccess oracle to give
the server access to operators on specific clients, but change the syntax so that the oracle takes a single
input, namely a client identifier C. We also demand that the output of this oracle represents material only
for a single protocol session sid. The adversary uses the Send, CreateCl, NewInstance, Execute, and StReveal
oracles as described in the key-indistinguishability model. We additionally modify the corruption oracle, as
noted below:



– Corrupt(P)→ skP: if P is a client, this oracle returns the long-term client key skP, but not skop (in this we
keep faithful to the implementation of the protocol, which protects the key even from the user himself).
If P is an operator, then this oracle returns skop and the list of tuples (UID, skUID, stOp,C) for all clients C
subscribing with that operator.

State-Confidentiality. Unlike key-indistinguishability, which guarantees that session keys are indistin-
guishable from random with respect to MiM adversaries, the property of state confidentiality demands that
long-term client keys remain confidential with respect to malicious servers

This game begins by generating the material for nOp operators and nC clients. The adversary can then
interact arbitrarily with these entities by using the oracles above. At the end of the game, the adversary
must output a tuple: (Pi, sk∗UID, sk∗op, st∗UID, st∗Op,UID) such that UID is the long-term identifier of P and Pi
is a fresh instance of P in the sense formalized below. The adversary wins if at least one of the values:
sk∗UID, sk∗op, st∗UID, st∗Op,UID is respectively equal to skUID, skop, stUID, stOp,UID, the real secret values of the fresh
instance Pi.

Definition 8. [Freshness: St.conf] An instance Pi is fresh if neither this instance, nor a partner of Pi is
adversarially-controlled (its long-term key skP has not been corrupted) and the following queries were not
previously executed:

(i) StReveal(.) on any instance of P.
(ii) Corrupt(.) on any instance of P or on the operator Op to which P subscribes.

The advantage of the adversary is defined as:

AdvSt.conf
Π (A) := Pr[A wins].

Definition 9. [State-Confidentiality.] A key-agreement protocol Π is (t, qexec, qid, qOp, qG , ε)-state-confidential
if no adversary running in time t, creating at most qexec party instances, with at most qid user identification
per instance, making at most qOp queries to any operator Op, and making at most qG queries to the function
G, has an advantage AdvSt.conf

Π (A) ≥ ε.

In the Soundness game, we demand that no server is able to make a fresh client instance terminate in
an accepting state without help from the operator. This game resembles impersonation-security; however,
this time the adversary is a legitimate server (not a MiM) and it has access to operators. The adversary
may interact with oracles in the soundness game arbitrarily, but we only allow a maximum number of qOp
queries to the OpAccess oracle per client. The adversary wins if there exist (qOp + 1) fresh client instances
of a given client which terminated in an accepting state. Freshness is defined as in the impersonation game.
The advantage of the adversary is defined as:

AdvS.sound
Π (A) := Pr[A wins].

Definition 10. [Soundess w.r.t. server.] A key-agreement protocol Π is (t, qexec, qid, qOp, qG , ε)-server-
sound if no adversary running in time t, creating at most qexec protocol instances, with at most qid user
identification per instance, making at most qOp queries to any operator Op, and making qG queries to the
function G, has an advantage AdvS.sound

Π (A) ≥ ε.

3 The AKA protocol

3.1 Notations

Notations. Throughout the rest of the document, we denote the length of a bitstring x by |x|, while bxci..j
denotes bits i through j of x. If f is a function, then y ← f(x) denotes that y was the output of f on input x.



Similarly, y $← {0, 1}n indicates that y is chosen uniformly at random from the set of bitstrings of length n,
i.e. {0, 1}n. For strings x, y, the string x‖y is the concatenation of x and y, while x⊕ y denotes the exclusive
OR (XOR) of x and y. For a bit b, bn denotes the string b‖b‖ . . . ‖b of length n. We denote by ⊥ the error
message and by 1λ the security parameter (in unary). The indistinguishability property is considered against
the chosen plaintext attacks (ind− cpa). We denoted this property ind− cpa to lighten the expressions.

3.2 Description of the AKA protocol

3G (and 4G) mobile networks use a variant of the AKA protocol, which is fully depicted in Appendix 3.2, in
order to establish secure channels between mobile clients and servers. Ultimately, the server uses the secure
channel to transmit a specific service to the mobile client.

Client Server Operator

1) User Identification

2) Pre-computed batch of AV

3) AKE

4) Re-synchronization

5) TMSI Re-allocation

Fig. 2. The five phases of the AKA Procedure.

This protocol is actively run by clients and servers in the (selectively-active) presence of an operator.
Servers and operators communicate over a secure and private channel; however, the server is considered only
partially trusted. Section 2 describes in detail the setup of the three parties.

The AKA protocol consists of five phases. The first phase, user identification, is run by a client C and a
server S on the insecure channel and it allows S to associate C to an IMSI value. A user ID request is first
sent from the server to the client. The client’s response is a tuple (TMSI, LAI), consisting of a temporary
identifier and the local area identifier in which C received TMSI. If the LAI value corresponds to the LAI of
S, then the latter searches for a tuple (TMSI, IMSI) in its own database; else S requests this tuple from the
server S∗ associated with LAI, over an unspecified channel. If no IMSI can be found, then the server demands
the IMSI in clear. This procedure is the essential vulnerability leading to IMSI catcher attacks 3.3.

The second phase is run only optionally by the server S and the client’s operator Op over a secure
channel; its purpose is to enable S to then run a batch of AKE sessions with C. The server sends the
client’s IMSI to Op, which generates a batch of vectors AV each providing material for one out of a maximum
of n sessions. For each vector, the operator’s state with respect to the client SqnS,C is augmented, and
then the following values are generated: a fresh random value R; an server-authentication value MacS (for
the values SqnS,C and R); a client-authentication value MacC (for R only); the session keys CK and IK;
and an anonymity key AK. Of these six values, the last five are computed by using each time a different
cryptographic algorithm, denoted F1, . . . ,F5. In fact, the AKA protocol uses seven such algorithms, but
two of them, denoted F∗1 ,F∗5 , are only used in the re-synchronization procedure. The seven algorithms are
generic, and can currently be instantiated in one of two ways, one using AES (called MILENAGE), the other
using Keccak (called TUAK). Both F1 and F∗1 take as input the keys skC and skop, the random value R,
and a sequence number SqnS,C. The other algorithms use the secret keys and the random value, but not
the sequence number. At the end of this phase, the following values are sent to the server for each of the n
sessions: AV = (R,CK, IK,MacS,MacC,AMF,AK⊕SqnS,C), in which AMF is the Authentication Management
Field is a 16-bit value used only in radio access specifications (for example E-UTRAN or non-3GPP access
to EPS).



The sequence number SqnS,C is notably not sent in clear to the server, but rather blinded by the value
AK.

The third phase of the protocol, authenticated-key-exchange, is a mutual authentication and key agreement
between the server and the client over the insecure channel. The server chooses the next vector available
(if phase 2 was run, then this is the first tuple; else, for returning clients phase 3 is run directly, with the
next authentication vector), and sends an authentication challenge consisting of the random value R and an
authentication string Autn = (SqnS,C ⊕ AK)‖AMF‖MacS. The client uses R to compute AK, then it recovers
SqnS,C and verifies MacS. If the verification succeeds, and if the recovered Sqn is within a distance of ∆ (a
pre-defined constant) of the client’s own state SqnC, then the client computes CK, IK, and the response MacC,
sending this latter value to S; else, if the two sequence numbers are too far apart, then the client forces a
re-synchronization procedure, which is the fourth phase of the protocol. If no re-synchronization is needed,
then the client updates SqnC := SqnOp,C, and S verifies the received authentication value with respect to the
MacC sent by Op. If the verification succeeds, then the server sends an acknowledgement to Op and goes
directly to phase five. If the verification fails, then the protocol is aborted.

The fourth phase of the protocol, resynchronization, is run by all three parties. The client essentially
retraces the operator’s steps, using its own sequence number SqnC and computing the values Mac∗S and
AK∗⊕SqnC by using algorithms F∗1 and F∗5 (rather than F1 and F5), but keeping the same random value R.
If the authentication string Mac∗S verifies for the Sqn value Op recovers, then Op resets its sequence number
to SqnC and sends to the server another batch of authentication sessions. The protocol restarts. We note
that this phase is executed only optionally.

Finally, the fifth phase of AKA, TMSI re-allocation, is run by the server and client. As the first message
of the record layer, the server sends an (unauthenticated) encryption of a new TMSI value to the client C,
using the session key CK computed in phases 3 or 4. The encryption is done by means of the A5/3 algorithm
detailed in TS 43.020 [4], run in cipher mode. The new TMSI value, called TMSInew, is only permanently
saved by the server if the client acknowledges the receipt; else, both values TMSInew and the old TMSIold are
retained and can be used in the next authentication procedure. In appendix, the entire protocol is depicted
in Figure 12.

3.3 Some Privacy breaches in AKA

C A C A S
User Request

←−−−−−−−−−−−−−
User Request

←−−−−−−−−−−−−−
TMSIo‖LAI−−−−−−−−−−−−−→

TMSIo‖LAI−−−−−−−−−−−−−→
Rand‖LAI

−−−−−−−−−−−−→

Permanent User Request
←−−−−−−−−−−−−−−−−−−

Permanent User Request
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

IMSI−−−−−−−−−−−−−→ IMSI−−−−−−−−−−−−−→
If IMSI = IMSIv

then Cv is found.

Principle of Traceability of
IMSI catcher a victim client Cv

Fig. 3. Attacks based on TMSI.

To the best of our knowledge, the specifications do not detail how the permanent user identifiers are
generated, we consider that all the user IDs are different.

We do not need to have a very formal/theoric analysis to point out the pure AKA protocol cannot
guarantee the user unlinkability as defined previously. Indeed, the user identification based on temporary



identifiers independent to the permanent identifier is not sufficient. As related to our introduction, we clearly
analyze the two main issues which restrict the AKA protocol to guarantee the user unlinkability. The first one
is focused on the linkability of the failure messages. The next one is focused on the operational difficulties
related to the TMSI. These weaknesses have been partially described by Arapinis and al. in [20,?].

Linkability of failure messages Arapinis and al [20] notably provides a novel practical attack establishing
the traceability of a user based on the study of the failure messages. Considering a victim mobile client Cv,
an adversary can detect its presence in a specific area, only considering the features of the failure messages,
and replaying one old legitimate authentication vector including (R,Autn).

This latter can be replayed to any client each time it wants to check the presence or not of the victim
client Cv. In fact this replay always implies a failure message. If this replayed authentication vector had been
sent to Cv, the answer will be a ”de-synchronization message”. Indeed, the received MAC will be successfully
verified, but the sequence number will be not in the correct range. Otherwise, the answer will be an ”Mac
failure message”, because the the Mac could not be correct, except to a negligible probability of success
(1/2(128)) (due to the collision’s probability). This difference can permit to trace a mobile client in a specific
area just replaying a legitimate authentication vector. That represents a breach of the user’s untraceability.

Operational difficulties with TMSI As we explained previously, 3GPP has standardized the use of
temporary values TMSI instead of the basic permanent identifier IMSI. These temporary values are generated
independently to the permanent identifier. At first glance, this option could guarantee at least the user
identity confidentiality. However, the permanent identity IMSI is not as private as the sequence number. In
fact, this value can be easily obtained by a weak active adversary. In the identification of the user, when
the VLR cannot recognize the TMSI, the procedure is not aborted but the permanent identifier of the user
is requested to the client. Thus, by a basic attack 3 an adversary can obtain the permanent identifier of a
user during a fresh session. Obviously that represents a breach in the confidentiality of the user, that can
also imply a breach in the intraceability. This weakness is exploited by the well-known ”IMSI catcher” [6],
which is the best known attack to mobile telephony users’ privacy. This attack consists in forcing a mobile
phone to reveal its permanent identity.

The Temporary identifier of each user must be used, as its name suggests, temporary. The specifications
consider the uniqueness of the TMSI’s use. As specified by the protocol, a TMSI re-allocation is provided.
However, a basic active adversary can corrupt this uniqueness. Indeed, we note that the VLR does not de-
allocate the old value TMSIo without receiving the acknowledge message. So if an adversary drops this latter,
the VLR has the both allocated temporary values: the old one TMSIo and the new one TMSIn.

For the next identification, the VLR will accept the both values to identify the user. So an adversary
dropping the acknowledge message can easily force the replay of the same TMSI during different sessions.
Moreover, we note that the new temporary identifier TMSIo is only sent encrypted with the session key CK
and without any integrity service. The mobile subscriber can not verify whether the received value is sent by
the VLR or any malicious entity. Thus, any adversary can impose a false random value as new TMSI sending
a random value instead of the ciphered temporary identifier.

As specified previously, each TMSI is associated to a specific location area denoting the VLR having
generated this temporary identifier. The related LAI is sent in cleartext with the TMSI. Due to the previous
detailed failure, an adversary can associated the IMSI with an LAI: that permits to know where the subscriber
with the permanent identifier IMSI was located during the previous session.

Therefore, the use of temporary identifiers as specified by the specifications can not assure any privacy
as specified.

We proceed to describe two of the more promising improvements to the AKA protocol, and show that
these variants are vulnerable to client-unlinkability attacks.

The Arapinis variant. Arapinis et al. [20] propose an AKA variant which is supposed to ensure client
unlinkability by avoiding failure-message-based linking, as described in the previous section. To avoid this
attack, they propose to replace the both failure messages by two indistinguishable messages. The failure



message is now encrypted with a public key of the network and includes the IMSI, a constant Fail, a random
value R and the current sequence number SqnC. This latter is specially encrypted with an unlinkability
key UK = fskC(R) in order to authenticate the error message. After receiving this generic error message,
the network can deduce the cause of the failure from the IMSI and the sequence number, and sends the
appropriate answer.

Moreover, they propose a fixed version of the identification protocol avoiding to expose the IMSI (basically
the IMSI is sent in cleartext upon request by the network). It breaches both user identity confidentiality and
untraceability. Thus, the IMSI is encrypted with an asymmetric-randomized-encryption (the same one as
this one of the error messages) and they do not used any temporary value as usual. That permits to cancel
the reallocation step. We suppose that if the VLR cannot recover the IMSI, the protocol is aborted (and
they do not use a Permanent Identity Request). We note that this variant owns different practical issues.
Indeed, authors proposes a simply representation of the network by concatening the VLR and HLR as an
unique entity. For the security analysis, it is not an issue but it is the case for practical considerations.
Contrary to their formal security proof, we consider that the fixed version from Arapinis does not assure
the untraceability of the mobile subscriber. Indeed, we propose a new attack permitting to trace a victim
client based on the knowledge of a user permanent identity. Its knowledge is reasonable since we can not
consider this data as private. In a specific area, an adversary can trace a victim client Cv, which has its
permanent identifier IMSIv known by the adversary. This attack consists to replace the answer of the user
identity request by a response with the permanent identifier of the victim client and analyze the behavior
of the session. If the authentication data answer Res contains a failure message, the attacker considers the
tested client as different from the victim client. Otherwise, the victim client has been found. This attack is
detailed in the figure 4. We state the following result:

C A S
User Identity Request

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[IMSI]pke

−−−−−−−−−−−−−−→
[IMSIv ]pke

−−−−−−−−−−−−−−→
Rand,Autn

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Res

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

If Res = Fail Message
Then C 6= Cv

Else Cv is found.

Fig. 4. Attack on the fixed version of Arapinis.

Lemma 1. Let Π the protocol proposed by Arapinis and al. in [20]. Consider a (t, 1, 1, 0)-adversary A
against the weak-privacy of the protocol Π running in time t, creating at most one party instance, running
one user identification per each instance and making no extra query to the related internal cryptographic
functions. The advantage of a such adversary is denoted Advww-unlink

Π (A). The protocol Π cannot guarantee
the weak-privacy since there exists a such adversary A with a no-negligeable advantage.

Proof. The attack we describe goes as follows:

1. At time clock = 0, the challenger sets up the server.
2. At time clock = 1, the adversary creates two clients C0, C1 from the oracles CreateClient(IMSI{0}, st{0}0 )

and CreateClient(IMSI{1}, st{1}0 ).
3. At time clock = 2→ 3, the adversary uses the oracle DrawClient(C0,C1) which returns at time clock = 3

a virtual client vc = Cb following a chosen bit b.
4. At time clock = 4 → 10, the adversary runs an instance of the protocol Π between the virtual client

and the terminal as follows: At time clock = 4, the terminal sends a user identity request to the virtual



client; at time clock = 5, the virtual client answers with the value UID such as: UID = [IMSI{b}]pkeb
; at

time clock = 6, the adversary intercepts this message (before arriving to the terminal) and forges a user
identification UID = [IMSI{0}]pke0 for the client C0 which will be sent to the terminal at time clock = 7
(instead of the user identifier computed by the virtual client); at time clock = 8, the terminal receives the
related user identifier and generates an authentication challenge which is sent to the virtual client vc at
time clock = 9; this latter sends its authentication answer Res at time clock = 10 which is eavesdropped
by the adversary.

5. At time clock = 11, since the eavesdropped authentication answer Res, the adversary tries to guess the
bit b as follows: if the message Res contains a failure message, then the adversary considers the virtual
client as the client C0 (that implies b′ = 0). Otherwise, it considers the virtual client as the client C1
(that implies b′ = 1).

6. At time clock = 12, the adversary returns its guess b′.

This attack is detailed in the figure 4. It is clear that the advantage of a such adversary is 1. Thus, the
protocol cannot guarantee the weak-privacy. We note that in practice if the adversary A cannot detect the
de-synchronization, some ”false positive” can be appear: indeed, during the tested session, if the victim
client is de-synchronized, the adversary could not trace it. But the frequency of a such event (i.e this one
of a synchronization procedure) is very weak. Moreover, we can use this attack procedure at least twice to
reduce the probability to obtain a false positive.

The van den Broek variant. Van den Broek et al. [7] recently proposed an IMSI catcher countermeasure;
in this improved variant, avoid sending the IMSI in clear by replacing (IMSI, TMSI) tuples by an upgrade-
able pseudonym denoted PMSI. Their modified identification phase is exclusively done by means of these
pseudonyms. The PMSI is chosen by the operator and sent with the authentication challenge in the prepa-
ration phase, encrypted together with the sequence number with a new secret key that is assumed to be
shared by clients and their operators. The ciphertext is used as the random value R in the authentication
challenge. Indeed, a successful session of the AKA protocol, ending in the establishment of new session keys,
can only be attained if the PMSI is correctly updated. This variant is described in detail in [7].

From a practical point of view, using the operator at each key-exchange session is costly, and something
that the original AKA design tries to avoid. Furthermore, though this variant successfully prevents IMSI
catchers, it does not address client unlinkability. The pseudonym PMSI can be intercepted in one session; if
this session is then aborted, the PMSI can be replayed in a second session, thus leading to user linkability.
Furthermore, the protocol is vulnerable to the attack based on linking failure messages, as presented by
Arapinis et al. Thus, if Π denotes the protocol proposed by van den Broek et al., it holds that:

Lemma 2. There exists a (t, 2, 1, 0)-adversary A against the narrow-weak-client-unlinkability of Π running
in time t, initiating two protocol sessions, and making no query to the internal cryptographic function G,
which has an advantage Advww-unlink

Π (A) = 1
2 (and a probability of 1) to win the game.

Proof. The attack we describe goes as the Arapinis attack based on the linkability of failure messages:

1. At time clock = 0, the challenger sets up the server.
2. At time clock = 1, the adversary creates two clients C0, C1 from the oracles CreateClient(IMSI{0}, st{0}0 )

and CreateClient(IMSI{1}, st{1}0 ).
3. At time clock = 2→ 3, the adversary uses the oracle DrawClient(C0,C1) which returns at time clock = 3

a virtual client vc = Cb following a chosen bit b.
4. At time clock = 4→ 5, the adversary runs an instance of the protocol Π between the virtual client and

the terminal via the oracle Execute(vc, s) which returns the transcript of an instance s at time clock = 5.
This transcript includes the authentication challenge denoted (R,Autn).

5. At time clock = 6→ 12, the adversary runs an instance s+1 of the protocol Π between the virtual client
and the terminal as follows: at time clock = 6, the terminal sends a user identity request to the virtual



client; at time clock = 7, the virtual client sends the user identifier UID to the terminal; at time clock = 8,
the terminal receives the related user identifier and generates an authentication challenge which is sent
to the virtual client vc; at time clock = 9, the adversary intercepts the fresh authentication challenge
(before arriving to the virtual client) and sends the previous authentication challenge (R,Autn) to the
virtual client at clock = 10 (obtains in a previous session on the client C0 := DrawClient(C0,C0) ); at time
clock = 11, the virtual client sends its authentication answer Res at clock = 12 which is eavesdropped
by the adversary.

6. At time clock = 13, since the eavesdropped authentication answer Res, the adversary tries to guess the
bit b as follows: if the message Res contains a ”de-synchronization message”, then the adversary considers
the virtual client as the client C0 (that implies b′ = 0). Otherwise, it considers the virtual client as the
client C1 (that implies b′ = 1).

7. At time clock = 14, the adversary returns its guess b′.

4 Our proposal: PrivAKA

In this section, we propose a new fixed variant of the AKA protocol which respects the weak-unlinkability and
key-indistinguishability as defined in our privacy model 2. Obviously, it also guarantees the client-, server-
impersonation. Moreover, our fixed variant takes into account practical requirements of the VLR in addition
to provide the security properties. The VLR is an interoperable server in a cellular network that supports
roaming functions for subscribers outside the coverage area of their own HLR. The VLR needs to manage the
generation of the temporary identifier to avoid collision between subscriber from different operators. Indeed,
if the HLR generates the new temporary identifiers, it cannot avoid collision between identifiers of user from
different HLR but only avoids collision between its own subscribers. Then, the VLR cannot store any secret
data shared with any user due to its interoperability feature, except the storage of the relation between the
permanent and temporary identifiers for each subscriber. Indeed, the VLR communicates with user from any
operator. So, this feature implies that the secret data also needs to be inter-operable, i.e a same secret data
common for all the operators. We note that our fixed protocol does not increase the number of exchanged
between the USIM and ME and respect the 3GPP’s desire to limit communication with the HLR. Moreover,
we are the first to seriously consider such practical requirements.

4.1 Description of our variant

Instead of five phases, our variant only consists of three. Our protocol is designed to not require re-
synchronization (which was phase 4 in AKA), and we include the TMSI reallocation (which was phase 5
in AKA) as part of the key-exchange phase (phase 3). In our construction, we use a public-key encryption
scheme PKE= (PKE.KGen,PKE.Enc,PKE.Dec), such that each operator has a certified public and secret key-
pair denoted as (pkeOp, skeOp). We assume that the client stores only its own operator’s public key (and its
certificate) internally. In particular, we do not give encryption keys to the servers in order to minimize key-
management issues. We also use a secure authenticated encryption scheme AE = (AE.KGen,AE.Enc,AE.Dec).
Though these can be instantiated generically, we use AES-GCM [5] for the AE scheme and (EC)IES [25]
for the PKE scheme. We depict our variant in Figure 5, and indicate in the grey boxes the differences to
the classical AKA procedure. Just as the original protocol, our variant starts with an identification phase,
run by the client and the server over the insecure channel. The server sends an identification request which
includes a random value that we denote Rid. The client forges an user identification answer following a flag
flagTMSI managed by the client: it uses either a pre-exchanged fresh temporary identifier TMSI (if the previous
protocol has been accepted and if the user stayed in the same area: flagTMSI = 1) or it sends a public-key
encryption of the concatenation of the received random value Rid and the evaluation of the function F5 on
input the client secret key, the operator’s secret key, the random value Rid and the client’s IMSI (only if it
does not own a fresh temporary identifier or if the user is located in a new area: flagTMSI = 0). We demand



that the output size of the PKE scheme for this input size is always equal to the length of the TMSI. A
such flag flagTMSI is only used to restrict the computation of an encrypted permanent identity and not for
security reasons. In both cases, the client also appends the identity of the operator Op it subscribes to, to
the message. Moreover, we assume that the client can detect when it moves in a new area. In this case, it
allocates the flag at one.

Intuitively, if the client stayed in the same area (flagTMSI = 0), then the TMSI the client stored came
from the server it is currently communicating with, hence the server can find the (TMSI, IMSI) association
in its database. Otherwise, the client does not use its TMSI value, but rather encrypts a function of the
IMSI with the operator’s public key. The function is symmetric-key, requiring knowledge of the client- and
operator keys, and it is not replayable due to the fresh identification randomness Rid. Upon receiving a string
of the form (m,Op), the server first checks whether the message m is a TMSI present in its database; if so,
it retrieves the IMSI to which this value corresponds; else, it assumes that m is a ciphertext, and it sends it
to the operator Op for decryption.

Phase 2, preparation, is run over a secure channel, between the server and the operator. If the server
received a valid TMSI in the previous phase, the preparation phase being with the server sending the corre-
sponding IMSI to the operator; else, the server forwards the received ciphertext and the associated random
value Rid. The operator proceeds similarly to the standard AKA preparation procedure, with the following
differences:

– We add as input to each cryptographic function a server-specific value ResS for a server with identity
S = VLR. This is to prevent attacks in which the adversary replays authentication vectors from one
network to another, as presented by Zhang [17]. We also use the constant AMF which is sent in clear, as
an additional input.

– We add the sequence number SqnOp,C to each of the cryptographic functions apart from F5. Since
the sequence number is an ephemeral value, which is updated, this guarantees freshness even if the
randomness R is repeated.

– We introduce an index value idxOp,C which essentially prevents the repetition of a challenge using the
same sequence number. This value is essential in preventing a desynchronization of sequence number
values. We note that the client also keeps track of a similar index idxC, which will play a role in the
key-exchange phase, as detailed below.

In the final phase, authenticated-key-exchange, which is run between the client and the server, the server
sends a random value R, the authentication string Autn, an authenticated encryption of the new TMSI,
using the keys (CK, IK) derived for this session. The client proceeds similarly to the original AKA procedure,
recovering AK by using the random value R, then checking MacS. If the authentication cannot be verified,
the procedure is aborted, and the new TMSI is disregarded. Else, the user computes CK, IK and decrypts the
received authenticated encryption string to find the TMSI value and the operator’s index idxOp,C. Then, C
checks the freshness of the sequence number, i.e. it verifies if one of the following two conditions is correct:

– SqnC = Sqn{i}.
– SqnC = inc(Sqn{i}) and idxOp,C = idxC + 1,

If the protocol is run normally, the first of these conditions is the one that will hold. However, if the previous
session is aborted after receiving the server’s authentication challenge, then the two sequence numbers may
become desynchronized by one step (the second condition). Further desynchronization is prevented by the
use of an index, which indicate whether the authentication string for a particular SqnOp,C has already been
used or not. If the first condition holds, then the client’s internal index is reset; else, the index is incremented
by 1. The client updates the sequence number only upon successful authentication. If none of these conditions
are verified, the procedure is aborted and does not use of a resynchronization procedure.

Finally, the user computes a response Res := F2(keys,R{i},Sqn{i},ResS,AMF), sends Res, then stores the
TMSI and the new index value. The server checks Res against the prepared value MacC (else, if no response
is received, the procedure is aborted).



One notable exception to the original AKA protocol is that whenever an abort occurs on the server’s side,
the second phase – preparation – is used instead of simply querying the next vector in the prepared batch.
Though this might seem more inefficient, we note that an abort only occurs in the presence of an adversary,
which is considered to be a rare event. We detail the procedure upon aborts in Figure 6.Internal cryptographic algorithms:

In our variant, we have modified the inputs of the internal cryptographic algorithms, notably to include
the sequence number and the new value ResS. Thus, we need to provide an update of these algorithms to
consider these modifications. As specified in specifications, the AKA protocol can be based on the different
sets of algorithms: TUAK and MILENAGE.

To preserve backwards compatibility, we propose to keep and update these both sets. Moreover, our
variant requires an algorithm of authenticated encryption. We require to use the well-know standard AES-
GCM [5]. It is denoted AE.

Considering our modifications, we do not use the function F∗1 and F∗5 since we have dropped the resyn-
chronization.

The seven internal cryptographic functions takes in inputs the following values:

– keys: the couple of the both 128-bit (or 256-bit) keys: the subscriber key sk and the operator key skop.
– Sqn (except for the function F5): a 48-bit sequence number.
– AMF (except for the function F5): a 16-bit authentication field management.
– R: a 128-bit random value.
– ResS: a 128-bit (public?) value characterizing the visited network.

We note that the function F5 behaves differently because they do not consider the sequence number in
inputs (contrary to the currently version, where F1 and F∗1 behave differently).

Update of the MILENAGE algorithms: MILENAGE is the original set of algorithms which is currently
implemented as detailed the specification 35.206 [1].

To assure a stronger security, we also modify the MILENAGE algorithms to output 128-bit MAC and
session keys CK and IK.

Based on the Advanced Encryption Standard (AES), these functions compute firstly the both values
TopC and Temp as follows:

TopC = skop ⊕ AESskC(skop),

Temp = AESskC(R ⊕ TopC ⊕ ResS).

Then, we obtain the output of the seven functions as follows:

– Output F1: MacS = AESskC(Temp⊕ Rotr1(Sqn‖AMF‖Sqn‖AMF)⊕ c1)⊕ TopC ,
– Output F2: MacC = AESskC(Temp⊕ Rotr2(Sqn‖AMF‖Sqn‖AMF)⊕ c2)⊕ TopC ,
– Output F3: CK = AESskC(Temp⊕ Rotr3(Sqn‖AMF‖Sqn‖AMF)⊕ c3)⊕ TopC ,
– Output F4: IK = AESskC(Temp⊕ Rotr4(Sqn‖AMF‖Sqn‖AMF)⊕ c4)⊕ TopC ,
– Output F5: AK = bAESskC(Rotr5(Temp⊕ TopC)⊕ c5)⊕ TopCc0..47,

with the five integers r1 = 0, r2 = 24, r3 = 48, r4 = 64 and r5 = 96 in the range {0, 127}, which define
the number of positions the intermediate variables are cyclically rotated by the right, and the five 128-bit
constants ci such as:

– c1[i] = 0,∀i ∈ {0, 127}.
– c2[i] = 0,∀i ∈ {0, 127}, except that c2[127] = 1.
– c3[i] = 0,∀i ∈ {0, 127}, except that c3[126] = 1.
– c4[i] = 0,∀i ∈ {0, 127}, except that c4[125] = 1.
– c5[i] = 0,∀i ∈ {0, 127}, except that c5[124] = 1.

This is also described in the Figure 7.
Update of the TUAK algorithms: TUAK is an alternative set of MILENAGE based on the internal

permutation of the Keccak [8]. The specification TS 35.231 [2] details the internal algorithms of this set. We
update these algorithms by only modifying the inputs of the second permutation.



As the no-updated TUAK algorithms, we compute firstly the value TopC as follows:

TopC = bfKeccak(skop‖Inst‖AN‖0192‖Key‖Pad‖1‖0512)c1..256,

We note that the values AN, Inst’, Inst, Pad are the same as used in the no-updated TUAK algorithms and
Key the (padded) subscriber key.

At this point, the behavior of the functions F5 diverges from that of the other functions. To generate the
related output, we compute the value Val1 and for the others ones, we compute the value Val2 which differ
as follows:

Val1 = fKeccak(TopC‖Inst′‖AN‖R‖064‖Key‖ResS‖Pad‖10512),
Val2 = fKeccak(TopC‖Inst′‖AN‖R‖AMF‖Sqn‖Key‖ResS‖Pad‖10512).

Then, we obtain the output of the seven functions truncating the related value as follows:

– Output F1: MacS = bVal2c0..127,
– Output F2: MacC = bVal2c256..383,
– Output F3: CK = bVal2c512..639,
– Output F4: IK = bVal2c768..895,
– Output F5: AK = bVal1c0..47.

This is also depicted in Figure 8.
We note that the multi-output property is, as the no-updated version, not an issue for the security of

the master key, since during one session we can have as many as four calls to the same function with similar
inputs (and a different truncation).

4.2 Privacy and Security Analysis

Weak Client Unlinkability of our fixed variant In this section, we prove that our fixed variant of
the AKA protocol achieves weak client unlinkability if we assume that the internal functions assures indis-
tinguishability, pseudorandomness and unforgeability properties. The weak-client-unlinkability resistance of
our fixed variant is proved as follows:

Theorem 1. [ww-unlink− Resistance.]
Let G:{0, 1}κ ∗ {0, 1}d ∗ {0, 1}t ∗ {0, 1}t → {0, 1}n be our unitary function described in section 4.2 and Π

our fixed variant of the AKA protocol specified in section 4. Consider a (t, qexec, qid, qG , qAE, qPKE)-adversary
A against the weak privacy ww-unlink-security of the protocol Π running in time t, creating at most qexec
party instance, with at most qid user identification per instance and making at most qG , qAE, qPKE queries to
respectively the functions G, AE and PKE. The advantage of this adversary is denoted Advww-unlink

Π (A). Then,
there exist (t′ ∼ O(t), q′ = qexec +qG)-adversary A1 and (t′ ∼ O(t), q′ = 2·qexec +qG)-A2 against respectively
the unforgeability and pseudorandomness of the function G, an (t′′ ∼ O(t), q′′ = qexec + qAE)-adversary A3
against the ae-security of the function AE, (t′′′ ∼ O(t), q′′′ = qexec · qid + qPKE)-adversaries A4 against the
indistinguishability of the function PKE, (t, qexec, qid, 0, 0, qG , qAE, qPKE)-adversary A5 against the key-secrecy
of the protocol Πsuch that:

Advww-unlink
Π (A) ≤ AdvK.Ind

Π (A5) + 1 + (qexec · qid)2

2|TMSI| +

q2
exec

2|R|
+ (qexec · qid)2

2|Rid|
+ nC · (3 · Advmac

G (A1) +

Advprf
G (A2) + 4 · Advae

AE(A3) + Advind−cca2
PKE (A4)).

Proof. Our proof has the following hops:
Game G0: This game works as the ww-unlink-game stipulated in section 2.



Game G1: We modify the original game G0 to ensure that the random values Rid and R used by honest
server instances are always unique. The related security loss due to the collisions between each respective
random in two different instances is given by the following expression:

∣∣ Pr[AG0 wins]− Pr[AG1 wins]
∣∣ ≤ q2

exec
2|R|

+ (qexec · qid)2

2|Rid|
.

Game G2: The game G2 behaves as the game G1 with the restriction consisting to abort the protocol if one
of the three following events happen:

– Event 1: The adversary A has forged the user identification answer.
– Event 2: The adversary A has forged the authentication challenge.
– Event 3: The adversary A has forged the authentication response.

Briefly, we modify the original game G1 to ensure that the adversary cannot forge these three messages.
Indeed, a classic attack permits to recover the user identity of the client from the ability to forge any of
these three messages. A such adversary behaves as follows: the adversary chooses one of the both clients (C0
or C1) related to the virtual client VC and forges a message x related to the current transcript. During the
session, it drops the related message from the honest server and sends the forged message. If with a such
modification the session is accepted, then the chosen client is the client to this current session. Otherwise,
the other client is the good one.

Now, focus on each event. Firstly, if the adversary wants to forge a fresh user identification response
(event 1), she has two options: either guess the fresh temporary identifier TMSI or an encrypted version
of the permanent identifier related to the random value Rid included in the user identification request. To
guess the fresh temporary value, either it guess the fresh one from the old previous ones or it decrypts the
authenticated encryption of the fresh one from the previous session. The TMSÍs are independently chosen,
so they are no way to guess the fresh TMSI from the old one, except randomly, or replaying one of these
previous TMSI. The probability of a such success is at least (1 + (qexec · qid)2)/2|TMSI|. The ability to recover
the fresh TMSI from the encrypted version is restricted by the security of the authenticated encryption and
the key-indistinguishability of the session keys. Indeed, the fresh TMSI is sent authenticated and encrypted
by the algorithm AE, which is based on session keys and not long-term keys. Moreover, we note that the
fresh TMSI is encrypted with the index which is predictable. So, if an adversary can forge a correct output
of the authenticated encryption AE (i.e the related input includes a correct index), it can impose its own
temporary value and uses it for the next user identification. So the probability of a such recovery is at
most AdvK.Ind

Π (A) + nC · (2 · Advae
AE(A)). Then, the ability to forge a correct encrypted permanent identity is

restricted by the ability to forge a correct output of the function G with the IMSI and without the private
key. The success probability of a such ability is nC ·Advmac

G (A). So the security loss due to the ability to forge
an fresh identification response is 1+(qexec·qid)2

2|TMSI| + AdvK.Ind
Π (A) + nC · (2 · Advae

AE(A) + Advmac
G (A)).

Now, focus on the second event involving to forge an authentication challenge. We recall that a such
challenge is split in four parts: the random value R, a masked value of the current sequence number val =
AK ⊕Sqn, a message authentication code mac generated by the function G which takes in inputs the private
keys keys, the random value R and the sequence number Sqn, and the couple of the next temporary identifier
and the current index encrypted by an authenticated encryption AE. In a fresh instance, we have two options
to forge an authentication challenge: either the adversary guesses a fresh authentication challenge based on
the current sequence number or it replays an old challenge based on a previous used sequence number. For
the first option, the complexity to forge a such challenge is restricted by the unforgeability of the function G.
Indeed even if the adversary knows the fresh sequence number, which is in practice masked by one-time-pad, it
cannot forge a fresh message authentication code without the related message authentication code. Moreover,
we note that the index is only implied for the second condition of the freshness verification and the new TMSI
will be only used for the next session. With the second condition, the best option for the adversary consists
to replay the three first parts of the previous authentication challenge included in an aborted session and



tries to forge an authenticated and encrypted version of fresh index and fresh TMSI. Indeed, when a protocol
is aborted after that the server has sent the authentication challenge, the next authentication challenge is
based on the same sequence number. To forge a fresh authenticated and encrypted value, the adversary
chooses any non-nil value for the index value. We note that the adversary needs to know it because a such
challenge including the index idx is considered as fresh only if there are exactly idx previous sessions aborted
by a drop of the related authentication response. Moreover, we do not need to the chosen temporary value.
The ability to forge a such challenge is restricted by the security of the chosen algorithm of authenticated
encryption. So, considering both conditions, the success probability is at most nC · (Advmac

G (A) + Advae
AE(A)).

Finally, we focus on the third event involving to forge an authentication response. This value is only
composed by the value Res, which is an output of the function G. So the success probability is at most
nc · Advmac

G (A). Thus, we obtain

∣∣ Pr[AG1 wins]− Pr[AG2 wins]
∣∣ ≤ 1 + (qexec · qid)2

2|TMSI|

+AdvK.Ind
Π (A) + 3 · nC · (Advae

AE(A) + Advmac
G (A)).

Game G3: We modify the game G3 to replace outputs to call to the functions by truly randoms, i.e
consistent values which are independent of the input, but the same input gives same output. We argue that
the security loss is precisely the advantage of the adversary against the pseudorandomness of the internal
cryptographic functions and the related security of PKEand AE. It holds that:∣∣ Pr[AG2 wins]− Pr[AG3 wins]

∣∣ ≤ nC · (Advprf
G (A)

+Advind−cca2
PKE (A) + Advae

AE(A)).

Winning the game G3: At this point, the adversary plays a game which consider to recover the bit
b with a whole-randomized protocol. Assume that the adversary cannot learn any information about the
related client in a such transcript. Thus, the adversary has only one option: guess the bit b without any
specific information. So we obtain the following probability of winning the game G3:

Pr[AG3 wins] = 1
2 .

Security Statement This yields the following result:

Advww-unlink
Π (A) ≤ AdvK.Ind

Π (A5) + 1 + (qexec · qid)2

2|TMSI| +

q2
exec

2|R|
+ (qexec · qid)2

2|Rid|
+ nC · (3 · Advmac

G (A1) +

Advprf
G (A2) + 4 · Advae

AE(A3) + Advind−cca2
PKE (A4)).

Key-Indistinguishability of our fixed variant We consider the key-indistinguishability property, de-
noted K.Ind, as the guarantee that the session keys of honest sessions are indistinguishable from random. In
the model previously detailed in section 2.2, we consider the session ID sid of each instance as follows: UID,
IDSi , R, Rid, idxC and the value SqnC, that are agreed upon the session. As stipulated we can prove the key
secrecy of our fixed variant of the AKA protocol, under indistuiguishability, unforgeability and pseudoran-
domness properties of the different internal functions. This property is defined as follows:

Theorem 2. [K.Ind− resistance.] Let G : {0, 1}κ × {0, 1}d × {0, 1}t × {0, 1}t → {0, 1}n be our specified
function specified in section 4.2 and Π our fixed variant of the AKA protocol specified in section 4.2. Consider
a (t, qexec, qid, qserv, qOp, qG , qAE, qPKE)-adversary A against the K.Ind-security of the protocol Π, running in
time t and creating at most qexec party instance, with at most qid user identification per instance, corrupting
at most qserv servers, making at most qOp OpAccess queries per operator per corrupted server, and making



at most qG , qAE, qPKE queries to respectively the functions G, AE and PKE. Denote the advantage of this
adversary as AdvK.Ind

Π (A). Then there exist a (t′ ≈ O(t), q′ = qG + qexec)-mac-adversary A1 on G, a (t′ =
O(t), q′ = qG + 2 · qexec + 5 · qserv · qOp)-prf-adversary A2 on G, a (t′ = O(t), q′ = qG + qexec)-ind-cpa-adversary
A3 on G,a (t′ = O(t), q′ = qexec + qAE)-ae-adversary A4 on AE, and a (t′ = O(t), q′ = qexec · qid + qPKE)-ind-
cca2-adversary A5 on PKE such that:

AdvK.Ind
Π (A) ≤ nC · (

(qexec · qid)2

2|Rid|
+ (qexec + qserv · qOp)2

2|R|
+

Advmac
G (A1) + Advprf

G (A2) + Advind−cpa
G (A3)

+Advae
AE(A4) + Advprf

PKE(A5)).

Proof. Our proof has the following hops.

Game G0: This game works as the K.Ind-game stipulated in our security model 2.2, but including the
new oracles. The goal of the adversary AG0 is to distinguish, for a fresh instance that ends in an accepting
state, the fresh session keys from random ones.

Game G1: We modify G0 to only consider the new query Corrupt(P, type) but both games have the
same goal. We note that this new query permits to consider the corruption of the key operator independently
to the corruption of the subscriber keys. This new query behaves as follows:

Corrupt(P, type): yields to the adversary the long-term keys of party P 6= S (else, if the oracle takes as
input P = S, then it outputs ⊥). The output of the oracle depends on the value type ∈ {sub, op, all}.
If type = sub, then the returned value is skP. If type = op, then the oracle returns skop. Then, for
type = all, we return the both values skP, skop. If type ∈ {sub, all}, then P (and all its instances, past,
present, or future), are considered to be adversarially controlled.

We argue that given any adversary A playing the game G1 and winning w.p εA the same adversary wins
the game G0 w.p at least εA (this is trivial since in game G1, A has more information).

Pr[AG0 wins] ≤ Pr[AG1 wins].

Game G2: We modify G1 to only allow interactions with a single client (any future UReg calls for a
client would be answered with an error symbol ⊥). The challenger generates only a single operator key, which
is associated with the operator chosen for the registered client and chooses a bit b ∈ {0, 1}. We proceed as
follows: for any adversary AG1 winning the game G1 with a no-negligible success probability εG1 , we propose
to construct a generic adversary AG2 winning the game G2 with a black-box access to the adversary AG1 .

Adversary AG2 begins by choosing a single client C. For every user registration request that AG1 sends
to its challenger, AG2 responds as follows: if the registered client is C, then it forwards the exact UReg
query that AG1 makes to its own UReg oracle. Else, if AG1 registers any client C∗ 6= C, AG2 simulates the
registration, generating skC∗ and SqnC∗ , returning the latter value. Adversary AG2 also generates nOp − 1
operator keys rskOp∗ (for all operator Op∗ such that Op∗ 6= Op), and associates them with the clients as
follows: the target client C is associated with the same operator given as input by AG1 to the UReg query
(thus with the operator key skop generated by the challenger of game G2). Let this target operator be denoted
as Op. Adversary AG2 queries Corrupt(C, op) and stores skop.

We distinguish two types of clients: the brothers of the target client (i.e the clients which have the same
operator as the target client) and the others ones. For these latter, denoted C∗, which are registered by AG1

with an operator Op∗ 6= Op, adversary AG2 associates Op∗ with one of its generated keys rskOp∗ . Recall that,
since adversary AG1 plays the game in the presence of nOp operators, there are nOp − 1 keys which will be
used this way. We call all clients C∗ 6= C registered by AG0 with the target operator Op the brothers of the
target client C. Adversary AG2 associates each brother of C with the corrupted key skop it learns from its
challenger.

In the rest of the simulation, whenever AG1 makes a query to an instance of some party C∗, not a brother
of C, the adversary AG2 simulates the response using the values skC∗ , rskOp∗ , and the current value of Sqn.



For the brothers of C, the simulation is done with skC∗ , skop, and the current Sqn. For the target client C,
any queries are forwarded by AG2 to its challenger.

Any corruption or reveal queries are dealt with in a similar way. Note that AG2 cannot query Corrupt to
its adversary (this is a condition of freshness). The simulation is thus perfect up to the Test query.

In the Test query, AG1 chooses a fresh session and sends it to AG2 (acting as a challenger). Note that AG2

will be able to test whether this instance is fresh, as freshness is defined in terms of AG1 ’s queries. If AG1

queries Test with a client other than the target client C, then AG2 aborts the simulation, tests a random,
fresh instance of the client C (creating one if necessary), and guesses the bit d, winning with probability
1
2 . Else, if AG1 queried a fresh instance of C, AG2 forwards this choice to its challenger and receives the
challenger’s input. The adversary AG2 forwards the input of the challenger to AG1 and then receives A’s
output d, which will be AG2 ’s own response to its own challenger.

Denote by E1 the event that adversary tests C in game G1, while Ē1 denotes the event that AG1 chooses
to test C∗ 6= C.

It holds that:

Pr[AG2 wins] = Pr[AG2 wins | E1] · Pr[E1] +
Pr[AG2 wins | Ē1] · Pr[Ē1]

≥ 1
nC

Pr[AG1 wins] + 1
2 ·

(
1− 1

nC

)
≥ 1
nC

Pr[AG0 wins] + 1
2 ·

(
1− 1

nC

)
.

Note that adversary AG2 makes one extra query with respect to AG1 , since we need to learn the key of
the target operator.

Game G3: We modify G2 to ensure that the random values sampled by honest server instances are
always unique.

This gives us a security loss (related to the respective collisions between the R and Rid in two different
instances) of ∣∣ Pr[AG2 wins]− Pr[AG3 wins]

∣∣ ≤ (qexec · qid)2

2|Rid|
+

(qexec + qserv · qOp)2

2|R|
.

Game G4: This game behaves as the game G3 with the restriction to only interact with only one
server (any future UReg calls for a server would be answered with an error symbol ⊥). The benefices lost
is the ability to obtain some authentication vectors from corrupted servers. Such authentication vectors can
either give information about the used sequence number and the long term keys or forge a fresh challenge
replaying some parts of these vectors. We recall that the challenge is split in four parts: a random value, a
masked version of the fresh sequence number (an one-time-pad based on an anonymity key generated by the
function G), a mac computed with the function G and an authenticated and encrypted version of the next
temporary identifier and the current index. Moreover, we note that all the call of the function G take in input
a specific value of the related server, denoted IDSi . The corrupted servers permit to obtain vectors based on
the fresh sequence number but different random and different server identifier. So the related security loss is
given by the collision on two outputs of the same function G with two different inputs (the only differences
between the both inputs are at least the value of the network identifier) and by the indistinguishability of
the function G. We recall that the Test Phase of the game can be only focus on a network which is or was
never corrupted. This give us a security loss∣∣ Pr[AG4 wins]− Pr[AG3 wins]

∣∣ ≤ Advind−cpa
G (A) + Advmac

G (A).
Game G5: We modify G4 to replace outputs of the internal cryptographic functions by truly random,

but consistent values (they are independent of the input, but the same input gives the same output). We



argue that the security loss is precisely the advantage of the adversary A against the pseudorandomness
of function G, and the security of respectively PKE and AE. Note that the total number of queries to the
related functions are at most 2 · qG and one qAE and one qPKE per honest instance(thus totaling at most
qG + (2 · qexec) queries to the function G, qexec queries to the function PKE and qexec queries to the function
AE).

∣∣ Pr[AG4 wins]− Pr[AG5 wins]
∣∣ ≤ Advind−cca2

PKE (A) +
Advprf

G (A) + Advae
AE(A).

Winning G5: At this point, the adversary plays a game in the presence of a single client C. The goal
of this adversary is to distinguish a random session key to a fresh session key. But, in game G5, queries to
G return truly random, consistent values. In this case, the adversary can do no better than guessing. Thus,
we have:

Pr[AG5 wins] = 1
2 .

Security statement: This yields the following result:

AdvK.Ind
Π (AG0) ≤ nC · (

(qexec · qid)2

2|Rid|
+ (qexec + qserv · qOp)2

2|R|
+Advmac

G (A1) + Advprf
G (A2) + Advind−cpa

G (A3)

+Advae
AE(A4) + Advprf

PKE(A5)).

This concludes the proof.

Impersonation of our fixed variant

Proof. We present first the client-impersonation resistance proof, then the equivalent statement for server
impersonations.

C.Imp-resistance

Game G0: This game works as the C.Imp-game: When A stops, she wins if there exists an instance Si
that ends in an accepting state with session ID sid and partner ID pid such that: (a) pid is not adversarially
controlled (skpid has not been corrupted), (b) no other instance Ci exists for pid = Si that ends in an accepting
state, with session ID sid.

Game G1: We modify the game to allow the new Corrupt(P, type) query from the previous proof. It holds
that:

Pr[AG0 wins] ≤ Pr[AG1 wins].

Game G2: We modify G1 to only interact with a single client, as in the previous proof, giving a security
loss of:

Pr[AG2 wins] ≥ 1
nC

Pr[AG1 wins] + 1
2 ·

(
1− 1

nC

)



Game G3: We now restrict the adversary to using a single server As detailed in the key-indistinguishability
proof, the related security loss is given by: This give us a security loss∣∣ Pr[AG3 wins]− Pr[AG2 wins]

∣∣ ≤ Advprf
G (A).

Game G4: We modify G4 to replace outputs to calls to all the internal cryptographic functions by truly
random, but consistent values, and as before, we lose a term:

∣∣ Pr[AG3 wins]− Pr[AG4 wins]
∣∣ ≤ Advprf

G (A) + Advae
AE(A)

+Advind−cca2
PKE (A).

Game G5: We modify G4 to ensure that the random values sampled by honest server instances are always
unique. As in the unlinkability proof, this yields a loss of:

∣∣ Pr[AG4 wins]− Pr[AG5 wins]
∣∣ ≤ (qexec·qid)2

2|Rid|
+ q2

exec
2|R| .

Winning G5: At this point, the adversary plays a game with a single client and server. A server instance Si
only accepts AG5 , if the latter can generate a fresh identification response ID and an authentication response
Res for some session sid. Assume that this happens against accepting instance Si of the server, for some
target session sid. Note that the values Res and ID computed by Ci are purely random, but consistent. Thus,
the adversary has three options for each of these values: (a) forwarding a value already received from the
honest client for the same input values, of which skC is unknown; (b) guessing the key skC; or (c) guessing
the value. The first option yields no result, since it implies there exists a previous client instance with the
same session id sid as the client. The second option happens with a probability of 2−|skC|. The third option
occurs with a probability of 2−|Res| + 2−|ID| per session, thus a total of qexec · (2−|Res| + qid · 2−|ID|). Thus,

Pr[AG5 wins] = 2−|skC| + qexec · (2−|Res| + qid · 2−|ID|).

Security statement: This yields the following result:

AdvC.Imp
Π (AG0) ≤ nC · (Advprf

G (A1) + Advae
AE(A2)

+Advind−cca2
PKE (A3) + (qexec · qid)2

2|Rid|

+(qexec)2

2|R|
+ qexec

2|Res| + 1
2κ + qexec · qid

2|ID|
).

S.Imp−resistance

Game G0: This game works as the S.Imp-game. The adversary A wins if there exists an instance Ci that ends
in an accepting state with session ID sid and partner ID and pid s.t.: (a) pid = S, (b) no instance Sj exists
such as Sj and Ci has the same session ID sid, (c) Ci and these partners are not adversarially controlled.
Game G1: We add the new query Corrupt(P, type) as in the previous proof, such that:

Pr[AG0 wins] ≤ Pr[AG1 wins].

Game G2: We modify G1 to only interact with a single client, as in the previous proofs, and lose:

Pr[AG2 wins] ≥ 1
nC

Pr[AG1 wins] + 1
2 ·

(
1− 1

nC

)



Game G3: Again, we restrict the adversary to only one server. This give us a security loss∣∣ Pr[AG3 wins]− Pr[AG2 wins]
∣∣ ≤ Advprf

G (A).
Game G4: We modify G3 to replace outputs to calls to all the internal cryptographic functions by truly
random, but consistent values and as before, it holds that:

∣∣ Pr[AG3 wins]− Pr[AG4 wins]
∣∣ ≤ Advprf

G (A) + Advae
AE(A)

+Advind−cca2
PKE (A).

Winning G4: At this point, the adversary plays a game with a single client Ci, which only accepts AG4 , if the
authentication challenge is verified for some session sid. Assume that this happens against accepting instance
Ci of the target client, for some target session sid. Note that the MacS value computed (for verification) by
Ci is purely random, but consistent. Thus, the adversary has three options: (a) forwarding a value already
received from the honest server for the same input values R; Sqn; skop; skC, of which skC is unknown; (b)
guessing the key skC; or (c) guessing the response. The first option yields no result since there are no collision
between the transcript of two different servers since all the servers have a different session ID. The second
option happens with a probability of 2−|skC|. The third option occurs with a probability of 2−|MacS| per
session, thus a total of qexec · 2−|MacS|. Thus,

Pr[AG4wins] = 2−|skC| + qexec · 2−|MacS|.

Security statement: This yields the following result:

AdvS.Imp
Π (AG0) ≤ nC ·

( qexec

2|MacS|
+ 1

2κ + Advprf
G (A1)

+Advae
AE(A2) + Advind−cca2

PKE (A3)
)
.

Soundness and key-confidentiality of our fixed variant.

Theorem 3. [St.conf − resistance.] Let G and G∗ be our specified functions specified in section 4.2 and Π
our fixed variant of the AKA protocol specified in section 4.2. Consider a (t, qexec, qid, qOp, qG , qG∗ , qAE, qPKE)-
adversary A against the St.conf-security of the protocol Π, running in time t and executing qexec sessions
of the protocol Π, making at most qOp queries to any operator, and making qG , qG∗ , qAE, qPKE queries to
respectively the functions G, G∗, AE and PKEresp. qG∗) queries to the function G (resp. G∗). Denote the
advantage of this adversary as AdvSt.conf

Π (A). Then there exist a (t′ ≈ O(t), q′ = qG + 5 · qOp + 2 · qexec)-prf-
adversary A1 on G, a (t′ = O(t), q′ = qexec +qAE)-ae-adversary A2 on AE, a (t′ = O(t), q′ = qexec ·qid +qPKE)-
ind-cca2-adversary A3 on PKE, and (t′ ≈ O(t), q′ = qG∗)-prf-adversary A4 on G∗ a such that:

AdvSt.conf
Π (A) ≤ nC · (

1
2|skC|

+ 1
2|skOp|

+ 1
2|Sqn|

+Advprf
G (A1) + Advae

AE(A2)

+Advind−cca2
PKE (A3)) + Advprf

G∗(A4).

Proof. Our proof has the following hops.

Game G0: This game works as the St.conf-game stipulated in our security model. The goal of the
adversary AG0 is to recover at least one secret value, i.e the subscriber key skC, my operator key skOp or the
subscriber sequence number SqnC for a fresh instance.

Game G1: We modify G0 to only allow interactions with one operator. The challenger related to the
game G1 only generates a single operator key, which is associated with the operator chosen for the registered



client. We proceed as follows: for any adversary AG0 winning the game G0 with a no-negligible success
probability εG0 , we propose to construct a generic adversary AG1 winning the game G1 with a black-box
access to the adversary AG0 .

Adversary AG1 begins by choosing a single operator Op. It generates nOp−1 operator keys, denoted rskOp∗ .
Then, for every user registration request that AG0 sends to its challenger, AG1 responds as follows: if the
request CreateCl(.) takes in input the operator Op, then it forwards the same query to its own oracle. Else, if
AG0 sends a registration request based on any operator Op∗ 6= Op, AG1 simulates the registration, generating
a subscriber key skC∗ and a sequence number SqnC∗ , returning the latter value. Moreover, each new client
registered with the operator Op (resp. any Op∗) is associated with the related operator key skop(resp. rskOp∗).

We distinguish two types of clients: the brothers of the target client (i.e the clients which have the same
operator as the target client) and the others ones. For these latter, denoted C∗, which are registered by AG1

with an operator Op∗ 6= Op, adversary AG2 associates Op∗ with one of its generated keys rskOp∗ .
In the rest of the simulation, whenever AG0 makes a query to an instance of some party C∗ (from any

operator except Op), the adversary AG1 simulates the response using the values skC∗ , rskOp∗ , and the current
value of SqnC∗ . For the other clients, the query is forwarded by AG1 to its own challenger.

Any corruption or reveal queries are dealt with in a similar way. Note that AG1 cannot query Corrupt to
its adversary (this is a condition of freshness). The simulation is thus perfect up to the Test query.

In the Test query, AG0 chooses a fresh instance and sends it to AG1 (acting as a challenger). Note that
AG1 will be able to test whether this instance is fresh, as freshness is defined in terms of AG0 ’s queries. If
AG0 queries an instance C∗i for the Test query ,then AG1 aborts the simulation, tests a random tuple about
any fresh instance of the client C (creating one if necessary), winning with probability 1

2|skC|
+ 1

2|skop|
+ 1

2|SqnC|
.

Else, if AG0 sends a tuple of a fresh instance of Ci, AG1 forwards this choice to its challenger and receives
the challenger’s output which contains the result of this game.

Denote by E1 the event that adversary AG0 tests an instance Ci (from the chosen operator Op), while Ē1
denotes the event that AG0 chooses to test C∗i .

It holds that:

Pr[AG1 wins] = Pr[AG1 wins | E1] · Pr[E1] +
Pr[AG1 wins | Ē1] · Pr[Ē1]

≥ 1
nOp

Pr[AG0 wins] +
(
1− 1

nOp

)
·

( 1
2|skC|

+ 1
2|skop|

+ 2
2|SqnC|

).

Note that adversary AG1 makes no query with respect to AG0 .
Game G2: We modify G1 to only allow interactions with a single client (any future CreateCl(Op) calls

for a client would be answered with an error symbol ⊥). We recall that the two adversaries AG1 and AG2

interact with clients from a single operator key, denoted Op, which is associated with the operator key skop.
We proceed as follows: for any adversary AG1 winning the game G1 with a no-negligible success probability
εG1 , we propose to construct a generic adversary AG2 winning the game G2 with a black-box access to the
adversary AG1 . Adversary AG2 begins by choosing a single client C. For every user registration request that
AG1 sends to its challenger, AG2 responds as follows: for a new client C∗ 6= C it generates skC∗ and SqnC∗ ,
returning the latter value.

In the rest of the simulation, whenever AG1 makes a query to an instance of some party C∗, the adversary
AG2 simulates the response using the oracle of the function G∗ and the values skC∗ and the current value of
SqnC∗ . Indeed, since the adversary can corrupt any operator key, she requires the oracle of G∗ permitting to
simulate all the queries of the brothers of the target client.

For the target client C, any queries are forwarded by AG2 to its challenger. Any corruption or reveal
queries are dealt with in a similar way. Note that AG2 cannot query Corrupt to its adversary (this is a
condition of freshness). The simulation is thus perfect up to the Test query.



In the Test query, AG1 chooses a fresh instance and sends it to AG2 (acting as a challenger). Note that
AG2 will be able to test whether this instance is fresh, as freshness is defined in terms of AG1 ’s queries. If
AG1 queries Test with a client other than the target client C, then AG2 aborts the simulation, tests a random
tuple as the previous reduction. Else, if AG1 queried a fresh instance of C, AG2 forwards this choice to its
challenger and receives the challenger’s which contains the result of this game. It holds that:

Pr[AG2 wins] ≥ 1
nC,Op

Pr[AG1 wins] + 1
2 ·

(
1− 1

nC,Op

)

, with at most nC,Op clients by operator.
Note that adversary AG2 makes no extra query with respect to AG1 .

Game G3: We modify G2 to replace outputs of the internal cryptographic functions by truly random,
but consistent values (they are independent of the input, but the same input gives the same output). We
argue that the security loss is precisely the advantage of the adversary A against the pseudorandomness of
functions G and G∗, and related security of the functions PKE and AE.∣∣ Pr[AG3 wins]− Pr[AG2 wins]

∣∣ ≤ Advprf
G (A) + Advprf

G∗(A)

+Advae
AE(A) + Advind−cca2

PKE (A).

Winning Game G3: At this point, the adversary plays a game with an uncorruptible single client Ci in
a protocol including truly but consistent values. She wins if she can output a tuple (Ci, sk∗C, sk∗op,SqnC

∗,SqnOp,C
∗)

such as at least one of these values corresponds to the real related secret value of the instance Ci. Thus, the
adversary has only one choice to win this game: guessing each value. So the probability that the adversary
AG3 wins is as follows:

Pr[AG3 wins] = 1
2|skC|

+ 1
2|skOp|

+ 2
2|Sqn| .

Security statement: This yields the following result:

AdvSt.conf
Π (AG0) ≤ nC · (

1
2|skC|

+ 1
2|skOp|

+ 2
2|Sqn|

+Advprf
G (A1) + Advae

AE(A2)

+Advind−cca2
PKE (A3)) + Advprf

G∗(A4).

We provide the following theorem about the client-impersonation, denoted S.sound-security, of the fixed
variant of the AKA protocol.

Theorem 4. [S.sound− resistance.] Let G : {0, 1}κ × {0, 1}d × {0, 1}t × {0, 1}t → {0, 1}n be our specified
function specified in section 4.2 and Π our fixed variant of the AKA protocol specified in section 4.2. Consider
a (t, qexec, qOp, qG , qAE, qPKE)-adversary A against the S.sound-security of the protocol Π, running in time t and
executing qexec sessions of the protocol, making at most qOp queries to any operator, and making qG , qAE, qPKE
queries to respectively the functions G, AE and PKE. Denote the advantage of this adversary as AdvS.sound

Π (A).
Then there exist a (t′ ≈ O(t), q′ = qG+qexec)-mac-adversary A1 on G, (t′ ≈ O(t), q′ = qG+2·qexec+5·qOp)-prf-
adversary A2 on G, a (t′ = O(t), q′ = qG+qexec)-ind-cpa-adversary adv3 on G, a (t′ = O(t), q′ = qexec +qAE)-
ae-adversary adv4 on AE and a (t′ = O(t), q′ = qexec + qPKE)-ind-cca2-adversary A5 on PKE such that:



AdvS.sound
Π (A) ≤ nC · (

qexec

2|MacS|
+ 1

2κ + Advmac
G (A1)

+Advprf
G (A2) + Advind−cpa

G (A3)

+Advae
AE(A4) + Advind−cca2

PKE (A5)).

Proof. Game G0: This game works as the game S.sound-game stipulated in our security model. The goal
of this adversary AG0 is similar as the S.Imp-game but with a different adversary; indeed in the S.Imp-game
is a MiM adversary and in the S.sound-game, we have a legitimate-but-malicious adversary.

Game G1: We consider the game G1 as the S.Imp-game (as previously detailed) but including the
specific query Corrupt(P, type), i.e with the presence of operator keys corruption. We have used a such query
in some previous security proofs. We proceed as follows: for any adversary AG0 winning the game G0 with
a no-negligible success probability εG0 , we propose to construct a generic adversary AG1 winning the game
G1 with a black-box access to the adversary AG0 .

Both adversaries play her related game with oracles. The following oracles are similar in the two games:
Send, CreateCl, NewInstance, Execute, Reveal, and StReveal. So for each query related to these oracles from
the adversary AG0 , the adversary AG1 forwards these queries to its own challenger and sends to AG0 the
related answers. Now focus on the two last oracles which can be used by the adversary AG0 : OpAccess and
Corrupt.

At first, we recall that the OpAccess in the game G0 takes in input a client identifier and outputs, for
our protocol, an authentication vector composed by the tuple AV = (R,Autn,MacC,CK, IK). Simulating the
answer of the oracle OpAccess(Ci), the AG1 uses the query Execute(S,Ci) (with the server related to the
legitimate-but-malicious adversary) and Reveal(C, i).

Now, focus on the simulation of the Corrupt answer. We recall that we have two possible inputs: a client
or an operator. In the Corrupt oracle takes in input a client, the adversary AG1 uses its own Corrupt oracle to
obtain the related answer. If the input is an operator, AG1 needs to forge the following values: the operator
key skop, and for each client of this operator the tuple (UID, skUID, stOp,C). To simulate a such answer, AG1

uses its specific Corrupt(C) and StReveal(C, i, 1) for each client Cof this operator.
So at this point, the adversary AG1 can simulate any query from the adversary AG0 . At the end of the

simulation, the adversary AG1 replays the impersonation’s attempt from the adversary AG0 . Thus, we have:

Pr[AG0 wins] ≤ Pr[AG1 wins].

Winning game G1: This game follows the game G1 described in the reduction proof of the theorem
S.Imp. Thus, we have :

AdvS.sound
Π (AG0) ≤ nC · (

qexec

2|MacS|
+ 1

2κ + Advmac
G (A1)

+Advprf
G (A2) + Advind−cpa

G (A3)

+Advae
AE(A4) + Advind−cca2

PKE (A5)).

Updated TUAK algorithms security In order to prove the pseudorandomess, unforgeability and in-
distinguishability of our updated TUAK algorithms, we assume that the truncated keyed internal Keccak
permutation is a good pseudorandom function. We propose two generic constructions to model the updated
TUAK algorithms: a first one, denoted Gtuak when the secret is based on the subscriber key sk and a second
one, denoted G∗tuak when is only based on the operator key.

It is worth noting that the construction of the TUAK functions is reminiscent of the Merkle-Damg̊ard
construction, where the output of the function f is an input of the next iteration of the function f. This is in



contradiction with the Sponge construction used in the hash function Keccak given the internal permutation
fKeccak.

We model the truncated keyed internal permutation of Keccak by the function f and f∗:

f(K,x‖y, i, j) = bfKeccak(x‖K‖y)ci..j ,

f∗(K∗, x∗‖y∗, i, j) = bfKeccak(K∗‖x∗‖y∗)ci..j ,

with x ∈ {0, 1}512, K,K∗ ∈ {0, 1}κ, y ∈ {0, 1}1088−κ, x∗ ∈ {0, 1}512+κ, y∗ ∈ {0, 1}1088 and i, j ∈ {0, 1}t
with log2(t − 1) < 1600 ≤ log2(t). We note that ∀K,x, x∗, y, y∗, i, j such as x = K∗‖x∗ and y∗ = K‖y, we
have f(K,x‖y, i, j) = f∗(K∗, x∗‖y∗, i, j). The input x (resp. x∗) can be viewed as the chaining variable of
the cascade construction of Gtuak given f (resp. f∗), y (resp. y∗) is an auxiliary input of the function, and i
and j define the size of the truncation. The construction Gtuak acts as a generalization of the specific TUAK
algorithms:

F1(skop, skC,R,Sqn,ResS,AMF) = Gtuak(skC, inp1, 0, 127)
= G∗tuak(skop, inp∗1, 0, 127),

F2(skop, skC,R,Sqn,ResS,AMF) = Gtuak(skC, inp1, 256, 383)
= G∗tuak(skop, inp∗1, 256, 383),

F3(skop, skC,R,Sqn,ResS,AMF) = Gtuak(skC, inp1, 512, 639)
= G∗tuak(skop, inp∗1, 512, 639),

F4(skop, skC,R,Sqn,ResS,AMF) = Gtuak(skC, inp1, 768, 895)
= G∗tuak(skop, inp∗1, 768, 895),

F5(skop, skC,R,ResS) = Gtuak(skC, inp2, 0, 47)
= G∗tuak(skC, inp∗2, 0, 47),

with:
inp1 = skop‖cst1‖cst3,, inp2 = skop‖cst1‖cst3,
inp∗1 = cst1‖keys‖cst3,, inp∗2 = cst1‖keys‖cst3,
cst1 = Inst‖AN‖0192‖(Inst′‖AN‖R‖AMF‖Sqn),
cst3 = ResS‖Pad‖1‖0192,
We define the cascade constructions Gtuak and G∗tuak based on the function f and f∗ as follows:

Gtuak(K, val, i, j) = f(K, f(K, val1‖val3, 0, 256)‖val2‖val3, i, j),
G∗tuak(K∗, val∗, i, j) = f∗(f∗, val∗1‖val∗3, 0, 256), val∗2‖val∗3, i, j),

with Gtuak and G∗tuak from {0, 1}κ × {0, 1}d × {0, 1}t × {0, 1}t to {0, 1}n, val = (val1‖val2)‖val3 ∈ {0, 1}512 ×
{0, 1}256×{0, 1}(832−κ), val∗ = (val∗1‖val∗2)‖val∗3 ∈ {0, 1}256×{0, 1}256×{0, 1}(1088−κ) two known values with
n = j − i, d = 1600− κ, κ = |K| and log2(t− 1) < 1600 ≤ log2(t), K a secret value and 0 ≤ i ≤ j ≤ 1600.

We express the required security properties of the generalization Gtuak (resp. G∗tuak) under the prf-security
of the function f (resp. f∗). Since the construction of the two functions, while we cannot prove the latter
property, we can conjecture that the advantage of a prf-adversary would be of the form:

Advprf
f∗(A) = Advprf

f (A) ≤ c1 ·
t/Tf
2|K|

+ c2 ·
q · t/Tf
21600−m ,

for any adversary A running in time t and making at most q queries at its challenger. Here, m is the output’s
size of our function f and Tf is the time to do one f computation on the fixed RAM model of computation
and c1 and c2 are two constants depending only on this model. In other words, we assume that the best
attacks are either a exhaustive key search or a specific attack on this construction. This attack uses the fact
that the permutation is public and can be easily inverted. Even if the protocol truncates the permutation,
if the output values are large, and an exhaustive search on the missing bits is performed, it is possible to



invert the permutation and recover the inputs. Since the secret keys is one of the inputs as well as some
known values are also inputs, it is then possible to determine which guesses of the exhaustive search are
correct guess or incorrect ones. Finally, if the known inputs are shorter than the truncation, false positives
can happen due to collisions and we have to filter the bad guesses. However, if the number of queries is large
enough, it is possible to filter these bad guesses and uniquely recover the keys.

Pseudorandomness and Unforgeability of TUAK algorithms. We begin by reducing the prf-security
of Gtuak to the prf-security of the function f. This implies the mac-security of each TUAK algorithm. Recall
that our main assumption is that the function f is prf-secure if the Keccak permutation is a good random
permutation.

Theorem 5. [prf − security for G∗tuak.] Let G∗tuak : {0, 1}κ×{0, 1}e×{0, 1}d−e×{0, 1}t×{0, 1}t → {0, 1}n
and f∗ : {0, 1}κ×{0, 1}e×{0, 1}d×{0, 1}t×{0, 1}t → {0, 1}m be the two functions specified above. Consider
a (t, q)-adversary A against the prf-security of the function G∗tuak, running in time t and making at most
q queries to its challenger. Denote the advantage of this adversary as Advprf

G∗tuak
(A). Then there exists a

(t′ ≈ O(t), q′ = q)-adversary A’ with an advantage Advprf
f∗(A′) of winning against the pseudorandomness of

f∗ such that:
Advprf

G∗tuak
(A) = Advprf

f∗(A
′),

Proof. We construct the adversary Af∗ using a prf-adversary AG∗ . The latter uses Af∗ as a challenger for
a prf-game Gprf(f∗) and can only communicate with Af∗ whereas Af∗ has access to a challenger for f∗. To
begin with, the challenger Cprf

f∗ chooses a bit b and a private skop ∈ {0, 1}κ. If b = 0, it assigns f∗ to a random
function and if b = 1, it assigns f∗ to the specific internal function.

The adversary Af∗ waits for queries from AG∗ of the form (m, a, b), with m = m(1)‖m(2)‖m(3) ∈ {0, 1}d,
and a, b ∈ {0, 1}t and responds as follows:

– It queries its challenger Cprf
f∗ for inputs (m(1)‖m(3), 0, 256) and receives the value Out1.

– Then, it computes Out2 = f∗(Out1,m
(2)‖m(3), a, b).

– It returns the value Out2.

We note that the two first bullets permits to generate G∗(skop,m, a, b) = Out2. This step is repeated up
to a total of q queries from Ag∗ , with a and b fixed.

At some point, Ag∗ halts and outputs a guess d of the bit b. The prf-adversary Af∗ chooses its guess b′

as b′ = d and forwards it to Cprf
f∗ , which verifies if b = b′.

We analyze this simulation. Recall that the challenger responded either with a random value (if its
internal bit b was set to 0) or with the output of the function f∗(skop,m

(1)‖m(3), 0, 256) (if its internal bit
was set as 1).

Thus, the output Out2 matches either the output of a random function or the output of the function
G∗(sk,m, a, b). So the prf-adversary Af∗ simulates perfectly a prf-challenger of G. Thus, we have:

Advprf
f∗(Af∗) =

∣∣ Pr[Af∗ → 1 | b = 1]− Pr[Af∗ → 1 | b = 0]
∣∣

=
∣∣ Pr[b = b′|b = 1]− Pr[b = b′|b = 0]

∣∣
=

∣∣ Pr[b = d|b = 1]− Pr[b = d|b = 0]
∣∣

=
∣∣ Pr[d′ = d|b = 1]− Pr[d′ = d|b = 0]

∣∣
=

∣∣ Pr[AG∗ → 1 | b = 1]− Pr[AG∗ → 1 | b = 0]
∣∣

=
∣∣Advprf

G∗(AG∗)
∣∣.

Theorem 6. [prf − security for Gtuak.] Let Gtuak : {0, 1}κ×{0, 1}e×{0, 1}d−e×{0, 1}t×{0, 1}t → {0, 1}n
and f : {0, 1}κ×{0, 1}e×{0, 1}d×{0, 1}t×{0, 1}t → {0, 1}m be the two functions specified above. Consider a
(t, q)-adversary A against the prf-security of the function G, running in time t and making at most q queries



to its challenger. Denote the advantage of this adversary as Advprf
Gtuak

(A). Then there exists a (t′ ≈ 2 · t, q′ =
2 · q)-adversary A’ with an advantage Advprf

f (A′) of winning against the pseudorandomness of f such that:

Advprf
Gtuak

(A) = Advprf
f (A′),

Proof. We construct the adversary Af using a prf-adversary A.G The latter uses Af as a challenger for a
prf-game Gprf(f) and can only communicate with Af whereas Af has access to a challenger for f. To begin
with, the challenger Cprf

f chooses a bit b and a private sk ∈ {0, 1}κ. If b = 0, it assigns f to a random function
and if b = 1, it assigns f to the specific internal function.

The adversary Af waits for queries from AG of the form (m, a, b), with m = m(1)‖m(2)‖m(3) ∈ {0, 1}d,
and a, b ∈ {0, 1}t and responds as follows:

– It queries its challenger Cprf
f for inputs (m(1)‖m(3), 0, 256) and receives the value Out1.

– Then, it queries Cprf
f for inputs (Out1‖m(2)‖m(3), a, b) and receives the value Out2.

– It returns the value Out2.

We note that the two first bullets permits to generate G(sk,m, a, b) computing
f(sk, f(sk,m(1)‖m(3), 0, 256)‖m(2)‖m(3), a, b). This step is repeated up to a total of q queries from Ag, with
a and b fixed.

At some point, Ag halts and outputs a guess d of the bit b. The prf-adversary Af chooses its guess b′ as
b′ = d and forwards it to Cprf

f , which verifies if b = b′.
We analyze this simulation. Recall that the challenger responded either with a random value (if its

internal bit b was set to 0) or with the output of the function f(sk,m(1)‖m(3), 0, 256) (if its internal bit was
set as 1).

Thus, the output Out2 matches either the output of a random function or the output of the function
G(sk,m, a, b). So the prf-adversary Af simulates perfectly a prf-challenger of G. Thus, we have:

Advprf
f (Af) =

∣∣ Pr[Af → 1 | b = 1]− Pr[Af → 1 | b = 0]
∣∣

=
∣∣ Pr[b = b′|b = 1]− Pr[b = b′|b = 0]

∣∣
=

∣∣ Pr[b = d|b = 1]− Pr[b = d|b = 0]
∣∣

=
∣∣ Pr[d′ = d|b = 1]− Pr[d′ = d|b = 0]

∣∣
=

∣∣ Pr[AG → 1 | b = 1]− Pr[AG → 1 | b = 0]
∣∣

=
∣∣Advprf

G (A′)
∣∣.

We use the generic result specified in A.1 to reduce the mac-secure to the prf-secure of the function G.

Theorem 7. [Mac− security for Gtuak.] Let Gtuak : {0, 1}κ×{0, 1}e×{0, 1}d−e×{0, 1}t×{0, 1}t → {0, 1}n
and f : {0, 1}κ×{0, 1}e×{0, 1}d×{0, 1}t×{0, 1}t → {0, 1}m be the two functions specified above. Consider
a (t, q)-adversary A against the Mac-security of the function Gtuak, running in time t and making at most
q queries to its challenger. Denote the advantage of this adversary as Advmac

Gtuak
(A). Then there exists a

(t′ ≈ 2 · (t + O(n + d)), q′ = 2 · q)-adversary A’ with an advantage Advprf
f (A′) of winning against the

pseudorandomness of f such that:

Advmac
Gtuak

(A) ≤ Advprf
f (A′) + 1

2n .

Indistinguishability of TUAK algorithms. We begin by reducing the ind− cpa-security of Gtuak to the
prf-security of the function f. This implies the ind− cpa-security of each TUAK algorithm. Recall that our
main assumption is that the function f is prf-secure if the Keccak permutation is a good random permutation.



Theorem 8. [ind− cpa− securityofGtuak.] Let Gtuak : {0, 1}κ × {0, 1}e × {0, 1}d−e × {0, 1}t × {0, 1}t →
{0, 1}n and f : {0, 1}κ × {0, 1}d × {0, 1}t × {0, 1}t → {0, 1}m be the two functions specified in Section C.
Consider a (t, q)-adversary A against the ind− cpa-security of the function G, running in time t and making
at most q queries to its challenger. Denote the advantage of this adversary as Advind−cpa

Gtuak
(A). Then there exists

a (t′ ≈ 2 · t, q′ = 2 · q)-adversary A’ with an advantage Advprf
f (A′) of winning against the pseudorandomness

of f such that:
Advind−cpa

Gtuak
(A) = Advprf

f (A′),

Proof. To prove the ind− cpa-security of G, we reduce this security to the prf-security of G which is defined
in the proof of the theorem 7. We show that a prf-adversary A of G can simulate the ind− cpa-challenger
C ind−cpa
G . A such prf-adversary behaves as follows. At first, the challenger Cprf

G chooses a private key K and
one random bit b ∈ {0, 1}. If b = 0, he assigns f to a random function and if b = 1, he assigns f to the
specific function G. For each query (M{i}, a, b) with a fixed (a, b) from the ind− cpa-adversary A’ to the
prf-adversary A the latter forwards each one to Cprf

G . The answer f(K,M{i}, a, b) is sent to A which forwards
it to A’. Then, A’ sends a specific query containing two values (M0,M1) to AṪhe latter chooses randomly a
bit d and forwards (Md, a, b) to the prf-challenger. As usual, this challenger sends f(K,Md, a, b) to A which
forwards it to A’.

The goal of the ind− cpa-adversary is to find the bit d chosen by the A. To do so, it can ask again
some queries (M{i}, a, b) as previously. Finally, it sends its guessing d′ to A. Upon receiving this guessing, it
chooses its guessing b′ of b as follows: if d = d′, it chooses b′ = 1, else b′ = 0.

Advprf
G (A) =

∣∣ Pr[b = b′|f $← G(K, ., ., .),K $← {0, 1}κ]

−Pr[b = b′|f $← R]
∣∣

=
∣∣ Pr[b = b′|b = 1]− Pr[b = b′|b = 0]

∣∣
=

∣∣ Pr[b′ = 1|b = 1]− Pr[b′ = 0|b = 0]
∣∣

=
∣∣ Pr[d′ = d|b = 1]− Pr[d′ 6= d|b = 0]

∣∣
=

∣∣Advind−cpa
G (A′) + 1

2 −
1
2
∣∣

=
∣∣Advind−cpa

G (A′)
∣∣

In the last equality, Pr[d′ = d|b = 1] is the probability that the ind− cpa-adversary correctly guess the bit d
which is Advind−cpa

G (A′) + 1/2 and Pr[d′ 6= d|b = 0] which is equal to 1/2 since when b = 0, G is a random
function, that is its output is chosen independently from its inputs. Consequently, it is not related to its
inputs and the adversary cannot guess correctly the bit d.

Updated MILENAGE algorithms security In order to prove the unforgeability and indistinguishability
properties of the MILENAGE algorithms, we assume that the AES permutation is a good pseudo-random
function.

We model the AES algorithm by the function f:

f(K,x, y) = AESK(x⊕ y),

with x, y ∈ {0, 1}128, K ∈ {0, 1}κ. Contrary to the TUAK algorithms, the MILENAGE algorithms do
not behave as the same way but as two different ways. Let the construction Gmil1, the generalization of the
functions F1, F∗1 , F2, F3, F4 and Gmil2 the generalization of the functions F5 and F∗5 as follows:



Gmil1(skC, inp1, 0, 127) = F1(skop, skC,R, Sqn,ResS,AMF),
Gmil1(skC, inp2, 0, 127) = F∗1 (skop, skC,R, Sqn,ResS,AMF),
Gmil1(skC, inp3, 0, 47) = F2(skop, skC,R, Sqn,ResS,AMF),
Gmil1(skC, inp4, 0, 127) = F3(skop, skC,R, Sqn,ResS,AMF),
Gmil1(skC, inp5, 0, 127) = F4(skop, skC,R, Sqn,ResS,AMF),
Gmil2(skC, inp6, 0, 47) = F5(skop, skC,R,ResS),

Gmil2(skC, inp6, 64, 111) = F∗5 (skop, skC,R,ResS),

with:
∀i ∈ {1, ..., 5}, inpi = skop‖R‖(Sqn‖AMF)‖ResS‖ci‖ri.
inp6 = skop‖R‖ResS‖c6‖r6,
These both constructions are constructed as follows:

Gmil1(K, val(1), a, b) = bTopC ⊕ f(K, val4, f(K,TopC , val2)
⊕Rotval5 (TopC ⊕ (val3‖val3)))ca..b,

Gmil2(K, val(2), a, b) = bTopC ⊕ f(K, val4,Rotval5 (TopC

⊕f(K,TopC , val2)))ca..b,

with Gmil1 : {0, 1}κ × {0, 1}d1 × {0, 1}t × {0, 1}t → {0, 1}n, Gmil2 : {0, 1}κ × {0, 1}d2 × {0, 1}t × {0, 1}t →
{0, 1}n, and val(1) = val1‖val2‖val3‖val4‖val5, val(2) = val1‖val2‖val4‖val5, val1, val2, val4 ∈ {0, 1}128,val3 ∈
{0, 1}64, val5 ∈ {0, 1}7 and TopC = val1 ⊕ f(K, val1, 0).

We express the security properties of the generalizations Gmil1 and Gmil2 under the prf-security of the
function f. While we cannot prove the latter property, we can conjecture that the advantage of a prf-adversary
would be of the form:

Advprf
f (A) ≤ c1 ·

t/Tf
2128 + c2 ·

q2

2128 ,

for any adversary A running in time t and making at most q queries at its challenger. Here, m is the output’s
size of our function f and Tf is the time to do one f computation on the fixed RAM model of computation
and c1 and c2 are two constants depending only on this model. In other words, we assume that the best
attacks are either a exhaustive key search or a linear cryptanalysis.

Pseudorandomness and Unforgeability of MILENAGE algorithms. We begin by reducing the prf-
security of Gmil1 and Gmil2 to the prf-security of the function f. This implies the Mac-security of each
MILENAGE algorithm.

Theorem 9. [prf − securityforGmil1andGmil2.] Let Gmil1, Gmil2 : {0, 1}κ × {0, 1}d × {0, 1}t × {0, 1}t →
{0, 1}n and f : {0, 1}κ × {0, 1}128 × {0, 1}128 → {0, 1}128 be the two functions specified above. Consider a
(t, q)-adversary A against the prf-security of the function Gmil1 (respectively Gmil2), running in time t and
making at most q queries to its challenger. Denote the advantage of this adversary as Advprf

Gmil1
(A) (respectively

Advprf
Gmil2

(A)). Then there exists a (t′ ≈ 3 · t, q′ = 3 · q)-adversary A’ with an advantage Advprf
f (A′) of winning

against the pseudorandomness of f such that:

Advprf
Gmil1

(A) = Advprf
Gmil2

(A) = Advprf
f (A′).

Proof. We construct the adversary Af using a prf-adversary AG1
(respectively AG2

). The latter uses Af as
a challenger for a prf-game Gprf(f) and can only communicate with Af whereas Af has access to a challenger
for f. To begin with, the challenger Cprf

f chooses a bit b and a private sk ∈ {0, 1}κ. If b = 0, it assigns f to a
random function and if b = 1, it assigns f to the specific internal function.

The adversary Af waits for queries from AG of the form (m, a, b), with m = m(1)‖m(2)‖m(3)‖m(4)‖m(5) ∈
{0, 1}d, and a, b ∈ {0, 1}t and responds as follows:



– It queries its challenger Cprf
f for inputs (m(1), 0128) and receives the value Out1.

– Then, it computes TopC = m(1) ⊕Out1 and it queries Cprf
f for inputs (Out1,m

(2)) and receives the value
Out2.

– It queries (m(4),Out2 ⊕ rot(Out1 ⊕ (m(3)‖m(3)),m(5))) (respectively (m(4), rot(Out1 ⊕Out2,m
(5)))) and

receives the value Out3.
– It returns the value bOut1 ⊕ Out3ca,b.

This step is repeated up to a total of q queries from AG1
(respectively AG2

), with a and b fixed.
At some point, AG1

(respectively AG2
) halts and outputs a guess d of the bit b. The prf-adversary Af

chooses its guess b′ as b′ = d and forwards it to Cprf
f , which verifies if b = b′.

We analyze this simulation. Recall that the challenger responded either with a random value (if its
internal bit b was set to 0) or with the output of the function f(sk,., ., .) (if its internal bit was set as 1).

Thus, the output Out3 matches either the output of the output of the function G1(sk,m, a, b) (respectively
G2(sk,m, a, b)) or a random function (indeed, the combination of two random functions by a boolean addition
gives a random function). So the prf-adversary Af simulates perfectly a prf-challenger of G1 (respectively
G2). Thus, we have:

Advprf
f (Af) =

∣∣ Pr[Af → 1 | b = 1]− Pr[Af → 1 | b = 0]
∣∣

=
∣∣ Pr[b = b′|b = 1]− Pr[b = b′|b = 0]

∣∣
=

∣∣ Pr[b = d|b = 1]− Pr[b = d|b = 0]
∣∣

=
∣∣ Pr[d′ = d|b = 1]− Pr[d′ = d|b = 0]

∣∣
=

∣∣ Pr[AG1 → 1 | b = 1]− Pr[AG1 → 1 | b = 0]
∣∣

= Advprf
G1

(A′).

(similar computation for G2).

We use the generic result specified in A.1 to reduce the mac-secure to the prf-secure of the function G1
(resp. G2).

Theorem 10. [Mac− security for Gmil1 and Gmil2.]
Let Gmil1, Gmil2 : {0, 1}κ × {0, 1}d × {0, 1}t × {0, 1}t → {0, 1}n and f : {0, 1}κ × {0, 1}128 × {0, 1}128 →

{0, 1}128 be the two functions specified above. Consider a (t, q)-adversary A against the Mac-security of
the function Gmil1 (respectively Gmil2), running in time t and making at most q queries to its challenger.
Denote the advantage of this adversary as Advmac

Gmil1
(A) (respectively Advmac

Gmil2
(A)). Then there exists a (t′ ≈

3·(t+O(n+d)), q′ = 3·q)-adversary A′ with an advantage Advprf
f (A′) of winning against the pseudorandomness

of f such that: Advmac
Gmil1

(A) = Advmac
Gmil2

(A) ≤ Advprf
f (A′) + 1

2n .

Indistinguishability of MILENAGE algorithms. We begin by reducing the ind− cpa-security of Gmil1 and
Gmil2 to the prf-security of the function f. This implies the prf-security of each MILENAGE algorithm.

Theorem 11. [ind− cpa− security of Gmil1 and Gmil2.]
Let Gmil1, Gmil2 : {0, 1}κ × {0, 1}d × {0, 1}t × {0, 1}t → {0, 1}n and f : {0, 1}κ × {0, 1}128 × {0, 1}128 →

{0, 1}128 be the two functions specified in Section C. Consider a (t, q)-adversary A against the ind− cpa-
security of the function Gmil1 (resp. Gmil2), running in time t and making at most q queries to its challenger.
Denote the advantage of this adversary as Advind−cpa

Gmil1
(A) (resp. Advind−cpa

Gmil2
(A)). Then there exists a (t′ ≈

3 · t, q′ = 3 · q)-adversary A’ with an advantage Advprf
f (A′) of winning against the pseudorandomness of f

such that:
Advind−cpa

Gmil1
(A) = Advind−cpa

Gmil2
(A) = Advprf

f (A′),



Proof. To prove the ind− cpa-security of G1 (resp. G2, we reduce this security to the prf-security of G1 (resp.
G2) and then to the prf-security of the function f using the theorem 9 . The first reduction follows the exact
lines of the proof of the prf-security of the TUAK algorithms and we obtain:

Advind−cpa
G1

(A) = Advind−cpa
G2

(A) = Advprf
f (A′),

4.3 Narrow-Forward Privacy is Impossible

Our variant of AKA preserves the structure of the original protocol, but also provably attains wide-weak
client unlinkability. In this section we show that this degree of client-unlinkability is optimal with respect to
the structure of AKA. In particular, narrow-forward privacy is impossible.

Our result covers similar ground as that by Paise and Vaudenay [21], as we address protocols with mutual
authentication. We extend the impossibility result to symmetric-key AKE protocols which also use public-
key primitives. We also explain why the original impossibility result in [21] is imprecise, and presents some
problems.

The result of [21]. Paise and Vaudenay showed an impossibility result for authentication protocols – rather
than AKE; the extension from one environment to the other is, however, easy. In the terminology of our
paper, [21] proved that server-authentication essentially precludes narrow-forward client-unlinkability. Their
attack follows these steps: (1) the adversary A creates two clients; (2) A runs an honest protocol session
between one of them (chosen uniformly at random depending on a secret bit b) and the server, but stops the
last message from the server to the client; (3) A corrupts both clients, learning their long-term state; (4) A
distinguishes between the clients by simulating the protocol with the intercepted message.

However, this attack makes a tacit assumption on the client’s behaviour, namely that if a session is
aborted, the state is not updated or that it is updated in a consistent way, depending on the client’s internal
state. Say that upon an abort, the client reverts to a random state; assumming that the adversary cannot
access the very short time-frame in which the reversion to random is done, A only gets the random state
in response. Simulating the protocol with the received message will not match that state, thus reducing the
adversary’s success probability to 1

2 .
Another way to bypass this result is to update the client state before the “last message” is sent to the

client; if such an update is done at every execution, the attack presented in [21] fails. This is, however,
a rather artificial twist: indeed, mutual authentication implies that the prover must somehow identify the
server’s state as “valid” before it reaches a state which precludes it from verifying the server’s authentication.

Two new attacks. In the AKA protocol, it is the server which first authenticates to the client. The values
used in authentication are the sequence number SqnOp,C and the nonce R. The value SqnOp,C is ephemeral,
being updated at every session; however, it is a long-term state, and compatible with the client’s own
state SqnC. In particular, corrupting a client yields SqnC allowing the verifier to link the client with the
corresponding SqnOp,C value.

For a better comprehension of our attacks and their impact, we define the following notations: we divide
a party’s state (for both clients and operators) into a static state stat.stP and an ephemeral state eph.stP.
Thus, an operator’s static state may contain operator-specific information, such as the secret key for a PKE
scheme, but it will also include state shared with clients, i.e. stat.stOp,C for a client C. The same for the
ephemeral state eph.stOp,C which for the AKA protocol consists of the sequence number SqnOp,C.

We propose the following attack:

– The adversary A creates two clients C and C′ with the same operator Op and the same location LAI.
– A uses DrawCl on C,C′ and receives the handle VC, corresponding to either C (if the hidden bit b = 0),

or C′ (otherwise).
– A runs an honest execution between the server S at LAI and the client VC until A receives the message

R,Autn = (SqnOp,C⊕AK)‖AMF‖MacS from the server. Denote Autn[1] := SqnOp,C⊕AK, Autn[2] = AMF,
and Autn[3] := MacS.



– A corrupts C and learns SqnC, skC, and skop.
– By using the values R, skC, and skop, the adversary computes a value AKC and retrieves Sqn∗ := Autn[1]⊕

AKC. Note that if b = 0, then AKC = AK and Sqn∗ = SqnOp,C, while if b = 1, then Sqn∗ 6= SqnOp,C′ with
overwhelming probability.

– The adversary verifies MacS, on input (skC, skop,Sqn∗). If this verification succeeds, the adversary outputs
a guess d = 0 for the bit b; else, it outputs 1.

For the analysis note that with overwhelming probability MacS will not verify if it was computed for C′,
i.e. f1(skC′ , skop,R,AMF,SqnOp,C′) 6= f1(skC, skop,R,AMF,Sqn∗). The key vulnerability here is that, while
SqnOp,C is never sent in clear, the masking authentication key AK only depends on the client’s static state.
We also use the fact that the validity of the sequence number is confirmed by the value MacS.

While the latter factor, namely the validity of MacS certainly helps an attacker, our second attack (a
variation of the first one) does not use the MAC value at all. The attack is run exactly in the same way,
until we reach the final step. At that point:

– A compares the obtained value Sqn∗ with the recovered sequence number of C, namely SqnC, verifying if
|Sqn∗ − SqnOp,C| ≤ ∆. Note that in the actual attack presented above, the client’s state SqnC should be
exactly equal to the operator’s state with respect to that client; however, our attack is even stronger in
the sense that we do not need to control the executions of the protocol in order to obtain exact equality.

Analysis and Impact. Since the original AKA protocol is not even weak-client-unlinkable, it is not sur-
prising that this protocol is not narrow-forward unlinkable either. However, the same attack works on our
variant of the protocol and indeed, on any other extension or improvement of the original procedure which
retains the characteristic of exchanging a message of the type f(eph.stOp,C, stat.stOp,C, X) in the presence of a
function Match; or exchanging that same message together with a message g(eph.stOp,C, stat.stOp,C, Y ), such
that:

– f is reversible and takes as input eph.stOp,C, stat.stOp,C = stat.stC, and a set X of publicly-known variables,
giving arbitrary values in the set {0, 1}∗7;

– Match takes as input two ephemeral state values eph.stC′ and eph.stOp,C and it outputs a boolean value:
1 if C = C′ and 0 otherwise8;

– g takes as input the state values eph.stOp,C, stat.stC and a set Y of public values, and which has the prop-
erty that, for randomly chosen x and stat.stC′ it holds that g(x, stat.stOp,C′ , Y ) 6= g(eph.stOp,C, stat.stOp,C, Y )9.

5 Practical considerations

In this section, we discuss some of our design choices for the improvement we propose of the AKA protocol.
We also provide a detailed analysis of our countermeasures and their intuitive effects in Appendix B.

As opposed to the proposal of van den Broek et al. [7], we opted to continue using (TMSI, LAI) tuples
for the identification phase of the protocol. This infrastructure is maintained strictly by servers, with no
operator contribution; thus it is efficient and inexpensive. Moreover, TMSI values and their correspondence
to the client’s IMSI is easy to find. In our proposal, we bypass IMSI catchers attacks by never sending IMSIs in
clear, and we add a symmetric authentication step in the encryption, thus precluding the client-unlinkability
attack we found against the AKA variant of Arapinis et al. [20]. For the encryption, we use an IND-CCA
public-key encryption scheme, we require a minimum PKI, only for operators. A client only stores the public
key (and certificate) of the operator it subscribes to, thus minimizing key-management problems. In the TMSI
7 In our previous example, this is the string Autn1, which depends on eph.stOp,C = SqnOp,C, on stat.stOp,C = (skC, skop),

and on the random value R which is public.
8 In our case, the Match function returns 1 if and only if |SqnOp,C − SqnC′ | ≤ ∆.
9 In our example, this function is f1, and the output value is MacS.



reallocation step, we add an implicit authentication step, preventing Denial-of-Service-based linkability. We
also add a freshness index, which prevents replays of challenges based on old sequence numbers.

We do specify, however, that our variant can only guarantee client-unlinkability if the size of the TMSI
is equal to the length of the output of the PKE scheme. This is a non-trivial requirement, since servers are
expected to keep track of all the TMSIs they issue; while using a shorter TMSI does not leak anything about
the IMSI value, it does allow mass-surveillance organisms to track users down by distinguishing between the
length of the encrypted IMSI as opposed to the TMSI length. On the positive side, servers may store TMSI
values for a shorter while, since as soon as the user leaves the area, the TMSI is no longer useful.

Moreover, we recommend using a field of 32 bits for the index values idxC, idxOp,C. In fact, every time a
session is aborted, the index(s) is (are) increased. The only way to replay a challenge is to previously drop
232 successive authentication challenges, which is in our opinion hard to do. We require that the size of all
the variables (except the network variables OpId and ResS) is: 96 bits for a 64-bit security bound, 128 bits
for 96-bit security bound and 154 bits for 128-bit security bound.

We make the assumption that clients are aware of their current LAI, and thus avoid client-tracking by
means of an itinerary. This is not a very strong assumption, since mobile devices are often equipped to detect
their LAI. Finally, we bypass distinguishing attacks that exploit the re-synchronization phase by ensuring
that sequence numbers cannot be desynchronized (and replays of challenges using old sequence numbers are
prevented). Keeping in mind the practical requirement of minimizing the communication between servers
and operators, our variant ensures that operators are contacted only in case the protocol is abnormally
run or an adversary is detected. We also simplify the rather complex AKA structure, including only three
communication phases rather than five. We depict our countermeasures and discuss them more in detail in
Appendix B.

Finally, we require to restrict the batch of authentication vectors at only one vector if the last message
(sent from the server to update the operator sequence number) can be dropped.
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A Security notions

A.1 Security notions

The security notions can be proved under known or chosen message attacks, denoted respectively kma and
cma. In this paper, we define the security notions under the chosen messages attacks.

Pseudo-random function. A pseudo-random function (prf) is a family of functions with the property that
the input-output behavior of a random instance of the family is computationally indistinguishable from that
of a random function. This property is defined in terms of the following security game Gprf :

1. The challenger Cprf
f chooses a bit b ∈ {0, 1}. If b = 0, it assigns f to a random function Rand : {0, 1}d →

{0, 1}n. Else if b = 1, it chooses a key K ∈ {0, 1}κ and assigns f to the function f(K, .).
2. The adversary A sends one by one q messages xi ∈ {0, 1}d to the challenger and receives f(xi).
3. Finally, A outputs a guess d of the bit b to the Cprf

f .

We can evaluate the prf-advantage of an adversary against f, denoted Advprf
f (A) as follows, for a random

function denoted Rand : {0, 1}d → {0, 1}n:

http://eprint.iacr.org/


Advprf
f (A) =

∣∣ Pr[A → 1|f $← F (K, .),K $← {0, 1}κ]

−Pr[A → 1|f $← Rand]
∣∣,

Definition 11. ([Pseudo-Random Function.]) A family f of functions from {0, 1}κ × {0, 1}d to {0, 1}n
is said to be (t, q)-prf-secure if any adversary A running in time t and making at most q queries to its
challenger Cprf

f , cannot distinguish f from a random function Rand with a non-negligible advantage.

IND-CPA security. A scheme is considered secure in terms of indistinguishability (against chosen message
attacks) if no adversary can learn any information on the input of the scheme given the output. This is
formalized in terms of the following security game (denoted Gind−cpa):

1. The challenger C ind−cpa
f chooses a key K ∈ {0, 1}κ.

2. The adversary A chooses and sends q1 messages x to the challenger, which returns f(K,x).
3. A chooses two messages x0 and x1 and sends them to C ind−cpa

f .
4. The challenger chooses a bit b and returns (K,xb) to the adversary.
5. Upon receiving f(K,xb), the adversary can adaptively query the challenger with at most q2 messages
x 6∈ {x0, x1}, to which the challenger responds with f(K,x).

6. Finally, the adversary halts and outputs a guess d of the bit b used by the challenger.

Definition 12. ([General security of ind-cpa-scheme.]) A scheme f is considered as ind− cpa-cpa-
secure by indistinguishability if any adversary A running in time t and making at most q queries to its
challenger C ind−cpa

f , given an encryption of a message randomly chosen from a two-element message space,
cannot distinguish efficiently the encryption of one of both messages. We can evaluate the ind− cpa-advantage
of a such adversary, denoted Advind−cpa

f (A):

Advind−cpa
f (A) = Pr[A → 1|b← {0, 1},

K ← {0, 1}κ, (x0, x1) ∈ {0, 1}d × {0, 1}d,
C → f(K,xb)].

MAC security. A scheme is considered secure in terms of unforgeability (against chosen message attacks) if
no adversary can forge an acceptable message authentication code for any chosen message. This is formalized
in terms of the following security game (denoted GMac):

1. The challenger CMac
f chooses a key K ∈ {0, 1}κ.

2. The adversary A chooses and sends q messages x to the challenger, which returns f(K,x).
3. The adversary tries to forge an acceptable output σ for a chosen input x which was no a previous query

and sends the couple (x, σ) to the challenger.
4. The challenger verifies if the message x was not previously requested and if f(K,x) = σ. The adversary

wins this game if the both conditions are accepted. Otherwise, the adversary loses the game.

We define the adversary’s advantage with respect to this game as:

Advmac
f (A) = Pr[Awins].



Definition 13. ([General security of mac-scheme.]) A MAC construction (f, ϑ) is considered as mac-
secure by unforgeability if any adversary A running in time t and making at most q queries to its chal-
lenger Cmac

f , cannot forge efficiently any couple (message, mac) no-forged by Cmac
f . We can evaluate the

mac-advantage We can evaluate the ind− cpa-advantage of a such adversary, denoted Advmac
f (A):

Advmac
f (A) = Pr[ϑ(xq+1, τq+1) = 1|K $← {0, 1}κ,

∀i ∈ {1, .., q}, C → (xi, τi),A → (xq+1, τq+1)].

Generic Results. As mentioned in [13], pseudorandom functions make good message authentication codes.
The authors have determined the exact security of a such reduction by the following proposal:

Proposition 1. Let f : {0, 1}κ ∗ {0, 1}d → {0, 1}s be a family of functions. Consider a (t, q)-adversary A
against the prf-security of the function f, running in time t and making at most q queries to its challenger.
Denote the advantage of a such adversary Advprf

f (A). then, there are a (t′ ∼ t+ O(s+ d), q′ = q)-adversary
A’ against the mac-security of the function f with an advantage Advmac

f (A′) such as:

Advmac
f (A) ≤ Advprf

f (A′) + 1
2s .

IND-CCA2 security. A cryptosystem is indistinguishable under an adaptive chosen cyphertext attack if
every probabilistic polynomial time adversary has only a negligible advantage over random guessing, i.e it
wins the above game with a probability 1/2+ε(k), where ε(k) is a negligible function in the security parameter
k. Although the adversary knows x0, x1 and pke the probabilistic nature of the encryption function means
that the encryption of xb will be only one of many valid ciphertexts, and therefore encrypting x0, x1, and
comparing the resulting ciphertexts with the challenge ciphertext does not afford any advantage to the
adversary. The game Gind−cca2 behaves as follows:

1. The challenger C ind−cca2
f chooses a key pair (pke, ske) and returns pke.

2. The adversary A may perform q1 number of encryption oracle or decryption oracle to the challenger.
3. A submits two distinct chosen messages x0 and x1 and sends them to C ind−cca2

f .
4. The challenger uniformly chooses a bit b ∈ {0, 1}, and returns f(pke, xb) to the adversary.
5. Upon receiving C = f(pke, xb), the adversary may make further calls to the decryption oracle, but may

not submit the challenge ciphertext C.
6. Finally, the adversary halts and outputs a guess d of the bit b used by the challenger.

Definition 14. ([General security of ind-cca2-scheme.]) A scheme f is considered as ind− cca2-secure
by indistinguishability under an adaptative chosen ciphertext attack if any adversary A running in time t
and making at most q queries to its challenger C ind−cca2

f , given an encryption of a message randomly chosen
from a two-element message space, cannot distinguish efficiently the encryption of one of both messages. We
can evaluate the ind− cca2-advantage of a such adversary, denoted Advind−cca2

f (A):

Adv(Aind−cca2
f )) = Pr[Adv(Aind−cca2

f )→ 1|b← {0, 1},

(pke, ske)← {0, 1}κ, (x0, x1) ∈ {0, 1}d × {0, 1}d,
C → f(pke, xb)].

AE security. An AEAD-scheme Π = (K, E ,D) is ae-secure if every probabilistic polynomial time adversary
has only a negligible advantage of the following indistinguishability game using the all-in-one formulation
from [?]:



1. The challenger Cae
Π chooses a key K ← K and a bit b ∈ {0, 1}. If b = 0, it uses the encryption and

decryption functions of the model RealΠ. Otherwise, it uses the functions of the model IdealΠ. These
models are described in the figure 9.

2. The adversary A may perform q queries E and D such as for any tuples (N,A,M,A′,M ′), if the query
C = E(K,N,A,M) has been required, then the two queries E(K,N,A′,M ′) and D(N,A,C) cannot be
required.

3. The adversary A outputs its guess d of the bit b used by the challenger.

Definition 15. ([General security of ae-scheme.]) An AEAD-scheme Π is a triple of algorithms Π =
(K, E ,D) where K is a randomized algorithm that samples a key K ∈ {0, 1}∗, E is a deterministic algorithm
that maps the key K, a nonce N , additional data A, and a message M to a ciphertext C, and D is a
deterministic algorithm that (K,N,A,C) to M . We assume that for all K,N,A,M ∈ {0, 1}∗, we have
D(K,N,A, E(K,N,A,M)) = M . We consider that a such scheme is ae-secure if any adversary A running
in time t and making at most q queries to its challenger Cae

Π cannot success with a non-negligible advantage.
A such advantage, denoted Advae

Π(A), is defined as follows:

Advae
Π(A) =

∣∣ Pr(A → 1|RealΠ)− Pr(A → 1|IdealΠ)
∣∣.

B Evaluation

In proposing our variant of AKA we explicitly or implicitly addressed several attacks. We discuss these below,
referring the reader to Figure 10 for a better overview.

Server Corruptions : The original AKA protocol only offers a degree of key-indistinguishability and im-
personation security, only in the absence of server corruptions. Since servers are trusted to run the
authenticated key-exchange step, corrupting a server compromises any security of a channel this server
establishes; however, in the AKA routine, this flaw is exacerbated, since the corruption results can be
re-used later in non-vulnerable areas. This is an active, and rather complex attack, but it is highly
parallelizable and has a great security impact. To mitigate this risk, we added a server-specific, unique,
publicly-known identifier ResS, which is now given as input to all the cryptographic functions.

Client Confidentiality : IMSI catcher attacks compromise the client’s identity in a direct way (the ad-
versary learns a static identifier). This attack can be run (with a reduced success probability) even by
passive attackers, and it is highly parallelizable. The consequence is that multiple clients can be tracked
simultaneously in a mass-surveillance operation. We mitigate such risks by ensuring that no static iden-
tifier is leaked through, by using a PKE scheme, in which only the operators have secret and public
keys.

Client Unlinkability : Even if the adversary cannot track a user back to a permanent identifier, she can
still try to distinguish between two chosen users, e.g. by causing some unusual protocol steps. Attacks
like distinguishing between two different failure messages (which are actively triggered by the adversary),
injecting a message and then seeing its effect in a protocol run (which is accepted if the chosen client
is compatible with the injected message, and rejected otherwise), or distinguishing between messages of
distinct lengths allow client linkability. While not as versatile, nor as parallelizable as client confidentiality
attacks, these threat nevertheless allow an insidious adversary to track a user that is singled-out for mass
surveillance. In our variant, we make protocol executions for different users indistinguishable from one
another, at the cost of larger TMSI values, a new index variable, using IND-CCA PKE encryption, and
making the operator intervene in the case of an error.

Denial of Service : Apart from being a mean of breaking client-unlinkability, DoS attacks can also facilitate
IMSI catchers, and add to the complexity of the AKA procedure. One way of causing a DoS in the original
protocol is to send a random string as a replacement for the TMSI reallocation message. The client will
parse this as a different TMSI than the intended one, and thus the server will need to request the user’s
IMSI in clear. We mitigate DoS attacks by using authenticated encryption for the TMSI reallocation and
ensuring that no desynchronizations can occur.



Itinerary tracking : One disadvantage of AKA is that the client’s past location is revealed during the
protocol, allowing to track up to 1 user per LAI at any one time. We bypass this difficulty by only using
current LAI values.

C Full protocol description

In the AKA protocol [3], mutual client-backend authentication is provided using Message Authentication
Codes (MAC) computed by three of the TUAK algorithms, while the secret keys are derived from a random
value and a shared secret key with a key derivation function (KDF), by means of the rest of the TUAK
functions.

The basic framework is a challenge-response stateful protocol between two main actors: the HLR (Home
Network Register) and the ME/USIM (Mobile Equipment/User Subscriber Identity Module). This protocol
needs an intermediate entity, the VLR (Visited Network Register), as specified in Section 3.2. Both the
ME/USIM and the HLR keep track of counters, denoted respectively SqnC and SqnHLR; these sequence numbers
are meant to provide entropy and enable network authentication (from HLR to ME/USIM). Technically, one
can view the user’s sequence number as an increasing counter, while the latter keeps track of the highest
authenticated counter the user has accepted.

The AKA protocol uses a set of seven functions: F1, F2, F3, F4, F5, F∗1 , F∗5 . The first two are used to
authenticate a MAC answer, proving that both participants know the same subscriber key skC and the same
operator key skop. Algorithm F1 is called the network authentication function. As its name implies, it allows
the subscriber to authenticate the network. Furthermore, this function provides the data integrity used to
derive keys (in particular authenticating the random, session-specific value R). Algorithm F2 is called the
subscriber authentication function, and it allows the network to authenticate the subscriber C by proving
that the entity owns the subscriber key skC and the operator key skop.

The following three algorithms, F3, . . . ,F5, are used as key derivation functions, outputting respectively
a cipher key (CK), an integrity key (IK), and an anonymity key (AK), all derived on input the subscriber key
skC, the operator key skop, and the session-specific random value R. Notice that the master key skC is only
known by HLR and ME/USIM, but not by the intermediate entity VLR.

The last key, AK, is used to mask the sequence number Sqn, but it is not part of the session keys. Its
function is to blind the value of Sqn since the latter may leak some information about the subscriber. In
order to ensure that no long-term desynchronization occurs, the AKA protocol provides a re-synchronization
procedure between the two participants, in which the user forces a new sequence number on the backend
home network, using the F∗1 and F∗5 to authenticate this value much in the same way that the server has
authenticated its own sequence number and random value. Figure 11 details the challenge-response of AKA
procedure.

The operator key.. Subscribers to the same operator all share the operator’s own secret key, in practice
a 256-bit integer. This value is not directly stored on the phone, but rather an intermediate value, obtained
by running the internal Keccak permutation on input skop and several constants, is embedded in the SIM
card. Thus, whereas this value enters in all future runs of the cryptographic algorithms, it is never stored in
clear on the user’s mobile.

Identification. Globally, the procedure starts with the identification of the ME/USIM to VLR when the
user equipment switches on. At first, the mobile equipment receives a user request from the VLR and then
responds in cleartext, with a temporary identity, called TMSI, which is known by the ME/USIM and VLR. A
TMSIis a local number and its construction is specified in the technical specification 23.003 [ref]. This value
can be used only in a specific given area: the TMSI is always accompanied by the Location Area Identification
(LAI) to avoid ambiguities. The VLR (globally the network) manages suitable data based which keeps the
relation between the IMSIs and the TMSIs. A new TMSI must be allocated at least in each location updating
procedure, i.e when you use a TMSI we need to replace it by a fresh value. So the mobile station de-allocates
the old value and allocates the fresh temporary identity from the VLR. We note that this value need to be
store in a non volatile memory with its LAI in order to they are not lost when the ME/USIM switches off.



When the ME/USIM receives a user identity request from the VLR, it sends its TMSIo‖LAI. When it receives
its value, the ME/USIM verifies if the LAI matches the current ME/USIM. If it is not the case, it starts a
Local TMSI Unknown Procedure. Otherwise, it tries to recover the corresponding permanent identity using
its suitable data based to accept the identification. If a such value cannot be recover, it sends a Permanent
Identity Request to the ME/USIM which answers with its IMSI. All these flows are exchanged in cleartext.

Local TMSI Unknown Procedure: As we said previously, if the LAI does not match the VLR, a Local
TMSI Unknown Procedure has been engaged. Globally, it askes to the previous VLR0 the relation with its
TMSI. Then, either its received the corresponding IMSI or a ”error message” implying a Permanent Identity
Request to the mobile station.

Permanent Identity Request: In some cases, notably when the user cannot be identified with any
temporary identity, the identification of a user on the radio path by means of the permanent subscriber
identity, called IMSI. This basic procedure is sum up in the following figure:

The request and its answer are sent in cleartext. The procedure is used too when the user registers for
the first time in a serving network.

Challenge-Response. After receiving the IMSI the HLR generates a fresh sequence number Sqn and an
unpredictable variable R. By using the subscriber’s key skC and the corresponding operator key skop, it then
generates a list of n unique authentication vectors AV composed of five strings: R, MacC, CK, IK, Autn. For
every authentication vector, the sequence number is updated. The update procedure depends on the chosen
method. The specifications feature a first method which does not take into account the notion of time, and
which basically increments by 1 the most significant 32-first value of the sequence number. A second and
third subsequent methods feature a time-based sequence number update based on a clock giving universal
time [3]. The authentication vector is generated as follows:

MacS ← F1(skC, skop,R,Sqn,AMF),
MacC ← F2(skC, skop,R),

CK← F3(skC, skop,R),
IK← F4(skC, skop,R),

AK← F5(skC, skop,R),
Autn← (Sqn ⊕ AK)‖AMF‖MacS,

where MacS is the message authentication code of the network by the subscriber, MacC is the message
authentication code of the subscriber by the network and AMF the authentication and key management field
(which is a known, public constant).

The HLR sends the list of the authentication vectors AV to the VLR. This list may also contain only
a single authentication vector. Upon the reception and storage of these vectors, when the VLR initiates an
authentication and key agreement, it selects the next authentication vector from the ordered array and stores
MacC and the session keys CK and IK. Then, it forwards (R, Autn) to ME/USIM.

The ME/USIM verifies the freshness of the received authentication token. To this end, it recovers the
sequence number by computing the anonymity key AK which in its own turn depends on three values: skC ,
skop, and the received R. Then, the user verifies the received MacS computing F1(skC , skop, R, Sqn , AMF)
with the received value R and the Sqn. If they are different, the user sends authentication failure message
back to the VLR and the user abandons the procedure. In case the execution is not aborted, the ME/USIM
verifies if the received Sqn value is in a correct range relatively to a stored value SqnC

10. If the Sqn is out of
range, the user sends a synchronization failure message back to the VLR, which triggers a re-synchronization
procedure, depicted further in Figure 14.

The MacS value does not only ensure integrity, but also the authentication of the network by ME/USIM.
If the two previous verifications are successful i.e if the received authentication token is fresh, the network
10 The sequence number Sqn is considered to be in the correct range relatively to SqnC if and only if Sqn ∈

(SqnC,SqnC +∆), where ∆ is defined by the operator.



is authenticated by the ME/USIM. Then, the ME/USIM computes CK, IK and Res ← F2(skC, skop,R). To
improve efficiency, Res, CK, and IK could also be computed earlier, at the same time that AK is computed.
Finally, the user sends Res to VLR. If Res = MacC, the VLR successfully authenticates the ME/USIM.
Otherwise, the VLR will initiate an authentication failure report procedure with the HLR. Note that the
verification of the sequence number by the ME/USIM will cause the rejection of any attempt to re-use an
authentication token more than once.

Re-synchronizing. The re-synchronization procedure is used when the subscriber detects that the
received sequence number is not in the correct range, but that it has been correctly authenticated. The
single goal of this procedure is the re-initialization of the sequence number, and does not imply immediately
any mutual authentication or key agreement (rather it triggers a new authentication attempt).

Indeed, the ME/USIM sends an synchronization failure message, consisting of a parameter Auts, with

Auts = (SqnC ⊕ AK∗)‖Mac∗,

where the key is computed as AK∗ = F∗5 (skop, skC,R) and Mac∗ = F∗1 (skop, skC,R,SqnC,AMF).
The F∗1 algorithm is a MAC function with the additional property that no valuable information can be

inferred from Mac∗ (in particular this function acts as a PRF). Though similar to F1, the F∗1 algorithm is
designed so that the value Auts cannot be replayed relying on the output of F1. Furthermore, the anonymity
key generated by the client in the resynchronization is obtained via the F∗5 algorithm rather than by F5,
even if the same random value R is used.

Upon receiving a re-synchronization failure message, the VLR does not immediately send a new user
authentication request to the ME/USIM, but rather notifies the HLR of the re-synchronization failure, sending
the parameter Auts and the session-specific R. When the HLR receives this answer, it creates a new batch
of authentication vectors. Depending on whether the retrieved, authenticated Sqn indicates that the HLR’s
sequence number is out of range or not, the backend home network either starts from the last authenticated
sequence number, or updates the latter to the user’s sequence number.

More precisely, the HLR retrieves the SqnC by computing F∗5 (skC, skop,R)⊕ bAutsc48. Then, it verifies if
the incremented SqnHLR is in the correct range relatively to SqnC. If the SqnHLR verifies this property, it sends
a new list of authentication data vectors initiated with SqnHLR else HLR verifies the value of Mac∗İf this step
is successful, it resets the value of SqnHLR to SqnHLR := SqnC and sends a new list of authentication data
vectors initiated with this updated SqnHLR. This list may also contain only a single authentication vector.
Figure 14 details this re-synchronization procedure.

Re-allocation of the TMSI. At the end of the key derivation, the both entities (ME/USIM and VLR) need
to be update with a fresh value. To allocate a fresh value, denoted TMSIn, the VLR generates this value in
the same LAI 11. Only after a successful identification based on the old TMSIo and a successful key setting
permitting to share the ciphering key CK (by the AKA protocol). The VLR forges the new TMSIn and sends
it to the ME/USIM in a ciphered mode by A5/3 algorithm (globally an encryption with KASUMI more
details in annex C and section 4.2 in TS 43.020) based the derived key CK. The ME/USIM recovers with the
key CK the new TMSIn and stored it and de-allocate TMSIo. Then the ME/USIM sends an ”acknowledge
message” in cleartext to prevent its allocation. After receiving this message, the VLR de-allocates the TMSIo
and stores TMSIn. If the VLR does not receive a such message, the network shall maintain the association
between the old TMSI and the IMSI and between the new TMSI and the IMSI. For the next identification, the
mobile station can used the both TMSI (TMSIo and TMSIn). This will allow the network to determine the
TMSI stored in the ME/USIM; the association between the other TMSI and the IMSI shall then be deleted,
to allow the unused TMSI to be allocated to another ME/USIM.

Milenage algorithms: MILENAGE [1] is a set of algorithms which aims to achieve authentication and key
generation properties. As opposed to TUAK which is based on Keccak’s internal permutation, the MILENAGE
algorithms are based on the Advanced Standard Protocol (AES).
11 They are not recommended methods to generate the TMSI as the spec 23.003 (”the structure and coding of it can

be chosen by agreement between operator and manufacter in order to meet local needs”). They provide only one
advice (some parts of the TMSI may be related to the time)



The functions F∗1 and F∗2 must provide authentication while the functions F∗3 , F∗4 and F∗5 are used to
derive key material in order to achieve confidentiality, integrity and anonymity. The different parameters of
these functions are:

– Inputs: skop a 128-bit long term credential key that is fixed by the operator, a 128-bit random value R , a
48-bit sequence number Sqn and a 16-bit authentication field management AMF chosen by the operator
(the last two values are only used for the MAC generation). We denote that the subscriber key skop is a
private key shared by all the subscriber of the same operator. Consequently, we do not consider skop as
a private key.

– A 128-bit subscriber key skC shared out of band between the HLR and ME/USIM.
– Five 128-bit constants c1,c2,c3,c4,c5 which are Xored onto intermediate variables and are defined as

follows:
• c1[i] = 0,∀i ∈ {0, 127}.
• c2[i] = 0,∀i ∈ {0, 127}, except that c2[127] = 1.
• c3[i] = 0,∀i ∈ {0, 127}, except that c3[126] = 1.
• c4[i] = 0,∀i ∈ {0, 127}, except that c4[125] = 1.
• c5[i] = 0,∀i ∈ {0, 127}, except that c5[124] = 1.

– Five integers r1,r2,r3,r4,r5 in the range {0, 127} which define amounts by which intermediate variables
are cyclically rotated and are defined as follows: r1 = 64; r2 = 0; r3 = 32; r4 = 64; r5 = 96.

The generation of MAC’s or derived key starts similarly by initializing a value TopC . To do so, one applies
a first called of the well-known function AES on inputs the operator and subscriber keys such as:

TopC = skop ⊕ AESskC(skop)

. We recall that, AESK(M) denotes the result of applying the Advanced Encryption Standard encryption
algorithm to the 128-bit value M under the 128-bit key K. Then, we compute the following values taking as
input Sqn, R, AMF and others constants:

– Temp = AESskC(R ⊕ TopC),
– Out1 = AESskC(Temp⊕ Rotr1(Sqn‖AMF‖Sqn‖AMF)⊕ c1)⊕ TopC ,
– Out2 = AESskC(Rotr2(Temp⊕ TopC)⊕ c2)⊕ TopC ,
– Out3 = AESskC(Rotr3(Temp⊕ TopC)⊕ c3)⊕ TopC ,
– Out4 = AESskC(Rotr4(Temp⊕ TopC)⊕ c4)⊕ TopC ,
– Out5 = AESskC(Rotr5(Temp⊕ TopC , r5)⊕ c5)⊕ TopC .

All the outputs of the MILENAGE algorithms are computed as follows:

– Output F1: MacC = bOut1c0..63,
– Output F∗1 : Mac∗ = bOut1c64..127,
– Output F2: MacS = bOut2c64..127,
– Output F3: CK = Out3,
– Output F4: IK = Out4,
– Output F5: AK = bOut2c0..47,
– Output F∗5 : AK∗ = bOut5c0..47,

This is also described in figure 15
TUAK algorithms:
TUAK [2] is a set of algorithms which aims to achieve secure mutual authentication and key generation

properties. The TUAK algorithms are based on the TUAK permutation, which in turn relies on a truncation
of the internal permutation function of Keccak. Moreover, for efficiency reasons, only one or two iterations
of the internal TUAK permutation, fKeccak[1600], is used.

The functions F1 (respectively F∗1 ) and F2 must provide authentication while the functions F3, F4 and F5
(respectively F∗5 ) are used to derive key material in order to achieve confidentiality, integrity and anonymity.
The different parameters of these functions are:



– Inputs: skop a 256-bit long term credential key that is fixed by the operator, a 128-bit random value R, a
48-bit sequence number Sqn, and a 16-bit authentication field management AMF chosen by the operator
(the last two values are only used for the MAC generation). We denote that the subscriber key skop is a
private key shared by all the subscriber of the same operator.

– A subscriber key skC shared out of band between the HLR and ME/USIM allows to initialize the value
Key:
• If |skC| = 128 bits, then Key← skC[127..0]‖0128.
• If |skC| = 256 bits, then Key← skC[255..0].

– Several public constants:
• AN: a fixed 56-bit value 0x5455414B312E30.
• Inst and Inst’ are fixed binary variables of 8 bits, specified in [2] and different depends on the functions

and the output sizes.

The generation of MAC’s or derived key starts similarly by initializing a value TopC . To do so, one applies
a first fKeccak permutation on a 1600-bit state Val1 as follows:

Val1 = skop‖Inst‖AN‖0192‖Key‖Pad‖1‖0512,

where Pad is a bitstring output by a padding function. The value TopC corresponds at the first 256 bits of
this output.

At this point, the behavior of the functions F1 and F∗1 diverges from that of the other functions. To
generate the MAC value of F1 and F∗1 , we take as input Sqn , AMF and R, three values chosen by the HLR
and some constants. After the generation of TopC , we initialize a second state, namely,

Val2 = TopC‖Inst′‖AN‖R‖AMF‖Sqn‖Key‖Pad‖1‖0512.

Then, one applies the TUAK permutation on Val2. Next only the first 64 bits are used to compute the
MacS value. To generate derived keys and the response of F2, one initializes a second state for this function,
too, namely,

Val2 = TopC‖Inst′‖AN‖R‖064‖Key‖Pad‖1‖0512.

Then, the TUAK permutation is applied on Val2 and one obtains the value Out. Finally, one derives the
response MacC and the derived keys from the resulting Out:

MacC = bOutc|`|−1..0, ` ∈ {16, 32, 64, 128},
CK = bOutc256..384 and |CK| = 128,
IK = bOutc512..640 and |IK| = 128,

AK = bOutc768..816 and |AK| = 48.

This is also depicted in Figure 16.
The way the output of the functions is truncated and used is the reason why TUAK is called a multi-

output function. This notion is one of the main differences with MILENAGE and has a no-negligible impact
on the efficiency of TUAK, as it saves a few calls of the internal function. However, this multi-output function
property can be an issue for the security of the master key. Indeed, during one session we can have four
calls of the same function with similar inputs but with a different truncation. Having different chunks of the
same global 1600-state (called Out in our description)) can permit to recover the long-term key skC by the
reversibility of the TUAK permutation. The union of all the different chunks provided during one session,
gives at most only 432 bits on the 1600 bits. Thus, having multiple ooutputs may be hazardous in general,
the Keccak based construction of TUAK allows this without compromising the long-term parameters.



Client Server Operator
(skC, skop, pke), (SqnC, idxC), (TMSIo, LAIo)

(TMSI)
(skC, skop, ske), (SqnOp,C, idxOp,C)

User Identity Request
Rid

←−−−−−−−−−−−−−−−−−−−

1©
User Identity Answer

ID‖Opid

−−−−−−−−−−−−−−−−−−−−→

2©
Auth. Vectors Request

Val
−−−−−−−−−−−−−−−−→

3©
Auth. Vectors Answer

{AV{i}}ni=1←−−−−−−−−−−−−−−−−

4©
Auth. Challenge

R{i}‖Autn{i}‖ AE.EncCK,IK(TMSIn‖idx{i} )
←−−−−−−−−−−−−−−−−−−−

5©
Auth. Response

Res
−−−−−−−−−−−−−−−−−−−→

6©
Update Sequence Number
−−−−−−−−−−−−−−−−→

7©
Instructions:

Client Server Operator

1©: Compute the identifier:
If flagTMSI := 0 then ID = TMSI.
Else, ID = PKE.Encpke(f5(keys,Rid, IMSI, idxC)‖Rid‖IMSI‖idxC).

flagTMSI := 1.
———————————————————————
5©: Compute AK using R{i}.

Recover Sqn{i} (from AK).
Check MacS value.
Compute: IK,CK;
Retrieve the received index and the new TMSI.
If abort caused or the AE does not verify, set flagTMSI := 1 and

increment: idxC := idxC + 1.

Else, check validity of Sqn{i}, i.e if one of the following

conditions is correct:

– SqnC = Sqn{i}.

– SqnC = inc(Sqn{i}) and idx{i} = idxC + 1.

If the first condition is accepted: reset the index idxC,

update the sequence number SqnC = inc(SqnC) .

If the second condition is accepted: idxC=idxC+1 .

Compute Res := F∗1 (keys,R{i}, Sqn{i},ResS,AMF ).

Update the internal index. Allocate the new TMSI.
flagTMSI := 0.

2©: Process the identifier ID:
If the identifier is a TMSI
then Val = IMSI. Otherwise,
Val = (ID,Rid).

———————————–
4©: Store {AV{i}}n

i=1.
Choose AV{i} one by one in
order.
Then, it sends the au-
thentication challenge and
the new couple

(TMSIn, idx{i}) encrypted and

authenticated by the session keys.
———————————–
6©: If the authentication of the

client is verified (Res ?= MacC),
then they ask to the server the
update of its sequence num-
ber. Otherwise, the protocol is
aborted.

3©: Verify the identity of the client with Val.

If this holds, retrieve idxC, set idxOp,C := idxC

Generate (R{1}, ...,R{n}). Denote: keys :=
(skC, skop).
For each i = 1, . . . , n, compute:
MacS ← F1(keys,R{i}, Sqn{i}, ResS, AMF),

MacC ← F∗1 (keys,R{i}, Sqn{i},ResS,AMF ),

CK← F3(keys,R{i}, Sqn{i},ResS,AMF ),

IK← F4(keys,R{i}, Sqn{i},ResS,AMF ),

AK← F5(keys,R{i}, ResS ),
Autn{i} ← (Sqn{i} ⊕ AK)‖AMF‖MacS,
Sqn{i} ← inc(Sqn{i−1}) ,
AV{i} := (R{i},CK, IK,Autn{i},MacC, idx{i}),
with
Sqn{1} := SqnOp,C,
idx{1} := idxOp,C , ∀i 6= 1, idx{i} = 0 .

End for.
————————————————————
7© : Update the sequence number:
SqnOp,C ← inc(SqnOp,C).

Reset the index idxOp,C.

Fig. 5. Our fixed AKA Procedure.



Client Server

”Aborted Protocol Message”, AV{i}

−−−−−−−−−−−−−−−−−−−−−−−−−→
Recover the related sequence num-
ber Sqn{i}.
If SqnOp,C = Sqn{i} : idxOp,C + +. If
SqnOp,C 6= Sqn{i}: idxOp,C = 1 and
SqnOp,C = Sqn{i}.
Then it forges a batch of n authen-
tication vectors as usual.

{AV{i}}n
i=1

←−−−−−−−−−−−−−−−−−−−−−−−−

Fig. 6. Procedure after an abort.

Fig. 7. Updated Milenage.

Fig. 8. Updated TUAK

RealΠ IdealΠ
Initialization Initialization
K ← K K ← K

Oracle AE.Enc Oracle AE.Enc
Input: (N,A,M) ∈
(N ,A,M)

Input: (N,A,M) ∈
(N ,A,M)

C ← E(K,N,A,M) C′ ← E(K,N,A,M)
return C C ← {0, 1}|C

′|

return C

Oracle AE.Dec Oracle AE.Dec
Input: (N,A,C) ∈ (N ,A, C) Input: (N,A,C) ∈ (N ,A, C)
M ← D(K,N,A,C) return ⊥
return M

Fig. 9. Real and Ideal security game for AEAD-schemes.



Added countermeasures Cost Attacks it Prevents Attack Im-
pact

Client sends encrypted
IMSI

- Needs IND-CCA
PKE encryption

- Simple PKI (only
operators)

Client Confidentiality:

(IMSI Catchers)

Trace many users

- Parallelizable
- Passive/Active

Large TMSI size
Client unlinkability:

Distinguish TMSI/IMSI
msg.

Trace 1 user:

- Non-
parallelizable

- Active only

Authenticate TMSI reallo-
cation (see also: index)

New reallocation
alg.

Client unlinkability:

(Denial-of-Service)

Trace many users

- Parallelizable
- Active only

Client unlinkability:

Distinguish
TMSI/IMSI

Trace 1 user

- Non-parallelizable
- Active only

Index idxC, idxS
New 1-bit state vari-
able

Client unlinkability:

Prompt resynch, dis-

tinguish

Trace 1 user

- Non-
parallelizable

- Active only

S.Imp-resistance:

Challege is un-replayable

Impersonate
servers

- Parallelizable
- Active only

Introducing ResS

- New server identi-
fier

- Changed crypto
algs.

S.Imp-resistance

k.ind-security

S.sound-security

(Server Corrup-
tions)

Break sec. channel

- Parallelizable
- Needs corrup-

tions
- Active only

Use only current LAI
- Clients must know

LAI
- Clients store ResS

Location privacy:

(Track past LAI)

Trace 1 user per
LAI

- Non-
Parallelizable

- Passive

Fig. 10. Assessment of our AKA variant: cost and effect of coutermeasures.



Client VLR HLR
(skC, skop, SqnC) (skC, skop, SqnOp,C)

User identity request
←−−−−−−−−−−−−

User identity answer
TMSIo‖LAI

−−−−−−−−−−−−→

1©
Auth. vectors request

IMSI
−−−−−−−−−−−−→

2©
Auth. vectors
{AV{i}}ni=1←−−−−−−−−−−−−

3©
Auth challenge
R{i}‖Autn{i}

←−−−−−−−−−−−−

4©
Auth response

Res
−−−−−−−−−−−−→

5©
Instructions:

Client VLR HLR

4©: Compute AK using R{i}.
Recover Sqn{i} (from AK).
Check MacS value.

If Sqn{i} ∈ (SqnC, SqnC +∆):
Compute:
CK← F3(skC, skop,R{i}, Sqn{i},AMF),
IK← F4(skC, skop,R{i}, Sqn{i},AMF),
Set Res := F2(skC, skop,R{i}).
Update SqnC := Sqn{i}.

Else re-synchronization

1©: Verify if the LAI matches the VLR. Other-
wise Local TMSI Unknown Procedure. Then, if it
retrieves the IMSI corresponding to the TMSIo.
Otherwise, it sends a Permanent Identity Request.
———————————–

3©: Store {AV{i}}n
i=1.

Choose AV{i} one by one in order.
Then it sends the related challenge.
———————————–

5©: Res ?= MacC.

2©: For each i = 1, . . . , n, compute:
Generate R{i}. Compute: Sqn{i} ← inc(SqnOp,C)
Mac{i}S ← F1(skC, skop,R{i}, Sqn{i},AMF),
Mac{i}C ← F2(skC, skop,R{i}),
CK{i} ← F3(skC, skop,R{i}),
IK{i} ← F4(skC, skop,R{i}),
AK{i} ← F5(skC, skop,R{i}),
Autn{i} ← (Sqn{i} ⊕ AK{i}),AMF,Mac{i}S .
AV{i} := R{i},CK{i}, IK{i},Autn{i},Mac{i}C , with
SqnOp,C = Sqn{i}.
End For.

Fig. 11. The AKA Procedure.

ME/USIM VLRn/SGSN VLRo/SGSN

User identity request
←−−−−−−−−−−−−−−−−−−

TMSIo‖LAI
−−−−−−−−−−−−−−−−−−→

TMSIo
−−−−−−−−−−→

Resp
←−−−−−−−−−−

If Resp contains an IMSI, it
accepts the identification. Oth-
erwise, Resp contains an ”er-
ror message” and it sends a
Permanent Identity request.

Permanent identity request
←−−−−−−−−−−−−−−−−−−

IMSI
−−−−−−−−−−−−−−−−−−→

ACCEPT.

Fig. 12. Local TMSI Unknown Procedure

ME/USIM VLR/SGSN

Permanent identity request
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

IMSI
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

ACCEPT.

Fig. 13. Identification by the permanent identity.



Client VLR HLR
(skC, skop, SqnC) (skC, skop, SqnHLR,C)

Auth. Challenge
R‖Autn

←−−−−−−−−−−−−−−−−
1©

Resynchro. Request
Auts

−−−−−−−−−−−−−−−−→
2©

Resynchro. Request
R‖Auts

−−−−−−−−−−−−−−−−→
3©

Auth. Vectors
R{i}‖Autn{i}

←−−−−−−−−−−−−−−−−
Instructions:

Client VLR HLR

1©: Compute the value AK with the value R.
Recover Sqn with AK.
Check if the received MacS is correct.
Check if Sqn is in the correct range related to the
stored SqnC.

Re-synchronization Procedure:

Compute AK∗ ← F∗5 (skop, skC,R) and
Mac∗ ← F∗1 (skop, skC,R, SqnC,AMF).
Forge Auts = (SqnC ⊕ AK∗)‖Mac∗).

2©: Add the R
value.

3©: Compute the value AK∗ with the value R.
Recover SqnC with AK∗.

Check if the incremented SqnHLR,C is in the
correct range related to SqnC.

If it is not the case and if only the received Mac∗
is correct, then SqnHLR,C ← SqnC. Otherwise, it
aborts the procedure. It sends a new list of au-
thentication data vectors initiated with SqnHLR,C.

Fig. 14. The re-synchronization procedure of AKA protocol.

Fig. 15. MILENAGE diagram.



Fig. 16. TUAK diagram.
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