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Abstract. We propose a concrete procedure of a Σ-protocol proving knowledge that a set of witnesses
satisfies a monotone predicate in witness-indistinguishable manner. Inspired by the high-level proposal by
Cramer, Damg̊ard and Schoenmakers at CRYPTO ’94, we construct the concrete procedure by extending the
so-called OR-proof. Next, using as a witness a credential-bundle of the Fiat-Shamir signatures, we provide
an attribute-based identification scheme (ABID). Then, applying the Fiat-Shamir transform to our ABID,
we obtain an attribute-based signature scheme (ABS). These generic schemes are constructed from a given
Σ-protocol, and the latter scheme has a feature of linkable signatures. Applying the two-tier technique of
Bellare et al. to our ABID, we obtain an attribute-based two-tier signature scheme (ABTTS). The scheme has
a feature to attain attribute-privacy paying expense of the secondary-key issuing. We provide two directions
of instantiation. One is to use the Guillou-Quisquater and the Schnorr Σ-protocols, which produce ABID,
ABS and ABTTS schemes with a loose security reduction in the random oracle model in pairing-free. The
other is to use the Camenisch-Lysyanskaya Σ-protocols in the RSA setting and discrete-logarithm setting,
which produce ABTTS schemes with a tighter security reduction in the standard model.
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1 Introduction

A Σ-protocol formalized in the doctoral thesis of Cramer [Cra96] is a protocol of a 3-move public-coin interactive
proof system with completeness, special soundness and honest-verifier zero-knowledge. It is one of the simplest
protocols of zero-knowledge interactive proof systems with an easy simulator. Also, it is one of the most typical
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proof of knowledge systems [BG92]; witness-extraction property by the special soundness enables us to prove that
an identification scheme by a Σ-protocol is secure against active and concurrent attacks via a reduction to a
number-theoretic assumption [BP02]. Instantiations of the Σ-protocol have been known as the Schnorr protocol
[Sch89] and the Guillou-Quisquater protocol [GQ88] of identification schemes. They can be converted into digital
signature schemes by the Fiat-Shamir heuristic [FS86]. The signature scheme can be proved secure against chosen-
message attacks in the random oracle model [PS96], based on the security of the identification scheme against
passive attacks [AABN02]. By virtue of these features, a Σ-protocol can be adopted into building blocks of various
cryptographic primitives such as anonymous credential systems [CL02] and group signature schemes [BBS04].

The OR-proof proposed by Cramer, Damg̊ard and Schoenmakers at CRYPTO ’94 [CDS94] is a Σ-protocol
derived from an original Σ-protocol [Dam10]. It is a witness-indistinguishable protocol [FS90] by which a prover
can convince a verifier that a prover knows one of two (or both) witnesses while even an unbounded verifier
cannot tell which witness is used. The OR-proof is essentially applied in, for example, the construction of a non-
malleable proof of plaintext knowledge [Kat03]. In the paper of Cramer et al. [CDS94], a more general protocol was
proposed5; suppose a prover and a verifier are given a monotone boolean predicate f over boolean variables. Here
a monotone boolean predicate means a boolean predicate without negation; that is, boolean variables connected
by AND-gates and OR-gates, but no NOT-gate is used. ‘1’ (True) is substituted into every variable in f at which
the prover knows the corresponding witness, and ‘0’ (False) is substituted into every remaining variable. The
protocol attains witness-indistinguishability in the sense that the prover knows a satisfying set of witnesses while
even an unbounded verifier cannot tell which satisfying set is used. This protocol is an extension of the OR-proof
to any monotone boolean predicate, and in [CDS94] a high-level construction that employed a “semi-smooth”
secret-sharing scheme was given. (As is explained in [CDS94], to remove the restriction of the monotonicity of f
looks hard.)

In this paper, we provide a concrete procedure of the protocol. We start with a given Σ-protocol Σ, and derive
a Σ-protocol Σf for any monotone boolean predicate f . Then we show that our Σf is actually a Σ-protocol with
witness-indistinguishability.

Then, we will try to apply the protocol Σf to construct an attribute-based identification scheme (ABID)
and an attribute-based signature scheme (ABS). In ABID, an identification-session is associated with an access
structure described as a boolean predicate over an attribute universe. A prover can make a verifier accept only
when the prover’s set of attributes satisfies the access structure. ABS, in our strategy, is obtained by applying the
Fiat-Shamir heuristic to ABID. The concept of ABS has been developed since 2008 [GZ08,SS09,LAS+10,KABR10]
[MPR11,HLR10,EHM11,OT11,GNS12,HLLR12,OT13,Her14,EGK14,ECGD14,EGK14,Gha15,Her16a,SAH16].
However, almost all the constructions are via the approach similar to that of attribute-based encryption schemes
(ABE, [SW04]), which uses bilinear maps (that is, pairings on elliptic curves). A few exception are generic con-
structions by Maji et al. [MPR11] and Bellare et al. [BF14], and concrete constructions by Herranz in the RSA
setting [Her14] and in the discrete logarithm setting [Her16a]. In contrast to the approach by bilinear maps, we
work through a different approach in the Fiat-Shamir paradigm [FS86], which shares a spirit with [Her14]. Note
that, in this paper, we do not try to proceed the usual way to attain attribute-privacy [MPR11,OT11,Her14]
which means that signatures reveal nothing about the identity or attributes of the signer beyond what is explicitly
revealed by the satisfied boolean predicate, but we will pursue the Fiat-Shamir approach. First, we construct a
linkable attribute-based signature scheme. Then, after introducing a syntax of attribute-based two-tier signature
scheme (ABTTS) [AAS15], we construct ABTTS to attain attribute-privacy paying expense of the secondary-key
issuing [BS07].

1.1 Our Construction Idea

To provide a concrete procedure for the above protocol Σf with witness-indistinguishability, we look into the
technique employed in the OR-proof [CDS94] and expand it so that it can treat any monotone boolean predicate,
as follows. First express the boolean predicate f as a binary tree Tf . That is, we put leaves each of which corresponds
to each position of a variable in f . We connect two leaves by an ∧-node or an ∨-node according to an AND-gate
or an OR-gate which is between two corresponding positions in f . Then we connect the resulting nodes by an
∧-node or an ∨-node in the same way, until we reach to the root node (which is also an ∧-node or an ∨-node). A
verification equation of the Σ-protocol Σ is assigned to every leaf. If a challenge string Cha of Σ is given, then
the prover assigns the string Cha to the root node. If the root node is an ∧-node, then the prover assigns the
same string Cha to two children. Else if the root node is an ∨-node, then the prover divides Cha into two random
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strings ChaL and ChaR under the constraint that Cha = ChaL⊕ChaR, and assigns ChaL and ChaR to the left
child and the right child, respectively. Here ⊕ means a bitwise exclusive-OR operation. Then the prover continues
to apply this rule at each height, step by step, until he reaches to every leaf. Basically, the OR-proof technique
assures that we can either honestly execute the Σ-protocol Σ or execute the simulator of Σ. Only when a set
of witnesses satisfies the binary tree Tf , the above procedure succeeds in satisfying verification equations for all
leaves.

1.2 Our Contributions

Our first contribution is to provide a concrete procedure of the Σ-protocol of [CDS94], which is comparable with
the original abstract protocol [CDS94]. That is, given a Σ-protocol Σ and a monotone boolean predicate f , we
construct a concrete procedure Σf in a recursive form that is suitable for implementation. Then we show that Σf

is certainly a Σ-protocol with witness-indistinguishability.
Our second contribution is to provide a concrete schemes in two directions. One is to use the Guillou-Quisquater

[GQ88] and the Schnorr [Sch89] Σ-protocols, which produce ABID, ABS and ABTTS schemes with a loose security
reduction in the random oracle model in pairing-free. The other is to use the Camenisch-Lysyanskaya Σ-protocols
in the RSA setting [CL02] and discrete-logarithm setting [FI05,Oka06,TF12] to exit the drawbacks of the loose
reduction. For the purpose, we introduce a syntax of attribute-based two-tier signature scheme [AAS15], and
construct concrete ABTTS schemes with a tighter reduction in the standard model.

1.3 Related Work on ABS

At a high level, our ABS is obtained by the Fiat-Shamir transform of our Σf , where a set of witnesses is the Fiat-
Shamir credential-bundle [MPR11]. This construction can be compared with the generic construction of the ABS
scheme by Maji et al. [MPR11]. They started with a credential bundle (of Boneh-Boyen signatures [BB04b], for
instance), then they employed a non-interactive witness-indistinguishable proof of knowledge system (NIWIPoK)
of Groth and Sahai [GS08] to prove the knowledge of a credential bundle which satisfies a given (monotone) access
formula, in the standard model.

Okamoto and Takashima (OT11) [OT11] gave an ABS scheme with full-security; security against adaptive
target in the standard model under a non-q-type assumption; it can treat any non-monotone access formula and
multi-use of attributes, and possesses attribute privacy in the information-theoretic sense. The construction is
based on their Dual Pairing Vector Space.

Herranz [Her14] provided the first ABS with both collusion resistance (against collecting private secret keys)
and computationally secure attribute privacy without pairings (pairing-free) in the RSA setting. In the work
[Her14], the concrete procedure was described in detail for threshold-type access formulas. In contrast, our ABS is
without pairings and provides a concrete procedure for any monotone access formulas without attribute privacy.
Recently, Herranz [Her16a] provided an ABS scheme without pairings in the discrete-logarithm setting, but it has
a constraint that the number of private secret keys is bounded in the set-up phase.

Kaafarani et al. [ECGD14] proposed the functionality of “User-Controlled Linkability” (UCL) in the case of
attribute-based signatures. UCL property in the work [ECGD14] can be captured as a kind of public linkability. In
general, public linkability is achieved with the expense of loosing attribute privacy in ABS, and hence the scheme
[ECGD14] and our ABS scheme do not possess attribute privacy.

1.4 Technical and Efficiency Comparison on ABS

We compare our scheme with the above previously proposed schemes from the view point of security, functionality
and length of a signature. The comparison is summarized in Table 1 with notations as follows. A prime of bit
length λ (the security parameter) is denoted by p. Though a pairing map e should be analysed for the asymmetric
bilinear groups [GKZ14], we simply evaluate for the symmetric case in which both source groups are Gp of order p.
We assume that an element of Gp is represented by 2λ bits. l and r mean the number of rows and columns of the
share-generating matrix for monotone access formula f (that is, an access structure), respectively. CR means the
collision resistance of an employed hash function. q-SDH means the Strong Diffie-Hellman assumption with q-type
input [BB04a]. DLIN means the Decisional Linear assumption [OT11]. DDH means the Decisional Diffie-Hellman
assumption [ECGD14]. DL means the Discrete-Logarithm assumption [ECGD14]. q-SRSA means the strong RSA
assumption with q-type input [CL02,Her14]. DDH in QR(N) means the Decisional Diffie-Hellman assumption
for quadratic residues modulo N (the RSA modulus) [Her14]. In [Her14,Her16a], θ is the threshold value of a
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Table 1. Technical and Efficiency Comparison on ABS: Security, Functionality and Length of Signature.

Scheme Access Security Assump- Adap. Collu. Att. Pub.Link. Pairing Length of Remark
Formula Model tion Target Resist. Priv. UCL-Link. -Free Signature

Maji et al. q-SDH ∧ X - (2λ)× -
[MPR11] Mono. Std. DLIN ∧ CR X X (info.) - - (51l + 2r + 18λl)

OT Non- DLIN X - -
[OT11] mono. Std. ∧ CR X X (info.) - - (2λ)(9l + 11)

Herranz q-SRSA ∧ X - λrsa(5 + κ
λrsa

)l -

[Her14] Mono. R.O. DDH ∧CR X X (comp.) - X +λrsa3− κ(θ − 1)

Herranz DL X - (2λ)l + λ(6l − θ) bounded
[Her16a] Mono. R.O. ∧CR X X (info.) - X +λM(l + 1) num. keys

Kaafarani q-SDH ∧ DDH X (2λ)(3l + r + 3) -
et al. [ECGD14] Mono. R.O. ∧DL ∧ CR X X - X - +λ(8l + 4)

Our ABS DL X (2λ)(2l) -
Mono. R.O. ∧ CR X X - - X +λ3l

Our ABTTS DL X - two-tier
(FS-sig.) Mono. R.O. ∧ CR X X (info.) - X λ(3l − 1) keys

Our ABTTS′ q-SDH X - two-tier
(CL-sig.) Mono. Std. ∧ CR X X (info.) - - λ(3l − 1) keys

threshold-type access structure. In [Her14], κ is a security parameter. In [Her16a], M = L + N is the sum of the
upper bound L of the number of users in the set-up phase and the upper bound N of the number of all attributes
in the attribute universe. “info.” means the information-theoretic security and “comp.” means the computational
security. “FS-sig.” means a scheme that uses the Fiat-Shamir signatures [FS86] as a witness and “CL-sig.” means
a scheme that uses the Camenisch-Lysyanskaya signatures [CL02] as a witness.

The rigorous notion of ABS scheme was pioneered by the work of Maji et al. [MPR11]. The ABS scheme
by Okamoto and Takashima [OT11] has advantages in the security model, the assumption, the treatable access
formulas. The scheme by Herranz [Her14] is the only ABS scheme with the pairing-free feature, and with collusion
resistance and computational attribute privacy and , in the RSA setting. Our procedure Σf of the Σ-protocol in
[CDS94] for any monotone predicate serves as a building block of the Σ-protocol of [Her14]. Note that the security
parameter λrsa in the RSA setting ([Her14], our ABS, our ABTTS and our ABTTS′ in RSA) is almost 9 times longer
than λ in the discrete logarithm setting. For example, λrsa = 2048 achieves almost equivalent security of λ = 224
[YSKI12].

Note that the ABS scheme by Herranz [Her16a] which is in the discrete-logarithm setting has a constraint that
the number of secret keys is bounded in the set-up phase. Also, our attribute-based two-tier signature schemes
[AAS15], ABTTS and ABTTS′, are in the two-tier setting which means that a secondary secret key and a secondary
public key have to be issued for each signing session and the secondary keys is used only one time. Hence we believe
that there is still an open problem to construct a pairing-free efficient ABS scheme in the discrete-logarithm setting.

The ABS scheme by Kaafarani et al. [ECGD14] has a feature of the user-controlled linkability. In contrast, our
ABS has only the public linkability. It is notable that the ABS scheme [ECGD14] uses pairings and can be set up
in the multi-authorities setting [OT13,EGK14,Gha15].

1.5 Organization of this Paper

In Section 2, we prepare for required tools and notions. In Section 3, we describe a concrete procedure of the
Σ-protocol Σf . In Section 4, by using a credential-bundle of the Fiat-Shamir signatures as a witness of our Σf ,
we obtain our ABID. In Section 5, by applying the Fiat-Shamir transform to our ABID, we obtain our ABS. In
Section 6, we define the syntax of ABTTS. In Section 7, by applying the technique of two-tier signature [AAS15]
to our ABID, we obtain our ABTTS. In Section 8, we conclude our work in this paper. In Appendix A, B, C,
D and E, we put the definitions of needed cryptographic primitives. In Appendix F and G, we show concrete
instantiations of our ABID, ABS and ABTTS in the RSA setting and the discrete-logarithm setting.

2 Preliminaries

The security parameter is denoted by λ. Bit length of a string x is denoted by |x|. A uniform random sampling
of an element a from a set S is denoted as a ∈R S. When an algorithm A with input a outputs z, we denote it
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as z ← A(a), or, because of space limitation, A(a) → z. When a probabilistic polynomial-time (PPT, for short)
algorithm A with a random tape R and input a outputs z, we denote it as z ← A(a;R) When A with input a
and B with input b interact with each other and B outputs z, we denote it as z ← 〈A(a), B(b)〉. When A has
oracle-access to O, we denote it as AO. When A has concurrent oracle-access to n oracles O1, . . . ,On, we denote
it as AOi|

n
i=1 . Here “concurrent” means that A accesses oracles in arbitrarily interleaved order of messages. We

denote a concatenation of a string a with a string b as a ‖ b. The expression a =? b returns a value 1 (True)
when a = b and 0 (False) otherwise. The expression a ∈? S returns a value 1 when a ∈ S and 0 otherwise. A
probability of an event E is denoted by Pr[E]. A probability of an event E on condition that events E1, . . . ,Em
occur in this order is denoted as Pr[E1, . . . ,Em : E].

2.1 Language, Proof of Knowledge and Σ-protocol [BG92,CDS94,Dam10]

Language Let R = {(x,w)} ⊂ {1, 0}∗ × {1, 0}∗ be a binary relation. We say that R is polynomially bounded if
there exists a polynomial poly such that |w| ≤ poly(|x|) for any (x,w) ∈ R. If (x,w) ∈ R then we call x a statement
and w a witness of x. We say that R is an NP relation if it is polynomially bounded and, in addition, there exists
a polynomial-time algorithm for deciding membership of (x,w) in R.

A language for a relation R is defined as:

L
def
= {x ∈ {1, 0}∗;∃w ∈ {1, 0}∗, (x,w) ∈ R}.

L is called a NP language if R is an NP relation. Hereafter, we assume that R is an NP relation.
We introduce a relation-function R(·, ·) associated with the relation R by:

R(·, ·) : {1, 0}∗ × {1, 0}∗ → {1, 0},
(x,w) 7→ 1 if (x,w) ∈ R, 0 otherwise.

Denote the set of witnesses each of which is a witness of a statement x by w(x)(= {w ∈ {0, 1}∗;R(x,w) = 1}).

Proof of Knowledge Informally, an interactive proof system [Bab85,GMR89] is a proof of knowledge system if
the knowledge being proved can be efficiently computed by using the prover as a subroutine.

A proof of knowledge system (PoK for short) Π = (P,V) on a relation R is a protocol with two interactive
PPT algorithms: P, a prover, and V, a verifier. P takes initial input (x,w) ∈ R and V takes initial input x. V
outputs 1 (accept) or 0 (reject) after at most a polynomial-number of moves of interaction and P and V satisfy
the following two requirements.
Completeness. For any statement x ∈ L and for any witness w such that (x,w) ∈ R, P with the witness w makes
V accept for the statement x with probability 1:

Pr[1← 〈P(x,w),V(x)〉] = 1.

Knowledge Soundness. There are a PPT algorithm KE called a knowledge extractor, a function κ : {1, 0}∗ → [1, 0]
called a knowledge error function and a constant c > 0 that satisfy the following: If there exists a PPT algorithm
A that satisfies p(x) := Pr[1← 〈A(x),V(x)〉] > κ(x), then KE(x) that has oracle-access to A(x) outputs a witness
w which satisfies (x,w) ∈ R within an expected number of steps bounded by: |x|c/(p(x)− κ(x)).

Witness-Indistinguishable Proof of Knowledge [FS90,CDS94] Informally, an interactive proof system
[Bab85,GMR89] is witness indistinguishable if the verifier cannot tell which witness w ∈ w(x) the prover is using.

A witness-indistinguishable proof of knowledge system (WIPoK for short) Π = (P,V) on a relation R is a proof
of knowledge system with the following requirement.
Witness-Indistinguishability . For any unbounded algorithm A, we have

Pr[(x,w0, w1)← A(1λ), 1← 〈P(x,w0),A〉]
=Pr[(x,w0, w1)← A(1λ), 1← 〈P(x,w1),A〉]

where
(
R(x,w0) = 1 ∧R(x,w1) = 1

)
∨
(
R(x,w0) = 0 ∧R(x,w1) = 0

)
holds.
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Σ-protocol [Cra96,Dam10] Let R be an NP relation. A Σ-protocol on a relation R is a public-coin 3-move
protocol of a proof of knowledge system Π = (P,V). P sends the first message called a commitment Cmt to V,
then V sends the second message that is a public random string called a challenge Cha to P, and then P answers
with the third message called a response Res to V. Then V applies a decision test on (x,Cmt,Cha,Res) to return
1 (accept) or 0 (reject). If V accepts, then the triple (Cmt,Cha,Res) is said to be an accepting conversation on
x. Here Cha is chosen uniformly at random from ChaSp(1λ) := {1, 0}l(λ) with l(·) being a super-log function.

A Σ-protocol is described by the following PPT algorithm Σ. Cmt ← Σ1(x,w): the process of generating
the first message Cmt according to the protocol Σ on input (x,w) ∈ R. Similarly we denote Cha ← Σ2(1λ),
Res← Σ3(x,w,Cmt,Cha) and b← Σvrfy(x,Cmt,Cha,Res).

Σ-protocol must possess the following three requirements.

Completeness. A prover P with a witness w can make V accept with probability 1.

Special Soundness. Any PPT algorithm P∗ without any witness w ∈ w(x) can respond to only one possible

challenge Cha. In other words, there is a PPT algorithm called a knowledge extractor, ΣKE, which, given a
statement x and using P∗ as a subroutine, can compute a witness w satisfying (x,w∗) ∈ R with at most a
negligible error probability, from two accepting conversations of the form (Cmt,Cha,Res) and (Cmt,Cha′,Res′)
with Cha 6= Cha′.

Honest-Verifier Zero-Knowledge. Given a statement x and a random challenge Cha← Σ2(1λ), we can produce in
polynomial-time, without knowing a witness w ∈ w(x), an accepting conversation (Cmt,Cha,Res) on x whose
distribution is the same as the real accepting conversation. In other words, there is a PPT algorithm called a
simulator, Σsim, such that (Cmt,Res)← Σsim(x,Cha).

As a zero-knowledge proof of knowledge system, we denote Σ as ZKPoK[w : x], where w is a witness whose
knowledge is to be proved by a prover P, and x is a statement for which the prover P and the verifier V have
conversation. Any Σ-protocol is actually known to be a protocol of a proof of knowledge system ([Dam10]).

We will need in this paper a property called the unique answer property [BS07] that for legitimately produced
commitment Cmt and challenge Cha, there exists one and only one response Res =: w̃ that is accepted by
a verifier. Known Σ-protocols such as the Schnorr protocol and the Guillou-Quisquater protocol [Sch89,BP02]
possess this property. For such a unique answer w̃ we consider a statement x̃ such that (x̃, w̃) ∈ R. Then, we
further assume that both a prover and a verifier can compute, in polynomial-time, such an x̃ from (x,Cmt,Cha).
We denote the PPT algorithm as Σstmtgen. That is;

Σstmtgen(x,Cmt,Cha) :

Compute x̃ s.t.
∃1w̃ s.t. [(Cmt,Cha,Res) is an accepting conversation on x ∧Res = w̃ ∧ (x̃, w̃) ∈ R]

Return x̃

Known Σ-protocols [Sch89,BP02] possess this statement generation property (see Section F).

The OR-proof [Dam10] Consider the following relation for a boolean predicate f(X1, X2) = X1 ∨X2.

ROR ={(x = (x0, x1), w = (w0, w1)) ∈ {1, 0}∗ × {1, 0}∗;
f(R(x0, w0), R(x1, w1)) = 1}.

The corresponding language is

LOR = {x ∈ {1, 0}∗;∃w, (x,w) ∈ ROR}.

Suppose that a Σ-protocol Σ on a relation R is given. Then we can construct the protocol ΣOR on a rela-
tion ROR as follows. For instance, suppose (x0, w0) ∈ R holds. P computes Cmt0 ← Σ1(x0, w0),Cha1 ← Σ2(1λ),
(Cmt1,Res1)← Σsim(x1,Cha1) and sends (Cmt0,Cmt1) to V. Then V sends Cha← Σ2(1λ) to P. Then, P com-
putes Cha0 := Cha⊕Cha1,Res0 ← Σ3(x0, w0,Cmt0,Cha0) answers to V with (Cha0,Cha1) and (Res0,Res1).
Here ⊕ denotes a bitwise exclusive-OR operation. Then both (Cmt0,Cha0,Res0) and
(Cmt1,Cha1,Res1) are accepting conversations on x and have the same distribution as real accepting conversa-
tions. This protocol ΣOR can be proved to be a Σ-protocol. We often call ΣOR the OR-proof. The OR-proof is
known to be witness-indistinguishable [CDS94].
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The Fiat-Shamir Transform [AABN02] Suppose that a cryptographic hash function with collision resistance,
Hashµ(·) : {1, 0}∗ → {1, 0}l(λ), is given. We fix the hash key µ hereafter. A Σ-protocol Σ on a relation R can
be transformed into non-interactive witness-indistinguishable proof of knowledge system (NIWIPoK for short)
[AABN02]. When a Σ-protocol Σ is an identification scheme, the resulting scheme is a digital signature scheme
[AABN02]. The transform is described as follows. (Here, in the case of a NIWIPoK, the message m is empty.) On
input the security parameter 1λ, the key-generation algorithm runs the instance generator InstanceR. it generates
a pair of a statement and a witness (x,w) ∈ R: (x,w) ← InstanceR(1λ). Then x is a public key and w is a
secret key. Given a message m ∈ {1, 0}∗, the signer execute: Cmt ← Σ1(x,w), Cha ← Hashµ(Cmt ‖ m),
Res ← Σ3(x,w,Cmt,Cha). Then σ := (Cmt,Res) is a signature on m. We denote this signing algorithm as
FS(Σ)sign(x,w,m) → (Cmt,Res) =: σ. On the other hand, the verifier runs: Cha ← Hashµ(Cmt ‖ m) and
returns b← Σvrfy(x,Cmt,Cha,Res). We denote this verification algorithm as FS(Σ)vrfy(x,m, σ)→ b.

The signature scheme FS(Σ) = (InstanceR(1λ),FS(Σ)sign,FS(Σ)vrfy) can be proved, in the random oracle
model, to be existentially unforgeable against chosen-message attacks if and only if the underlying Σ-protocol Σ is
secure against passive attacks as an identification scheme [AABN02]. More precisely, let qH denote the maximum
number of hash queries issued by a PPT adversary F on FS(Σ). Then, for any PPT F , there exists a PPT B
which satisfies the following inequality (neg(·) means a negligible function).

Adveuf-cma
FS(Σ),F (λ) ≤ qHAdvpa

Σ,B(λ) + neg(λ).

3 Our Construction of Witness-Indistinguishable Proof of Knowledge on
Monotone Predicates

In this section, we first construct a Σ-protocol Σf from a given Σ-protocol Σ and a monotone boolean predicate
f so that Σf is a protocol of WIPoK on the relation Rf .

3.1 Witness-Indistinguishable Proof of Knowledge on Monotone Predicates [CDS94,AAS14]

We revisit the notion of a 3-move public-coin honest-verifier zero-knowledge proof of knowledge system introduced
by Cramer, Damg̊ard and Schoenmakers [CDS94]. Then we restate the definition for the sake of concreteness.

LetR be a binary relation. Let f(Xi1 , . . . , Xia) be a boolean predicate over boolean variables U = {X1, . . . , Xu}.

Definition 1 (Cramer, Damg̊ard and Schoenmakers [CDS94], Our Rewritten Form) A relation Rf is
defined by:

Rf
def
= {(x = (xi1 , . . . , xia), w = (wi1 , . . . , wia)) ∈ {1, 0}∗ × {1, 0}∗;

f(R(xi1 , wi1), . . . , R(xia , wia)) = 1}.

Rf is a generalization of the relation ROR for the OR-proof [CDS94,Dam10], where f is a boolean predicate with
the single boolean connective OR: X1∨X2. Note that, if R is an NP relation, then Rf is also an NP relation under
the assumption that a, the arity of f , is bounded by a polynomial in λ. The corresponding language is

Lf
def
= {x ∈ {1, 0}∗;∃w, (x,w) ∈ Rf}.

In [CDS94], a 3-move public-coin honest-verifier zero-knowledge proof of knowledge system for the language
Lf was defined as a witness-indistinguishable proof system on any monotone predicate f satisfied by a set of
witnesses. Then, in [CDS94], a Σ-protocol of the WIPoK system on the relation Rf was studied at a high level by
using the notion of the dual access structure of the access structure determined by f .

3.2 Our Witness-Indistinguishable Proof of Knowledge on Monotone Predicates

We will provide a concrete procedure Σf of a Σ-protocol of WIPoK on the relation Rf . Σf is a 3-move protocol
between interactive PPT algorithms P and V on input a pair of a statement and a witness (x,w) for P, and x for
V, where (x := (xij )1≤j≤arity(f) and w := (wij )1≤j≤arity(f)) ∈ Rf . In our prover algorithm P, there are three PPT

subroutines Σeval
f , Σ1

f and Σ3
f . On the other hand, in our verifier algorithm V, there are two PPT subroutines

Σ2
f and Σvrfy

f . Moreover, Σvrfy
f has two subroutines VrfyCha and VrfyRes. Fig. 1 shows the construction of our

procedure Σf . (For the tree expressions of a boolean predicate f , see Appendix C.)
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P(x,w, f) : V(x, f):

Σeval
f (Tf , S)→ (vn)n

If vr(Tf ) 6= 1, then abort

else Char(Tf ) := ∗

Σ1
f (x,w, Tf , (vn)n,Char(Tf ))

→ ((Cmtl)l, (Chan)n, (Resl)l) (Cmtl)l
−→

Char(Tf ) := Cha Cha Cha← Σ2
f (1λ)

←−
Σ3
f (x,w, Tf , (vn)n,

(Cmtl)l, (Chan)n, (Resl)l) Σvrfy
f (x, Tf ,Cha,

→ ((Chan)n, (Resl)l) (Chan)n, (Resl)l (Cmtl)l, (Chan)n, (Resl)l)
−→ → b,Return b

Fig. 1. Our WIPoK Σf on the relation Rf .

Evaluation of Satisfiability The prover P begins with evaluation of whether and how S satisfies f by running
the evaluation algorithm Σeval

f . It labels each node of T with a value v = 1 (True) or 0 (False). For each leaf
l, we label l with vl = 1 if ρ(l) ∈ S and vl = 0 otherwise. (For the definition of the function ρ, see Appendix
C.) For each inner node n, we label n with vn = vnL ∧ vnR or vn = vnL ∨ vnL according to AND/OR evaluation
of two labels of its two children nL, nR. The computation is executed for every node from the root to each leaf,
recursively, in the following way.

Σeval
f (T , S) :

TL := Lsub(T ), TR := Rsub(T )

If r(T ) is an ∧ -node, then Return vr(T ) := (Σeval
f (TL, S) ∧Σeval

f (TR, S))

else if r(T ) is an ∨ -node, then Return vr(T ) := (Σeval
f (TL, S) ∨Σeval

f (TR, S))

else if r(T ) is a leaf, then Return vr(T ) := (ρ(r(T )) ∈? S)

Commitment P computes a commitment value for each leaf by running the algorithm Σ1
f described in Fig. 2.

Basically, Σ1
f runs for every node from the root to each leaf, recursively. As a result, Σ1

f generates for each leaf l

a value Cmtl; If vl = 1, then Cmtl is computed honestly according to Σ1. Else if vl = 0, then Cmtl is computed
in the simulated way according to Σsim. Other values, (Chan)n and (Resl)l), are needed for the simulation. Note
that the distinguished symbol ∗ is used to indicate an “honest computation”.

Σ1
f (x,w, T , (vn)n,Cha) :
TL := Lsub(T ), TR := Rsub(T )
If r(T ) is ∧-node, then Char(TL) := Cha,Char(TR) := Cha

Return(Char(TL),Σ
1
f (x,w, TL, (vn)n,Char(TL)),Char(TR),Σ

1
f (x,w, TR, (vn)n,Char(TR)))

else if r(T ) is ∨-node, then
If vr(TL) = 1 ∧ vr(TR) = 1, then Char(TL) := ∗, Char(TR) := ∗
else if vr(TL) = 1 ∧ vr(TR) = 0, then Char(TL) := ∗, Char(TR) ← Σ2(1λ)

else if vr(TL) = 0 ∧ vr(TR) = 1, then Char(TL) ← Σ2(1λ),Char(TR) := ∗
else if vr(TL) = 0 ∧ vr(TR) = 0, then Char(TL) ← Σ2(1λ),Char(TR) := Cha⊕Char(TL)

Return(Char(TL),Σ
1
f (x,w, TL, (vn)n,Char(TL)),Char(TR),Σ

1
f (x,w, TR, (vn)n,Char(TR)))

else if r(T ) is a leaf, then
If vr(T ) = 1, then Cmtr(T ) ← Σ1(xρ(r(T )), wρ(r(T ))),Resr(T ) := ∗
else if vr(T ) = 0, then (Cmtr(T ),Resr(T ))← Σsim(xρ(r(T )),Cha)
Return(Cmtr(T ),Resr(T ))

Fig. 2. The subroutine Σ1
f of our Σf .
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Challenge V chooses a challenge value (that is, a public coin) by Σ2.

Σ2
f (1λ) : Cha← Σ2(1λ),Return(Cha)

Response P computes a response value for each leaf by running the algorithm Σ3
f described in Fig. 3. Basically,

the algorithm Σ3
f runs for every node from the root to each leaf, recursively. As a result, Σ3

f generates values,
(Chat)t and (Resl)l). Note that the computations of all challenge values (Chat)t are completed (according to the
“division rule” described in Section 1.1).

Σ3
f (x,w, T , (vn)n, (Cmtl)l, (Chan)n, (Resl)l) :
TL := Lsub(T ), TR := Rsub(T )
If r(T ) is ∧-node, then Char(TL) := Char(T ),Char(TR) := Char(T )

Return(Char(TL),Σ
3
f (x,w, TL, (vn)n, (Cmtl)l, (Chan)n, (Resl)l),

Char(TR),Σ
3
f (x,w, TR, (vn)n, (Cmtl)l, (Chan)n, (Resl)l))

else if r(T ) is ∨-node, then

If vr(TL) = 1 ∧ vr(TR) = 1, then Char(TL) ← Σ2(1λ), Char(TR) := Char(T ) ⊕Char(TL)

else if vr(TL) = 1 ∧ vr(TR) = 0, then Char(TL) := Cha⊕Char(TR),Char(TR) := Char(TR)

else if vr(TL) = 0 ∧ vr(TR) = 1, then Char(TL) := Char(TL), Char(TR) := Char(T ) ⊕Char(TL)

else if vr(TL) = 0 ∧ vr(TR) = 0, then Char(TL) := Char(TL), Char(TR) := Char(TR)

Return(Char(TL),Σ
3
f (x,w, TL, (vn)n, (Cmtl)l, (Chan)n, (Resl)l),

Char(TR),Σ
3
f (x,w, TR, (vn)n, (Cmtl)l, (Chan)n, (Resl)l))

else if r(T ) is a leaf, then
If vr(T ) = 1, then Resr(T ) ← Σ3(xρ(r(T )), wρ(r(T )),Cmtr(T ),Char(T ))
else if vr(T ) = 0, then Resr(T ) ← Resr(T )

Return(Resr(T ))

Fig. 3. The subroutine Σ3
f of our Σf .

Verification V computes a decision by running from the root to each leaf, recursively, the following algorithm
Σvrfy
f .

Σvrfy
f (x, T ,Cha, (Cmtl)l, (Chan)n, (Resl)l) :

Return(VrfyCha(T ,Cha, (Chan)n) ∧VrfyRes(x, T , (Cmtl,Chal,Resl)l))

VrfyCha(T ,Cha, (Chan)n) :

TL := Lsub(T ), TR := Rsub(T )

If r(T ) is an ∧ -node

then Return ((Cha =? Char(TL)) ∧ (Cha =? Char(TR))

∧VrfyCha(TL,Char(TL), (Chan)n) ∧VrfyCha(TR,Char(TR), (Chan)n))

else if r(T ) is an ∨ -node,

then Return ((Cha =? Char(TL) ⊕Char(TR))

∧VrfyCha(TL,Char(TL), (Chan)n) ∧VrfyCha(TR,Char(TR), (Chan)n))

else if r(T ) is a leaf,

then Return (Cha ∈? ChaSp(1λ))

VrfyRes(x, T , (Cmtl,Chal,Resl)l) :

For l ∈ Leaf(T ) : If Σvrfy(xρ(l),Cmtl,Chal,Resl) = 0, then Return (0)

Return (1)

Now we have to check that Σf is certainly a Σ-protocol on the relation Rf .

Proposition 1 (Completeness) Completeness holds for our Σf .
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Proof. Suppose that vr(Tf ) = 1. We show that, for every node in Node(Tf ), either vn = 1 or Chan 6= ∗ holds after
executing Σ1

f . The proof is by induction on the height of Tf . The case of height 0 follows from vr(Tf ) = 1 and the
completeness of Σ. Suppose that the case of height k holds and consider the case of height k+ 1. The construction
of Σ1

f assures the case of height k + 1. �

Proposition 2 (Special Soundness) Special soundness holds for our Σf .

We can construct a knowledge extractor ΣKE
f from a knowledge extractor ΣKE of the underlying Σ-protocol Σ as

follows.

ΣKE
f (x, (Cmtl,Chal,Resl)l, (Cmtl,Cha′l,Res′l)l) :

For 1 ≤ j ≤ arity(f) : w∗ij := ∗
For l ∈ Leaf(Tf )

If Chal 6= Cha′l, then w∗ρ(l) ← ΣKE(xρ(l), (Cmtl,Chal,Resl), (Cmtl,Cha′l,Res′l))

else If w∗ρ(l) = ∗, then w∗ρ(l) ← {1, 0}
∗

Return (w∗ := (w∗ij )1≤j≤arity(f))

Then Lemma 1 assures the proposition.

Lemma 1 (Witness Extraction) The string w∗ output by ΣKE
f satisfies (x,w∗) ∈ Rf .

Proof. Induction on the number of all ∨-nodes in iNode(Tf ). First remark that Cha 6= Cha′.

Suppose that all nodes in iNode(Tf ) are ∧-nodes. Then the above claim follows immediately because Chal 6=
Cha′l holds for all leaves.

Suppose that the case of k ∨-nodes holds and consider the case of k + 1 ∨-nodes. Look at one of the lowest
height ∨-node and name the height and the node as h∗ and n∗, respectively. Then Chan∗ 6= Cha′n∗ because all
nodes with height less than h∗ are ∧-nodes. So at least one of children of n∗, say n∗L, satisfies Chan∗L 6= Cha′n∗L .
Divide the tree Tf into two subtrees by cutting the branch right above n∗, and the induction hypothesis assures
the claim. �

Proposition 3 (Honest-Verifier Zero-Knowledge) Honest-verifier zero-knowledge property holds for our Σf .

Proof. This is the immediate consequence of honest-verifier zero-knowledge property of Σ. That is, we can construct
a polynomial-time simulator Σsim

f which, on input (PK,Cha), outputs commitment and response message of Σf .
�

We summarize the above results into the following theorem and corollary.

Theorem 1 (Σf is a Σ-protocol) Our procedure Σf obtained from a Σ-protocol Σ on the relation R and a
boolean predicate f is a Σ-protocol on the relation Rf .

Theorem 2 (Σf is WIPoK) Our Σ-protocol Σf is a witness-indistinguishable proof of knowledge system on the
relation Rf .

Proof. For a fixed statement x and two witnesses w1 and w2 satisfying R(x,w1) = R(x,w2) = 1 or R(x,w1) =
R(x,w2) = 0, P(x,w) and V(x) of Σf generate transcripts ((Cmtl)l,Cha, (Chan)n, (Resl)l) that has the same
distribution. �

3.3 Our Non-interactive Witness-Indistinguishable Proof of Knowledge on Monotone Predicates

The Fiat-Shamir transform FS(·) can be applied to any Σ-protocol Σ ([FS86,AABN02]). Therefore, the non-
interactive version of our procedure Σf is obtained.

Theorem 3 (FS(Σf ) is NIWIPoK) Our FS(Σf ) is a non-interactive witness-indistinguishable proof of knowl-
edge system on the relation Rf . A knowledge extractor is constructed in the random oracle model.
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3.4 Discussion

As is mentioned in [CDS94], the Σ-protocol Σf can be considered as a proto-type of an attribute-based identi-
fication scheme. Also, the non-interactive version FS(Σf ) can be considered a proto-type of an attribute-based
signature scheme. That is, Σf and FS(Σf ) are ABID and ABS without collusion resistance about private secret
keys, respectively.

4 Our Attribute-Based Identification Scheme

In this section, we provide a verifier-policy attribute-based identification scheme (ABID) by combining our Σ-
protocol Σf in Section 3 with a credential bundle of the Fiat-Shamir signatures. Our credential bundle prevents
the collusion attacks about private secret keys, whereas it makes transcripts of interaction (between a fixed single
prover and more than one verifiers) linkable.

4.1 Our ABID

By using a credential-bundle (see Appendix A) as a witness of our WIPoK system Σf in Section 3, we obtain
a verifier-policy attribute-based identification scheme, ABID [AAHI13]. Our ABID is collusion resistant against
collecting private secret keys. Fig. 4 shows our construction: ABID = (ABID.Setup,ABID.KG,P,V).

ABID.Setup takes as input 1λ and U . It chooses a pair (xmst, wmst) at random from R = {(x,w)} by running
InstanceR(1λ), where |x| and |w| are bounded by a polynomial in λ. It also chooses a hash key µ at random from
the hash-key space Hashkeysp(λ). It returns a public key PK = (xmst,U , µ) and a master secret key MSK = (wmst).

ABID.Setup(1λ,U) :

(xmst, wmst)← InstanceR(1λ), µ ∈R Hashkeysp(λ)

PK := (xmst,U , µ),MSK := (wmst)

Return(PK,MSK)

ABID.KG takes as input PK,MSK, S. It chooses a PRF key k from the key space PRFkeysp(λ) at random and
a random string τ from {1, 0}λ at random. Then it applies the credential-bundle technique [MPR11] for each
message mi := (τ ‖ i), i ∈ S. Here we employ the Fiat-Shamir signing algorithm FS(Σ)sign (see 2.1). It returns
SKS .

ABID.KG(PK,MSK, S) :

k ∈R PRFkeysp(λ), τ ∈R {1, 0}λ

For i ∈ S :

mi := (τ ‖ i), ai ← Σ2(xmst, wmst)

ci ← Hashµ(ai ‖ mi), wi ← Σ3(xmst, wmst, ai, ci)

SKS := (k, τ, (ai, wi)i∈S),Return SKS .

P and V takes as input (PK,SKS , f) and (PK, f), respectively. Then P and V execute the following interaction.

First, P uses the following supplementary algorithm Supp and a statement-generator algorithm StmtGen.

Supp runs for j, 1 ≤ j ∈ arity(f), and generates simulated keys (aij , wij ) for ij /∈ S.

Supp(PK,SKS , f) :

For j = 1 to arity(f) :

If ij /∈ S, then

mij := (τ ‖ ij), cij ← PRF k(mij ‖ 0)

(aij , wij )← Σsim(xmst, cij ;PRF k(mij ‖ 1))

Return (aij , wij )1≤j≤arity(f)
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StmtGen generates, for each j, 1 ≤ j ∈ arity(f), a statement xij . Note that we employ here the algorithm
Σstmtgen which is associated with Σ, and whose existence is assured by our assumption (see Section 2.1).

StmtGen(PK, τ, (aij )1≤j≤arity(f)) :

For j = 1 to arity(f) :

mij := (τ ‖ ij), cij ← Hashµ(aij ‖ mij )

xij ← Σstmtgen(xmst, aij , cij )

Return (xij )1≤j≤arity(f)

Note that (xi, wi) ∈ R for i ∈ S but Pr[(xi, wi) ∈ R] = neg(λ) for i /∈ S.

The above procedures are needed to input a pair of statement and witness, (x = (xij )1≤j≤arity(f), w =
(wij )1≤j≤arity(f)), to Σ1

f , into the prover of our procedure Σf . Note here that (xij , wij ) ∈ R for any ij ∈ S.
On the other hand, (xij , wij ) /∈ R for any ij /∈ S, without a negligible probability, neg(λ). Note also that P has to
send a string τ and elements (aij )1≤j≤arity(f) to the verifier V.

Second, V runs StmtGen on input PK, τ and (aij )1≤j≤arity(f) to generate the statement x. Note that τ and
(aij )1≤j≤arity(f) can be sent as a part of the message on the first move.

Finally, P and V of our ABID execute the prover and the verifier of our procedure Σf , respectively. V returns
1 or 0 according to the return of the verifier of Σf .

ABID.Setup(1λ,U): ABID.KG(PK,MSK, S):

(xmst, wmst)← InstanceR(1λ) k ← PRFkeysp(λ), τ ← {1, 0}λ
µ← Hashkeysp(λ) For i ∈ S
PK := (xmst,U , µ),MSK := (wmst) mi := (τ ‖ i), ai ← Σ1(xmst, wmst)
Return(PK,MSK) ci ← Hashµ(ai ‖ mi), wi ← Σ3(xmst, wmst, ai, ci)

SKS := (k, τ, (ai, wi)i∈S)
Return SKS

P(PK, SKS , f): V(PK, f):
Supp(PK, SKS , f)→ (aij , wij )j
w := (wij )j
StmtGen(PK, τ, (aij )j)

→ (xij )j =: x

Σeval
f (Tf , S)→ (vn)n

If vr(Tf ) 6= 1, then abort

else Char(Tf ) := ∗

Σ1
f (x,w, Tf , (vn)n,Char(Tf ))

→ ((Cmtl)l, (Chan)n, (Resl)l) τ, (aij )j , (Cmtl)l StmtGen(PK, τ, (aij )j)
−→ → (xij )j =: x

Char(Tf ) := Cha Cha Cha← Σ2
f (1λ)

←−
Σ3
f (x,w, Tf , (vn)n,

(Cmtl)l, (Chan)n, (Resl)l) Σvrfy
f (x, Tf ,Cha,

→ ((Chan)n, (Resl)l) (Chan)n, (Resl)l (Cmtl)l, (Chan)n, (Resl)l)
−→ → b, Return b

Fig. 4. The scheme of our ABID.

4.2 Security of Our ABID

Theorem 4 (Concurrent Security) If the employed signature scheme FS(Σ) is existentially unforgeable against
chosen-message attacks, then our ABID is secure against concurrent attacks. More precisely, for any PPT algorithm
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A, there exists a PPT algorithm F which satisfies the following inequality (neg(·) means a negligible function).

Advca
ABID,A(λ,U) ≤ (Adveuf-cma

FS(Σ),F (λ))1/2 + neg(λ).

Note that FS(Σ) is only known to be secure in the random oracle model.
Proof. Employing any given adversary A as subroutine, we construct a signature forger F on FS(Σ) as follows.
F can answer to A’s key-extraction queries for a secret key SKS because F can query his signing oracle about
(mi := τ ‖ i; i ∈ S), where F chooses τ at random. F can simulate any concurrent prover with SKS which A
invokes because F can generate SKS in the above way. After the learning phase, A begins the impersonation phase.
F simulates a verifier with which A interacts as a prover. After a completion of a verification, F rewinds A to the
timing right after receiving a commitment. By running ΣKE

f , F obtains a witness w∗, a set of attributes S∗ and
a target access formula f∗ with f∗(S∗) = 1, Finally, F succeeds in making at least one valid signature (ai, wi) for
i ∈ S∗ due to f∗(S∗) = 1 and the special soundness. By the Reset Lemma [BP02], the advantage Advca

ABID,A(λ,U)

is reduced to Adveuf-cma
FS(Σ),F (λ) with a loss of exponent by 1/2. �

Corollary 1 (Passive Security) If the employed signature scheme FS(Σ) is existentially unforgeable against
chosen-message attacks, then our ABID is secure against passive attacks. More precisely, for any PPT algorithm
A, there exists a PPT algorithm F which satisfies the following inequality (neg(·) means a negligible function).

Advpa
ABID,A(λ,U) ≤ (Adveuf-cma

FS(Σ),F (λ))1/2 + neg(λ).

Proof. This is deduced by the observation that Advpa
ABID,A(λ,U) ≤ Advca

ABID,A(λ,U), which is from the definitions
of both attacks in Section D.1.

More on Reduction of Concurrent Security We mean by “a number theoretic problem” the discrete-
logarithm problem or the RSA-inverse problem ([BP02]). There exists the following (very loose) security reduction
to a number theoretic problem.

Advca
ABID,A(λ,U) ≤ q1/2H (Advnum.prob.

Grp,S (λ))1/4 + neg(λ). (1)

Here we denote qH as the maximum number of hash queries issued by forger F on FS(Σ) in the random oracle
model. This is because (as is in Section 2.1) we can reduce the advantage Adveuf-cma

FS(Σ),F (λ) to the advantage

Advpa
Σ,B(λ) of passive security of the underlying Σ-protocol Σ, in the random oracle model, with a loss factor qH .

Applying the Reset Lemma [BP02], we can reduce Advpa
Σ,B(λ) to the advantage Advnum.prob.

Grp,S (λ) of a PPT solver
S of a number theoretic problem, with a loss of exponent by 1/2.

5 Our Attribute-Based Signature Scheme

In this section, we provide an attribute-based signature scheme (ABS) by applying the Fiat-Shamir transform
(Section 2.1) to our ABID in Section 4. Our ABS is collusion resistant against collecting private secret keys, and
EUF-CMA secure in the random oracle model. We note that our ABS has attribute privacy only as one-time
signature because of its linkability.

5.1 Our ABS

By applying FS(·) to our ABID in Section 4.1, we obtain an ABS scheme, ABS. Fig. 5 shows our construction:
ABS = (ABS.Setup,ABS.KG,ABS.Sign,ABS.Vrfy).
ABS.Setup and ABS.KG are the same as ABID.Setup and ABID.KG, respectively.
ABS.Sign takes as input PK,SKS and (m, f). It runs Supp(PK,SKS , f), StmtGen and the prover of our
procedure Σf with a challenge string Cha obtained by hashing the string (x ‖ (Cmtl)l ‖ m). It returns a
signature

σ = (τ, (aij )j , (Cmtl)l, (Chan)n, (Resl)l).

ABS.Vrfy takes as input PK, (m, f) and σ. It utilizes StmtGen and Σvrfy
f to check validity of the pair (m, f)

and the signature σ under the public key PK.
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ABS.Setup(1λ,U): ABS.KG(PK,MSK, S):

(xmst, wmst)← InstanceR(1λ) k ← PRFkeysp(λ), τ ← {1, 0}λ
µ← Hashkeysp(λ) For i ∈ S
PK := (xmst,U , µ),MSK := (wmst) mi := (τ ‖ i), ai ← Σ1(xmst, wmst)
Return(PK,MSK) ci ← Hashµ(ai ‖ mi), wi ← Σ3(xmst, wmst, ai, ci)

SKS := (k, τ, (ai, wi)i∈S)
Return SKS

ABS.Sign(PK, SKS , (m, f)): ABS.Vrfy(PK, (m, f), σ := (τ, (aij )j ,
Supp(PK, SKS , f)→ (aij , wij )j (Cmtl)l, (Chan)n, (Resl)l)) :
w := (wij )j
StmtGen(PK, τ, (aij )j) StmtGen(PK, τ, (aij )j)

→ (xij )j =: x → (xij )j =: x

Σeval
f (Tf , S)→ (vn)n Cha← Hashµ(x ‖ (Cmtl)l ‖ m)

If vr(Tf ) 6= 1, then abort

else Char(Tf ) := ∗ Σvrfy
f (x, Tf ,Cha,

(Cmtl)l, (Chan)n, (Resl)l)
Σ1
f (x,w, Tf , (vn)n,Char(Tf )) → b, Return b

→ ((Cmtl)l, (Chan)n, (Resl)l)

Cha← Hashµ(x ‖ (Cmtl)l ‖ m)
Char(Tf ) := Cha

Σ3
f (x,w, Tf , (vn)n,

(Cmtl)l, (Chan)n, (Resl)l)
→ ((Chan)n, (Resl)l)

Return σ := (τ, (aij )j ,
(Cmtl)l, (Chan)n, (Resl)l)

Fig. 5. The scheme of our ABS.
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5.2 Security of Our ABS

Applying the standard technique in the work of Abdalla et al. [AABN02] shows that the security of our ABS is
equivalent to the security of an attribute-based identification scheme, ABID, against passive attacks, where our
ABID is obtained by combining our Σ-protocol Σf with the credential-bundle scheme of the Fiat-Shamir signature
FS(Σ).

Theorem 5 (Unforgeability) Our attribute-based signature scheme ABS is existentially unforgeable against chosen-
message attacks in the random oracle model, based on the passive security of ABID. More precisely, let qH denote
the maximum number of hash queries issued by a forger F on ABS. Then, for any PPT algorithm F , there exists
a PPT algorithm B which satisfies the following inequality (neg(·) means a negligible function).

Adveuf-cma
ABS,F (λ,U) ≤ qHAdvpa

ABID,B(λ,U) + neg(λ). (2)

Proof. First, our ABS is considered to be obtained by applying the Fiat-Shamir transform to our ABID. This is
because, in the first message of our ABID, the tag τ and the elements (aij )1≤j≤arity(f) are fixed even when the
3-move protocol is repeated between the prover P with a secret key SKS and the verifier V with an access structure
f .

As is discussed in Section 2.1, we can reduce the advantage Adveuf-cma
ABS,F (λ,U) to the advantage Advpa

ABID,B(λ,U)
of passive security of the underlying ABID, in the random oracle model, with a loss factor qH . This is because B
can simulate key-extraction queries of F perfectly with the aid of the key-generation oracle of B. �

More on Reduction of Unforgeability Let qH denote the maximum number of hash queries issued by a forger
F on ABS and a forger F ′ on FS(Σ). Combining the inequality (2) with the inequalities (4) and (1) in Section D
and Section 4, we obtain the following (very loose) security reduction of advantages.

Adveuf-cma
ABS,F (λ,U) ≤ q3/2H (Advnum.prob.

Grp,S (λ))1/4 + neg(λ).

Attribute Privacy Our ABS does not have attribute privacy defined in Section E.2 because of its linkability; that
is, the constant components τ, (aij )j make two signatures linkable. Hence, our ABS merely has attribute privacy
as a one-time signature.

6 Attribute-Based Two-Tier Signature: Syntax

In this section, we define a syntax of attribute-based two-tier signature scheme (ABTTS) [AAS15] according to the
syntax of the two-tier signature scheme [BS07]. Then, we define a chosen-message attack on ABTTS by which an
adversary makes an existential forgery, and define the existential unforgeability security against chosen-message
attacks (EUF-CMA) .

An attribute-based two-tier signature scheme, ABTTS, consists of five PPT algorithms: ABTTS =
(ABTTS.Setup, ABTTS.PKG, ABTTS.SKG, ABTTS.Sign, ABTTS.Vrfy).
ABTTS.Setup(1λ,U) → (MSK,PK). This PPT algorithm for setting up takes as input the security parameter
1λ and the attribute universe U . It returns a master secret key MSK and a public key PK.
ABTTS.PKG(MSK,PK, S)→ SKS . This PPT algorithm for primary-key generation takes as input the master
secret key MSK, the public key PK and an attribute set S ⊂ U . It returns a secret key SKS that corresponds to
S.
ABTTS.SKG(MSK,PK,SKS , f)→ (SSKS,f ,SPKf ). This PPT algorithm for secondary-key generation takes as
input the master secret key MSK, the public key PK, a secret key SKS and an access formula f . It returns a pair
(SSKS,f ,SPKf ) of a secondary secret key and a secondary public key.
ABTTS.Sign(PK,SKS ,SSKS,f ,SPKf , (m, f)) → σ. This PPT algorithm for signing takes as input the public
key PK, a secret key SKS , a secondary secret key SSKS,f , a secondary public key SPKf and a pair (m, f) of a
message m ∈ {1, 0}∗ and an access formula f . It returns a signature σ.
ABTTS.Vrfy(PK,SPKf , (m, f), σ) → 1/0. This deterministic polynomial-time algorithm for verification takes
as input the public key PK, a secondary public key SPKf , a pair (m, f) of a message and an access formula and
a signature σ. It returns a decision 1 or 0. When it is 1, we say that ((m, f), σ) is valid. When it is 0, we say that
((m, f), σ) is invalid.
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We demand correctness of ABTTS that, for any λ, any U , any S ⊂ U and any (m, f) such that f(S) = 1,
Pr[(MSK,PK)← ABTTS.Setup(1λ,U), SKS ← ABTTS.PKG(MSK,PK, S), (SSKS,f ,SPKf )
← ABTTS.SKG(MSK,PK,SKS , f), σ ← ABTTS.Sign(SKS ,PK,SSKS,f , SPKf , (m, f)),
b← ABS.Vrfy(PK,SPKf , (m, f), σ) : b = 1] = 1.

6.1 Chosen-Message Attack on ABTTS and Security Definition

A PPT adversary F tries to make a forgery ((m∗, f∗), σ∗) that consists of a message, a target access formula and a
signature. The following experiment Expeuf-cma

ABTTS,F (1λ,U) of a forger F defines the chosen-message attack on ABTTS
making an existential forgery.

Expeuf-cma
ABTTS,F (1λ,U) :

(PK,MSK)← ABTTS.Setup(1λ,U)

((m∗, f∗), σ∗)← FPKG(MSK,PK,·),SPKG(·,·),SIGN (PK,SK·,SSKS,f ,SPKf (·,·))(PK)

If ABTTS.Vrfy(PK,SPKf , (m
∗, f∗), σ∗) = 1

then Return Win else Return Lose

In the experiment, F issues key-extraction queries to its oracle PKG, secondary public key queries to its ora-
cle SPKG and signing queries to its oracle SIGN . Giving an attribute set Si, F queries PKG(MSK,PK, ·) for a
secret key SKSi . Giving an attribute set S and an access formula f , F queries SPKG(·, ·) for a secondary pub-
lic key SPKf . Giving an attribute set Sj and a pair (mj , fj) of a message and an access formula, F queries
SIGN (PK,SK·,SSK·,·,SPK·, (·, ·)) for a valid signature σ when f(Sj) = 1. As a rule of the two-tier signature, each
published secondary public key SPKf can be used only once to obtain a signature from SIGN [BS07].

f∗ is called a target access formula of F . Here we consider the adaptive target case in the sense that F is
allowed to choose f∗ after seeing PK and issuing three queries. Two restrictions are imposed on F concerning f∗.
For all key-extraction queries, f∗(Si) = 0. For all signing queries, (m∗, f∗) was never queried and f∗(Sj) = 0. The
numbers of key-extraction queries and signing queries are at most qk and qs, respectively, which are bounded by
a polynomial in λ. The advantage of F over ABTTS is defined as

Adveuf-cma
ABTTS,F (λ,U)

def
= Pr[Expeuf-cma

ABTTS,F (1λ,U) returns Win].

Definition 2 (EUF-CMA of ABTTS) ABTTS is called existentially unforgeable against chosen-message at-

tacks if, for any PPT F and any U , Adveuf-cma
ABTTS,F (λ,U) is negligible in λ.

Then we define attribute privacy of ABTTS.

Definition 3 (Attribute Privacy of ABTTS) ABTTS is called to have attribute privacy if, for all (PK,MSK)
← ABTTS.Setup(1λ,U), for all message m, for all attribute sets S1, S2, for all primary secret keys SKS1 ←
ABTTS.PKG(PK,MSK, S1), SKS2 ← ABTTS.PKG(PK,MSK, S2), for all secondary secret keys (SSKS1,f ,
SPKf )← ABTTS.SKG(MSK,PK,SKS1

, f), (SSKS2,f , SPKf )← ABTTS.SKG(MSK,PK,SKS2
, f) and for all

access formula f such that [f(S1) = 1 ∧ f(S2) = 1] ∨ [f(S1) 6= 1 ∧ f(S2) 6= 1], two distributions
σ1 ← ABTTS.Sign(PK,SKS1

,SSKS1,f ,SPKf , (m, f)) and
σ2 ← ABTTS.Sign(PK,SKS2

,SSKS2,f ,SPKf , (m, f)) are identical.

7 Our Attribute-Based Two-Tier Signature Scheme

In this section, we provide an attribute-based two-tier signature scheme (ABTTS) [AAS15] by applying the two-
tier framework in Section 6 to our ABID in Section 4.1. Collusion resistance against collecting private secret keys is
assured by the issuer of second secret / public keys. Attribute privacy is assured by the witness-indistinguishability
of the underlying procedure Σf .

7.1 Our ABTTS

By applying the two-tier framework in Section 6 to our ABID in Section 4.1, we obtain the ABTTS scheme.
Our ABTTS enjoys collusion resistance, EUF-CMA security and attribute privacy. The critical point is that the
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secondary key generator ABTTS.SKG can issue a legitimate statement x for the procedure Σf . Hence our
ABTTS can avoid collusion attacks on secret keys.

Fig. 6 shows our construction: ABTTS = (ABTTS.Setup,ABTTS.PKG,ABTTS.SKG,ABTTS.Sign,
ABTTS.Vrfy).
ABTTS.Setup and ABTTS.PKG are the same as ABID.Setup and ABID.KG in Section 4, respectively.
ABTTS.SKG(MSK,PK,SKS , f) takes as input MSK, PK, SKS and f . It uses a supplementary algorithm Supp
and a statement-generator algorithm StmtGen to generate a statement x and a corresponding witness w. The
usage is the same as in our ABID in Section 4. Then, it runs the prover P according to Σf to generate the first
message as

((Cmtl)l, st)← Σ1
f (x,w, Tf , (vn)n,Char(Tf )).

Then it puts SSKS,f := (w, (Cmtl)l ‖ st) and SPKf := (x, (Cmtl)l). Here st denotes the inner state of P. It
returns SSKS,f and SPKf . Note that the secondary public key SPKf should be issued by a key-issuing center
[BS07].
ABTTS.Sign(PK,SKS ,SSKS,f ,SPKf , (m, f)) → σ. Given PK, SKS , the secondary secret key SSKS,f , the sec-
ondary public key SPKf , and a pair (m, f) of a message and an access formula f , it computes a challenge Cha
by hashing the string (Cmtl)l ‖ m. Then, it runs the prover P according to Σf as

((Chan)n, (Resl)l)← Σ3
f (x,w, Tf , (vn)n, (Cmtl)l, (Chan)n, (Resl)l; st)

Finally, it returns a signature

σ := ((Chan)n, (Resl)l).

ABTTS.Vrfy(PK,SPKf , (m, f), σ) → 1/0. Given PK, the secondary public key SPKf , a pair (m, f) and a
signature σ, it computes a challenge Cha by hashing the string (Cmtl)l ‖ m. Then, it runs the verifier V according
to Σf as

1 or 0← Σvrfy
f (x, Tf ,Cha, (Cmtl)l, (Chan)n, (Resl)l).

It returns 1 or 0 accordingly.

7.2 Security of Our ABTTS

The security of our ABTTS is derived from the security of the underlying attribute-based identification scheme,
ABID, against concurrent attacks [BS07].

Theorem 6 (Unforgeability) Our attribute-based two-tier signature scheme ABTTS is existentially unforgeable
against chosen-message attacks in the standard model, based on the concurrent security of ABID. More precisely,
let qH denote the maximum number of hash queries issued by a forger F on ABTTS. Then, for any PPT algorithm
F , there exists a PPT algorithm B which satisfies the following inequality (neg(·) means a negligible function).

Adveuf-cma
ABTTS,F (λ,U) ≤ qHAdvca

ABID,B(λ,U) + neg(λ). (3)

Proof. We just note that the same argument in [BS07] is applied to our ABTTS. �

Theorem 7 (Attribute Privacy) Our attribute-based two-tier signature scheme ABTTS has attribute privacy.

Proof. A valid signature of ABTTS, σ := ((Chan)n, (Resl)l), is a part of a valid proof of Σf . According to the
witness-indistinguishability of Σf , the attribute privacy holds. �

8 Conclusions

We provided a concrete procedure Σf of a Σ-protocol of the WIPoK system on monotone predicates. Our Σf

can be considered as a proto-type of an attribute-based identification scheme, and also, FS(Σf ) can be considered
a proto-type of an attribute-based signature scheme [CDS94], without collusion resistance on private secret keys.
Then we provided a generic construction of an attribute-based identification scheme ABID, an attribute-based
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ABTTS.Setup(1λ,U): ABTTS.PKG(PK,MSK, S):

(xmst, wmst)← InstanceR(1λ) k ← PRFkeysp(λ), τ ← {1, 0}λ
µ← Hashkeysp(λ) For i ∈ S
PK := (xmst,U , µ),MSK := (wmst) mi := (τ ‖ i), ai ← Σ1(xmst, wmst)
Return(PK,MSK) ci ← Hashµ(ai ‖ mi), wi ← Σ3(xmst, wmst, ai, ci)

SKS := (k, τ, (ai, wi)i∈S)
Return SKS

ABTTS.SKG(MSK,PK, SKS , f)→ (SSKS,f , SPKf ):
Supp(PK,SKS , f)→ (aij , wij )j
w := (wij )j
StmtGen(PK, τ, (aij )j)

→ (xij )j =: x

Σeval
f (Tf , S)→ (vn)n

If vr(Tf ) 6= 1, then abort

else Char(Tf ) := ∗

Σ1
f (x,w, Tf , (vn)n,Char(Tf ))

→ ((Cmtl)l, (Chan)n, (Resl)l; st)

SSKS,f := (w, (Cmtl)l ‖ st)
SPKf := (x, (Cmtl)l)
Return(SSKS,f , SPKf )

ABTTS.Sign(PK,SKS , SSKS,f , SPKf , (m, f)): ABTTS.Vrfy(PK, SPKf , (m, f),
Cha← Hashµ((Cmtl)l ‖ m) σ := ((Chan)n, (Resl)l)) :
Char(Tf ) := Cha

Cha← Hashµ((Cmtl)l ‖ m)
Σ3
f (x,w, Tf , (vn)n,

(Cmtl)l, (Chan)n, (Resl)l; st) Σvrfy
f (x, Tf ,Cha,

→ ((Chan)n, (Resl)l) (Cmtl)l, (Chan)n, (Resl)l)
Return σ := ((Chan)n, (Resl)l) → b, Return b

Fig. 6. The scheme of our ABTTS.
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signature scheme ABS, and an attribute-based two-tier signature scheme ABTTS. It must be noted that our ABS

does not possess attribute-privacy and our ABTTS assumes the secondary public key in the two-tier framework
[BS07].

Our procedure Σf of WIPoK on any monotone predicate serves as a building block of the Σ-protocol of the
ABS scheme [Her14] that is pairing-free.
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A Credential Bundle Scheme [MPR11]

A credential bundle scheme [MPR11] CB is an extended notion of a digital signature scheme. It consists of three
PPTs: CB = (CB.KG,CB.Sign,CB.Vrfy).
CB.KG(1λ)→ (PK,SK). Given 1λ as input, it returns a public key PK and a secret key SK.
CB.Sign(PK,SK, (mi)

n
i=1)→ (τ, (σi)

n
i=1). Given PK, SK and messages (mi)

n
i=1, it returns a tag τ and signatures

(σi)
n
i=1. n is bounded by a polynomial in λ.

CB.Vrfy(PK, (mi)
n
i=1, (τ, (σi)

n
i=1))→ 1/0. Given PK, messages (mi)

n
i=1, a tag τ and signatures (σi)

n
i=1, it returns

1 or 0.
A PPT adversary F tries to make a forgery ((m∗i )

n∗

i=1, (τ
∗, (σ∗i )n

∗

i=1)). Here τ∗ is called a target tag. An existential
forgery by a chosen-message attack is defined by:

Expeuf-cma
CB,F (1λ)

(PK,SK)← CB.KG(1λ), ((m∗i )
n∗

i=1, (τ
∗, (σ∗i )n

∗

i=1))← FSBSIGN (PK)

If CB.Vrfy(PK, (m∗i )
n∗

i=1, (τ
∗, (σ∗i )n

∗

i=1)) = 1

then Return Win else Return Lose

Giving a vector of messages (mi)
n
i=1, F queries SBSIGN (PK,SK, ·) for a valid credential bundle (τ, (σi)

n
i=1). τ∗

should be different from any queried tag τ , or, whenever τ∗ is equal to a queried tag τ , it should hold that
{m∗i }n

∗

i=1 6⊆ {mi}ni=1 for any queried (mi)
n
i=1. The advantage of F over CB in the experiment of existential forgery

by chosen-message attack is defined as Adveuf-cma
CB,F (λ)

def
= Pr[Expeuf-cma

CB,F (1λ) returns Win].

Definition 4 CB is called existentially unforgeable against chosen-message attack if, for any PPT F , Adveuf-cma
CB,F (λ)

is negligible in λ.

B Pseudorandom Function Family [KL07]

A pseudorandom function family, {PRF k}k∈PRFkeysp(λ), is a function family in which each function PRF k :
{1, 0}∗ → {1, 0}∗ is an efficiently-computable function that looks random to any polynomial-time distinguisher,
where k is called a key and PRFkeysp(λ) is called a key space. (See more details in, for example, the book [KL07].)
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C Access Structure [GPSW06]

Let U = {1, . . . , u} be an attribute universe. We must distinguish two cases: the case that U is small (that is,
|U| = u is bounded by a polynomial in λ) and the case that U is large (that is, u is not necessarily bounded). We
assume the small case in this paper.

Let f = f(Xi1 , . . . , Xia) be a boolean predicate over boolean variables U = {X1, . . . , Xu}. That is, variables
Xi1 , . . . , Xia are connected by boolean connectives; AND-gate (∧) and OR-gate (∨). For example, f = Xi1 ∧
((Xi2 ∧Xi3) ∨Xi4) for some i1, i2, i3, i4, 1 ≤ i1 < i2 < i3 < i4 ≤ u. Note that there is a bijective map between
boolean variables and attributes:

ψ : U → U , ψ(Xi)
def
= i.

For f(Xi1 , . . . , Xia), we denote the set of indices (that is, attributes) {i1, . . . , ia} by Att(f). We note the arity of
f as arity(f). Hereafter we use the symbol ij to mean the following:

ij
def
= the index i of a boolean variable that is the j-th argument of f.

Suppose that we are given an access structure as a boolean predicate f . For S ∈ 2U , we evaluate the boolean
value of f at S as follows:

f(S)
def
= f

(
Xij ← [ψ(Xij ) ∈? S]; j = 1, . . . , arity(f)

)
∈ {1, 0}.

Under this definition, a boolean predicate f can be seen as a map: f : 2U → {1, 0}. We call a boolean predicate f
with this map an access formula over U . In this paper, we assume that no NOT-gate (¬) appears in f . In other
words, we only consider a monotone access formula f .6

C.1 Access Tree

A monotone access formula f can be represented by a finite binary tree Tf . Each inner node represents a boolean
connective, ∧-gate or ∨-gate, in f . Each leaf corresponds to a term Xi (not a variable Xi) in f in one-to-one way.
For a finite binary tree tree T , we denote the set of all nodes, the root node, the set of all leaves, the set of all
inner nodes (that is, all nodes excluding leaves) and the set of all tree-nodes (that is, all nodes excluding the root
node) as Node(T ), r(T ), Leaf(T ), iNode(T ) and tNode(T ), respectively. Then an attribute map ρ(·) is defined as:

ρ : Leaf(T )→ U , ρ(l)
def
= (the attribute i that corresponds to l through ψ).

If ρ is not injective, then we call the case multi-use of attributes.
If T is of height greater than 0, T has two subtrees whose root nodes are two children of r(T ). We denote the

two subtrees by Lsub(T ) and Rsub(T ), which mean the left subtree and the right subtree, respectively.

D Attribute-Based Identification Scheme [AAHI13]

An attribute-based identification scheme, ABID, consists of four PPT algorithms [AAHI13]: ABID =
(ABID.Setup,ABID.KG,P,V).
ABID.Setup(1λ,U) → (PK,MSK). This PPT algorithm for setting up takes as input the security parameter
1λ and an attribute universe U . It returns a public key PK and a master secret key MSK.
ABID.KG(PK,MSK, S)→ SKS . This PPT algorithm for key-generation takes as input the public key PK, the
master secret key MSK and an attribute set S ⊂ U . It returns an id-key SKS corresponding to S.
P(PK,SKS , f) and V(PK, f). These interactive PPT algorithms are called a prover and a verifier, respectively.
P takes as input the public key PK, the secret key SKS and an access formula f . Here the secret key SKS is
given to P by an authority that runs ABID.KG(PK,MSK, S). V takes as input the public key PK and an access
formula f . P and V interact with each other for at most a polynomial-number of moves. Then, V returns its
decision 1 or 0. When it is 1, we say that V accepts P for f . When it is 0, we say that V rejects P for f .

We demand correctness of ABID that, for any λ, and if f(S) = 1, Pr[(PK,MSK) ← ABID.Setup(1λ,U),
SKS ← ABID.KG(PK,MSK, S), b← 〈P(PK,SKS),V(PK, f)〉 : b = 1] = 1.

6 This limitation can be removed by adding negation attributes to U for each attribute in the original U though the size of
the attribute universe |U| doubles.
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D.1 Passive and Concurrent Attacks on ABID and Security Definition

Informally speaking, an adversary A’s objective is impersonation. A tries to make a verifier V accept with an
access formula f∗.

The following experiment Exppa
ABID,A(1λ,U) of an adversary A defines the game of passive attack on ABID.

Exppa
ABID,A(1λ,U) :

(PK,MSK)← ABID.Setup(1λ,U)

(f∗, st)← AKG(PK,MSK,·),Transc(P(PK,SK·,·),V(PK,·))(PK,U)

b← 〈A(st),V(PK, f∗)〉
If b = 1 then Return Win else Return Lose

In the experiment, A issues key-extraction queries to its key-generation oracle KG and transcript queries to its
transcript oracle Transc. In a transcript query, giving a pair (Sj , fj) of an attribute set and an access formula,
A queries Transc(P(PK,SK·, ·),V(PK, ·)) for a whole transcript of messages interacted between P(PK,SKSj , fj)
and V(PK, fj).

The advantage of A over ABID in the game of a passive attack is defined as

Advpa
ABID,A(λ,U)

def
= Pr[Exppa

ABID,A(1λ,U) returns Win].

ABID is called secure against passive attacks if, for any PPT A and for any U , Advpa
ABID,A(λ,U) is negligible in λ.

The following experiment Expca
ABID,A(1λ,U) of an adversary A defines the game of concurrent attack on ABID.

Expca
ABID,A(1λ,U) :

(PK,MSK)← ABID.Setup(1λ,U)

(f∗, st)← AKG(PK,MSK,·),Pj(PK,SK·,·)|
qp
j=1(PK,U)

b← 〈A(st),V(PK, f∗)〉
If b = 1 then Return Win else Return Lose

In the experiment, A issues key-extraction queries to its key-generation oracle KG. Giving an attribute set Si, A
queries KG(PK,MSK, ·) for the secret key SKSi . In addition,A invokes provers Pj(PK,SK·, ·), j = 1, . . . , q′p, . . . , qp,
by giving a pair (Sj , fj) of an attribute set and an access formula. Acting as a verifier with an access formula fj ,
A interacts with each Pj(PK,SKSj , fj) concurrently.

The access formula f∗ declared by A is called a target access formula. Here we consider the adaptive target
in the sense that A is allowed to choose f∗ after seeing PK, issuing key-extraction queries and interacting with
of provers. Two restrictions are imposed on A concerning f∗. For all key-extraction queries, f∗(Si) = 0. For all
interactions with each prover, f∗(Sj) = 0. The number of key-extraction queries and the number of invoked provers
are at most qk and qp in total, respectively, which are bounded by a polynomial in λ.

The advantage of A over ABID in the game of a concurrent attack is defined as

Advca
ABID,A(λ,U)

def
= Pr[Expca

ABID,A(1λ,U) returns Win].

ABID is called secure against concurrent attacks if, for any PPT A and for any U , Advca
ABID,A(λ,U) is negligible in

λ.
The concurrent security means the passive security; for any PPT A, there exists a PPT B that satisfies the

following inequality.

Advpa
ABID,A(λ,U) ≤ Advca

ABID,B(λ,U). (4)

E Attribute-Based Signature Scheme [MPR11,OT11]

An attribute-based signature scheme, ABS, consists of four PPT algorithms [OT11]: ABS =
(ABS.Setup,ABS.KG,ABS.Sign,ABS.Vrfy).
ABS.Setup(1λ,U)→ (PK,MSK). This PPT algorithm for setting up takes as input the security parameter 1λ

and an attribute universe U . It returns a public key PK and a master secret key MSK.
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ABS.KG(PK,MSK, S) → SKS . This PPT algorithm for key-generation takes as input the public key PK, the
master secret key MSK and an attribute set S ⊂ U . It returns a signing key SKS corresponding to S.

ABS.Sign(PK,SKS , (m, f)) → σ. This PPT algorithm for signing takes as input a public key PK, a private
secret key SKS corresponding to an attribute set S, a pair (m, f) of a message ∈ {1, 0}∗ and an access formula. It
returns a signature σ.

ABS.Vrfy(PK, (m, f), σ) → 1/0. This deterministic polynomial-time algorithm takes as input a public key PK,
a pair (m, f) of a message and an access formula, and a signature σ. It returns a decision 1 or 0. When it is 1, we
say that ((m, f), σ) is valid. When it is 0, we say that ((m, f), σ) is invalid.

We demand correctness of ABS that, for any λ, any U , any S ⊂ U and any (m, f) such that f(S) = 1,
Pr[(PK,MSK) ← ABS.Setup(1λ,U),SKS ← ABS.KG(PK,MSK, S), σ ← ABS.Sign(PK,SKS , (m, f)), b ←
ABS.Vrfy(PK, (m, f), σ) : b = 1] = 1.

E.1 Chosen-Message Attack on ABS and Security Definition

Informally speaking, an adversary F ’s objective is to make an existential forgery. F tries to make a forgery
((m∗, f∗), σ∗) that consists of a message, a target access structure and a signature. The following experiment
Expeuf-cma

ABS,F (1λ,U) of a forger F defines the chosen-message attack on ABS to make an existential forgery.

Expeuf-cma
ABS,F (1λ,U) :

(PK,MSK)← ABS.Setup(1λ,U)

((m∗, f∗), σ∗)← FKG(PK,MSK,·),SIGN (PK,SK·,(·,·))(PK)

If ABS.Vrfy(PK, (m∗, f∗), σ∗) = 1 then Return Win

else Return Lose

In the experiment, F issues key-extraction queries to its key-generation oracle KG and signing queries to its signing
oracle SIGN . Giving an attribute set Si, F queries KG(PK,MSK, ·) for the secret key SKSi . In addition, giving
an attribute set Sj and a pair (m, f) of a message and an access formula, F queries SIGN (PK,SK·, (·, ·)) for a
signature σ that satisfies ABS.Vrfy(PK, (m, f), σ) = 1 when f(Sj) = 1.

The access formula f∗ declared by F is called a target access formula. Here we consider the adaptive target
in the sense that F is allowed to choose f∗ after seeing PK and issuing some key-extraction queries and signing
queries. Two restrictions are imposed on F concerning f∗. For all key-extraction queries, f∗(Si) = 0. For all
signing queries, (m∗, f∗) was never queried and f∗(Sj) = 0. The number of key-extraction queries and the number
of signing queries are at most qk and qs in total, respectively, which are bounded by a polynomial in λ.

The advantage of F over ABS in the game of chosen-message attack to make existential forgery is defined as

Adveuf-cma
ABS,F (λ,U)

def
= Pr[Expeuf-cma

ABS,F (1λ,U) returns Win].

ABS is called existentially unforgeable against chosen-message attacks if, for any PPT F and for any U ,
Adveuf-cma

ABS,F (λ,U) is negligible in λ.

E.2 Attribute Privacy of ABS

Roughly speaking, ABS is called to have attribute privacy if any unconditional cheating verifier cannot distinguish
two distributions of signatures each of which is generated by different attribute set. The following definition is due
to Maji et al. and Okamoto-Takashima.

Definition 5 (Attribute Privacy (Perfect Privacy [MPR11,OT11])) ABS is called to have attribute pri-
vacy if, for all (PK,MSK) ← ABS.Setup(1λ,U), for all message m, for all attribute sets S1 and S2, for all
signing keys SKS1 ← ABS.KG(PK,MSK, S1) and SKS2 ← ABS.KG(PK,MSK, S2) and for all access formula f
such that f(S1) = 1 and f(S2) = 1 or f(S1) 6= 1 and f(S2) 6= 1, two distributions ABS.Sign(PK,SKS1

, (m, f))
and
ABS.Sign(PK,SKS2

, (m, f)) are identical.
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F Instantiations Using Fiat-Shamir Credential-Bundle as Witness

In this section, we provide instantiations of our procedure Σf and ABID using the Fiat-Shamir signatures [FS86]
as a witness. We give two instantiations in the RSA setting and the discrete-logarithm setting.

F.1 Our ABID in RSA Using FS Credential-Bundle as Witness

An RSA modulus of bit length λ is denoted by N . An RSA exponent of odd prime is denoted by e.
ABID.Setup takes as input (1λ,U). Let Rλ := {(β, α) ∈ ZN × ZN ;β = αe}. Then InstanceR(1λ) chooses an
element (β, α) ∈ Rλ at random. ABID.Setup returns a public key and a master secret key: PK = ((N, e, β),U , µ),
MSK = α.
ABID.KG returns SKS with signatures, for i ∈ S, σ = (ai = rei , wi = riα

ci). Here we use a key k obtained by
k ← Hashµ(α ‖ τ), put mi = τ ‖ i, and ri ∈ ZN is chosen at random according to a random tape: PRF k(mi), and
ci is obtained by ci ← Hashµ(ai ‖ mi). Σstmtgen(β, ai, ci) is an algorithm that computes xi := aiβ

ci ∈ ZN .
The rest of protocol is executed according to Σf on input (x,w) and with the following setting.

Cmtl = rl
e,Res

l
= rl(wρ(l))

Chal ,

Verification Equation : Res
l

e = Cmtl (xρ(l))
Chal .

F.2 Our ABID in Discrete Log Using FS Credential-Bundle as Witness

A prime of bit length λ is denoted by p. A multiplicative cyclic group of order p is denoted by Gp. We fix a base
g ∈ Gp, 〈g〉 = Gp. The ring of the exponent domain of Gp, which consists of integers from 0 to p− 1 with modulo
p operation, is denoted by Zp.
ABID.Setup takes as input (1λ,U). Let Rλ := {(β, α) ∈ Gp × Zp;β = gα}. Then InstanceR(1λ) chooses an
element (β, α) ∈ Rλ at random. ABID.Setup returns a public key and a master secret key: PK = ((g, β),U , µ),
MSK = α.
ABID.KG returns SKS with signatures, for i ∈ S, σi = (ai = gri , wi = ri + ciα). Here we use a key k obtained
by k ← Hashµ(α ‖ τ), put mi = τ ‖ i, and ri ∈ Zp is chosen at random according to a random tape: PRF k(mi),
and ci is obtained by ci ← Hashµ(ai ‖ mi). Σstmtgen(β, ai, ci) is an algorithm that computes xi := aiβ

ci ∈ Gp.
The rest of protocol is executed according to Σf on input (x,w) and with the following setting.

Cmtl = grl ,Resl = rl + Chal wρ(l),

Verification Equation : gRes
l = Cmtl (xρ(l))

Chal .

G Instantiations Using Camenisch-Lysyanskaya Credential-Bundle as Witness

In this section, we provide another type of instantiations of our procedure Σf , ABID and ABTTS using the
Camenisch-Lysyanskaya Signatures as a witness. We give two instantiations in the RSA setting [CL02] and the
discrete-logarithm setting [TF12,FI05,Oka06].

G.1 Our Σ-protocol Σf in the Case of CL Credential-Bundle

Our Σ-protocol Σf is a zero-knowledge proof of knowledge ZKPoK[w = (wρ(l))l := (eρ(l), sρ(l))l, l ∈ Leaf(Tf ) :
x = (equations)] for the language Lf , where the equations are:

Zρ(l) = Z
eρ(l)
ρ(l),1Z

sρ(l)
ρ(l),2, l ∈ Leaf(Tf ). (5)

In the above equation, Zρ(l) is represented by (eρ(l), sρ(l)) to the base (Zρ(l),1, Zρ(l),2). A prover P(x,w, f) and a
verifier V(x, f) execute Σf in the following way.
P(x,w, f). To prove the knowledge of those representations (eρ(l), sρ(l)), P computes the first message, a com-

mitment (Cmtl)l, as follows. Let Z̄ be the exponent domain for the above expression. To do the computation
honestly at a leaf l, P chooses ηe,l, ηs,l ∈R Z̄, and puts Cmtl := Z

ηe,l
ρ(l),1Z

ηs,l
ρ(l),2. To simulate the honest compu-

tation at a leaf l, P chooses ηe,l, θs,l ∈R Z̄, and in addition, the divided challenge strings (Chan)n,Chan ∈ Z̄,
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which are in accordance with our procedure Σf . Then P puts, for each leaf l, θe,l := ηe,l + Chaleρ(l), and

Cmtl := Z−Chal
ρ(l) Z

θe,l
ρ(l),1Z

θs,l
ρ(l),2. P sends (Cmtl)l to a verifier V.

V(x, f). Receiving (Cmtl)l, V(x, f) chooses the second message: a challenge Cha ∈R Z̄, uniformly at random, and
sends Cha to P.
P(x,w, f). Receiving Cha, P completes to compute the third message; that is, P completes the division (Chan)n
such that Char(Tf ) = Cha, and a response (Resl := (θe,l, θs,l))l with θe,l := ηe,l+Chaleρ(l), θs,l := ηs,l+Chalsρ(l).
P sends (Chal)l and (Resl)l to V.
V(x, f). Receiving (Chal)l and (Resl)l, V checks the integrity of the division (Chal)l. Then V verifies:

Cmtl =? Z
−Chal
ρ(l) Z

θe,l
ρ(l),1Z

θs,l
ρ(l),2, l ∈ Leaf(Tf ). (6)

According to the division rule of our procedure Σf , the integrity of (Chal)l can be checked as follows: From the
leaves to the root, and at every inner node n ∈ iNode(Tf ) and its two children chd1, chd2;

• If n is an AND node (∧), then verify Chachd1 =? Chachd2 . If so, put Chan := Chachd1 .

• Else if n is an OR node (∨), then just put Chan := Chachd1 + Chachd2 .

• If n is the root node, then verify Chan =? Cha.

• Repeat until all n ∈ iNode(Tf ) are verified.

The above procedure, Σf , can be shown to possess the three requirements of Σ-protocol: completeness, special
soundness and honest-verifier zero-knowledge.

G.2 Our ABID and ABTTS in RSA Using CL Credential-Bundle as Witness

Strong RSA Assumption [CL02] Let p = 2p′ + 1 denote a safe prime (p′ is also a prime). Let N denote
the special RSA modulus; that is, N = pq where p = 2p′ + 1 and q = 2q′ + 1 are two safe primes such that
|p′| = |q′| = λ−1. We denote the probabilistic algorithm that generates such N at random on input 1λ as RSAmod.
Let QRN ⊂ Z∗N denote the set of quadratic residues modulo N ; that is, elements a ∈ Z∗N such that a ≡ x2 mod N
for some x ∈ Z∗N . The strong RSA assumption [CL02] states that for any PPT A, the following advantage is
negligible in λ: Advsrsa

RSAmod,S(λ) := Pr[N ← RSAmod(1λ), g ∈R QRN , (V, e)← A(N, g) : e > 1 ∧ V e ≡ g mod N ].

CL Credential-Bundle in RSA
Our credential-bundle scheme CB = (CB.KG,CB.Sign,CB.Vrfy) is described as follows. Let lM be a parameter.
The message space M consists of all binary strings of length lM. Let n = n(λ) denote the maximum number of
messages made into a bundle, which is a polynomial in λ.
CB.KG(1λ)→ (PK,SK). Given 1λ, it chooses a special RSA modulus N = pq of length lN = λ, where p = 2p′+1
and q = 2q′+1 are safe primes. For i = 1 to n, it chooses gi,0, gi,1, gi,2 ∈R QRN . It puts PK := (N, (gi,0, gi,1, gi,2)ni=1)
and SK = p, and returns (PK,SK).
CB.Sign(PK,SK, (mi)

n
i=1) → (τ, (σi)

n
i=1). Given PK,SK and messages (mi)

n
i=1 each of which is of length lM, it

chooses a prime e of length le = lM+2 at random. For i = 1 to n, it chooses an integer si of length ls = lN + lM+ l
at random, where l is a security parameter, and it computes the value Ai:

Ai := (gi,0g
mi
i,1 g

si
i,2)

1
e . (7)

It puts τ = e and σi = (si, Ai) for each i and returns (τ, (σi)
n
i=1).

CB.Vrfy(PK, (mi)
n
i=1, (τ, (σi)

n
i=1)) → 1/0. Given PK, (mi)

n
i=1 and a credential bundle (τ, (σi)

n
i=1), it verifies

whether the following holds:

e := τ is of length le and Aei = gi,0g
mi
i,1 g

si
i,2, i = 1, . . . , n. (8)

Theorem 8 (Unforgeability of Our CB) Our credential-bundle scheme CB is existentially unforgeable against
chosen-message attacks under the Strong RSA assumption.

Proof. Basically the proof goes in the same way as the Camenisch-Lysyanskaya signature scheme [CL02]. The
difference only arises in the case that the simulation of the credential-bundle oracle needs precomputation.
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Let F be a given PPT forger on our CB. We construct a PPT solver S of any instance (N, g) of the Strong
RSA problem. To describe three cases of F ’s behavior, suppose that F issues at most q credential-bundle queries
(mj,i)

nj
i=1, j = 1, . . . , q. Suppose that the credential-bundle oracle SBSIGN replies the tags (that is, exponents)

e1, . . . , eq in answer to F ’s queries, which are primes of length le. Suppose that F ’s forgery is (m∗i )
n∗

i=1, τ
∗ =

e∗, (σ∗i = (s∗i , A
∗
i ))

n∗

i=1. Let us distinguish three types of forgeries.

1. e∗ is relatively prime to any of {ej}j .
2. e∗ is not relatively prime to some of {ej}j , and g

m∗i
i,1 g

s∗i
i,2 ≡ g

mj,i
i,1 g

sj,i
i,2 for at least one j s.t. gcd(e∗, ej) 6= 1 and

at least one i.

3. e∗ is not relatively prime to some of {ej}j , and g
m∗i
i,1 g

s∗i
i,2 6≡ g

mj,i
i,1 g

sj,i
i,2 for any j s.t. gcd(e∗, ej) 6= 1 and any i.

By F1,F2 and F3 let us denote the forger who runs F but then only returns its forgery if it is of Type 1, Type
2 and Type 3, respectively. On input an instance (N, g) of the Strong RSA problem, S first guesses one of the
three types at random (hence the advantage of S reduces by the factor of 1/3 here).

When F is of Type 1 or Type 2, simulations of F ’s credential-bundle oracle SBSIGN and the extraction of an
answer of an instance (N, g) go in the same way as the Camenisch-Lysyanskaya signature scheme [CL02].

When F is of Type 3, the simulation of SBSIGN needs slight enhancement. S chooses q primes {ej}qj=1 of
length le. Then S chooses j∗ ∈ {1, . . . , q} at random, and for each i = 1 to n, puts E :=

∏
1≤j≤q,j 6=j∗ ej . Then, for

each i = 1 to n, S chooses ri, ti, ui, ᾱi ∈ Z of length ls at random, where gcd(ᾱi, ej∗) = 1, puts Ei := Eᾱi, and

puts gi,2 :≡ gEi , gi,1 :≡ grii,2, gi,0 :≡ gej∗ ti−uii,2 . S sets PK := (N, (gi,0, gi,1, gi,2)ni=1) and give PK to F .

For j 6= j∗, the simulation of SBSIGN for a query (mj,i)i issued by F goes in the same way as in [CL02].

For j∗, S puts si := ui − rimj∗,i and Ai := gtii,2 for each i. Note that the following holds.

A
ej∗
i = (gtii,2)ej∗ = g

ej∗ ti−ui+ui
i,2 = g

ej∗ ti−ui+ui
i,2 = gi,0g

rimj∗,i+si
i,2 = gi,0g

mj∗,i
i,1 gsii,2.

When F returns a forgery (m∗i )
n∗

i=1, (τ
∗ = e∗, (σ∗i = (s∗i , A

∗
i ))

n∗

i=1), the extraction of an answer to the instance
goes in the same way as in [CL02]. Note that e∗ = ej∗ holds with at least a non-negligible probability 1/q. �

Our ABID in RSA Using CL-CB as Witness
ABID.Setup(1λ,U) → (MSK,PK). Given the security parameter 1λ and an attribute universe U , it chooses a
special RSA modulus N = pq, p = 2p′ + 1, q = 2q′ + 1 of length lN = 2λ. For i ∈ U , it chooses gi,0, gi,1, gi,2 ∈R
QRN and a hash key µ ∈R Hashkeysp(λ) of a hash function Hashµ with the value in Zφ(N). It puts PK :=
(N, (gi,0, gi,1, gi,2)i∈U , µ,U) and MSK := p. It returns PK and MSK.

ABID.KG(MSK,PK, S) → SKS . Given PK, MSK and an attribute subset S, it chooses a prime e of length le.

For i ∈ S, it computes ai ← Hashµ(i), si ∈R Z of length le, Ai := (gi,0g
ai
i,1g
−si
i,2 )

1
e . It puts SKS := (e, (si, Ai)i∈S).

P(SKS ,PK, f) and V(PK, f) execute Σf with the following precomputation. For i ∈ Att(f), P chooses ri ∈R Z
of length le. If i ∈ S then s′i := si + eri, A

′
i := Aig

−ri
i,2 . Otherwise s′i ∈R Z of length le, A

′
i ∈R Z∗N . P puts

Zi := gi,0g
ai
i,1, Zi,1 := A′i, Zi,2 := gi,2.

Then the statement for Σf is x := (xi := (Zi, Zi,1, Zi,2))i and the witness is w := (τ := e, (wi := s′i)i), where
i ∈ Att(f) for x and w. P sends the re-randomized values (A′i)i to V for V to be able to compute the statement x.

After the above precomputation, P and V can execute Σf on the relation Rf . In other words, P and V execute
ZKPoK[(eρ(l), s

′
ρ(l))l, l ∈ Leaf(Tf ) : equations], for the language Lf , where the equations are:

Zρ(l) = Z
eρ(l)
ρ(l),1Z

s′ρ(l)
ρ(l),2, l ∈ Leaf(Tf ). (9)

Note that V verifies whether or not the verification equations hold for all the leaves:

Cmtl = Z−Chal
ρ(l) Z

θe,l
ρ(l),1Z

θs′,l
ρ(l),2, l ∈ Leaf(Tf ). (10)

V returns 1 or 0 accordingly.
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Security of Our ABID

Claim 1 (Concurrent Security under a Single Tag) Our ABID is secure against concurrent attacks if our
credential-bundle scheme CB is existentially unforgeable against chosen-message attacks and if the extracted values
e by the extractor of the underlying Σ-protocol Σf is a common single value.

Proof. All the answers of the oracles to queries of a PPT adversary A on ABID can be perfectly simulated by using
the oracles of CB. As for the extraction of a credential bundle, we can do it under the condition that the extracted
value e is a common single value. �

Note that Claim 1 is needed only as an intermediate result. That is, the assumption that the extracted value
e is a common single value is assured by the two-tier key-issuer, ABTTS.SKG, in the next section.

Our ABTTS in RSA Using CL-CB as Witness
ABTTS.Setup and ABTTS.PKG are the same as ABID.Setup and ABID.KG in Section G.2, respectively.
ABTTS.SKG, ABTTS.Sign and ABTTS.Vrfy are obtained along the design principle of two-tier signature
schemes for the canonical identification schemes [BS07]. That is, on input MSK, PK, a primary secret key SKS and
an access formula f , ABTTS.SKG first computes a statement x and a corresponding witness w. Then, on input
(x,w), the prover P is executed in ABTTS.SKG to obtain the commitment (Cmtl)l, and the inner state st of P
with the commitment is included in the secondary secret key; SSKS,f := (w, (Cmtl)l ‖ st), SPKf := (x, (Cmtl)l).
ABTTS.Sign and ABTTS.Vrfy run the remaining protocol of our ABID in the two-tier framework [BS07] as in
Section 7. The signature is:

σ := ((Chan)n, (Resl)l).

Security of Our ABTTS in RSA Using CL-CB

Theorem 9 (Unforgeability) Our attribute-based two-tier signature scheme ABTTS′ is existentially unforgeable
against chosen-message attacks under the Strong RSA assumption in the standard model.

Proof. According to the same discussion in Bellare et al. [BS07] as well as Theorem 8 and Claim 1, we deduce the
claim. �

Theorem 10 (Attribute Privacy) Our attribute-based two-tier signature scheme ABTTS′ has attribute privacy.

Proof. The witness-indistinguishability of Σf assures the attribute privacy. �

G.3 Our ABID and ABTTS in Discrete Log Using CL Credential-Bundle as Witness

Strong Diffie-Hellman Assumption [BB04a] Let p denote a prime of bit length λ. Let e : G1 × G2 → GT
denote bilinear groups of order p, where G1 is generated by g, G2 is generated by h and GT is generated by
e(g, h) 6= 1GT . We denote the probabilistic algorithm that generates such parameters params := (p,G1,G2,GT , e)
on input 1λ as BlGrp. Let q denote a number that is less than a fixed polynomial in λ. The strong Diffie-Hellman
assumption [BB04a] states that for any PPT A, the following advantage is negligible in λ: Advsdh

BlGrp,S(λ) :=

Pr[params← BlGrp(1λ), α ∈R Zp, (u, e)← A(params, (g, gα, gα
2

, . . . , gα
q

, h, hα)) : uα+e = g].

CL Credential-Bundle in DL
We propose a credential-bundle scheme in the discrete-logarithm setting by modifying the pairing-based CL signa-
ture scheme [TF12,FI05,Oka06]. Our pairing-based credential-bundle scheme, CB = (CB.KG,CB.Sign,CB.Vrfy),
is described as follows.
CB.KG(1λ) → (PK,SK). Given 1λ as input, it runs a group generator BlGrp(1λ) to get (p,G1,G2,GT , e(·, ·)).
For i = 1 to n, it chooses gi,0, gi,1, gi,2 ∈R G1, h0 ∈R G2, α ∈R Zp and it puts h1 := hα0 . It puts PK :=
((gi,0, gi,1, gi,2)ni=1, h0, h1) and SK := α, and returns (PK,SK).
CB.Sign(PK,SK, (mi)

n
i=1) → (τ, (σi)

n
i=1). Given PK,SK and messages (mi)

n
i=1 each of which is of length lM, it

chooses e ∈R Zp. For i = 1 to n, it chooses si ∈R Zp, and it computes the value Ai:

Ai := (gi,0g
mi
i,1 g

si
i,2)

1
α+e . (11)
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It puts τ = e and σi = (si, Ai) for each i and returns (τ, (σi)
n
i=1).

CB.Vrfy(PK, (mi)
n
i=1, (τ, (σi)

n
i=1)) → 1/0. Given PK, (mi)

n
i=1 and (τ, (σi)

n
i=1), it verifies whether the following

holds:

e(Ai, h
e
0h1) = e(gi,0g

mi
i,1 g

si
i,2, h0), i = 1, . . . , n. (12)

Theorem 11 (Unforgeability of Our CB) Our credential-bundle scheme CB is existentially unforgeable against
chosen-message attack under the Strong Diffie-Hellman assumption.

Proof. Everything can be done as in [Oka06] except the following slight enhancement.
S chooses q elements ej ∈ Zp, j = 1, . . . , q, at random. Then S chooses j∗ ∈ {1, . . . , q} at random and puts:

f(X) :=
∏
j∈S

(X + ej), fj∗(X) := f(X)/(X + ej∗).

Then, for each i = 1 to n, S chooses ri, ti, ui, ᾱi ∈R Zp and implicitly puts αi := ᾱiα, and puts gi,2 :=

gfj∗ (αi), gi,1 := grii,2, gi,0 := g
(αi+ei∗ )ti−ui
i,2 = (gfj∗ (αi))(αi+ej∗ )ti−ui = gf(αi)tig−uifj∗ (αi), sj∗ := ui− rimj∗ , Aj∗ :=

gtii,2. Then,

A
αi+ej∗
j∗ = (gtii,2)αi+ej∗ = g

(αi+ej∗ )ti−ui+ui
i,2 = gi,0g

ui
i,2 = gi,0g

rimj∗+sj∗
i,2 = gi,0g

mj∗
i,1 g

sj∗
i,2 .

This completes the simulation of the credential-bundle oracle SBSIGN .
The extraction of the answer to an instance of the Strong Diffie-Hellman assumption can be done in the same

way as [Oka06] with division by ᾱi. �

Our ABID in DL Using CL-CB as Witness
ABID.Setup(1λ,U) → (MSK,PK). Given the security parameter 1λ and an attribute universe U , it executes a
group generator BlGrp(1λ) to get (p,G1,G2,GT , e(·, ·)). For i ∈ U , it chooses gi,0, gi,1, gi,2 ∈R G1, h0 ∈R G2, α ∈R
Zp, h1 := hα0 and a hash key µ ∈R Hashkeysp(λ) of a hash function Hashµ with the value in Zp. It puts PK :=
((gi,0, gi,1, gi,2)i∈U , h0, h1, µ,U) and MSK := α. It returns PK and MSK.
ABID.KG(MSK,PK, S) → SKS . Given PK, MSK and an attribute subset S, it chooses e ∈R Zp. For i ∈ S, it

computes ai ← Hashµ(i), si ∈R Zp, Ai := (gi,0g
ai
i,1g
−si
i,2 )

1
α+e ∈ G1. It puts SKS := (e, (si, Ai)i∈S).

P(SKS ,PK, f) and V(PK, f) execute Σf with the following precomputation. For i ∈ Att(f), P chooses ri ∈R Zp.
If i ∈ S then s′i := si + eri, A

′
i := Aig

−ri
i,2 ∈ G1. Otherwise s′i ∈R Zp, A′i ∈R G1. P puts

Zi := e(gi,0g
ai
i,1, h0)e(A′i, h1)−1, Zi,1 := e(A′i, h0), Zi,2 := e(gi,2, h0), Zi,3 := e(gi,2, h1).

Then the statement for Σf is x := (xi := (Zi, Zi,1, Zi,2, Zi,3))i and the witness is w := (τ := e, (wi := s′i)i), where
i ∈ Att(f) for x and w. P sends the re-randomized values (A′i)i to V for V to be able to compute the statement x.

After the above precomputation, P and V can execute Σf on the relation Rf . In other words, P and V execute
ZKPoK[(eρ(l), s

′
ρ(l))l, l ∈ Leaf(Tf ) : equations], for the language Lf , where the equations are:

Zρ(l) = Z
eρ(l)
ρ(l),1Z

s′ρ(l)
ρ(l),2Z

rρ(l)
ρ(l),3, l ∈ Leaf(Tf ). (13)

Note that V verifies whether or not the verification equations hold for all the leaves:

Cmtl = Z−Chal
ρ(l) Z

θe,l
ρ(l),1Z

θs′,l
ρ(l),2Z

θr,l
ρ(l),3, l ∈ Leaf(Tf ). (14)

V returns 1 or 0 accordingly.

Security of Our ABID

Claim 2 (Concurrent Security under a Single Tag) Our ABID is secure against concurrent attacks if our
credential-bundle scheme CB is existentially unforgeable against chosen-message attacks and if the extracted values
e by the extractor of the underlying Σ-protocol Σf is a common single value.

Proof. All the answers of the oracles to queries of a PPT adversary A on ABID can be perfectly simulated by using
the oracles of CB. As for the extraction of a credential bundle, we can do it under the condition the extracted value
e is a common single value. �

Note that Claim 2 is needed only as an intermediate result. That is, the assumption that the extracted value
e is a common single value is assured by the two-tier key-issuer, ABTTS.SKG, in the next section.
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Our ABTTS in DL Using CL-CB as Witness
ABTTS.Setup and ABTTS.PKG are the same as ABID.Setup and ABID.KG in Section G.2, respectively.
ABTTS.SKG, ABTTS.Sign and ABTTS.Vrfy are obtained along the design principle of two-tier signature
schemes for the canonical identification schemes [BS07]. That is, on input MSK, PK, a primary secret key SKS and
an access formula f , ABTTS.SKG first computes a statement x and a corresponding witness w. Then, on input
(x,w), the prover P is executed in ABTTS.SKG to obtain the commitment (Cmtl)l, and the inner state st of P
with the commitment is included in the secondary secret key; SSKS,f := (w, (Cmtl)l ‖ st), SPKf := (x, (Cmtl)l).
ABTTS.Sign and ABTTS.Vrfy run the remaining protocol of our ABID in the two-tier framework [BS07] as in
Section 7. The signature is:

σ := ((Chan)n, (Resl)l).

Security of Our ABTTS in DL Using CL-CB

Theorem 12 (Unforgeability) Our attribute-based two-tier signature scheme ABTTS′ is existentially unforgeable
against chosen-message attacks under the Strong Diffie-Hellman assumption in the standard model.

Proof. According to the same discussion in Bellare et al. [BS07] as well as Theorem 11 and Claim 2, we deduce
the claim. �

Theorem 13 (Attribute Privacy) Our attribute-based two-tier signature scheme ABTTS′ has attribute privacy.

Proof. The witness-indistinguishability of Σf assures the attribute privacy. �
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